Modular, Homochiral, Porous Coordination Polymers: Rational Design, Enantioselective Guest Exchange Sorption and Ab Initio Calculations of Host-Guest Interactions

Two new, homochiral, porous metal–organic coordination polymers [Zn2(ndc){(R)‐man}(dmf)]⋅3DMF and [Zn2(bpdc){(R)‐man}(dmf)]⋅2DMF (ndc=2,6‐naphthalenedicarboxylate; bpdc=4,4′‐biphenyldicarboxylate; man=mandelate; dmf=N,N′‐dimethylformamide) have been synthesized by heating ZnII nitrate, H2ndc or H2bp...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 16; no. 34; pp. 10348 - 10356
Main Authors Dybtsev, Danil N., Yutkin, Maxim P., Samsonenko, Denis G., Fedin, Vladimir P., Nuzhdin, Alexey L., Bezrukov, Andrey A., Bryliakov, Konstantin P., Talsi, Evgeniy P., Belosludov, Rodion V., Mizuseki, Hiroshi, Kawazoe, Yoshiyuki, Subbotin, Oleg S., Belosludov, Vladimir R.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 10.09.2010
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two new, homochiral, porous metal–organic coordination polymers [Zn2(ndc){(R)‐man}(dmf)]⋅3DMF and [Zn2(bpdc){(R)‐man}(dmf)]⋅2DMF (ndc=2,6‐naphthalenedicarboxylate; bpdc=4,4′‐biphenyldicarboxylate; man=mandelate; dmf=N,N′‐dimethylformamide) have been synthesized by heating ZnII nitrate, H2ndc or H2bpdc and chiral (R)‐mandelic acid (H2man) in DMF. The colorless crystals were obtained and their structures were established by single‐crystal X‐ray diffraction. These isoreticular structures share the same topological features as the previously reported zinc(II) terephthalate lactate [Zn2(bdc){(S)‐lac}(dmf)]⋅DMF framework, but have larger pores and opposite absolute configuration of the chiral centers. The enhanced pores size results in differing stereoselective sorption properties: the new metal–organic frameworks effectively and stereoselectively (ee up to 62 %) accommodate bulkier guest molecules (alkyl aryl sulfoxides) than the parent [Zn2(bdc){(S)‐lac}(dmf)]⋅DMF, while the latter demonstrates decent enantioselectivity toward precursor of chiral anticancer drug sulforaphane, CH3SO(CH2)4OH. The new homochiral porous metal–organic coordination polymers are capable of catalyzing a highly selective oxidation of bulkier sulfides (2‐NaphSMe (2‐C10H7SMe) and PhSCH2Ph) that could not be achieved by the smaller‐pore [Zn2(bdc){(S)‐lac}(dmf)]⋅DMF. The sorption of different guest molecules (both R and S isomers) into the chiral pores of [Zn2(bdc){(S)‐lac}(dmf)]⋅DMF was modeled by using ab initio calculations that provided a qualitative explanation for the observed sorption enantioselectivity. The high stereo‐preference is accounted for by the presence of coordinated inner‐pore DMF molecule that forms a weak CH⋅⋅⋅O bond between the DMF methyl group and the (S)‐PhSOCH3 sulfinyl group. The size has great value: Homochiral metal–organic frameworks (MOFs; shown here) with larger pores effectively accommodate bulkier guest molecules, which results in new sorption and catalytic properties. Theoretical ab initio calculations provide a qualitative explanation for the observed sorption enantioselectivity.
AbstractList Two new, homochiral, porous metal–organic coordination polymers [Zn 2 (ndc){( R )‐man}(dmf)]⋅3DMF and [Zn 2 (bpdc){( R )‐man}(dmf)]⋅2DMF (ndc=2,6‐naphthalenedicarboxylate; bpdc=4,4′‐biphenyldicarboxylate; man=mandelate; dmf= N , N ′‐dimethylformamide) have been synthesized by heating Zn II nitrate, H 2 ndc or H 2 bpdc and chiral ( R )‐mandelic acid (H 2 man) in DMF. The colorless crystals were obtained and their structures were established by single‐crystal X‐ray diffraction. These isoreticular structures share the same topological features as the previously reported zinc(II) terephthalate lactate [Zn 2 (bdc){( S )‐lac}(dmf)]⋅DMF framework, but have larger pores and opposite absolute configuration of the chiral centers. The enhanced pores size results in differing stereoselective sorption properties: the new metal–organic frameworks effectively and stereoselectively ( ee up to 62 %) accommodate bulkier guest molecules (alkyl aryl sulfoxides) than the parent [Zn 2 (bdc){( S )‐lac}(dmf)]⋅DMF, while the latter demonstrates decent enantioselectivity toward precursor of chiral anticancer drug sulforaphane, CH 3 SO(CH 2 ) 4 OH. The new homochiral porous metal–organic coordination polymers are capable of catalyzing a highly selective oxidation of bulkier sulfides (2‐NaphSMe (2‐C 10 H 7 SMe) and PhSCH 2 Ph) that could not be achieved by the smaller‐pore [Zn 2 (bdc){( S )‐lac}(dmf)]⋅DMF. The sorption of different guest molecules (both R and S isomers) into the chiral pores of [Zn 2 (bdc){( S )‐lac}(dmf)]⋅DMF was modeled by using ab initio calculations that provided a qualitative explanation for the observed sorption enantioselectivity. The high stereo‐preference is accounted for by the presence of coordinated inner‐pore DMF molecule that forms a weak CH⋅⋅⋅O bond between the DMF methyl group and the ( S )‐PhSOCH 3 sulfinyl group.
Two new, homochiral, porous metal-organic coordination polymers [Zn2(ndc){(R)-man}(dmf)]3DMF and [Zn2(bpdc){(R)-man}(dmf)]2DMF (ndc=2,6-naphthalenedicarboxylate; bpdc=4,4'-biphenyldicarboxylate; man=mandelate; dmf=N,N'-dimethylformamide) have been synthesized by heating ZnII nitrate, H2ndc or H2bpdc and chiral (R)-mandelic acid (H2man) in DMF. The colorless crystals were obtained and their structures were established by single-crystal X-ray diffraction. These isoreticular structures share the same topological features as the previously reported zinc(II) terephthalate lactate [Zn2(bdc){(S)-lac}(dmf)]DMF framework, but have larger pores and opposite absolute configuration of the chiral centers. The enhanced pores size results in differing stereoselective sorption properties: the new metal-organic frameworks effectively and stereoselectively (ee up to 62%) accommodate bulkier guest molecules (alkyl aryl sulfoxides) than the parent [Zn2(bdc){(S)-lac}(dmf)]DMF, while the latter demonstrates decent enantioselectivity toward precursor of chiral anticancer drug sulforaphane, CH3SO(CH2)4OH. The new homochiral porous metal-organic coordination polymers are capable of catalyzing a highly selective oxidation of bulkier sulfides (2-NaphSMe (2-C10H7SMe) and PhSCH2Ph) that could not be achieved by the smaller-pore [Zn2(bdc){(S)-lac}(dmf)]DMF. The sorption of different guest molecules (both R and S isomers) into the chiral pores of [Zn2(bdc){(S)-lac}(dmf)]DMF was modeled by using ab initio calculations that provided a qualitative explanation for the observed sorption enantioselectivity. The high stereo-preference is accounted for by the presence of coordinated inner-pore DMF molecule that forms a weak CHO bond between the DMF methyl group and the (S)-PhSOCH3 sulfinyl group.
Two new, homochiral, porous metal-organic coordination polymers [Zn(2)(ndc){(R)-man}(dmf)]⋅3DMF and [Zn(2)(bpdc){(R)-man}(dmf)]⋅2DMF (ndc=2,6-naphthalenedicarboxylate; bpdc=4,4'-biphenyldicarboxylate; man=mandelate; dmf=N,N'-dimethylformamide) have been synthesized by heating Zn(II) nitrate, H(2)ndc or H(2)bpdc and chiral (R)-mandelic acid (H(2)man) in DMF. The colorless crystals were obtained and their structures were established by single-crystal X-ray diffraction. These isoreticular structures share the same topological features as the previously reported zinc(II) terephthalate lactate [Zn(2)(bdc){(S)-lac}(dmf)]⋅DMF framework, but have larger pores and opposite absolute configuration of the chiral centers. The enhanced pores size results in differing stereoselective sorption properties: the new metal-organic frameworks effectively and stereoselectively (ee up to 62 %) accommodate bulkier guest molecules (alkyl aryl sulfoxides) than the parent [Zn(2)(bdc){(S)-lac}(dmf)]⋅DMF, while the latter demonstrates decent enantioselectivity toward precursor of chiral anticancer drug sulforaphane, CH(3)SO(CH(2))(4)OH. The new homochiral porous metal-organic coordination polymers are capable of catalyzing a highly selective oxidation of bulkier sulfides (2-NaphSMe (2-C(10)H(7)SMe) and PhSCH(2)Ph) that could not be achieved by the smaller-pore [Zn(2)(bdc){(S)-lac}(dmf)]⋅DMF. The sorption of different guest molecules (both R and S isomers) into the chiral pores of [Zn(2)(bdc){(S)-lac}(dmf)]⋅DMF was modeled by using ab initio calculations that provided a qualitative explanation for the observed sorption enantioselectivity. The high stereo-preference is accounted for by the presence of coordinated inner-pore DMF molecule that forms a weak C-H...O bond between the DMF methyl group and the (S)-PhSOCH(3) sulfinyl group.
Two new, homochiral, porous metal–organic coordination polymers [Zn2(ndc){(R)‐man}(dmf)]⋅3DMF and [Zn2(bpdc){(R)‐man}(dmf)]⋅2DMF (ndc=2,6‐naphthalenedicarboxylate; bpdc=4,4′‐biphenyldicarboxylate; man=mandelate; dmf=N,N′‐dimethylformamide) have been synthesized by heating ZnII nitrate, H2ndc or H2bpdc and chiral (R)‐mandelic acid (H2man) in DMF. The colorless crystals were obtained and their structures were established by single‐crystal X‐ray diffraction. These isoreticular structures share the same topological features as the previously reported zinc(II) terephthalate lactate [Zn2(bdc){(S)‐lac}(dmf)]⋅DMF framework, but have larger pores and opposite absolute configuration of the chiral centers. The enhanced pores size results in differing stereoselective sorption properties: the new metal–organic frameworks effectively and stereoselectively (ee up to 62 %) accommodate bulkier guest molecules (alkyl aryl sulfoxides) than the parent [Zn2(bdc){(S)‐lac}(dmf)]⋅DMF, while the latter demonstrates decent enantioselectivity toward precursor of chiral anticancer drug sulforaphane, CH3SO(CH2)4OH. The new homochiral porous metal–organic coordination polymers are capable of catalyzing a highly selective oxidation of bulkier sulfides (2‐NaphSMe (2‐C10H7SMe) and PhSCH2Ph) that could not be achieved by the smaller‐pore [Zn2(bdc){(S)‐lac}(dmf)]⋅DMF. The sorption of different guest molecules (both R and S isomers) into the chiral pores of [Zn2(bdc){(S)‐lac}(dmf)]⋅DMF was modeled by using ab initio calculations that provided a qualitative explanation for the observed sorption enantioselectivity. The high stereo‐preference is accounted for by the presence of coordinated inner‐pore DMF molecule that forms a weak CH⋅⋅⋅O bond between the DMF methyl group and the (S)‐PhSOCH3 sulfinyl group. The size has great value: Homochiral metal–organic frameworks (MOFs; shown here) with larger pores effectively accommodate bulkier guest molecules, which results in new sorption and catalytic properties. Theoretical ab initio calculations provide a qualitative explanation for the observed sorption enantioselectivity.
Author Fedin, Vladimir P.
Samsonenko, Denis G.
Subbotin, Oleg S.
Kawazoe, Yoshiyuki
Dybtsev, Danil N.
Mizuseki, Hiroshi
Nuzhdin, Alexey L.
Belosludov, Vladimir R.
Bezrukov, Andrey A.
Yutkin, Maxim P.
Talsi, Evgeniy P.
Belosludov, Rodion V.
Bryliakov, Konstantin P.
Author_xml – sequence: 1
  givenname: Danil N.
  surname: Dybtsev
  fullname: Dybtsev, Danil N.
  organization: Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 3, 630090 Novosibirsk (Russian Federation), Fax: (+7) 383-3309489
– sequence: 2
  givenname: Maxim P.
  surname: Yutkin
  fullname: Yutkin, Maxim P.
  organization: Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 3, 630090 Novosibirsk (Russian Federation), Fax: (+7) 383-3309489
– sequence: 3
  givenname: Denis G.
  surname: Samsonenko
  fullname: Samsonenko, Denis G.
  organization: Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 3, 630090 Novosibirsk (Russian Federation), Fax: (+7) 383-3309489
– sequence: 4
  givenname: Vladimir P.
  surname: Fedin
  fullname: Fedin, Vladimir P.
  email: cluster@niic.nsc.ru
  organization: Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 3, 630090 Novosibirsk (Russian Federation), Fax: (+7) 383-3309489
– sequence: 5
  givenname: Alexey L.
  surname: Nuzhdin
  fullname: Nuzhdin, Alexey L.
  organization: Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 5, 630090 Novosibirsk, (Russian Federation)
– sequence: 6
  givenname: Andrey A.
  surname: Bezrukov
  fullname: Bezrukov, Andrey A.
  organization: Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 5, 630090 Novosibirsk, (Russian Federation)
– sequence: 7
  givenname: Konstantin P.
  surname: Bryliakov
  fullname: Bryliakov, Konstantin P.
  organization: Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 5, 630090 Novosibirsk, (Russian Federation)
– sequence: 8
  givenname: Evgeniy P.
  surname: Talsi
  fullname: Talsi, Evgeniy P.
  organization: Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 5, 630090 Novosibirsk, (Russian Federation)
– sequence: 9
  givenname: Rodion V.
  surname: Belosludov
  fullname: Belosludov, Rodion V.
  organization: Institute for Materials Research, Tohoku University, Katahira 2-1-1, 980-8577 Sendai (Japan)
– sequence: 10
  givenname: Hiroshi
  surname: Mizuseki
  fullname: Mizuseki, Hiroshi
  organization: Institute for Materials Research, Tohoku University, Katahira 2-1-1, 980-8577 Sendai (Japan)
– sequence: 11
  givenname: Yoshiyuki
  surname: Kawazoe
  fullname: Kawazoe, Yoshiyuki
  organization: Institute for Materials Research, Tohoku University, Katahira 2-1-1, 980-8577 Sendai (Japan)
– sequence: 12
  givenname: Oleg S.
  surname: Subbotin
  fullname: Subbotin, Oleg S.
  organization: Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 3, 630090 Novosibirsk (Russian Federation), Fax: (+7) 383-3309489
– sequence: 13
  givenname: Vladimir R.
  surname: Belosludov
  fullname: Belosludov, Vladimir R.
  organization: Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 3, 630090 Novosibirsk (Russian Federation), Fax: (+7) 383-3309489
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20730747$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v0zAYxi00xLrBlSOyxAEOTfGfOK65bVlpKzZAMNjRch1nzZbYxU7G-nX4pDjNqBAHONl-39_z-NX7HIED66wB4DlGE4wQeaPXppkQFO-IEfIIjDAjOKE8YwdghETKk4xRcQiOQriJjMgofQIOCeIU8ZSPwM8LV3S18mO4cI3T68qregw_Oe-6AHPnfFFZ1VbOxlq9bYwPb-HnXUHV8MyE6tqO4cwqG0vB1Ea31Z2B886EFs7u9VrZawO_OL_ZeShbwJMVXNoqPmGuah3_7jsBujJOENpkkC5ta7zSu9ZT8LhUdTDPHs5j8PXd7DJfJOcf58v85DzRDAmSlCTjBVkJikvOOJ8yxVKkNREU6WmaGsNZqVREEcWYTLNCFUUhMBW05EoVjB6DV4Pvxrvv_RSyqYI2da2siduQnDE8zThLI_n6nyTmnAtBBeERffkXeuM6H5fXU1nGRDqlOFKTgdLeheBNKTe-apTfSoxkn7Psc5b7nKPgxYNtt2pMscd_BxsBMQA_qtps_2Mn88Xs4k_zZNBWoTX3e63ytzLjlDN59WEuT0_ZJf_2Hssr-gsp2cZK
CODEN CEUJED
CitedBy_id crossref_primary_10_1021_jp209969f
crossref_primary_10_1002_cplu_201402067
crossref_primary_10_1016_j_ccr_2020_213763
crossref_primary_10_1021_acs_inorgchem_5b02234
crossref_primary_10_1021_acs_inorgchem_9b00016
crossref_primary_10_1039_c2cc33939k
crossref_primary_10_1016_j_ccr_2013_01_029
crossref_primary_10_1007_s11237_017_9517_7
crossref_primary_10_1021_cr2003147
crossref_primary_10_1021_acs_chemmater_5b03723
crossref_primary_10_1002_slct_201802086
crossref_primary_10_1039_D0CS01236J
crossref_primary_10_1002_elps_201400079
crossref_primary_10_1016_j_ica_2012_08_012
crossref_primary_10_1002_chem_201501315
crossref_primary_10_1016_j_supmat_2023_100039
crossref_primary_10_1063_5_0144827
crossref_primary_10_1007_s00216_013_6714_7
crossref_primary_10_1002_jssc_201600808
crossref_primary_10_1016_j_ccr_2012_10_002
crossref_primary_10_1002_advs_202003143
crossref_primary_10_1080_01614940_2014_864145
crossref_primary_10_1016_j_poly_2019_02_008
crossref_primary_10_1080_00958972_2015_1100300
crossref_primary_10_1039_C1CC16209H
crossref_primary_10_1021_acs_chemrev_1c00740
crossref_primary_10_1039_C6RA09353A
crossref_primary_10_1080_00958972_2022_2053958
crossref_primary_10_1002_ajoc_201300140
crossref_primary_10_1039_C5CC05779E
crossref_primary_10_1039_C5CC02706C
crossref_primary_10_3390_sym15020508
crossref_primary_10_1016_j_poly_2018_12_018
crossref_primary_10_1134_S1070428019060101
crossref_primary_10_1002_asia_201402785
crossref_primary_10_1021_acs_inorgchem_8b00948
crossref_primary_10_1016_j_tetasy_2012_06_023
crossref_primary_10_1016_j_micromeso_2015_03_019
crossref_primary_10_1002_cite_201000188
crossref_primary_10_1134_S1070328416090013
crossref_primary_10_1016_j_inoche_2019_107730
crossref_primary_10_1021_jacs_7b10112
crossref_primary_10_1002_jssc_202400073
crossref_primary_10_1002_mrc_4262
crossref_primary_10_1007_s11237_015_9396_8
crossref_primary_10_1039_c2nj40447h
crossref_primary_10_1039_C9DT00257J
crossref_primary_10_1002_ange_202204066
crossref_primary_10_1021_cr200274s
crossref_primary_10_1007_s11172_018_2211_7
crossref_primary_10_1021_acs_inorgchem_6b00894
crossref_primary_10_1007_s11172_013_0098_x
crossref_primary_10_1039_c2cc32595k
crossref_primary_10_1007_s11172_015_0910_x
crossref_primary_10_1016_j_ica_2011_09_049
crossref_primary_10_1016_j_poly_2021_115354
crossref_primary_10_1021_ic4021367
crossref_primary_10_1002_anie_202204066
crossref_primary_10_1039_C5NJ00524H
crossref_primary_10_1021_acs_cgd_8b00778
crossref_primary_10_1134_S0022476619020148
crossref_primary_10_1016_j_jssc_2013_11_011
crossref_primary_10_1021_cg500474j
Cites_doi 10.1038/35010088
10.1557/mrs2007.104
10.1039/B600408C
10.1021/ja0316420
10.1021/jm00098a004
10.1021/cr040700c
10.1021/ic7009226
10.1021/ja901440g
10.1002/anie.200504212
10.1021/ja0163772
10.1016/0927-0256(96)00008-0
10.1002/1521-3757(20011203)113:23<4554::AID-ANGE4554>3.0.CO;2-A
10.1039/B714083E
10.1021/cr990372u
10.1103/PhysRevB.13.5188
10.1002/ange.200504212
10.1002/anie.200351595
10.1002/ange.200351595
10.1107/S0021889802022112
10.1007/s11173-005-0088-0
10.1002/ange.200602242
10.1002/chem.200501387
10.1002/ange.200300610
10.1038/nature03852
10.1002/anie.200300610
10.1021/ja052431t
10.1039/b807083k
10.1021/ja076276p
10.1016/j.cct.2003.08.004
10.1103/PhysRevB.46.6671
10.1002/anie.200503023
10.1002/1521-3773(20011203)40:23<4422::AID-ANIE4422>3.0.CO;2-G
10.1107/S0108767307043930
10.1103/PhysRevB.50.17953
10.1002/ange.200503023
10.1002/anie.200602242
10.1002/chem.200701556
10.1002/9780470034408.ch16
10.1103/PhysRevB.54.11169
ContentType Journal Article
Copyright Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201000522
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 10356
ExternalDocumentID 3957666601
10_1002_chem_201000522
20730747
CHEM201000522
ark_67375_WNG_BB5T7VK1_W
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Russian Foundation for Basic Research
  funderid: 08‐03‐12007; 09‐03‐90414
– fundername: Ministry of Education, Science and Technology of Korea
  funderid: R31‐2008‐000‐10059‐0
– fundername: Korea Science and Engineering Foundation
– fundername: Ministry of Education, Culture, Sports, Science, and Technology of Japan
  funderid: 19651039
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c5092-f267d2b931f757785a540cc2930c844ee75faa5090311286daddd91393f7aad53
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Wed Dec 04 01:06:07 EST 2024
Tue Dec 03 23:28:57 EST 2024
Sun Dec 01 11:06:59 EST 2024
Fri Dec 06 04:03:16 EST 2024
Sat Sep 28 07:47:09 EDT 2024
Sat Aug 24 00:59:03 EDT 2024
Wed Oct 30 09:56:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5092-f267d2b931f757785a540cc2930c844ee75faa5090311286daddd91393f7aad53
Notes Korea Science and Engineering Foundation
ArticleID:CHEM201000522
ark:/67375/WNG-BB5T7VK1-W
Ministry of Education, Science and Technology of Korea - No. R31-2008-000-10059-0
Ministry of Education, Culture, Sports, Science, and Technology of Japan - No. 19651039
istex:B51C1566CB4747A1BAD8CEB1124D3E2D4E034F74
Russian Foundation for Basic Research - No. 08-03-12007; No. 09-03-90414
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20730747
PQID 1766594831
PQPubID 986340
PageCount 9
ParticipantIDs proquest_miscellaneous_755186754
proquest_miscellaneous_1777993927
proquest_journals_1766594831
crossref_primary_10_1002_chem_201000522
pubmed_primary_20730747
wiley_primary_10_1002_chem_201000522_CHEM201000522
istex_primary_ark_67375_WNG_BB5T7VK1_W
PublicationCentury 2000
PublicationDate September 10, 2010
PublicationDateYYYYMMDD 2010-09-10
PublicationDate_xml – month: 09
  year: 2010
  text: September 10, 2010
  day: 10
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry - A European Journal
PublicationYear 2010
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References O. R. Evans, H. L. Ngo, W. Lin, J. Am. Chem. Soc. 2001, 123, 10395-10396.
K. P. Bryliakov, E. P. Talsi in Transition Metal Chemistry: New Research (Eds.: B. Varga, L. Kis), Nova Science Publishers, New York, 2008, pp. 1-13.
K. Tanaka, S. Oda, M. Shiro, Chem. Commun. 2008, 820-822.
A. L. Nuzhdin, D. N. Dybtsev, K. P. Bryliakov, E. P. Talsi, V. P. Fedin, J. Am. Chem. Soc. 2007, 129, 12958-12959
V. Farina, J. T. Reeves, C. H. Senanayake, J. J. Song, Chem. Rev. 2006, 106, 2734-2793.
D. Bradshaw, T. J. Prior, E. J. Cussen, J. B. Claridge, M. J. Rosseinsky, J. Am. Chem. Soc. 2004, 126, 6106-6114
C.-D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005, 127, 8940-8941
Angew. Chem. Int. Ed. 2001, 40, 4422-4425
A. Kalir, H. H. Kalir in The Chemistry of Sulfur-Containing Functional Groups (Eds.: S. Patai, Z. Rappoport), Wiley, New York, 1993, pp. 957-975
J. S. Seo, D. Wand, H. Lee, S. I. Jun, J. Oh, Y. Jeon, K. Kim, Nature 2000, 404, 982-986.
J. Perez Barrio, J.-N. Rebilly, B. Carter, D. Bradshaw, J. Bacsa, A. Y. Ganin, H. Park, A. Trewin, R. Vaidhyanathan, A. I. Cooper, J. E. Warren, M. J. Rosseinsky, Chem. Eur. J. 2008, 14, 4521-4532.
P. E. Blöchl, Phys. Rev. B 1994, 50, 17953-17979.
W. Lin, MRS Bull. 2007, 32, 544-548
Angew. Chem. Int. Ed. 2006, 45, 6495-6499.
M. Heitbaum, F. Glorius, I. Escher, Angew. Chem. 2006, 118, 4850-4881
Angew. Chem. Int. Ed. 2006, 45, 4732-4762.
Angew. Chem. Int. Ed. 2006, 45, 916-920.
I. Fernández, N. Khiar, Chem. Rev. 2003, 103, 3651-3705
D. N. Dybtsev, M. P. Yutkin, E. V. Peresypkina, A. V. Virovets, C. Serre, G. Ferey, V. P. Fedin, Inorg. Chem. 2007, 46, 6843-6845.
G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169-11186
G. Kresse, J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15-50.
A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7-13.
T. J. Brown, R. F. Chapman, D. C. Cook, T. W. Hart, I. M. McLay, R. Jordan, J. S. Mason, M. N. Palfreyman, R. J. A. Walsh, M. T. Withnall, J.-C. Aloup, I. Cavero, D. Fargen, C. James, S. Mondot, J. Med. Chem. 1992, 35, 3613-3624
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671-6687.
K. Ding, Z. Wang, X. Wang, Y. Liang, X. Wang, Chem. Eur. J. 2006, 12, 5188-5197
J. C. Leffingwell, Chirality & Bioactivity I: Pharmacology, Vol. 3, Leffingwell Reports, 2003.
L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248-1256
R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature 2005, 436, 238-241.
Y. V. Mironov, N. G. Naumov, K. A. Brylev, V. E. Fedorov, K. Hegetschweiler, Angew. Chem. 2004, 116, 1317-1321
B. Kesanli, W. Lin, Coord. Chem. Rev. 2003, 246, 305-326.
Angew. Chem. Int. Ed. 2004, 43, 2334-2375.
G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112-122.
H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188-5192.
R.-G. Xiong, X.-Z. You, B. F. Abrahams, Z. Xue, C.-M. Che, Angew. Chem. 2001, 113, 4554-4557
Y. V. Mironov, N. G. Naumov, K. A. Brylev, O. A. Efremova, V. E. Fedorov, K. Hegetschweiler, Russ. J. Coord. Chem. 2005, 31, 269-281.
R. Vaidhyanathan, D. Bradshaw, J.-N. Rebilly, J. P. Barrio, J. A. Gould, N. G. Berry, M. J. Rosseinsky, Angew. Chem. 2006, 118, 6645-6649
Angew. Chem. Int. Ed. 2004, 43, 1297-1300
D. N. Dybtsev, A. L. Nuzhdin, H. Chun, K. P. Bryliakov, E. P. Talsi, V. P. Fedin, K. Kim, Angew. Chem. 2006, 118, 930-934
S.-H. Cho, B. Ma, S. T. Nguyen, J. T. Hupp, T. E. Albrecht-Schmitt, Chem. Commun. 2006, 2563-2565
S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. 2004, 116, 2388-2430
M. Banerjee, S. Das, M. Yoon, H. J. Choi, M. H. Hyun, S. M. Park, G. Seo, K. Kim, J. Am. Chem. Soc. 2009, 131, 7524-7525
2004 2004; 116 43
2001; 123
2007; 129
2004; 126
2006; 12
2005; 436
2008; 14
2008
2003; 36
2006
1992; 35
1993
2003
2009; 131
2007; 32
1996; 54
2006 2006; 118 45
1976; 13
2001 2001; 113 40
2000; 404
2005; 127
2005; 31
1992; 46
2008; 64
2003; 246
2003; 103
1994; 50
2006; 106
2009; 38
2007; 46
1996; 6
Bryliakov K. P. (e_1_2_6_9_2) 2008
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_3_2
e_1_2_6_5_3
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_22_3
e_1_2_6_22_2
e_1_2_6_1_2
e_1_2_6_20_3
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_12_3
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
Leffingwell J. C. (e_1_2_6_10_2) 2003
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_21_3
e_1_2_6_21_2
e_1_2_6_27_3
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
References_xml – volume: 38
  start-page: 1248
  year: 2009
  end-page: 1256
  publication-title: Chem. Soc. Rev.
– start-page: 820
  year: 2008
  end-page: 822
  publication-title: Chem. Commun.
– volume: 116 43
  start-page: 1317 1297
  year: 2004 2004
  end-page: 1321 1300
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 31
  start-page: 269
  year: 2005
  end-page: 281
  publication-title: Russ. J. Coord. Chem.
– volume: 436
  start-page: 238
  year: 2005
  end-page: 241
  publication-title: Nature
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  publication-title: Phys. Rev. B
– volume: 126
  start-page: 6106
  year: 2004
  end-page: 6114
  publication-title: J. Am. Chem. Soc.
– year: 2003
– volume: 123
  start-page: 10395
  year: 2001
  end-page: 10396
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  publication-title: Phys. Rev. B
– volume: 113 40
  start-page: 4554 4422
  year: 2001 2001
  end-page: 4557 4425
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 131
  start-page: 7524
  year: 2009
  end-page: 7525
  publication-title: J. Am. Chem. Soc.
– volume: 36
  start-page: 7
  year: 2003
  end-page: 13
  publication-title: J. Appl. Crystallogr.
– volume: 116 43
  start-page: 2388 2334
  year: 2004 2004
  end-page: 2430 2375
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 404
  start-page: 982
  year: 2000
  end-page: 986
  publication-title: Nature
– volume: 246
  start-page: 305
  year: 2003
  end-page: 326
  publication-title: Coord. Chem. Rev.
– volume: 118 45
  start-page: 6645 6495
  year: 2006 2006
  end-page: 6649 6499
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– start-page: 1
  year: 2008
  end-page: 13
– volume: 129
  start-page: 12958
  year: 2007
  end-page: 12959
  publication-title: J. Am. Chem. Soc.
– volume: 103
  start-page: 3651
  year: 2003
  end-page: 3705
  publication-title: Chem. Rev.
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  publication-title: Comput. Mater. Sci.
– volume: 118 45
  start-page: 4850 4732
  year: 2006 2006
  end-page: 4881 4762
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 118 45
  start-page: 930 916
  year: 2006 2006
  end-page: 934 920
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 46
  start-page: 6843
  year: 2007
  end-page: 6845
  publication-title: Inorg. Chem.
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 5188
  year: 2006
  end-page: 5197
  publication-title: Chem. Eur. J.
– volume: 32
  start-page: 544
  year: 2007
  end-page: 548
  publication-title: MRS Bull.
– volume: 127
  start-page: 8940
  year: 2005
  end-page: 8941
  publication-title: J. Am. Chem. Soc.
– volume: 106
  start-page: 2734
  year: 2006
  end-page: 2793
  publication-title: Chem. Rev.
– start-page: 2563
  year: 2006
  end-page: 2565
  publication-title: Chem. Commun.
– volume: 14
  start-page: 4521
  year: 2008
  end-page: 4532
  publication-title: Chem. Eur. J.
– volume: 64
  start-page: 112
  year: 2008
  end-page: 122
  publication-title: Acta Crystallogr. Sect. A
– start-page: 957
  year: 1993
  end-page: 975
– volume: 46
  start-page: 6671
  year: 1992
  end-page: 6687
  publication-title: Phys. Rev. B
– volume: 35
  start-page: 3613
  year: 1992
  end-page: 3624
  publication-title: J. Med. Chem.
– ident: e_1_2_6_2_2
– start-page: 1
  volume-title: Transition Metal Chemistry: New Research
  year: 2008
  ident: e_1_2_6_9_2
  contributor:
    fullname: Bryliakov K. P.
– ident: e_1_2_6_13_2
– ident: e_1_2_6_6_2
  doi: 10.1038/35010088
– ident: e_1_2_6_8_2
  doi: 10.1557/mrs2007.104
– ident: e_1_2_6_16_2
  doi: 10.1039/B600408C
– ident: e_1_2_6_19_2
  doi: 10.1021/ja0316420
– ident: e_1_2_6_35_2
– ident: e_1_2_6_34_2
  doi: 10.1021/jm00098a004
– ident: e_1_2_6_11_2
  doi: 10.1021/cr040700c
– ident: e_1_2_6_29_2
  doi: 10.1021/ic7009226
– ident: e_1_2_6_15_2
  doi: 10.1021/ja901440g
– ident: e_1_2_6_12_3
  doi: 10.1002/anie.200504212
– ident: e_1_2_6_25_2
  doi: 10.1021/ja0163772
– ident: e_1_2_6_42_2
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_2_6_20_2
  doi: 10.1002/1521-3757(20011203)113:23<4554::AID-ANGE4554>3.0.CO;2-A
– ident: e_1_2_6_17_2
  doi: 10.1039/B714083E
– ident: e_1_2_6_33_2
  doi: 10.1021/cr990372u
– ident: e_1_2_6_45_2
  doi: 10.1103/PhysRevB.13.5188
– ident: e_1_2_6_12_2
  doi: 10.1002/ange.200504212
– ident: e_1_2_6_27_3
  doi: 10.1002/anie.200351595
– ident: e_1_2_6_27_2
  doi: 10.1002/ange.200351595
– ident: e_1_2_6_39_2
  doi: 10.1107/S0021889802022112
– ident: e_1_2_6_28_2
  doi: 10.1007/s11173-005-0088-0
– volume-title: Chirality & Bioactivity I: Pharmacology, Vol. 3
  year: 2003
  ident: e_1_2_6_10_2
  contributor:
    fullname: Leffingwell J. C.
– ident: e_1_2_6_21_2
  doi: 10.1002/ange.200602242
– ident: e_1_2_6_4_2
  doi: 10.1002/chem.200501387
– ident: e_1_2_6_5_2
  doi: 10.1002/ange.200300610
– ident: e_1_2_6_36_2
  doi: 10.1038/nature03852
– ident: e_1_2_6_5_3
  doi: 10.1002/anie.200300610
– ident: e_1_2_6_14_2
  doi: 10.1021/ja052431t
– ident: e_1_2_6_3_2
  doi: 10.1039/b807083k
– ident: e_1_2_6_24_2
  doi: 10.1021/ja076276p
– ident: e_1_2_6_1_2
  doi: 10.1016/j.cct.2003.08.004
– ident: e_1_2_6_43_2
  doi: 10.1103/PhysRevB.46.6671
– ident: e_1_2_6_22_3
  doi: 10.1002/anie.200503023
– ident: e_1_2_6_26_2
– ident: e_1_2_6_31_2
– ident: e_1_2_6_23_2
– ident: e_1_2_6_20_3
  doi: 10.1002/1521-3773(20011203)40:23<4422::AID-ANIE4422>3.0.CO;2-G
– ident: e_1_2_6_18_2
– ident: e_1_2_6_38_2
  doi: 10.1107/S0108767307043930
– ident: e_1_2_6_40_2
– ident: e_1_2_6_44_2
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_6_37_2
– ident: e_1_2_6_22_2
  doi: 10.1002/ange.200503023
– ident: e_1_2_6_21_3
  doi: 10.1002/anie.200602242
– ident: e_1_2_6_7_2
– ident: e_1_2_6_30_2
  doi: 10.1002/chem.200701556
– ident: e_1_2_6_32_2
  doi: 10.1002/9780470034408.ch16
– ident: e_1_2_6_41_2
  doi: 10.1103/PhysRevB.54.11169
SSID ssj0009633
Score 2.3318243
Snippet Two new, homochiral, porous metal–organic coordination polymers [Zn2(ndc){(R)‐man}(dmf)]⋅3DMF and [Zn2(bpdc){(R)‐man}(dmf)]⋅2DMF...
Two new, homochiral, porous metal-organic coordination polymers [Zn(2)(ndc){(R)-man}(dmf)]⋅3DMF and [Zn(2)(bpdc){(R)-man}(dmf)]⋅2DMF...
Two new, homochiral, porous metal–organic coordination polymers [Zn 2 (ndc){( R )‐man}(dmf)]⋅3DMF and [Zn 2 (bpdc){( R )‐man}(dmf)]⋅2DMF...
Two new, homochiral, porous metal-organic coordination polymers [Zn2(ndc){(R)-man}(dmf)]3DMF and [Zn2(bpdc){(R)-man}(dmf)]2DMF...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 10348
SubjectTerms Chemistry
chirality
Coordination polymers
Crystals
density functional calculations
Dimethylformamide - chemistry
Drugs
Exchange
Heating
Hydrogen Bonding
Mathematical models
metal-organic frameworks
Models, Molecular
Modular
Molecular Structure
Organometallic Compounds - chemistry
Polymers
Polymers - chemistry
Porosity
porous materials
Quantum Theory
Sorption
Stereoisomerism
X-Ray Diffraction
Zinc - chemistry
Title Modular, Homochiral, Porous Coordination Polymers: Rational Design, Enantioselective Guest Exchange Sorption and Ab Initio Calculations of Host-Guest Interactions
URI https://api.istex.fr/ark:/67375/WNG-BB5T7VK1-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201000522
https://www.ncbi.nlm.nih.gov/pubmed/20730747
https://www.proquest.com/docview/1766594831
https://search.proquest.com/docview/1777993927
https://search.proquest.com/docview/755186754
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQWcCG9yNQkJEQbCZt4jycsGun0w4gKlRa2p3lOI4YdRqjZEYqrPgHfoEv40u4105SBoGQYBNpMrbkx_X18c3xuYQ8zSIVgUOUPqBpeIQq9_M4UH6mGE9YFZTcsS320-lR_OokOfnpFr_ThxgCbrgyrL_GBS6LdvNCNBT6dGapWRjZRCccRhw5fTsHF_pRYF0ul3zMfdRg7VUbA7a5Wn1lV7qMA3z-O8i5imDtFrR7nci-8Y55crqxXBQb6vMvuo7_07sb5FqHT-mWM6ib5JKub5Er4z4t3G3y7Y0pkbo6olNzZtSHWSPnI_rWNGbZ0rGBs-zMBRjh3fwTRsVf0IMu4kh3LF9kRCdIv5mZ1ibhAX9L93AA6OTc3UOm70xjXRmVdUm3CvoSKU6GjuVcdenGWmoqaEG7-P7lq6tsY5vumkZ7hxztTg7HU79L9eArQCzMr1jKS1bkUVjxhPMskYAklQIsEqgsjrXmSSVlgkElAIhZWoJbLlHRNKq4lGUS3SVrtan1fULTikmVqjDSKo-LiMsqZIHmKtEpr3SoPPK8n2rx0Sl6CKfdzASOuhhG3SPPrCUMxWRzijw4nojj_T2xvZ0c8vevQ3HskfXeVETnAlqBypuohROFHnky_A2ThV9kZK1hVqAM5wAQc8Y9Qv9QhqNmHhzrYo_cc1Y4tIehf4bzoEeYtaW_9Eegysbw68G_VHpIrjr6RA779zpZWzRL_QhQ2aJ4bFfeD6lhL9w
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLbQdjFu-P_JNsBICG6aLXHiOOFu67p1bKvQ6Bh3luMkoloXo6SVBle8A6_Ak_EknBM3mYpASHATqakt-ef4-PPJ5-8Q8iIOdAAOUbmApuHh68RNQk-7sWaCs8LLhGVbjKLhWfjmA2_ZhHgXxupDdAE3XBmNv8YFjgHp7WvVUOjUZcPNwtAmeOFVWPM-srr2Tq8VpMC-bDb5ULiowtrqNnpse7n-0r60ikN89TvQuYxhm01o_zZJ2-Zb7snF1nyWbukvvyg7_lf_7pBbC4hKd6xN3SU38vIeWeu3meHuk-8nJkP2ao8OzaXRHyeVmvboW1OZeU37Bo6zExtjhHfTzxgYf01PF0FHutdQRnp0gAyciambPDzgcukBjgAdXNmryPSdqRpvRlWZ0Z2UHiLLydC-mupFxrGamgJaUM9-fP1mKzfhTXtTo35AzvYH4_7QXWR7cDWAFuYWLBIZS5PALwQXIuYKwKTWAEc8HYdhngteKMUxrgQYMY4y8MwZipoGhVAq48FDslKaMn9MaFQwpSPtB7lOwjQQqvCZlwvN80gUua8d8qqda_nJinpIK9_MJI667EbdIS8bU-iKqeoCqXCCy_PRgdzd5WPx_siX5w7ZbG1FLrxALVF8E-VwAt8hz7u_YbLwo4wqc5gVKCMEYMSECYfQP5QRKJsHJ7vQIY-sGXbtYeii4UjoENYY01_6I1Foo_u1_i-VnpG14fjkWB4fjo42yE3LpkhgO98kK7Nqnj8BkDZLnzbL8CehKTP9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQKwEb3o-UAkZCsJm0ifNwwq6dR6cURlVpaXeW4yTqqNO4Smakwop_4Bf4Mr6Ee-MkZRAICTaRJmNLflxfH98cn0vIy8hTHjhEaQOahoerYjv2HWVHivGA5U7KDdtiEo6P_LcnwclPt_iNPkQXcMOVUftrXOAXab55JRoKfTqvqVkY2QQnvOqHLEb1_MHBlYAUmJdJJu9zG0VYW9lGh20u11_allZxhC9_hzmXIWy9B41uE9m23lBPzjYW82RDff5F2PF_uneH3GoAKt0yFnWXXMuKe-RGv80Ld598e69T5K726Fifa3U6LeWsR_d1qRcV7Ws4zE5NhBHezT5hWPwNPWhCjnRQE0Z6dIj8m6mu6iw84HDpDg4AHV6ai8j0gy5rX0ZlkdKthO4ix0nTvpypJt9YRXUOLajm3798NZXr4Ka5p1E9IEej4WF_bDe5HmwFkIXZOQt5ypLYc3MecB4FEqCkUgBGHBX5fpbxIJcywKgSIMQoTMEvpyhp6uVcyjTwHpKVQhfZY0LDnEkVKtfLVOwnHpe5y5yMqyALeZ65yiKv26kWF0bSQxjxZiZw1EU36hZ5VVtCV0yWZ0iE44E4nuyI7e3gkH_cc8WxRdZbUxGND6gESm-iGI7nWuRF9zdMFn6SkUUGswJlOAeEGDNuEfqHMhxF8-Bc51vkkbHCrj0MHTQcCC3Calv6S38Eymx0v9b-pdJzcn1_MBLvdid7T8hNQ6WIYS9fJyvzcpE9BYQ2T57Vi_AH2rQyrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modular%2C+Homochiral%2C+Porous+Coordination+Polymers%3A+Rational+Design%2C+Enantioselective+Guest+Exchange+Sorption+and+Ab+Initio+Calculations+of+Host%E2%80%93Guest+Interactions&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Dybtsev%2C+Danil%E2%80%85N.&rft.au=Yutkin%2C+Maxim%E2%80%85P.&rft.au=Samsonenko%2C+Denis%E2%80%85G.&rft.au=Fedin%2C+Vladimir%E2%80%85P.&rft.date=2010-09-10&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=16&rft.issue=34&rft.spage=10348&rft.epage=10356&rft_id=info:doi/10.1002%2Fchem.201000522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_201000522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon