Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins
One of the most important branches of genetic engineering is the expression of recombinant proteins using biological expression systems. Nowadays, different expression systems are used for the production of recombinant proteins including bacteria, yeasts, molds, mammals, plants, and insects. Yeast e...
Saved in:
Published in | Journal of cellular physiology Vol. 235; no. 9; pp. 5867 - 5881 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.09.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the most important branches of genetic engineering is the expression of recombinant proteins using biological expression systems. Nowadays, different expression systems are used for the production of recombinant proteins including bacteria, yeasts, molds, mammals, plants, and insects. Yeast expression systems such as Saccharomyces cerevisiae (S. cerevisiae) and Pichia pastoris (P. pastoris) are more popular. P. pastoris expression system is one of the most popular and standard tools for the production of recombinant protein in molecular biology. Overall, the benefits of protein production by P. pastoris system include appropriate folding (in the endoplasmic reticulum) and secretion (by Kex2 as signal peptidase) of recombinant proteins to the external environment of the cell. Moreover, in the P. pastoris expression system due to its limited production of endogenous secretory proteins, the purification of recombinant protein is easy. It is also considered a unique host for the expression of subunit vaccines which could significantly affect the growing market of medical biotechnology. Although P. pastoris expression systems are impressive and easy to use with well‐defined process protocols, some degree of process optimization is required to achieve maximum production of the target proteins. Methanol and sorbitol concentration, Mut forms, temperature and incubation time have to be adjusted to obtain optimal conditions, which might vary among different strains and externally expressed protein. Eventually, optimal conditions for the production of a recombinant protein in P. pastoris expression system differ according to the target protein.
The Pichia pastoris (P. pastoris) has also been established as a versatile cell factory for the production of thousands of biomolecules both on a laboratory and industrial scale. Optimal conditions for the production of a recombinant protein in P. pastoris expression system differ according to the target protein. |
---|---|
AbstractList | One of the most important branches of genetic engineering is the expression of recombinant proteins using biological expression systems. Nowadays, different expression systems are used for the production of recombinant proteins including bacteria, yeasts, molds, mammals, plants, and insects. Yeast expression systems such as Saccharomyces cerevisiae (S. cerevisiae) and Pichia pastoris (P. pastoris) are more popular. P. pastoris expression system is one of the most popular and standard tools for the production of recombinant protein in molecular biology. Overall, the benefits of protein production by P. pastoris system include appropriate folding (in the endoplasmic reticulum) and secretion (by Kex2 as signal peptidase) of recombinant proteins to the external environment of the cell. Moreover, in the P. pastoris expression system due to its limited production of endogenous secretory proteins, the purification of recombinant protein is easy. It is also considered a unique host for the expression of subunit vaccines which could significantly affect the growing market of medical biotechnology. Although P. pastoris expression systems are impressive and easy to use with well‐defined process protocols, some degree of process optimization is required to achieve maximum production of the target proteins. Methanol and sorbitol concentration, Mut forms, temperature and incubation time have to be adjusted to obtain optimal conditions, which might vary among different strains and externally expressed protein. Eventually, optimal conditions for the production of a recombinant protein in P. pastoris expression system differ according to the target protein. One of the most important branches of genetic engineering is the expression of recombinant proteins using biological expression systems. Nowadays, different expression systems are used for the production of recombinant proteins including bacteria, yeasts, molds, mammals, plants, and insects. Yeast expression systems such as Saccharomyces cerevisiae (S. cerevisiae) and Pichia pastoris (P. pastoris) are more popular. P. pastoris expression system is one of the most popular and standard tools for the production of recombinant protein in molecular biology. Overall, the benefits of protein production by P. pastoris system include appropriate folding (in the endoplasmic reticulum) and secretion (by Kex2 as signal peptidase) of recombinant proteins to the external environment of the cell. Moreover, in the P. pastoris expression system due to its limited production of endogenous secretory proteins, the purification of recombinant protein is easy. It is also considered a unique host for the expression of subunit vaccines which could significantly affect the growing market of medical biotechnology. Although P. pastoris expression systems are impressive and easy to use with well-defined process protocols, some degree of process optimization is required to achieve maximum production of the target proteins. Methanol and sorbitol concentration, Mut forms, temperature and incubation time have to be adjusted to obtain optimal conditions, which might vary among different strains and externally expressed protein. Eventually, optimal conditions for the production of a recombinant protein in P. pastoris expression system differ according to the target protein.One of the most important branches of genetic engineering is the expression of recombinant proteins using biological expression systems. Nowadays, different expression systems are used for the production of recombinant proteins including bacteria, yeasts, molds, mammals, plants, and insects. Yeast expression systems such as Saccharomyces cerevisiae (S. cerevisiae) and Pichia pastoris (P. pastoris) are more popular. P. pastoris expression system is one of the most popular and standard tools for the production of recombinant protein in molecular biology. Overall, the benefits of protein production by P. pastoris system include appropriate folding (in the endoplasmic reticulum) and secretion (by Kex2 as signal peptidase) of recombinant proteins to the external environment of the cell. Moreover, in the P. pastoris expression system due to its limited production of endogenous secretory proteins, the purification of recombinant protein is easy. It is also considered a unique host for the expression of subunit vaccines which could significantly affect the growing market of medical biotechnology. Although P. pastoris expression systems are impressive and easy to use with well-defined process protocols, some degree of process optimization is required to achieve maximum production of the target proteins. Methanol and sorbitol concentration, Mut forms, temperature and incubation time have to be adjusted to obtain optimal conditions, which might vary among different strains and externally expressed protein. Eventually, optimal conditions for the production of a recombinant protein in P. pastoris expression system differ according to the target protein. One of the most important branches of genetic engineering is the expression of recombinant proteins using biological expression systems. Nowadays, different expression systems are used for the production of recombinant proteins including bacteria, yeasts, molds, mammals, plants, and insects. Yeast expression systems such as Saccharomyces cerevisiae ( S. cerevisiae ) and Pichia pastoris ( P. pastoris ) are more popular. P. pastoris expression system is one of the most popular and standard tools for the production of recombinant protein in molecular biology. Overall, the benefits of protein production by P. pastoris system include appropriate folding (in the endoplasmic reticulum) and secretion (by Kex2 as signal peptidase) of recombinant proteins to the external environment of the cell. Moreover, in the P. pastoris expression system due to its limited production of endogenous secretory proteins, the purification of recombinant protein is easy. It is also considered a unique host for the expression of subunit vaccines which could significantly affect the growing market of medical biotechnology. Although P. pastoris expression systems are impressive and easy to use with well‐defined process protocols, some degree of process optimization is required to achieve maximum production of the target proteins. Methanol and sorbitol concentration, Mut forms, temperature and incubation time have to be adjusted to obtain optimal conditions, which might vary among different strains and externally expressed protein. Eventually, optimal conditions for the production of a recombinant protein in P. pastoris expression system differ according to the target protein. One of the most important branches of genetic engineering is the expression of recombinant proteins using biological expression systems. Nowadays, different expression systems are used for the production of recombinant proteins including bacteria, yeasts, molds, mammals, plants, and insects. Yeast expression systems such as Saccharomyces cerevisiae (S. cerevisiae) and Pichia pastoris (P. pastoris) are more popular. P. pastoris expression system is one of the most popular and standard tools for the production of recombinant protein in molecular biology. Overall, the benefits of protein production by P. pastoris system include appropriate folding (in the endoplasmic reticulum) and secretion (by Kex2 as signal peptidase) of recombinant proteins to the external environment of the cell. Moreover, in the P. pastoris expression system due to its limited production of endogenous secretory proteins, the purification of recombinant protein is easy. It is also considered a unique host for the expression of subunit vaccines which could significantly affect the growing market of medical biotechnology. Although P. pastoris expression systems are impressive and easy to use with well‐defined process protocols, some degree of process optimization is required to achieve maximum production of the target proteins. Methanol and sorbitol concentration, Mut forms, temperature and incubation time have to be adjusted to obtain optimal conditions, which might vary among different strains and externally expressed protein. Eventually, optimal conditions for the production of a recombinant protein in P. pastoris expression system differ according to the target protein. The Pichia pastoris (P. pastoris) has also been established as a versatile cell factory for the production of thousands of biomolecules both on a laboratory and industrial scale. Optimal conditions for the production of a recombinant protein in P. pastoris expression system differ according to the target protein. One of the most important branches of genetic engineering is the expression of recombinant proteins using biological expression systems. Nowadays, different expression systems are used for the production of recombinant proteins including bacteria, yeasts, molds, mammals, plants, and insects. Yeast expression systems such as Saccharomyces cerevisiae ( S. cerevisiae ) and Pichia pastoris ( P. pastoris ) are more popular. P. pastoris expression system is one of the most popular and standard tools for the production of recombinant protein in molecular biology. Overall, the benefits of protein production by P. pastoris system include appropriate folding (in the endoplasmic reticulum) and secretion (by Kex2 as signal peptidase) of recombinant proteins to the external environment of the cell. Moreover, in the P. pastoris expression system due to its limited production of endogenous secretory proteins, the purification of recombinant protein is easy. It is also considered a unique host for the expression of subunit vaccines which could significantly affect the growing market of medical biotechnology. Although P. pastoris expression systems are impressive and easy to use with well‐defined process protocols, some degree of process optimization is required to achieve maximum production of the target proteins. Methanol and sorbitol concentration, Mut forms, temperature and incubation time have to be adjusted to obtain optimal conditions, which might vary among different strains and externally expressed protein. Eventually, optimal conditions for the production of a recombinant protein in P. pastoris expression system differ according to the target protein. The Pichia pastoris ( P. pastoris ) has also been established as a versatile cell factory for the production of thousands of biomolecules both on a laboratory and industrial scale. Optimal conditions for the production of a recombinant protein in P. pastoris expression system differ according to the target protein. |
Author | Farsiani, Hadi Karbalaei, Mohsen Rezaee, Seyed A. |
AuthorAffiliation | 3 Mashhad University of Medical Sciences Antimicrobial Resistance Research Center Mashhad Iran 2 School of Medicine, Mashhad University of Medical Sciences Inflammation and Inflammatory Diseases Research Centre Mashhad Iran 1 Department of Microbiology and Virology, School of Medicine Jiroft University of Medical Sciences Jiroft Iran |
AuthorAffiliation_xml | – name: 1 Department of Microbiology and Virology, School of Medicine Jiroft University of Medical Sciences Jiroft Iran – name: 3 Mashhad University of Medical Sciences Antimicrobial Resistance Research Center Mashhad Iran – name: 2 School of Medicine, Mashhad University of Medical Sciences Inflammation and Inflammatory Diseases Research Centre Mashhad Iran |
Author_xml | – sequence: 1 givenname: Mohsen orcidid: 0000-0001-9899-2885 surname: Karbalaei fullname: Karbalaei, Mohsen organization: Jiroft University of Medical Sciences – sequence: 2 givenname: Seyed A. orcidid: 0000-0001-6814-5992 surname: Rezaee fullname: Rezaee, Seyed A. organization: Inflammation and Inflammatory Diseases Research Centre – sequence: 3 givenname: Hadi orcidid: 0000-0002-4738-0245 surname: Farsiani fullname: Farsiani, Hadi email: farsianih@mums.ac.ir organization: Antimicrobial Resistance Research Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32057111$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1vEzEQhi1URNPCgT-ALHGBw7b-WO-uOSBVEZ-qRA9wthxnnHXk2IvtBfLvcUmKoIKTrZlnXr0z7xk6CTEAQk8puaCEsMutmS6YFAN_gBaUyL5pO8FO0KL2aCNFS0_RWc5bQoiUnD9Cp5wR0VNKFwhunBmdxpPOJSaXX-ErPLrN6Pc4z8ZAznb2GH5MqX5dDDjvc4EdtjHhOBW3076WQhkhu4yjxSMUSNHHTZwznlIs4EJ-jB5a7TM8Ob7n6MvbN5-X75vrT-8-LK-uGyOI5I2wg-kGLuWa2l4YzTvDaS0R2vUa2hU1tbUGo62WnaWadGtmh1UnLBOamYGfo9cH3Wle7WBtIJSkvZpS9Zn2Kmqn_u4EN6pN_KZ6xgbW8yrw4iiQ4tcZclE7lw14rwPUhRTjQsi2I4Oo6PN76DbOKdT1FGsp6fuW97fUsz8d_bZyl0AFLg-ASTHnBFYZV3Spp64GnVeUqNuMVc1Y_cq4Try8N3En-i_2qP7dedj_H1QflzeHiZ_PZriF |
CitedBy_id | crossref_primary_10_3389_fbioe_2021_811905 crossref_primary_10_3390_vaccines9040328 crossref_primary_10_1016_j_bej_2024_109483 crossref_primary_10_1007_s00253_022_12249_7 crossref_primary_10_1016_j_fsi_2022_06_003 crossref_primary_10_1186_s40643_023_00653_4 crossref_primary_10_1007_s00449_023_02925_x crossref_primary_10_1080_07388551_2024_2385996 crossref_primary_10_1128_aem_01740_23 crossref_primary_10_1088_1755_1315_913_1_012099 crossref_primary_10_3390_bioengineering11010092 crossref_primary_10_3389_fmicb_2022_930658 crossref_primary_10_1007_s12033_023_00725_y crossref_primary_10_1007_s11274_024_04057_0 crossref_primary_10_3389_fimmu_2024_1380028 crossref_primary_10_3390_pharmaceutics16020292 crossref_primary_10_1063_5_0158032 crossref_primary_10_1016_j_toxicon_2021_08_003 crossref_primary_10_1007_s42770_023_01219_4 crossref_primary_10_3390_microorganisms11092297 crossref_primary_10_3390_jof9030342 crossref_primary_10_1016_j_greenca_2025_01_004 crossref_primary_10_1021_jacsau_3c00263 crossref_primary_10_3389_fimmu_2022_1011484 crossref_primary_10_1007_s43393_022_00077_9 crossref_primary_10_3390_molecules29235695 crossref_primary_10_1007_s12257_024_00149_8 crossref_primary_10_1371_journal_ppat_1012745 crossref_primary_10_3390_molecules28073041 crossref_primary_10_1002_yea_3657 crossref_primary_10_3390_ijms242015220 crossref_primary_10_1111_1541_4337_70078 crossref_primary_10_1186_s12864_022_08592_8 crossref_primary_10_3390_ijms241310768 crossref_primary_10_1016_j_aca_2024_342887 crossref_primary_10_1016_j_chroma_2024_464682 crossref_primary_10_1042_EBC20200138 crossref_primary_10_1016_j_bcab_2022_102564 crossref_primary_10_3390_biom13030441 crossref_primary_10_1016_j_enzmictec_2022_110090 crossref_primary_10_1016_j_jbiosc_2024_12_007 crossref_primary_10_1002_bit_28321 crossref_primary_10_1007_s00253_023_12606_0 crossref_primary_10_1080_07388551_2023_2171850 crossref_primary_10_1186_s43141_023_00514_9 crossref_primary_10_1016_j_biortech_2024_131918 crossref_primary_10_1007_s12033_020_00288_2 crossref_primary_10_1016_j_bsheal_2022_02_003 crossref_primary_10_1021_acs_jafc_0c06020 crossref_primary_10_1016_j_bcp_2020_114370 crossref_primary_10_1016_j_heliyon_2025_e42487 crossref_primary_10_1016_j_procbio_2024_06_002 crossref_primary_10_1016_j_toxicon_2024_107613 crossref_primary_10_1016_j_pep_2023_106277 crossref_primary_10_1007_s12223_021_00894_w crossref_primary_10_3389_fimmu_2025_1430808 crossref_primary_10_1007_s11274_024_03957_5 crossref_primary_10_1021_acssynbio_3c00534 crossref_primary_10_1039_D1GC00260K crossref_primary_10_1080_10242422_2024_2305969 crossref_primary_10_3390_fermentation9050462 crossref_primary_10_1007_s10529_022_03239_w crossref_primary_10_1016_j_fsi_2023_109179 crossref_primary_10_1016_j_toxicon_2022_107012 crossref_primary_10_3390_v14102304 crossref_primary_10_1016_j_biotechadv_2023_108267 crossref_primary_10_3390_foods13203324 crossref_primary_10_1002_biof_2001 crossref_primary_10_1007_s10068_022_01087_y crossref_primary_10_1186_s12934_023_02074_6 crossref_primary_10_3390_fishes8120607 crossref_primary_10_1007_s00253_021_11688_y crossref_primary_10_29328_journal_abb_1001024 crossref_primary_10_1016_j_nbt_2022_08_002 crossref_primary_10_1016_j_tibtech_2024_12_004 crossref_primary_10_1016_j_fbio_2024_103886 crossref_primary_10_1080_21655979_2022_2084496 crossref_primary_10_1186_s40643_021_00430_1 crossref_primary_10_1186_s12934_022_01837_x crossref_primary_10_1016_j_scitotenv_2023_169057 crossref_primary_10_1186_s40643_023_00648_1 crossref_primary_10_1016_j_fbio_2024_104057 crossref_primary_10_22207_JPAM_19_1_38 crossref_primary_10_1016_j_isci_2023_106785 crossref_primary_10_3390_proteomes12020013 crossref_primary_10_3390_ijms25168555 crossref_primary_10_1016_j_pep_2024_106441 crossref_primary_10_3390_microorganisms12081731 crossref_primary_10_1002_pld3_341 crossref_primary_10_3389_fbioe_2022_1028691 crossref_primary_10_1016_j_copbio_2022_102690 crossref_primary_10_1016_j_toxicon_2022_107005 crossref_primary_10_1016_j_pep_2024_106556 crossref_primary_10_1021_acs_jafc_4c05238 crossref_primary_10_3390_ijms23031383 crossref_primary_10_1080_10408398_2022_2038076 crossref_primary_10_1016_j_seppur_2023_124777 crossref_primary_10_1002_mlf2_12115 crossref_primary_10_3390_fermentation11020049 crossref_primary_10_1016_j_foodres_2022_111925 crossref_primary_10_1016_j_jpba_2024_116124 crossref_primary_10_3389_fpara_2023_1103772 crossref_primary_10_1186_s12934_021_01635_x crossref_primary_10_1016_j_colsurfa_2022_130344 crossref_primary_10_3389_fmicb_2022_1059777 crossref_primary_10_1007_s10529_022_03321_3 crossref_primary_10_3390_jof10120854 crossref_primary_10_1080_10408398_2021_1879730 crossref_primary_10_1016_j_pestbp_2023_105392 crossref_primary_10_1016_j_tibtech_2020_08_004 crossref_primary_10_1002_biot_202400098 crossref_primary_10_1016_j_envpol_2022_119703 crossref_primary_10_1186_s12934_024_02525_8 crossref_primary_10_1016_j_mimet_2022_106560 crossref_primary_10_1002_2211_5463_13408 crossref_primary_10_1016_j_foodcont_2021_108004 crossref_primary_10_1093_jambio_lxad297 crossref_primary_10_3389_fmicb_2022_998647 crossref_primary_10_1016_j_indcrop_2020_112962 crossref_primary_10_1186_s12934_021_01696_y crossref_primary_10_1007_s11274_024_04097_6 crossref_primary_10_1186_s12934_020_01489_9 crossref_primary_10_1016_j_ijbiomac_2023_128633 crossref_primary_10_1007_s00449_024_03045_w crossref_primary_10_3389_ffunb_2022_827704 crossref_primary_10_1080_10826068_2021_2023823 crossref_primary_10_3390_ijms25126455 crossref_primary_10_3390_catal14110767 crossref_primary_10_1016_j_ijbiomac_2024_137324 crossref_primary_10_3390_biotech13010004 crossref_primary_10_1093_femsyr_foac023 crossref_primary_10_2174_1566524023666230504140828 crossref_primary_10_1021_acs_jafc_4c00521 crossref_primary_10_3390_toxins13120857 crossref_primary_10_3390_catal11080996 crossref_primary_10_1093_femsyr_foab059 crossref_primary_10_1016_j_ijbiomac_2021_07_085 crossref_primary_10_3390_ijms232012456 crossref_primary_10_1186_s12934_022_01908_z crossref_primary_10_3390_ph17111422 crossref_primary_10_3390_jof9101027 crossref_primary_10_1002_yea_3699 crossref_primary_10_1186_s12934_022_01833_1 crossref_primary_10_2217_fmb_2023_0131 crossref_primary_10_1093_glycob_cwad089 crossref_primary_10_1002_bit_28886 crossref_primary_10_61186_vacres_9_2_37 crossref_primary_10_1016_j_bej_2021_107958 crossref_primary_10_1016_j_cej_2024_157152 crossref_primary_10_3390_s24103017 crossref_primary_10_1007_s11356_022_23638_w crossref_primary_10_1021_acs_jafc_3c07998 crossref_primary_10_1080_21645515_2025_2455807 crossref_primary_10_1016_j_pep_2023_106355 crossref_primary_10_1038_s41598_022_19774_5 crossref_primary_10_1080_10408398_2023_2294166 crossref_primary_10_1088_1361_6528_abb15d crossref_primary_10_3390_antibiotics13121207 crossref_primary_10_1186_s12934_024_02451_9 crossref_primary_10_1134_S0006297923090018 crossref_primary_10_3389_fbioe_2025_1523037 crossref_primary_10_1002_yea_3668 crossref_primary_10_3389_fmicb_2023_1153365 crossref_primary_10_1016_j_biortech_2024_131446 crossref_primary_10_1007_s10529_024_03466_3 crossref_primary_10_1016_j_jtice_2024_105504 crossref_primary_10_1007_s12033_023_00803_1 crossref_primary_10_3390_jof10060411 crossref_primary_10_1007_s43393_021_00063_7 crossref_primary_10_3390_fermentation9030277 crossref_primary_10_2174_1389203724666230727101636 crossref_primary_10_3389_fmicb_2020_01988 crossref_primary_10_3390_microorganisms11040877 crossref_primary_10_1016_j_pep_2023_106342 crossref_primary_10_1016_j_vetpar_2025_110409 crossref_primary_10_1016_j_engmic_2025_100194 crossref_primary_10_1016_j_pep_2023_106339 crossref_primary_10_3390_microorganisms12020346 crossref_primary_10_1007_s12010_023_04374_4 crossref_primary_10_1186_s12934_022_01929_8 crossref_primary_10_3390_cancers15020460 crossref_primary_10_1016_j_synbio_2025_01_003 crossref_primary_10_1371_journal_pntd_0009926 crossref_primary_10_1007_s11274_025_04278_x crossref_primary_10_1007_s11274_022_03340_2 crossref_primary_10_3390_applmicrobiol4010031 crossref_primary_10_1371_journal_ppat_1012487 crossref_primary_10_3390_microorganisms11010131 crossref_primary_10_21931_RB_2022_07_04_54 crossref_primary_10_1186_s40643_023_00657_0 crossref_primary_10_3389_fmars_2023_1260205 crossref_primary_10_1016_j_foodres_2023_113506 crossref_primary_10_3389_fmicb_2022_998160 crossref_primary_10_1021_acssuschemeng_1c07755 crossref_primary_10_1016_j_procbio_2024_12_013 crossref_primary_10_1111_1751_7915_14447 crossref_primary_10_1016_j_ejbt_2023_06_002 crossref_primary_10_1016_j_ijbiomac_2023_123407 crossref_primary_10_31857_S0320972523090166 crossref_primary_10_3390_genes15111459 crossref_primary_10_1016_j_ijbiomac_2024_132090 crossref_primary_10_1016_j_blre_2022_100927 crossref_primary_10_1002_ps_8626 crossref_primary_10_1016_j_phrs_2021_105740 crossref_primary_10_1021_acs_jafc_2c08363 crossref_primary_10_1088_1755_1315_1271_1_012092 crossref_primary_10_1007_s00253_023_12805_9 crossref_primary_10_3390_ijms25041987 crossref_primary_10_1007_s12010_022_04304_w crossref_primary_10_1038_s41598_024_81695_2 crossref_primary_10_3390_v15051101 crossref_primary_10_1186_s12896_024_00928_4 crossref_primary_10_1007_s11274_024_04140_6 crossref_primary_10_1016_j_crfs_2022_07_013 crossref_primary_10_1007_s00438_024_02163_0 crossref_primary_10_1016_j_exppara_2022_108386 crossref_primary_10_3390_applmicrobiol3030056 crossref_primary_10_3390_bioengineering8090119 crossref_primary_10_1134_S0003683823602391 crossref_primary_10_1371_journal_pntd_0012231 crossref_primary_10_2174_0929866529666220615161603 crossref_primary_10_3390_fermentation10120612 crossref_primary_10_1073_pnas_2202822119 crossref_primary_10_1088_1755_1315_1271_1_012089 crossref_primary_10_3390_diagnostics12051198 crossref_primary_10_21638_spbu03_2024_402 crossref_primary_10_1007_s13258_022_01263_8 crossref_primary_10_3390_fermentation8110575 crossref_primary_10_1016_j_enzmictec_2022_110150 crossref_primary_10_1016_j_fbio_2025_106346 crossref_primary_10_1016_j_diff_2025_100861 crossref_primary_10_1016_j_csbj_2022_11_013 crossref_primary_10_1016_j_synbio_2024_09_007 crossref_primary_10_1007_s10529_023_03357_z crossref_primary_10_1007_s11274_024_04027_6 crossref_primary_10_1021_acs_jafc_1c04124 crossref_primary_10_1016_j_synbio_2024_09_006 crossref_primary_10_1080_08820139_2024_2399589 crossref_primary_10_1007_s11274_021_03167_3 crossref_primary_10_4103_abr_abr_376_23 crossref_primary_10_1016_j_synbio_2023_03_003 crossref_primary_10_1016_j_carbpol_2023_121335 crossref_primary_10_1016_j_lfs_2022_120920 crossref_primary_10_1186_s43141_023_00557_y crossref_primary_10_1016_j_ijbiomac_2024_130443 crossref_primary_10_1038_s41598_023_31173_y crossref_primary_10_1016_j_bej_2025_109702 crossref_primary_10_1021_acssynbio_4c00472 crossref_primary_10_1007_s00253_021_11367_y crossref_primary_10_3389_fbioe_2021_676900 crossref_primary_10_1002_jmv_29454 crossref_primary_10_1007_s00253_021_11321_y crossref_primary_10_1186_s13068_022_02150_w crossref_primary_10_1080_01496395_2022_2121725 crossref_primary_10_1021_acschembio_2c00690 crossref_primary_10_1038_s42003_023_04413_0 crossref_primary_10_1039_D4FB00164H crossref_primary_10_1080_10826068_2022_2039941 crossref_primary_10_1186_s13765_021_00645_y crossref_primary_10_1002_fsn3_2722 crossref_primary_10_3389_fonc_2021_585457 crossref_primary_10_1134_S000629792309016X crossref_primary_10_1007_s42770_024_01388_w crossref_primary_10_1007_s12602_025_10510_9 crossref_primary_10_1002_advs_202302826 crossref_primary_10_1007_s00449_022_02760_6 crossref_primary_10_1186_s13068_022_02243_6 crossref_primary_10_1007_s10532_025_10119_3 crossref_primary_10_1186_s12934_025_02679_z crossref_primary_10_1016_j_procbio_2021_10_018 crossref_primary_10_1186_s12934_024_02340_1 crossref_primary_10_2174_1871530321666210106110400 crossref_primary_10_3390_pr10050946 crossref_primary_10_1016_j_ijbiomac_2024_137742 crossref_primary_10_3390_s23136014 crossref_primary_10_1016_j_snb_2021_130742 crossref_primary_10_3390_pr10102004 crossref_primary_10_1371_journal_pone_0285556 crossref_primary_10_3390_fermentation10060315 crossref_primary_10_1016_j_foodchem_2025_143408 crossref_primary_10_3389_fmech_2024_1437198 crossref_primary_10_1093_nar_gkad752 crossref_primary_10_3389_fimmu_2020_621700 crossref_primary_10_1016_j_heliyon_2024_e35124 crossref_primary_10_1016_j_genrep_2020_100900 crossref_primary_10_1007_s11274_025_04276_z crossref_primary_10_1186_s12934_023_02082_6 crossref_primary_10_1186_s43141_023_00571_0 crossref_primary_10_12688_gatesopenres_16245_1 crossref_primary_10_1016_j_microb_2023_100012 crossref_primary_10_1007_s11274_023_03851_6 crossref_primary_10_1016_j_engmic_2024_100139 crossref_primary_10_1016_j_jobab_2023_12_005 crossref_primary_10_3390_ijms25179496 crossref_primary_10_1007_s12550_021_00433_z crossref_primary_10_1038_s41564_023_01574_w crossref_primary_10_1007_s12010_024_05145_5 crossref_primary_10_1080_10837450_2024_2410448 crossref_primary_10_1016_j_pep_2021_106010 crossref_primary_10_1002_biot_202300402 crossref_primary_10_1016_j_chroma_2022_463576 crossref_primary_10_3390_microorganisms9040809 crossref_primary_10_4014_jmb_2404_04028 crossref_primary_10_1007_s11756_024_01647_z crossref_primary_10_1016_j_nbt_2024_12_002 crossref_primary_10_3390_catal15010027 crossref_primary_10_31083_j_fbe1602019 crossref_primary_10_1007_s43393_024_00307_2 crossref_primary_10_32607_actanaturae_11878 crossref_primary_10_1002_btpr_70001 crossref_primary_10_1080_07388551_2022_2071672 crossref_primary_10_12677_BP_2022_122009 crossref_primary_10_3389_fmicb_2020_607028 crossref_primary_10_1016_j_fsi_2024_109841 crossref_primary_10_1007_s10637_023_01387_y crossref_primary_10_1007_s12602_024_10391_4 crossref_primary_10_1016_j_heliyon_2024_e28064 crossref_primary_10_1016_j_ijbiomac_2025_140755 crossref_primary_10_1016_j_jbiotec_2024_05_009 crossref_primary_10_1016_j_biortech_2024_131396 crossref_primary_10_1016_j_jhazmat_2022_129674 crossref_primary_10_1007_s11274_023_03644_x crossref_primary_10_2174_1874467214666210319145816 crossref_primary_10_3389_fmicb_2023_1191553 crossref_primary_10_3390_bios14050216 crossref_primary_10_1016_j_tim_2024_11_001 crossref_primary_10_1155_2024_3282679 crossref_primary_10_1002_ajmg_c_31849 crossref_primary_10_1007_s12033_021_00416_6 crossref_primary_10_1016_j_ejps_2021_105923 crossref_primary_10_1016_j_indcrop_2024_120008 crossref_primary_10_1080_07388551_2024_2342969 crossref_primary_10_1021_acs_iecr_2c01217 crossref_primary_10_3390_microorganisms10010067 crossref_primary_10_1016_j_cbpb_2020_110488 crossref_primary_10_1016_j_tibtech_2025_02_005 crossref_primary_10_3390_fermentation10020093 crossref_primary_10_1016_j_bej_2022_108726 crossref_primary_10_1016_j_jbiotec_2024_04_008 crossref_primary_10_1016_j_ijbiomac_2024_133113 crossref_primary_10_1016_j_vaccine_2022_05_065 crossref_primary_10_3390_microorganisms11020510 crossref_primary_10_1016_j_enzmictec_2021_109981 crossref_primary_10_1021_acs_jafc_2c08228 crossref_primary_10_1071_MA22007 crossref_primary_10_1007_s00284_024_03904_5 crossref_primary_10_1016_j_engmic_2024_100162 crossref_primary_10_1093_mam_ozae044_385 crossref_primary_10_1111_lam_13572 crossref_primary_10_1007_s00253_022_12108_5 crossref_primary_10_3168_jds_2021_21760 crossref_primary_10_3390_ijms232315394 crossref_primary_10_3390_ijms222111889 crossref_primary_10_1002_cben_202000011 crossref_primary_10_1007_s00449_024_03069_2 crossref_primary_10_1016_j_fbio_2022_101606 crossref_primary_10_1016_j_nbt_2023_04_003 crossref_primary_10_1016_j_tibtech_2021_10_010 crossref_primary_10_1016_j_biortech_2022_128095 crossref_primary_10_1016_j_crfs_2024_100840 crossref_primary_10_3390_vaccines11020479 crossref_primary_10_1021_acs_molpharmaceut_4c00980 crossref_primary_10_1021_acs_jafc_2c02353 crossref_primary_10_1371_journal_pone_0264717 crossref_primary_10_1016_j_cca_2023_117279 crossref_primary_10_1002_cpz1_155 crossref_primary_10_1093_femsyr_foae026 crossref_primary_10_1016_j_ijbiomac_2025_139628 crossref_primary_10_3389_fbioe_2024_1411550 crossref_primary_10_3390_biom11030410 crossref_primary_10_1016_j_biortech_2023_129481 crossref_primary_10_31857_S0320972523090014 crossref_primary_10_1016_j_jhazmat_2021_128140 crossref_primary_10_1016_j_tifs_2024_104562 |
Cites_doi | 10.1016/j.bjm.2016.10.017 10.1371/journal.pntd.0004782 10.1186/s13068-016-0613-z 10.3389/fmicb.2015.01005 10.1186/1475-2859-11-103 10.1016/j.pep.2018.05.004 10.1016/j.pep.2018.02.005 10.1016/j.ijbiomac.2015.11.062 10.1007/s00253-011-3764-7 10.1111/j.1470-8744.1999.tb00770.x 10.3389/fmicb.2019.01472 10.1016/j.bbrc.2010.10.067 10.1016/S0958-1669(99)00004-X 10.1007/s00253-012-4540-z 10.1038/srep41850 10.1016/S0958-1669(99)00003-8 10.1039/C8TB00211H 10.1016/j.procbio.2016.02.007 10.1371/journal.pone.0075347 10.1007/s00449-012-0697-1 10.1080/10826068.2016.1252924 10.1039/C6MB00174B 10.1016/j.bbalip.2017.07.002 10.4269/ajtmh.16-0503 10.1016/j.flm.2018.04.001 10.1007/s00705-016-3154-7 10.1186/s12934-014-0163-7 10.1038/nprot.2008.213 10.1371/journal.pone.0124545 10.1016/j.pep.2011.04.014 10.1038/srep44302 10.1002/bit.1140 10.14737/journal.aavs/2016/4.7.346.356 10.1007/s10295-012-1087-z 10.1006/prep.2001.1395 10.1016/B978-1-78242-331-7.00002-2 10.1111/jphp.12353 10.1007/s11033-016-4024-9 10.1016/j.lwt.2018.05.074 10.1016/j.procbio.2017.05.025 10.1007/s12010-015-1590-6 10.1002/yea.1208 10.4110/in.2015.15.2.51 10.1007/s11120-014-9994-7 10.1016/j.virol.2015.03.032 10.1186/s12934-016-0540-5 10.1016/j.ijbiomac.2017.11.008 10.2144/04361DD02 10.1042/BA20080057 10.1016/S0958-1669(02)00330-0 10.1002/jsfa.7125 10.1016/j.diagmicrobio.2017.08.013 10.1016/j.pep.2018.05.003 10.1007/s00253-015-7027-x 10.1016/j.foodchem.2019.04.015 10.1038/s41598-017-15149-3 10.1002/jmr.687 10.1002/bit.25481 10.1007/s00253-015-6952-z 10.1016/j.pep.2019.03.007 10.1111/1751-7915.12350 10.1002/yea.3318 10.1016/j.pep.2016.05.001 10.1186/1472-6750-11-47 10.1016/j.lwt.2016.01.015 10.1063/1.5064154 10.1016/j.xphs.2017.04.037 10.1016/j.biortech.2009.09.025 10.1007/s11033-010-0644-7 10.3390/ijms17060902 10.1016/j.jbiotec.2006.07.012 10.1016/j.pep.2017.06.006 10.1016/S1004-9541(13)60461-9 10.1080/21655979.2016.1191707 10.1007/s13205-017-0917-0 10.3389/fmicb.2017.02258 10.1016/j.jhazmat.2017.10.055 10.1016/j.pep.2016.02.002 10.1016/j.enzmictec.2015.06.001 10.1016/j.sbi.2015.01.005 10.1016/j.biotechadv.2015.05.008 10.1021/pr8007623 10.2174/0929866523666160530184936 10.1016/j.pep.2014.10.001 10.1007/s00253-014-5732-5 10.1002/btpr.2405 10.1007/s12010-013-0688-y 10.1155/2016/3423685 10.1371/journal.pone.0170305 10.1016/j.pep.2017.09.003 10.1016/j.pep.2018.01.012 10.4236/ajmb.2016.62009 10.1016/j.synbio.2017.04.001 10.3389/fmicb.2016.01708 10.1093/femsyr/fox068 10.3389/fmicb.2014.00172 10.1016/j.gene.2003.12.015 10.1016/j.enzmictec.2011.06.022 10.1186/1471-2164-8-179 10.1016/j.biologicals.2016.09.015 10.1007/s00299-017-2143-y 10.1007/s12033-018-0106-3 10.1007/s10482-018-1028-6 10.3390/toxins9090269 10.1016/j.jim.2018.08.006 10.1016/j.vaccine.2015.03.034 10.1002/3527603670.ch7 10.3892/etm.2016.3578 10.1016/j.biochi.2017.01.014 10.1002/yea.730 10.1186/s12934-017-0768-8 10.3389/fmicb.2017.00493 10.1007/s10529-009-9938-z 10.1016/j.pep.2018.02.003 10.1007/s00253-010-2864-0 10.1080/10242422.2016.1247831 10.1007/s12010-007-0003-x 10.3390/vaccines6040084 10.1016/j.vaccine.2007.03.027 10.1016/j.jbiotec.2016.06.015 10.1016/S1046-5928(03)00136-0 10.1371/journal.pntd.0005829 10.1016/j.jbiotec.2016.03.046 10.1002/yea.1679 10.1016/j.biortech.2017.08.006 10.1016/j.vaccine.2016.05.011 10.1016/j.biortech.2017.04.091 10.1007/978-1-4939-2760-9_8 10.1016/j.pep.2004.09.006 10.1002/1097-0290(20001005)70:1<1::AID-BIT1>3.0.CO;2-Y 10.1016/j.pep.2019.01.012 10.1128/MCB.9.3.1316 10.1016/j.pep.2016.08.009 10.1093/infdis/jiu648 10.1186/s12934-015-0206-8 10.1016/j.jbiosc.2013.02.020 10.1016/j.micres.2016.05.009 10.1016/j.meegid.2016.01.027 10.2174/1872208309666140904120404 10.1016/j.jim.2015.12.002 |
ContentType | Journal Article |
Copyright | 2020 Wiley Periodicals, Inc. 2020 Wiley Periodicals LLC |
Copyright_xml | – notice: 2020 Wiley Periodicals, Inc. – notice: 2020 Wiley Periodicals LLC |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 5PM |
DOI | 10.1002/jcp.29583 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
DocumentTitleAlternate | KARBALAEI et al |
EISSN | 1097-4652 |
EndPage | 5881 |
ExternalDocumentID | PMC7228273 32057111 10_1002_jcp_29583 JCP29583 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5093-5f8c68399d1f75ca36c318c60167ae4b1c99ddecafa96f1a06d2f8b65f25a2c83 |
IEDL.DBID | DR2 |
ISSN | 0021-9541 1097-4652 |
IngestDate | Thu Aug 21 18:25:19 EDT 2025 Fri Jul 11 00:33:21 EDT 2025 Fri Jul 25 20:43:08 EDT 2025 Thu Apr 03 06:53:55 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Tue Jul 01 03:23:40 EDT 2025 Wed Jan 22 16:35:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | subunit vaccines recombinant proteins Pichia pastoris expression system optimization |
Language | English |
License | 2020 Wiley Periodicals, Inc. This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5093-5f8c68399d1f75ca36c318c60167ae4b1c99ddecafa96f1a06d2f8b65f25a2c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9899-2885 0000-0001-6814-5992 0000-0002-4738-0245 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7228273 |
PMID | 32057111 |
PQID | 2410774375 |
PQPubID | 1006363 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7228273 proquest_miscellaneous_2355946085 proquest_journals_2410774375 pubmed_primary_32057111 crossref_citationtrail_10_1002_jcp_29583 crossref_primary_10_1002_jcp_29583 wiley_primary_10_1002_jcp_29583_JCP29583 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of cellular physiology |
PublicationTitleAlternate | J Cell Physiol |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2013; 3 2019; 291 2016; 428 2019; 10 2002; 13 2010; 101 2015; 77 2017; 89 2016; 2016 2012; 16 2016; 39 2013; 8 2019; 160 2012; 11 2016; 36 2016; 34 2018; 6 2004; 330 2018; 2 2018; 4 2013; 116 2004; 36 2007; 8 2016; 43 2007; 6 2019; 157 2014; 13 2017; 162 2014; 98 2018; 35 2018; 462 2017; 60 2018; 108 2018; 344 2015; 123 1989; 9 2016; 10 2016; 96 2000; 70 2012; 39 2011; 78 2012; 35 2016; 17 2017; 135 2018; 21 2016; 15 2003; 31 2017; 137 2016; 12 2001; 21 2016; 4 2015; 67 2018; 111 2016; 6 2016; 7 2015; 479 2015; 112 2015; 1321 2018; 96 1999; 30 2011; 89 2005; 18 2016; 8 2016; 9 2016; 23 2018; 13 2017; 7 2017; 8 2017; 2 2017; 4 2017; 48 2017; 47 2013; 21 2017; 1862 2015; 105 2015; 33 2018; 247 2015; 32 2007; 142 2017; 45 2011; 11 2016; 100 2014; 172 2005; 22 2017; 9 2017; 238 2014; 211 2009; 52 2014; 5 2017; 36 2017; 33 2017; 35 2013; 97 2015; 176 1999; 10 2016; 231 2016; 83 2016; 235 2001; 18 2014; 8 2005; 39 2016; 191 2007; 25 2018; 141 2017; 20 2015; 15 2015; 14 2015; 6 2015; 5 2007; 127 2010; 402 2018; 146 2015; 99 2018; 147 2015; 10 2016; 124 2006; 5 2016; 122 2006 2016; 51 2005 2016; 128 2018; 60 2011; 38 2009; 26 2012; 93 2017; 96 2009; 31 2018; 150 2017; 17 2017; 16 2017; 11 2017; 12 2018 2009; 8 2015 2009; 4 2011; 49 2016; 69 2001; 74 2017; 106 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 Bardiya N. (e_1_2_9_13_1) 2017; 4 e_1_2_9_33_1 Bretthauer R. K. (e_1_2_9_16_1) 1999; 30 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_18_1 Santoso A. (e_1_2_9_106_1) 2012; 16 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_119_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_153_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_34_1 e_1_2_9_95_1 Balamurugan V. (e_1_2_9_11_1) 2006; 5 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 Safder I. (e_1_2_9_104_1) 2018; 4 e_1_2_9_61_1 e_1_2_9_46_1 Kalhor H. R. (e_1_2_9_57_1) 2016; 8 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 Ning X. (e_1_2_9_90_1) 2016; 36 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 Baghani A. A. (e_1_2_9_9_1) 2017; 20 e_1_2_9_152_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 Cunha C. C. d Q. B. (e_1_2_9_32_1) 2018; 13 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 Khan K. H. (e_1_2_9_60_1) 2013; 3 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 Glöckner A. (e_1_2_9_47_1) 2015; 5 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 Julien C. (e_1_2_9_56_1) 2006 Teng X. (e_1_2_9_117_1) 2018; 21 e_1_2_9_127_1 Azadi S. (e_1_2_9_6_1) 2017; 16 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 Balamurugan V. (e_1_2_9_10_1) 2007; 6 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_29_1 e_1_2_9_150_1 |
References_xml | – volume: 15 start-page: 139 issue: 1 year: 2016 article-title: Characterization of a panARS‐based episomal vector in the methylotrophic yeast for recombinant protein production and synthetic biology applications publication-title: Microbial Cell Factories – start-page: 143 year: 2005 end-page: 162 – volume: 21 start-page: 438 issue: 3 year: 2001 end-page: 445 article-title: Low‐temperature increases the yield of biologically active herring antifreeze protein in publication-title: Protein Expression and Purification – volume: 36 start-page: 294 issue: 4 year: 2016 end-page: 299 article-title: Expression of a novel adjuvant TFPR1 in and its identification publication-title: Chinese Journal of Microbiology and Immunology – volume: 162 start-page: 701 issue: 3 year: 2017 end-page: 711 article-title: Efficient production of recombinant glycoprotein D of herpes simplex virus type 2 in and its protective efficacy against viral challenge in mice publication-title: Archives of Virology – volume: 112 start-page: 659 issue: 4 year: 2015 end-page: 667 article-title: Optimization of a multi‐stage, multi‐subunit malaria vaccine candidate for the production in by the identification and removal of protease cleavage sites publication-title: Biotechnology and Bioengineering – volume: 211 start-page: 1373 issue: 9 year: 2014 end-page: 1375 article-title: Raising expectations for subunit vaccine publication-title: The Journal of Infectious Diseases – volume: 428 start-page: 50 year: 2016 end-page: 57 article-title: High level expression and purification of active recombinant human interleukin‐15 in publication-title: Journal of Immunological Methods – volume: 10 start-page: 411 issue: 5 year: 1999 end-page: 421 article-title: Recombinant protein expression in publication-title: Current Opinion in Biotechnology – volume: 105 start-page: 33 year: 2015 end-page: 38 article-title: Protective immunity induced by the vaccination of recombinant OmpA expressed in publication-title: Protein Expression and Purification – volume: 157 start-page: 50 year: 2019 end-page: 56 article-title: Expression of recombinant tachyplesin I in publication-title: Protein Expression and Purification – volume: 111 start-page: 1 year: 2018 end-page: 11 article-title: Description of sp. nov., a new sibling species of Komagataella (Pichia) pastoris publication-title: Antonie Van Leeuwenhoek – volume: 150 start-page: 12 year: 2018 end-page: 16 article-title: Functional recombinant human Legumain protein expression in to enable screening for Legumain small molecule inhibitors publication-title: Protein Expression and Purification – volume: 344 start-page: 499 year: 2018 end-page: 510 article-title: Heterologous expression and characterization of three laccases obtained from HAUCC 162 for removal of environmental pollutants publication-title: Journal of Hazardous Materials – volume: 8 start-page: 493 year: 2017 article-title: Production of chimeric acidic α‐amylase by the recombinant and its applications publication-title: Frontiers in Microbiology – volume: 8 start-page: 165 issue: 2 year: 2014 end-page: 171 article-title: Patents in therapeutic recombinant protein production using mammalian cells publication-title: Recent Patents on Biotechnology – volume: 7 start-page: 155 issue: 3 year: 2016 end-page: 165 article-title: Recent advances in the production of recombinant subunit vaccines in publication-title: Bioengineered – volume: 8 start-page: 1380 issue: 3 year: 2009 end-page: 1392 article-title: The effect of temperature on the proteome of recombinant publication-title: Journal of Proteome Research – volume: 10 start-page: 1 issue: 5 year: 2015 end-page: 13 article-title: Generation of a functionally distinct lipase through protein folding memory publication-title: PLOS One – volume: 7 year: 2017 article-title: Methanol‐independent protein expression by AOX1 promoter with trans‐acting elements engineering and glucose‐glycerol‐shift induction in publication-title: Scientific Reports – volume: 8 start-page: 1 issue: 1 year: 2016 end-page: 7 article-title: Expression of the full‐length human recombinant keratinocyte growth factor in publication-title: Journal of Cell and Molecular Research – volume: 16 start-page: 152 issue: 1 year: 2017 article-title: A novel bi‐directional promoter system allows tunable recombinant protein production in publication-title: Microbial Cell Factories – volume: 93 start-page: 2483 issue: 6 year: 2012 end-page: 2492 article-title: Construction of new X‐33 strains for production of lycopene and β‐carotene publication-title: Applied Microbiology and Biotechnology – volume: 116 start-page: 193 issue: 2 year: 2013 end-page: 198 article-title: Improvement of recombinant endoglucanase produced in KM71 through the use of synthetic medium for inoculum and pH control of proteolysis publication-title: Journal of Bioscience and Bioengineering – volume: 7 year: 2017 article-title: Increased dosage of AOX1 promoter‐regulated expression cassettes leads to transcription attenuation of the methanol metabolism in publication-title: Scientific Reports – volume: 26 start-page: 473 issue: 9 year: 2009 end-page: 484 article-title: Fed‐batch methanol feeding strategy for recombinant protein production by in the presence of co‐substrate sorbitol publication-title: Yeast – volume: 141 start-page: 52 year: 2018 end-page: 62 article-title: Expression of stable and active human DNA topoisomerase I in publication-title: Protein Expression and Purification – volume: 5 start-page: 1 issue: 22 year: 2015 end-page: 6 article-title: Expression, purification and in vitro enzyme activity assay of plant derived GTPase publication-title: BIO‐PROTOCOL – volume: 1321 start-page: 103 year: 2015 end-page: 122 article-title: Engineering the N‐glycosylation pathway using the GlycoSwitch Technology publication-title: Methods in Molecular Biology – volume: 160 start-page: 19 year: 2019 end-page: 27 article-title: Expression, purification and characterization of a recombinant antimicrobial peptide Hispidalin in publication-title: Protein Expression and Purification – volume: 4 start-page: 58 issue: 1 year: 2009 end-page: 70 article-title: Engineering complex‐type N‐glycosylation in using GlycoSwitch technology publication-title: Nature Protocols – volume: 135 start-page: 89 year: 2017 end-page: 103 article-title: Production in , antifungal activity and crystal structure of a class I chitinase from cowpea ( ): Insights into sugar binding mode and hydrolytic action publication-title: Biochimie – volume: 47 start-page: 379 issue: 4 year: 2017 end-page: 387 article-title: High‐level expression of a biologically active staphylokinase in publication-title: Preparative Biochemistry and Biotechnology – volume: 17 start-page: 902 issue: 6 year: 2016 article-title: High‐level expression of recombinant bovine lactoferrin in with antimicrobial activity publication-title: International Journal of Molecular Sciences – volume: 10 start-page: 1 issue: 7 year: 2016 end-page: 19 article-title: Expression and characterization of yeast derived Chikungunya virus like particles (CHIK‐VLPs) and its evaluation as a potential vaccine candidate publication-title: PLOS Neglected Tropical Diseases – volume: 2016 start-page: 1 year: 2016 end-page: 7 article-title: Expression and purification of C‐peptide containing insulin using expression system publication-title: BioMed Research International – volume: 2 start-page: 113 issue: 2 year: 2017 end-page: 120 article-title: Systematic assessment of system for optimized β‐galactosidase production publication-title: Synthetic and Systems Biotechnology – volume: 60 start-page: 35 year: 2017 end-page: 41 article-title: A comparative study of maltooligosyltrehalose synthase from expressed in and publication-title: Process Biochemistry – volume: 99 start-page: 10467 issue: 24 year: 2015 end-page: 10480 article-title: APC targeting enhances immunogenicity of a novel multistage Fc‐fusion tuberculosis vaccine in mice publication-title: Applied Microbiology and Biotechnology – volume: 12 start-page: 2189 issue: 7 year: 2016 end-page: 2201 article-title: Fc‐based delivery system enhances immunogenicity of a tuberculosis subunit vaccine candidate consisting of the ESAT‐6: CFP‐10 complex publication-title: Molecular BioSystems – volume: 127 start-page: 335 issue: 3 year: 2007 end-page: 347 article-title: Select what you need: A comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes publication-title: Journal of Biotechnology – volume: 2 start-page: 23 issue: 1 year: 2018 end-page: 29 article-title: Expression and antibacterial activity of hybrid antimicrobial peptide cecropinA‐thanatin in publication-title: Frontiers in Laboratory Medicine – start-page: 22 year: 2006 end-page: 30 article-title: Production of humanlike recombinant proteins in publication-title: BioProcess International – volume: 5 start-page: 172 year: 2014 article-title: Recombinant protein expression in : Advances and challenges publication-title: Frontiers in Microbiology – volume: 22 start-page: 249 issue: 4 year: 2005 end-page: 270 article-title: Heterologous protein production using the expression system publication-title: Yeast – volume: 100 start-page: 1221 issue: 3 year: 2016 end-page: 1230 article-title: Expression and immunogenic characterization of recombinant gp350 for developing a subunit vaccine against Epstein‐Barr virus publication-title: Applied Microbiology and Biotechnology – volume: 137 start-page: 7 year: 2017 end-page: 12 article-title: Auto‐induction of AOX1 promoter for membrane protein expression publication-title: Protein Expression and Purification – volume: 13 start-page: 163 year: 2014 article-title: High‐temperature cultivation of recombinant increases endoplasmic reticulum stress and decreases production of human interleukin‐10 publication-title: Microbial Cell Factories – volume: 5 start-page: 487 issue: 6 year: 2006 end-page: 495 article-title: Biotechnology in the production of recombinant vaccine or antigen for animal health publication-title: Journal of Animal and Veterinary Advances – start-page: 11 year: 2015 end-page: 29 – volume: 12 start-page: 2324 issue: 4 year: 2016 end-page: 2330 article-title: Recombinant expression and biological characterization of the antimicrobial peptide fowlicidin‐2 in publication-title: Experimental and Therapeutic Medicine – volume: 98 start-page: 5301 issue: 12 year: 2014 end-page: 5317 article-title: Protein expression in : Recent achievements and perspectives for heterologous protein production publication-title: Applied Microbiology and Biotechnology – volume: 13 start-page: 1 issue: 2 year: 2018 end-page: 14 article-title: Improvement of bread making quality by supplementation with a recombinant xylanase produced by publication-title: PLOS One – volume: 35 start-page: 1125 issue: 7 year: 2012 end-page: 1136 article-title: Methanol/sorbitol co‐feeding induction enhanced porcine interferon‐alpha production by associated with energy metabolism shift publication-title: Bioprocess and Biosystems Engineering – volume: 106 start-page: 1961 issue: 8 year: 2017 end-page: 1970 article-title: Optimization of the production process and characterization of the yeast‐expressed SARS‐CoV recombinant receptor‐binding domain (RBD219‐N1), a SARS vaccine candidate publication-title: Journal of Pharmaceutical Sciences – volume: 402 start-page: 519 issue: 3 year: 2010 end-page: 524 article-title: An improved method for enhanced production and biological activity of human secretory leukocyte protease inhibitor (SLPI) in publication-title: Biochemical and Biophysical Research Communications – volume: 33 start-page: 54 issue: 1 year: 2017 end-page: 65 article-title: Heterologous expression of the plant cysteine protease bromelain and its inhibitor in publication-title: Biotechnology Progress – volume: 8 start-page: 2258 year: 2017 article-title: Fused IgY Fc and polysaccharide adjuvant enhanced the immune effect of the recombinant VP2 and VP5 subunits—A prospect for improvement of infectious bursal disease virus subunit vaccine publication-title: Frontiers in Microbiology – volume: 150 start-page: 67 year: 2018 end-page: 71 article-title: High level expression and glycosylation of recombinant Ala‐Pro‐rich antigen in publication-title: Protein Expression and Purification – volume: 32 start-page: 9 year: 2015 end-page: 17 article-title: as an expression host for membrane protein structural biology publication-title: Current Opinion in Structural Biology – volume: 7 start-page: 1708 year: 2016 article-title: Chicken IgY Fc linked to ompA and Taishan pollen polysaccharide adjuvant enhances macrophage function and specific immune responses publication-title: Frontiers in Microbiology – volume: 16 start-page: 1555 issue: 4 year: 2017 end-page: 1564 article-title: Evaluation of sorbitol‐methanol co‐feeding strategy on production of recombinant human growth hormone in publication-title: Iranian Journal of Pharmaceutical Research – volume: 128 start-page: 73 year: 2016 end-page: 80 article-title: Expression of recombinant Newcastle disease virus F protein in and its immunogenicity using flagellin as the adjuvant publication-title: Protein Expression and Purification – volume: 34 start-page: 3243 issue: 28 year: 2016 end-page: 3251 article-title: A prime‐boost immunization with Tc52 N‐terminal domain DNA and the recombinant protein expressed in protects against infection publication-title: Vaccine – volume: 147 start-page: 61 year: 2018 end-page: 68 article-title: High level expression and purification of recombinant human serum albumin in publication-title: Protein Expression and Purification – volume: 43 start-page: 911 issue: 9 year: 2016 end-page: 922 article-title: Construction and immunogenicity of a new Fc‐based subunit vaccine candidate against publication-title: Molecular Biology Reports – volume: 14 start-page: 22 issue: 1 year: 2015 article-title: Construction of efficient xylose utilizing for industrial enzyme production publication-title: Microbial Cell Factories – volume: 96 start-page: 543 year: 2018 end-page: 550 article-title: Production of a recombinant carrot antifreeze protein by Pichia pastoris GS115 and its cryoprotective effects on frozen dough properties and bread quality publication-title: LWT‐Food Science and Technology – volume: 9 start-page: 199 issue: 1 year: 2016 article-title: Development of simple random mutagenesis protocol for the protein expression system in publication-title: Biotechnology for Biofuels – volume: 147 start-page: 1 year: 2018 end-page: 12 article-title: High‐level extracellular production of lipase in via a strategy combining optimization of gene‐copy number with co‐expression of ERAD‐related proteins publication-title: Protein Expression and Purification – volume: 31 start-page: 115 issue: 1 year: 2003 end-page: 122 article-title: Production of the active antifungal defensin 1 (Psd1) in : Overcoming the inefficiency of the STE13 protease publication-title: Protein Expression and Purification – volume: 3 start-page: 257 issue: 2 year: 2013 end-page: 263 article-title: Gene expression in mammalian cells and its applications publication-title: Advanced Pharmaceutical Bulletin – volume: 30 start-page: 193 issue: Pt 3 year: 1999 end-page: 200 article-title: Glycosylation of ‐derived proteins publication-title: Biotechnology and Applied Biochemistry – volume: 16 start-page: 29 issue: 1 year: 2012 end-page: 34 article-title: Effect of methanol induction and incubation time on expression of human erythropoietin in methylotropic yeast publication-title: Makara Journal of Technology – volume: 7 start-page: 291 issue: 5 year: 2017 article-title: Optimization of the secretory expression of recombinant human C‐reactive protein in publication-title: 3 Biotech – volume: 83 start-page: 50 year: 2016 end-page: 60 article-title: High level production of active streptokinase in fed‐batch culture publication-title: International Journal of Biological Macromolecules – volume: 1862 start-page: 1025 issue: 10 year: 2017 end-page: 1034 article-title: Constitutive expression of human gastric lipase in and site‐directed mutagenesis of key lid‐stabilizing residues publication-title: Biochimica et Biophysica Acta (BBA)‐Molecular and Cell Biology of Lipids – volume: 146 start-page: 69 year: 2018 end-page: 77 article-title: Efficient expression and isolation of recombinant human interleukin‐11 (rhIL‐11) in publication-title: Protein Expression and Purification – volume: 11 start-page: 1 issue: 7 year: 2017 end-page: 20 article-title: Heterologous expression of the antimyotoxic protein DM64 in publication-title: PLOS Neglected Tropical Diseases – volume: 18 start-page: 119 issue: 2 year: 2005 end-page: 138 article-title: Expression of heterologous proteins in : A useful experimental tool in protein engineering and production publication-title: Journal of Molecular Recognition: An Interdisciplinary Journal – volume: 33 start-page: 2335 issue: 20 year: 2015 end-page: 2341 article-title: High‐yield production of recombinant virus‐like particles of enterovirus 71 in and their protective efficacy against oral viral challenge in mice publication-title: Vaccine – volume: 96 start-page: 569 issue: 2 year: 2016 end-page: 575 article-title: Expression of recombinant Arabian camel lactoferricin‐related peptide in and its antimicrobial identification publication-title: Journal of the Science of Food and Agriculture – volume: 23 start-page: 763 issue: 8 year: 2016 end-page: 769 article-title: High‐level secretory expression and purification of recombinant human interleukin 1 beta in publication-title: Protein and Peptide Letters – volume: 39 start-page: 144 issue: 2 year: 2005 end-page: 151 article-title: High level expression, purification, and characterization of the shrimp antimicrobial peptide, Ch‐penaeidin, in publication-title: Protein Expression and Purification – volume: 11 start-page: 47 issue: 1 year: 2011 article-title: Increasing gene dosage greatly enhances recombinant expression of aquaporins in publication-title: BMC Biotechnology – volume: 235 start-page: 54 year: 2016 end-page: 60 article-title: Combining expression and process engineering for high‐quality production of human sialyltransferase in publication-title: Journal of Biotechnology – volume: 45 start-page: 52 year: 2017 end-page: 60 article-title: Is a realistic platform for industrial production of recombinant human interferon gamma? publication-title: Biologicals – volume: 6 start-page: 1005 year: 2015 article-title: ‐expressed dengue 3 envelope‐based virus‐like particles elicit predominantly domain III‐focused high titer neutralizing antibodies publication-title: Frontiers in Microbiology – volume: 10 year: 2019 article-title: Biotechnological production of the cell penetrating antifungal PAF102 peptide in publication-title: Frontiers in Microbiology – volume: 191 start-page: 12 year: 2016 end-page: 18 article-title: Extracellular expression and antiviral activity of a bovine interferon‐alpha through codon optimization in publication-title: Microbiological Research – volume: 238 start-page: 582 year: 2017 end-page: 588 article-title: Expression of a novel recombinant cyanate hydratase (rTl‐Cyn) in , characteristics and applicability in the detoxification of cyanate publication-title: Bioresource Technology – volume: 6 start-page: 2417 issue: 16 year: 2018 end-page: 2425 article-title: Core–shell protein clusters comprising haemoglobin and recombinant feline serum albumin as an artificial O2 carrier for cats publication-title: Journal of Materials Chemistry B – volume: 479 start-page: 379 year: 2015 end-page: 392 article-title: Live attenuated vaccines: Historical successes and current challenges publication-title: Virology – volume: 78 start-page: 189 issue: 2 year: 2011 end-page: 196 article-title: Expression of plectasin in and its characterization as a new antimicrobial peptide against and publication-title: Protein Expression and Purification – volume: 39 start-page: 869 issue: 6 year: 2012 end-page: 876 article-title: High‐level expression of a novel Penicillium endo‐1, 3 (4)‐β‐D‐glucanase with high specific activity in publication-title: Journal of industrial microbiology & biotechnology – volume: 9 start-page: 269 issue: 9 year: 2017 article-title: Recombinant botulinum neurotoxin Hc subunit (BoNT Hc) and catalytically inactive holoproteins (ciBoNT HPs) as vaccine candidates for the prevention of botulism publication-title: Toxins – volume: 33 start-page: 1177 issue: 6 year: 2015 end-page: 1193 article-title: Cultivation strategies to enhance productivity of : A review publication-title: Biotechnology Advances – year: 2018 – volume: 35 start-page: 519 year: 2018 end-page: 529 article-title: Expression of unique chimeric human papilloma virus type 16 (HPV‐16) L1‐L2 proteins in and publication-title: Yeast – volume: 122 start-page: 15 year: 2016 end-page: 22 article-title: Expression, purification and characterization of the recombinant cysteine‐rich antimicrobial peptide snakin‐1 in publication-title: Protein Expression and Purification – volume: 36 start-page: 152 issue: 1 year: 2004 end-page: 154 article-title: High efficiency transformation by electroporation of pretreated with lithium acetate and dithiothreitol publication-title: Biotechniques – volume: 6 start-page: 84 issue: 4 year: 2018 article-title: T cell memory to vaccination publication-title: Vaccines – volume: 462 start-page: 48 year: 2018 end-page: 53 article-title: Expression and characterization of monomeric variable lymphocyte receptor B specific to the glycoprotein of viral hemorrhagic septicemia virus (VHSV) publication-title: Journal of Immunological Methods – volume: 123 start-page: 227 issue: 3 year: 2015 end-page: 239 article-title: Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses publication-title: Photosynthesis Research – volume: 69 start-page: 217 year: 2016 end-page: 224 article-title: Functional expression of recombinant goat chymosin in bioreactor cultures: A commercially viable alternate publication-title: LWT‐Food Science and Technology – volume: 20 start-page: 122 issue: 2 year: 2017 end-page: 130 article-title: CFP10: MFcγ2 as a novel tuberculosis vaccine candidate increases immune response in mouse publication-title: Iranian Journal of Basic Medical Sciences – volume: 18 start-page: 797 issue: 9 year: 2001 end-page: 806 article-title: High‐level production of human type I collagen in the yeast publication-title: Yeast – volume: 12 start-page: 1 issue: 1 year: 2017 end-page: 18 article-title: A recombinant human anti‐platelet SCFV antibody produced in for atheroma targeting publication-title: PLOS One – volume: 124 start-page: 55 year: 2016 end-page: 61 article-title: Cloning and high‐level expression of β‐xylosidase from in by optimizing of pH, methanol concentration and temperature conditions publication-title: Protein Expression and Purification – volume: 4 start-page: 1 issue: 1 year: 2018 end-page: 13 article-title: expression system: A potential candidate to express protein in industrial and biopharmaceutical domains publication-title: Biomedical Letters – volume: 9 start-page: 355 issue: 3 year: 2016 end-page: 368 article-title: Molecular optimization of rabies virus glycoprotein expression in publication-title: Microbial Biotechnology – volume: 4 issue: 2 year: 2017 article-title: Cloning and expression of human ribonuclease 4 in methylotrophic yeast publication-title: Journal of Biotechnology Science Research – volume: 77 start-page: 61 year: 2015 end-page: 67 article-title: Characterization of bioactive recombinant antimicrobial peptide parasin I fused with human lysozyme expressed in the yeast system publication-title: Enzyme and Microbial Technology – volume: 4 start-page: 346 issue: 7 year: 2016 end-page: 356 article-title: An overview of heterologous expression host systems for the production of recombinant proteins publication-title: Advances in Animal Veterinary Sciences – volume: 67 start-page: 319 issue: 3 year: 2015 end-page: 328 article-title: Recombinant protein subunit vaccine synthesis in microbes: A role for yeast? publication-title: Journal of Pharmacy and Pharmacology – volume: 142 start-page: 105 issue: 2 year: 2007 end-page: 124 article-title: Expression of recombinant proteins in publication-title: Applied Biochemistry and Biotechnology – volume: 101 start-page: 1318 issue: 4 year: 2010 end-page: 1323 article-title: Enhancement of cell viability and alkaline polygalacturonate lyase production by sorbitol co‐feeding with methanol in fermentation publication-title: Bioresource Technology – volume: 21 start-page: 219 issue: 2 year: 2018 end-page: 224 article-title: Immunogenicity of heparin‐binding hemagglutinin expressed by GS115 strain publication-title: Iranian Journal of Basic Medical Sciences – volume: 13 start-page: 329 issue: 4 year: 2002 end-page: 332 article-title: Production of recombinant proteins in fermenter cultures of the yeast publication-title: Current Opinion in Biotechnology – volume: 48 start-page: 286 issue: 2 year: 2017 end-page: 293 article-title: Production of recombinant human epidermal growth factor in publication-title: Brazilian Journal of Microbiology – volume: 9 start-page: 1316 issue: 3 year: 1989 end-page: 1323 article-title: Functional characterization of the two alcohol oxidase genes from the yeast publication-title: Molecular and Cellular Biology – volume: 8 start-page: 179 year: 2007 article-title: Monitoring of transcriptional regulation in under protein production conditions publication-title: BMC Genomics – volume: 25 start-page: 4340 issue: 22 year: 2007 end-page: 4344 article-title: Effects of fungal N‐ and O‐linked mannosylation on the immunogenicity of model vaccines publication-title: Vaccine – volume: 89 start-page: 281 issue: 2 year: 2011 end-page: 291 article-title: Recombinant antimicrobial peptide hPAB‐β expressed in , a potential agent active against methicillin‐resistant publication-title: Applied Microbiology and Biotechnology – volume: 330 start-page: 39 year: 2004 end-page: 47 article-title: The formaldehyde dehydrogenase gene (FLD1) as a marker for selection of multicopy expression strains of publication-title: Gene – volume: 6 start-page: 79 issue: 2 year: 2016 end-page: 87 article-title: Constitutive and secretory expression of the AiiA in inhibits Amorphophallus konjac soft rot disease publication-title: American Journal of Molecular Biology – volume: 8 issue: 9 year: 2013 article-title: Enhanced production of recombinant secretory proteins in by optimizing Kex2 P1'site publication-title: PLOS One – volume: 51 start-page: 709 issue: 6 year: 2016 end-page: 718 article-title: Improving the production of human interferon gamma (hIFN‐γ) in cell factory: An approach of cell level publication-title: Process Biochemistry – volume: 15 start-page: 51 issue: 2 year: 2015 end-page: 57 article-title: Recent advances of vaccine adjuvants for infectious diseases publication-title: Immune Network – volume: 172 start-page: 2400 issue: 5 year: 2014 end-page: 2411 article-title: Engineering of a expression system for high‐level secretion of HSA/GH fusion protein publication-title: Applied Biochemistry and Biotechnology – volume: 97 start-page: 2867 issue: 7 year: 2013 end-page: 2875 article-title: High‐level expression and immunogenicity of a porcine circovirus type 2 capsid protein through codon optimization in publication-title: Applied Microbiology and Biotechnology – volume: 21 start-page: 216 issue: 2 year: 2013 end-page: 226 article-title: Process control and optimization for heterologous protein production by methylotrophic publication-title: Chinese Journal of Chemical Engineering – volume: 247 start-page: 81 year: 2018 end-page: 87 article-title: High‐yield secretory production of stable, active trypsin through engineering of the N‐terminal peptide and self‐degradation sites in publication-title: Bioresource Technology – volume: 291 start-page: 245 year: 2019 end-page: 252 article-title: Expression of recombinant transglutaminase gene in and its uses in restructured meat products publication-title: Food Chemistry – volume: 11 start-page: 103 issue: 1 year: 2012 article-title: Physiological response of GS115 to methanol‐induced high level production of the Hepatitis B surface antigen: Catabolic adaptation, stress responses, and autophagic processes publication-title: Microbial Cell Factories – volume: 6 start-page: 175 issue: 2 year: 2007 end-page: 186 article-title: : A notable heterologous expression system for the production of foreign proteins—vaccines publication-title: Indian Journal of Biotechnology – volume: 10 start-page: 422 issue: 5 year: 1999 end-page: 427 article-title: Applications of yeast in biotechnology: Protein production and genetic analysis publication-title: Current Opinion in Biotechnology – volume: 38 start-page: 4991 issue: 8 year: 2011 end-page: 4997 article-title: High expression of recombinant Streptomyces sp. S38 xylanase in by codon optimization and analysis of its biochemical properties publication-title: Molecular Biology Reports – volume: 60 start-page: 736 issue: 10 year: 2018 end-page: 748 article-title: Functional expression of a thermostable Endoglucanase from RCKK in X‐33 and its characterization publication-title: Molecular Biotechnology – volume: 36 start-page: 1125 issue: 7 year: 2017 end-page: 1135 article-title: Heterologous expression of three small heat shock protein genes confers temperature stress tolerance in yeast and publication-title: Plant Cell Reports – volume: 17 issue: 7 year: 2017 article-title: Systems biotechnology for protein production in publication-title: FEMS Yeast Research – volume: 108 start-page: 999 year: 2018 end-page: 1009 article-title: Combined effect of gene dosage and process optimization strategies on high‐level production of recombinant human interleukin‐3 (hIL‐3) in fed‐batch culture publication-title: International Journal of Biological Macromolecules – volume: 96 start-page: 126 issue: 1 year: 2017 end-page: 134 article-title: Recombinant dengue virus 4 envelope glycoprotein virus‐like particles derived from are capable of eliciting homotypic domain III‐directed neutralizing antibodies publication-title: The American Journal of Tropical Medicine and Hygiene – volume: 231 start-page: 224 year: 2016 end-page: 231 article-title: Enhanced expression of human prostaglandin H synthase‐2 in the yeast and removal of the C‐terminal tag with bovine carboxypeptidase A publication-title: Journal of Biotechnology – volume: 49 start-page: 407 issue: 4 year: 2011 end-page: 412 article-title: Combinatorial strategy of sorbitol feeding and low‐temperature induction leads to high‐level production of alkaline beta‐mannanase in publication-title: Enzyme and Microbial Technology – volume: 39 start-page: 163 year: 2016 end-page: 172 article-title: Fused multi‐stage immunogens with an Fc‐delivery system as a promising approach for the development of a tuberculosis vaccine publication-title: Infection, Genetics and Evolution – volume: 70 start-page: 1 issue: 1 year: 2000 end-page: 8 article-title: Modeling growth on methanol and optimizing the production of a recombinant protein, the heavy‐chain fragment C of botulinum neurotoxin, serotype A publication-title: Biotechnology and Bioengineering – volume: 176 start-page: 493 issue: 2 year: 2015 end-page: 504 article-title: Improving performance and operational stability of porcine interferon‐α production by with combinational induction strategy of low temperature and methanol/sorbitol co‐feeding publication-title: Applied Biochemistry and Biotechnology – volume: 52 start-page: 245 issue: Pt 3 year: 2009 end-page: 255 article-title: The influence of carbon sources on recombinant‐human‐ growth‐hormone production by is dependent on phenotype: A comparison of Muts and Mut + strains publication-title: Biotechnology and Applied Biochemistry – volume: 35 start-page: 19 issue: 1 year: 2017 end-page: 26 article-title: Expression of nitrile hydratase gene of mutant 4D strain of Rhodococcus rhodochrous PA 34 in publication-title: Biocatalysis and Biotransformation – volume: 74 start-page: 492 issue: 6 year: 2001 end-page: 497 article-title: High‐level expression and stabilization of recombinant human chitinase produced in a continuous constitutive expression system publication-title: Biotechnology and Bioengineering – volume: 31 start-page: 811 issue: 6 year: 2009 end-page: 817 article-title: High‐level expression of non‐glycosylated and active staphylokinase from publication-title: Biotechnology Letters – volume: 7 issue: 1 year: 2017 article-title: High‐level heterologous production and functional secretion by recombinant of the shortest proline‐rich antibacterial honeybee peptide Apidaecin publication-title: Scientific Reports – volume: 89 start-page: 282 issue: 4 year: 2017 end-page: 287 article-title: CatA1 and SODC recombinant proteins, new tools for serodiagnosis of Scedosporium infection of patients with cystic fibrosis publication-title: Diagnostic Microbiology and Infectious Disease – ident: e_1_2_9_39_1 doi: 10.1016/j.bjm.2016.10.017 – ident: e_1_2_9_107_1 doi: 10.1371/journal.pntd.0004782 – ident: e_1_2_9_116_1 doi: 10.1186/s13068-016-0613-z – ident: e_1_2_9_119_1 doi: 10.3389/fmicb.2015.01005 – ident: e_1_2_9_124_1 doi: 10.1186/1475-2859-11-103 – ident: e_1_2_9_131_1 doi: 10.1016/j.pep.2018.05.004 – ident: e_1_2_9_55_1 doi: 10.1016/j.pep.2018.02.005 – ident: e_1_2_9_33_1 doi: 10.1016/j.ijbiomac.2015.11.062 – ident: e_1_2_9_5_1 doi: 10.1007/s00253-011-3764-7 – volume: 16 start-page: 1555 issue: 4 year: 2017 ident: e_1_2_9_6_1 article-title: Evaluation of sorbitol‐methanol co‐feeding strategy on production of recombinant human growth hormone in Pichia pastoris publication-title: Iranian Journal of Pharmaceutical Research – volume: 30 start-page: 193 issue: 3 year: 1999 ident: e_1_2_9_16_1 article-title: Glycosylation of Pichia pastoris‐derived proteins publication-title: Biotechnology and Applied Biochemistry doi: 10.1111/j.1470-8744.1999.tb00770.x – ident: e_1_2_9_96_1 doi: 10.3389/fmicb.2019.01472 – ident: e_1_2_9_71_1 doi: 10.1016/j.bbrc.2010.10.067 – ident: e_1_2_9_23_1 doi: 10.1016/S0958-1669(99)00004-X – ident: e_1_2_9_121_1 doi: 10.1007/s00253-012-4540-z – ident: e_1_2_9_130_1 doi: 10.1038/srep41850 – ident: e_1_2_9_12_1 doi: 10.1016/S0958-1669(99)00003-8 – ident: e_1_2_9_142_1 doi: 10.1039/C8TB00211H – volume: 5 start-page: 487 issue: 6 year: 2006 ident: e_1_2_9_11_1 article-title: Biotechnology in the production of recombinant vaccine or antigen for animal health publication-title: Journal of Animal and Veterinary Advances – ident: e_1_2_9_97_1 doi: 10.1016/j.procbio.2016.02.007 – ident: e_1_2_9_139_1 doi: 10.1371/journal.pone.0075347 – ident: e_1_2_9_43_1 doi: 10.1007/s00449-012-0697-1 – ident: e_1_2_9_40_1 doi: 10.1080/10826068.2016.1252924 – ident: e_1_2_9_41_1 doi: 10.1039/C6MB00174B – volume: 8 start-page: 1 issue: 1 year: 2016 ident: e_1_2_9_57_1 article-title: Expression of the full‐length human recombinant keratinocyte growth factor in Pichia pastoris publication-title: Journal of Cell and Molecular Research – volume: 6 start-page: 175 issue: 2 year: 2007 ident: e_1_2_9_10_1 article-title: Pichia pastoris: A notable heterologous expression system for the production of foreign proteins—vaccines publication-title: Indian Journal of Biotechnology – ident: e_1_2_9_105_1 doi: 10.1016/j.bbalip.2017.07.002 – ident: e_1_2_9_61_1 doi: 10.4269/ajtmh.16-0503 – ident: e_1_2_9_78_1 doi: 10.1016/j.flm.2018.04.001 – ident: e_1_2_9_128_1 doi: 10.1007/s00705-016-3154-7 – volume: 16 start-page: 29 issue: 1 year: 2012 ident: e_1_2_9_106_1 article-title: Effect of methanol induction and incubation time on expression of human erythropoietin in methylotropic yeast Pichia pastoris publication-title: Makara Journal of Technology – ident: e_1_2_9_152_1 doi: 10.1186/s12934-014-0163-7 – ident: e_1_2_9_53_1 doi: 10.1038/nprot.2008.213 – ident: e_1_2_9_108_1 doi: 10.1371/journal.pone.0124545 – ident: e_1_2_9_149_1 doi: 10.1016/j.pep.2011.04.014 – ident: e_1_2_9_19_1 doi: 10.1038/srep44302 – ident: e_1_2_9_49_1 doi: 10.1002/bit.1140 – ident: e_1_2_9_48_1 doi: 10.14737/journal.aavs/2016/4.7.346.356 – ident: e_1_2_9_29_1 doi: 10.1007/s10295-012-1087-z – ident: e_1_2_9_75_1 doi: 10.1006/prep.2001.1395 – ident: e_1_2_9_112_1 doi: 10.1016/B978-1-78242-331-7.00002-2 – ident: e_1_2_9_14_1 doi: 10.1111/jphp.12353 – ident: e_1_2_9_59_1 doi: 10.1007/s11033-016-4024-9 – ident: e_1_2_9_77_1 doi: 10.1016/j.lwt.2018.05.074 – ident: e_1_2_9_50_1 doi: 10.1016/j.procbio.2017.05.025 – ident: e_1_2_9_45_1 doi: 10.1007/s12010-015-1590-6 – ident: e_1_2_9_83_1 doi: 10.1002/yea.1208 – ident: e_1_2_9_68_1 doi: 10.4110/in.2015.15.2.51 – ident: e_1_2_9_101_1 doi: 10.1007/s11120-014-9994-7 – ident: e_1_2_9_87_1 doi: 10.1016/j.virol.2015.03.032 – volume: 4 issue: 2 year: 2017 ident: e_1_2_9_13_1 article-title: Cloning and expression of human ribonuclease 4 in methylotrophic yeast Pichia pastoris publication-title: Journal of Biotechnology Science Research – ident: e_1_2_9_20_1 doi: 10.1186/s12934-016-0540-5 – ident: e_1_2_9_34_1 doi: 10.1016/j.ijbiomac.2017.11.008 – volume: 5 start-page: 1 issue: 22 year: 2015 ident: e_1_2_9_47_1 article-title: Expression, purification and in vitro enzyme activity assay of plant derived GTPase publication-title: BIO‐PROTOCOL – ident: e_1_2_9_136_1 doi: 10.2144/04361DD02 – ident: e_1_2_9_93_1 doi: 10.1042/BA20080057 – ident: e_1_2_9_22_1 doi: 10.1016/S0958-1669(02)00330-0 – ident: e_1_2_9_24_1 doi: 10.1002/jsfa.7125 – ident: e_1_2_9_86_1 doi: 10.1016/j.diagmicrobio.2017.08.013 – ident: e_1_2_9_150_1 doi: 10.1016/j.pep.2018.05.003 – ident: e_1_2_9_126_1 doi: 10.1007/s00253-015-7027-x – ident: e_1_2_9_140_1 doi: 10.1016/j.foodchem.2019.04.015 – ident: e_1_2_9_28_1 doi: 10.1038/s41598-017-15149-3 – volume: 4 start-page: 1 issue: 1 year: 2018 ident: e_1_2_9_104_1 article-title: Pichia pastoris expression system: A potential candidate to express protein in industrial and biopharmaceutical domains publication-title: Biomedical Letters – ident: e_1_2_9_35_1 doi: 10.1002/jmr.687 – ident: e_1_2_9_111_1 doi: 10.1002/bit.25481 – ident: e_1_2_9_110_1 doi: 10.1007/s00253-015-6952-z – ident: e_1_2_9_85_1 doi: 10.1016/j.pep.2019.03.007 – ident: e_1_2_9_7_1 doi: 10.1111/1751-7915.12350 – ident: e_1_2_9_15_1 doi: 10.1002/yea.3318 – ident: e_1_2_9_36_1 doi: 10.1016/j.pep.2016.05.001 – ident: e_1_2_9_92_1 doi: 10.1186/1472-6750-11-47 – ident: e_1_2_9_122_1 doi: 10.1016/j.lwt.2016.01.015 – ident: e_1_2_9_3_1 doi: 10.1063/1.5064154 – ident: e_1_2_9_27_1 doi: 10.1016/j.xphs.2017.04.037 – ident: e_1_2_9_132_1 doi: 10.1016/j.biortech.2009.09.025 – ident: e_1_2_9_42_1 doi: 10.1007/s11033-010-0644-7 – ident: e_1_2_9_51_1 doi: 10.3390/ijms17060902 – ident: e_1_2_9_141_1 doi: 10.1016/j.jbiotec.2006.07.012 – ident: e_1_2_9_66_1 doi: 10.1016/j.pep.2017.06.006 – ident: e_1_2_9_44_1 doi: 10.1016/S1004-9541(13)60461-9 – ident: e_1_2_9_127_1 doi: 10.1080/21655979.2016.1191707 – ident: e_1_2_9_73_1 doi: 10.1007/s13205-017-0917-0 – volume: 21 start-page: 219 issue: 2 year: 2018 ident: e_1_2_9_117_1 article-title: Immunogenicity of heparin‐binding hemagglutinin expressed by Pichia pastoris GS115 strain publication-title: Iranian Journal of Basic Medical Sciences – ident: e_1_2_9_129_1 doi: 10.3389/fmicb.2017.02258 – ident: e_1_2_9_155_1 doi: 10.1016/j.jhazmat.2017.10.055 – ident: e_1_2_9_62_1 doi: 10.1016/j.pep.2016.02.002 – ident: e_1_2_9_151_1 doi: 10.1016/j.enzmictec.2015.06.001 – ident: e_1_2_9_17_1 doi: 10.1016/j.sbi.2015.01.005 – ident: e_1_2_9_79_1 doi: 10.1016/j.biotechadv.2015.05.008 – ident: e_1_2_9_38_1 doi: 10.1021/pr8007623 – ident: e_1_2_9_76_1 doi: 10.2174/0929866523666160530184936 – ident: e_1_2_9_148_1 doi: 10.1016/j.pep.2014.10.001 – ident: e_1_2_9_2_1 doi: 10.1007/s00253-014-5732-5 – ident: e_1_2_9_81_1 doi: 10.1002/btpr.2405 – ident: e_1_2_9_137_1 doi: 10.1007/s12010-013-0688-y – ident: e_1_2_9_8_1 doi: 10.1155/2016/3423685 – ident: e_1_2_9_123_1 doi: 10.1371/journal.pone.0170305 – ident: e_1_2_9_25_1 doi: 10.1016/j.pep.2017.09.003 – ident: e_1_2_9_143_1 doi: 10.1016/j.pep.2018.01.012 – ident: e_1_2_9_135_1 doi: 10.4236/ajmb.2016.62009 – ident: e_1_2_9_113_1 doi: 10.1016/j.synbio.2017.04.001 – ident: e_1_2_9_37_1 doi: 10.3389/fmicb.2016.01708 – ident: e_1_2_9_144_1 doi: 10.1093/femsyr/fox068 – ident: e_1_2_9_103_1 doi: 10.3389/fmicb.2014.00172 – ident: e_1_2_9_115_1 doi: 10.1016/j.gene.2003.12.015 – ident: e_1_2_9_154_1 doi: 10.1016/j.enzmictec.2011.06.022 – ident: e_1_2_9_46_1 doi: 10.1186/1471-2164-8-179 – ident: e_1_2_9_102_1 doi: 10.1016/j.biologicals.2016.09.015 – ident: e_1_2_9_133_1 doi: 10.1007/s00299-017-2143-y – ident: e_1_2_9_54_1 doi: 10.1007/s12033-018-0106-3 – ident: e_1_2_9_89_1 doi: 10.1007/s10482-018-1028-6 – ident: e_1_2_9_134_1 doi: 10.3390/toxins9090269 – volume: 13 start-page: 1 issue: 2 year: 2018 ident: e_1_2_9_32_1 article-title: Improvement of bread making quality by supplementation with a recombinant xylanase produced by Pichia pastoris publication-title: PLOS One – ident: e_1_2_9_67_1 doi: 10.1016/j.jim.2018.08.006 – ident: e_1_2_9_147_1 doi: 10.1016/j.vaccine.2015.03.034 – ident: e_1_2_9_52_1 doi: 10.1002/3527603670.ch7 – ident: e_1_2_9_138_1 doi: 10.3892/etm.2016.3578 – ident: e_1_2_9_64_1 doi: 10.1016/j.biochi.2017.01.014 – ident: e_1_2_9_91_1 doi: 10.1002/yea.730 – ident: e_1_2_9_99_1 doi: 10.1186/s12934-017-0768-8 – ident: e_1_2_9_94_1 doi: 10.3389/fmicb.2017.00493 – ident: e_1_2_9_4_1 doi: 10.1007/s10529-009-9938-z – ident: e_1_2_9_153_1 doi: 10.1016/j.pep.2018.02.003 – start-page: 22 year: 2006 ident: e_1_2_9_56_1 article-title: Production of humanlike recombinant proteins in Pichia pastoris publication-title: BioProcess International – ident: e_1_2_9_30_1 doi: 10.1007/s00253-010-2864-0 – ident: e_1_2_9_98_1 doi: 10.1080/10242422.2016.1247831 – volume: 3 start-page: 257 issue: 2 year: 2013 ident: e_1_2_9_60_1 article-title: Gene expression in mammalian cells and its applications publication-title: Advanced Pharmaceutical Bulletin – ident: e_1_2_9_70_1 doi: 10.1007/s12010-007-0003-x – ident: e_1_2_9_118_1 doi: 10.3390/vaccines6040084 – ident: e_1_2_9_82_1 doi: 10.1016/j.vaccine.2007.03.027 – ident: e_1_2_9_63_1 doi: 10.1016/j.jbiotec.2016.06.015 – volume: 20 start-page: 122 issue: 2 year: 2017 ident: e_1_2_9_9_1 article-title: CFP10: MFcγ2 as a novel tuberculosis vaccine candidate increases immune response in mouse publication-title: Iranian Journal of Basic Medical Sciences – ident: e_1_2_9_18_1 doi: 10.1016/S1046-5928(03)00136-0 – ident: e_1_2_9_125_1 doi: 10.1371/journal.pntd.0005829 – ident: e_1_2_9_80_1 doi: 10.1016/j.jbiotec.2016.03.046 – ident: e_1_2_9_21_1 doi: 10.1002/yea.1679 – ident: e_1_2_9_146_1 doi: 10.1016/j.biortech.2017.08.006 – ident: e_1_2_9_84_1 doi: 10.1016/j.vaccine.2016.05.011 – ident: e_1_2_9_100_1 doi: 10.1016/j.biortech.2017.04.091 – ident: e_1_2_9_65_1 doi: 10.1007/978-1-4939-2760-9_8 – ident: e_1_2_9_74_1 doi: 10.1016/j.pep.2004.09.006 – ident: e_1_2_9_145_1 doi: 10.1002/1097-0290(20001005)70:1<1::AID-BIT1>3.0.CO;2-Y – ident: e_1_2_9_69_1 doi: 10.1016/j.pep.2019.01.012 – ident: e_1_2_9_31_1 doi: 10.1128/MCB.9.3.1316 – ident: e_1_2_9_58_1 doi: 10.1016/j.pep.2016.08.009 – volume: 36 start-page: 294 issue: 4 year: 2016 ident: e_1_2_9_90_1 article-title: Expression of a novel adjuvant TFPR1 in Pichia pastoris and its identification publication-title: Chinese Journal of Microbiology and Immunology – ident: e_1_2_9_109_1 doi: 10.1093/infdis/jiu648 – ident: e_1_2_9_72_1 doi: 10.1186/s12934-015-0206-8 – ident: e_1_2_9_26_1 doi: 10.1016/j.jbiosc.2013.02.020 – ident: e_1_2_9_120_1 doi: 10.1016/j.micres.2016.05.009 – ident: e_1_2_9_88_1 doi: 10.1016/j.meegid.2016.01.027 – ident: e_1_2_9_95_1 doi: 10.2174/1872208309666140904120404 – ident: e_1_2_9_114_1 doi: 10.1016/j.jim.2015.12.002 |
SSID | ssj0009933 |
Score | 2.7049646 |
SecondaryResourceType | review_article |
Snippet | One of the most important branches of genetic engineering is the expression of recombinant proteins using biological expression systems. Nowadays, different... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5867 |
SubjectTerms | Biotechnology Endoplasmic reticulum expression system Fungal Proteins - biosynthesis Fungal Proteins - genetics Genetic engineering Insects Mini‐review Mini‐reviews Molecular biology Optimization Pichia pastoris Proprotein Convertases - genetics Protein Biosynthesis - genetics Protein folding Protein purification Proteins Proteomics recombinant proteins Recombinant Proteins - biosynthesis Recombinant Proteins - genetics Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins - genetics Saccharomycetales - genetics Signal peptidase Sorbitol subunit vaccines Vaccines Yeast |
Title | Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.29583 https://www.ncbi.nlm.nih.gov/pubmed/32057111 https://www.proquest.com/docview/2410774375 https://www.proquest.com/docview/2355946085 https://pubmed.ncbi.nlm.nih.gov/PMC7228273 |
Volume | 235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFD-MgeCLH5sfdVOiiOyld23apK0-XYZjDJQhDvYglCRN2NW73MtyC17_ek_Sj3mdgvhWyGmbpuckv5z--jsAr4VQMuOmQuTWlHHOkjwuhZGxzhsuJFM0Uz418OEjPznPTy_YxRa8G_6F6fQhxoSbj4wwX_sAF9Id3oiGflXLCa1Y6ZU-PVfLA6JPN9JRVV9GPlAQWJ4OqkIJPRzP3FyLbgHM2zzJX_FrWICO78OXoesd7-TbpF3Jifrxm6rjfz7bA7jXA1My7TzpIWxpuwO7U4ub8qs1eUMCVTTk4HfgTlfBcr0L-mzmydJkKYLaiHtLpsQrIM_XxLWhFqNp50R_7-m2lnTK0QShMlngbHWFt3RriyjUzRxZGHLp6Tn-4ovWkSAiMbPuEZwfv_98dBL3lRtihQAki5kpFUfoVTWpKZgSGVc4dygv_VIInctUYVOjlTCi4iYVCW-oKSVnhjJBVZk9hm27sPqpp15xqgpFU5NWeVVqIRPdIKgTuPNTPEsiOBjeYa16WXNfXWNed4LMtMbBrMNgRvBqNF12Wh5_MtofHKHuw9nVCHMSxMlZwSJ4OTZjIPqvK8JqHJKaInKrco4QNoInnd-Md8kowmJcVSIoNjxqNPAi35stdnYZxL4LipviArt1EBzm7x2vT4_OwsGzfzfdg7vU5w8CZ24ftlfXrX6OIGslX4Ro-gmKsSZs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXHi2FQAGDEOol28SOnQRxWVVUS2mrCrVSL8hyHFvdPrIrsiux_HrGzqMsBQlxi2Rv7Dgz9jezX74BeKuULpiwOSK3MgsTHiVhpmwRmqQUquCaMu1SAweHYnSS7J3y0xX40H0L0-hD9Ak35xl-v3YO7hLS29eqoed6OqA5z9gtuO0qevuA6su1eFTeFpL3JASexJ2uUES3-58un0Y3IOZNpuSvCNYfQbsP4Gs3-YZ5cjGYz4qB_vGbruP_Pt1DuN9iUzJsjOkRrJhqDdaHFcblVwvyjni2qE_Dr8GdpojlYh3M0djxpclUecGR-j0ZEieCfLkg9dyXY8QxifneMm4r0ohHE0TLZIIb1hUOWS8qBKL1uCYTS84cQ8fdfDKvideRGFf1YzjZ_Xi8Mwrb4g2hRgzCQm4zLRB95WVsU64VExq3D-3UX1JlkiLW2FQarazKhY1VJEpqs0JwS7miOmMbsFpNKvPUsa8E1ammsY3zJM-MKiJTIq5TGPxpwaIAtrqXKHWrbO4KbFzKRpOZSlxM6RczgDd912kj5_GnTpudJcjWo2uJSCdCqMxSHsDrvhl90f3BoiqDSyIpgrc8EYhiA3jSGE4_CqOIjPFgCSBdMqm-g9P5Xm6pxmde7zulGBenOK0tbzF_n7jc2znyF8_-vesruDs6PtiX-58OPz-He9SlEzyFbhNWZ9_m5gVirlnx0rvWT8c0Koc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhAXHi2PhQIGIdRLtokTOwmcVi2rUqBaISr1gGQ5jq0ubL0rspFYfj1j51GWgoS4RfIkcZwZ-_PkyzcAL6RURcxNjsitzIKEhUmQSVMEOim5LJiisXKpgQ_H_PAkOTplpxvwuvsXptGH6BNuLjL8fO0CfFGavQvR0C9qMaQ5y-IrcDXhYeZc-uDjhXZU3taR9xwElkSdrFBI9_pT1xejSwjzMlHyVwDrV6DxLfjc9b0hnnwd1stiqH78Juv4nw93G262yJSMGle6AxvabsH2yOKu_HxFXhLPFfVJ-C241pSwXG2DnkwdW5ospJcbqV6REXESyLMVqWpfjNHUM6K_t3xbSxrpaIJYmcxxujrHW1YrizC0mlZkbsiZ4-e4i8_ringViamt7sLJ-M2n_cOgLd0QKEQgccBMpjhir7yMTMqUjLnCyUM57ZdU6qSIFDaVWkkjc24iGfKSmqzgzFAmqcrie7Bp51Y_cNwrTlWqaGSiPMkzLYtQl4jqJG79FI_DAex271CoVtfcldeYiUaRmQocTOEHcwDPe9NFI-bxJ6OdzhFEG8-VQJwTIlCOUzaAZ30zRqL7vCKtxiERFKFb7jwRbe43ftPfJaaIi3FZGUC65lG9gVP5Xm-x0zOv9p1S3BWn2K1d7zB_77g42p_4g4f_bvoUrk8OxuL92-N3j-AGdbkEz5_bgc3lt1o_RsC1LJ74wPoJUwQpPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pichia+pastoris%3A+A+highly+successful+expression+system+for+optimal+synthesis+of+heterologous+proteins&rft.jtitle=Journal+of+cellular+physiology&rft.au=Karbalaei%2C+Mohsen&rft.au=Rezaee%2C+Seyed+A.&rft.au=Farsiani%2C+Hadi&rft.date=2020-09-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=235&rft.issue=9&rft.spage=5867&rft.epage=5881&rft_id=info:doi/10.1002%2Fjcp.29583&rft.externalDBID=10.1002%252Fjcp.29583&rft.externalDocID=JCP29583 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |