Modular, Homochiral, Porous Coordination Polymers: Rational Design, Enantioselective Guest Exchange Sorption and Ab Initio Calculations of Host-Guest Interactions
Two new, homochiral, porous metal–organic coordination polymers [Zn2(ndc){(R)‐man}(dmf)]⋅3DMF and [Zn2(bpdc){(R)‐man}(dmf)]⋅2DMF (ndc=2,6‐naphthalenedicarboxylate; bpdc=4,4′‐biphenyldicarboxylate; man=mandelate; dmf=N,N′‐dimethylformamide) have been synthesized by heating ZnII nitrate, H2ndc or H2bp...
Saved in:
Published in | Chemistry : a European journal Vol. 16; no. 34; pp. 10348 - 10356 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
10.09.2010
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two new, homochiral, porous metal–organic coordination polymers [Zn2(ndc){(R)‐man}(dmf)]⋅3DMF and [Zn2(bpdc){(R)‐man}(dmf)]⋅2DMF (ndc=2,6‐naphthalenedicarboxylate; bpdc=4,4′‐biphenyldicarboxylate; man=mandelate; dmf=N,N′‐dimethylformamide) have been synthesized by heating ZnII nitrate, H2ndc or H2bpdc and chiral (R)‐mandelic acid (H2man) in DMF. The colorless crystals were obtained and their structures were established by single‐crystal X‐ray diffraction. These isoreticular structures share the same topological features as the previously reported zinc(II) terephthalate lactate [Zn2(bdc){(S)‐lac}(dmf)]⋅DMF framework, but have larger pores and opposite absolute configuration of the chiral centers. The enhanced pores size results in differing stereoselective sorption properties: the new metal–organic frameworks effectively and stereoselectively (ee up to 62 %) accommodate bulkier guest molecules (alkyl aryl sulfoxides) than the parent [Zn2(bdc){(S)‐lac}(dmf)]⋅DMF, while the latter demonstrates decent enantioselectivity toward precursor of chiral anticancer drug sulforaphane, CH3SO(CH2)4OH. The new homochiral porous metal–organic coordination polymers are capable of catalyzing a highly selective oxidation of bulkier sulfides (2‐NaphSMe (2‐C10H7SMe) and PhSCH2Ph) that could not be achieved by the smaller‐pore [Zn2(bdc){(S)‐lac}(dmf)]⋅DMF. The sorption of different guest molecules (both R and S isomers) into the chiral pores of [Zn2(bdc){(S)‐lac}(dmf)]⋅DMF was modeled by using ab initio calculations that provided a qualitative explanation for the observed sorption enantioselectivity. The high stereo‐preference is accounted for by the presence of coordinated inner‐pore DMF molecule that forms a weak CH⋅⋅⋅O bond between the DMF methyl group and the (S)‐PhSOCH3 sulfinyl group.
The size has great value: Homochiral metal–organic frameworks (MOFs; shown here) with larger pores effectively accommodate bulkier guest molecules, which results in new sorption and catalytic properties. Theoretical ab initio calculations provide a qualitative explanation for the observed sorption enantioselectivity. |
---|---|
AbstractList | Two new, homochiral, porous metal–organic coordination polymers [Zn
2
(ndc){(
R
)‐man}(dmf)]⋅3DMF and [Zn
2
(bpdc){(
R
)‐man}(dmf)]⋅2DMF (ndc=2,6‐naphthalenedicarboxylate; bpdc=4,4′‐biphenyldicarboxylate; man=mandelate; dmf=
N
,
N
′‐dimethylformamide) have been synthesized by heating Zn
II
nitrate, H
2
ndc or H
2
bpdc and chiral (
R
)‐mandelic acid (H
2
man) in DMF. The colorless crystals were obtained and their structures were established by single‐crystal X‐ray diffraction. These isoreticular structures share the same topological features as the previously reported zinc(II) terephthalate lactate [Zn
2
(bdc){(
S
)‐lac}(dmf)]⋅DMF framework, but have larger pores and opposite absolute configuration of the chiral centers. The enhanced pores size results in differing stereoselective sorption properties: the new metal–organic frameworks effectively and stereoselectively (
ee
up to 62 %) accommodate bulkier guest molecules (alkyl aryl sulfoxides) than the parent [Zn
2
(bdc){(
S
)‐lac}(dmf)]⋅DMF, while the latter demonstrates decent enantioselectivity toward precursor of chiral anticancer drug sulforaphane, CH
3
SO(CH
2
)
4
OH. The new homochiral porous metal–organic coordination polymers are capable of catalyzing a highly selective oxidation of bulkier sulfides (2‐NaphSMe (2‐C
10
H
7
SMe) and PhSCH
2
Ph) that could not be achieved by the smaller‐pore [Zn
2
(bdc){(
S
)‐lac}(dmf)]⋅DMF. The sorption of different guest molecules (both
R
and
S
isomers) into the chiral pores of [Zn
2
(bdc){(
S
)‐lac}(dmf)]⋅DMF was modeled by using ab initio calculations that provided a qualitative explanation for the observed sorption enantioselectivity. The high stereo‐preference is accounted for by the presence of coordinated inner‐pore DMF molecule that forms a weak CH⋅⋅⋅O bond between the DMF methyl group and the (
S
)‐PhSOCH
3
sulfinyl group. Two new, homochiral, porous metal-organic coordination polymers [Zn2(ndc){(R)-man}(dmf)]3DMF and [Zn2(bpdc){(R)-man}(dmf)]2DMF (ndc=2,6-naphthalenedicarboxylate; bpdc=4,4'-biphenyldicarboxylate; man=mandelate; dmf=N,N'-dimethylformamide) have been synthesized by heating ZnII nitrate, H2ndc or H2bpdc and chiral (R)-mandelic acid (H2man) in DMF. The colorless crystals were obtained and their structures were established by single-crystal X-ray diffraction. These isoreticular structures share the same topological features as the previously reported zinc(II) terephthalate lactate [Zn2(bdc){(S)-lac}(dmf)]DMF framework, but have larger pores and opposite absolute configuration of the chiral centers. The enhanced pores size results in differing stereoselective sorption properties: the new metal-organic frameworks effectively and stereoselectively (ee up to 62%) accommodate bulkier guest molecules (alkyl aryl sulfoxides) than the parent [Zn2(bdc){(S)-lac}(dmf)]DMF, while the latter demonstrates decent enantioselectivity toward precursor of chiral anticancer drug sulforaphane, CH3SO(CH2)4OH. The new homochiral porous metal-organic coordination polymers are capable of catalyzing a highly selective oxidation of bulkier sulfides (2-NaphSMe (2-C10H7SMe) and PhSCH2Ph) that could not be achieved by the smaller-pore [Zn2(bdc){(S)-lac}(dmf)]DMF. The sorption of different guest molecules (both R and S isomers) into the chiral pores of [Zn2(bdc){(S)-lac}(dmf)]DMF was modeled by using ab initio calculations that provided a qualitative explanation for the observed sorption enantioselectivity. The high stereo-preference is accounted for by the presence of coordinated inner-pore DMF molecule that forms a weak CHO bond between the DMF methyl group and the (S)-PhSOCH3 sulfinyl group. Two new, homochiral, porous metal-organic coordination polymers [Zn(2)(ndc){(R)-man}(dmf)]⋅3DMF and [Zn(2)(bpdc){(R)-man}(dmf)]⋅2DMF (ndc=2,6-naphthalenedicarboxylate; bpdc=4,4'-biphenyldicarboxylate; man=mandelate; dmf=N,N'-dimethylformamide) have been synthesized by heating Zn(II) nitrate, H(2)ndc or H(2)bpdc and chiral (R)-mandelic acid (H(2)man) in DMF. The colorless crystals were obtained and their structures were established by single-crystal X-ray diffraction. These isoreticular structures share the same topological features as the previously reported zinc(II) terephthalate lactate [Zn(2)(bdc){(S)-lac}(dmf)]⋅DMF framework, but have larger pores and opposite absolute configuration of the chiral centers. The enhanced pores size results in differing stereoselective sorption properties: the new metal-organic frameworks effectively and stereoselectively (ee up to 62 %) accommodate bulkier guest molecules (alkyl aryl sulfoxides) than the parent [Zn(2)(bdc){(S)-lac}(dmf)]⋅DMF, while the latter demonstrates decent enantioselectivity toward precursor of chiral anticancer drug sulforaphane, CH(3)SO(CH(2))(4)OH. The new homochiral porous metal-organic coordination polymers are capable of catalyzing a highly selective oxidation of bulkier sulfides (2-NaphSMe (2-C(10)H(7)SMe) and PhSCH(2)Ph) that could not be achieved by the smaller-pore [Zn(2)(bdc){(S)-lac}(dmf)]⋅DMF. The sorption of different guest molecules (both R and S isomers) into the chiral pores of [Zn(2)(bdc){(S)-lac}(dmf)]⋅DMF was modeled by using ab initio calculations that provided a qualitative explanation for the observed sorption enantioselectivity. The high stereo-preference is accounted for by the presence of coordinated inner-pore DMF molecule that forms a weak C-H...O bond between the DMF methyl group and the (S)-PhSOCH(3) sulfinyl group. Two new, homochiral, porous metal–organic coordination polymers [Zn2(ndc){(R)‐man}(dmf)]⋅3DMF and [Zn2(bpdc){(R)‐man}(dmf)]⋅2DMF (ndc=2,6‐naphthalenedicarboxylate; bpdc=4,4′‐biphenyldicarboxylate; man=mandelate; dmf=N,N′‐dimethylformamide) have been synthesized by heating ZnII nitrate, H2ndc or H2bpdc and chiral (R)‐mandelic acid (H2man) in DMF. The colorless crystals were obtained and their structures were established by single‐crystal X‐ray diffraction. These isoreticular structures share the same topological features as the previously reported zinc(II) terephthalate lactate [Zn2(bdc){(S)‐lac}(dmf)]⋅DMF framework, but have larger pores and opposite absolute configuration of the chiral centers. The enhanced pores size results in differing stereoselective sorption properties: the new metal–organic frameworks effectively and stereoselectively (ee up to 62 %) accommodate bulkier guest molecules (alkyl aryl sulfoxides) than the parent [Zn2(bdc){(S)‐lac}(dmf)]⋅DMF, while the latter demonstrates decent enantioselectivity toward precursor of chiral anticancer drug sulforaphane, CH3SO(CH2)4OH. The new homochiral porous metal–organic coordination polymers are capable of catalyzing a highly selective oxidation of bulkier sulfides (2‐NaphSMe (2‐C10H7SMe) and PhSCH2Ph) that could not be achieved by the smaller‐pore [Zn2(bdc){(S)‐lac}(dmf)]⋅DMF. The sorption of different guest molecules (both R and S isomers) into the chiral pores of [Zn2(bdc){(S)‐lac}(dmf)]⋅DMF was modeled by using ab initio calculations that provided a qualitative explanation for the observed sorption enantioselectivity. The high stereo‐preference is accounted for by the presence of coordinated inner‐pore DMF molecule that forms a weak CH⋅⋅⋅O bond between the DMF methyl group and the (S)‐PhSOCH3 sulfinyl group. The size has great value: Homochiral metal–organic frameworks (MOFs; shown here) with larger pores effectively accommodate bulkier guest molecules, which results in new sorption and catalytic properties. Theoretical ab initio calculations provide a qualitative explanation for the observed sorption enantioselectivity. |
Author | Fedin, Vladimir P. Samsonenko, Denis G. Subbotin, Oleg S. Kawazoe, Yoshiyuki Dybtsev, Danil N. Mizuseki, Hiroshi Nuzhdin, Alexey L. Belosludov, Vladimir R. Bezrukov, Andrey A. Yutkin, Maxim P. Talsi, Evgeniy P. Belosludov, Rodion V. Bryliakov, Konstantin P. |
Author_xml | – sequence: 1 givenname: Danil N. surname: Dybtsev fullname: Dybtsev, Danil N. organization: Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 3, 630090 Novosibirsk (Russian Federation), Fax: (+7) 383-3309489 – sequence: 2 givenname: Maxim P. surname: Yutkin fullname: Yutkin, Maxim P. organization: Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 3, 630090 Novosibirsk (Russian Federation), Fax: (+7) 383-3309489 – sequence: 3 givenname: Denis G. surname: Samsonenko fullname: Samsonenko, Denis G. organization: Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 3, 630090 Novosibirsk (Russian Federation), Fax: (+7) 383-3309489 – sequence: 4 givenname: Vladimir P. surname: Fedin fullname: Fedin, Vladimir P. email: cluster@niic.nsc.ru organization: Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 3, 630090 Novosibirsk (Russian Federation), Fax: (+7) 383-3309489 – sequence: 5 givenname: Alexey L. surname: Nuzhdin fullname: Nuzhdin, Alexey L. organization: Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 5, 630090 Novosibirsk, (Russian Federation) – sequence: 6 givenname: Andrey A. surname: Bezrukov fullname: Bezrukov, Andrey A. organization: Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 5, 630090 Novosibirsk, (Russian Federation) – sequence: 7 givenname: Konstantin P. surname: Bryliakov fullname: Bryliakov, Konstantin P. organization: Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 5, 630090 Novosibirsk, (Russian Federation) – sequence: 8 givenname: Evgeniy P. surname: Talsi fullname: Talsi, Evgeniy P. organization: Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 5, 630090 Novosibirsk, (Russian Federation) – sequence: 9 givenname: Rodion V. surname: Belosludov fullname: Belosludov, Rodion V. organization: Institute for Materials Research, Tohoku University, Katahira 2-1-1, 980-8577 Sendai (Japan) – sequence: 10 givenname: Hiroshi surname: Mizuseki fullname: Mizuseki, Hiroshi organization: Institute for Materials Research, Tohoku University, Katahira 2-1-1, 980-8577 Sendai (Japan) – sequence: 11 givenname: Yoshiyuki surname: Kawazoe fullname: Kawazoe, Yoshiyuki organization: Institute for Materials Research, Tohoku University, Katahira 2-1-1, 980-8577 Sendai (Japan) – sequence: 12 givenname: Oleg S. surname: Subbotin fullname: Subbotin, Oleg S. organization: Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 3, 630090 Novosibirsk (Russian Federation), Fax: (+7) 383-3309489 – sequence: 13 givenname: Vladimir R. surname: Belosludov fullname: Belosludov, Vladimir R. organization: Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 3, 630090 Novosibirsk (Russian Federation), Fax: (+7) 383-3309489 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20730747$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v0zAYxi00xLrBlSOyxAEOTfGfOK65bVlpKzZAMNjRch1nzZbYxU7G-nX4pDjNqBAHONl-39_z-NX7HIED66wB4DlGE4wQeaPXppkQFO-IEfIIjDAjOKE8YwdghETKk4xRcQiOQriJjMgofQIOCeIU8ZSPwM8LV3S18mO4cI3T68qregw_Oe-6AHPnfFFZ1VbOxlq9bYwPb-HnXUHV8MyE6tqO4cwqG0vB1Ea31Z2B886EFs7u9VrZawO_OL_ZeShbwJMVXNoqPmGuah3_7jsBujJOENpkkC5ta7zSu9ZT8LhUdTDPHs5j8PXd7DJfJOcf58v85DzRDAmSlCTjBVkJikvOOJ8yxVKkNREU6WmaGsNZqVREEcWYTLNCFUUhMBW05EoVjB6DV4Pvxrvv_RSyqYI2da2siduQnDE8zThLI_n6nyTmnAtBBeERffkXeuM6H5fXU1nGRDqlOFKTgdLeheBNKTe-apTfSoxkn7Psc5b7nKPgxYNtt2pMscd_BxsBMQA_qtps_2Mn88Xs4k_zZNBWoTX3e63ytzLjlDN59WEuT0_ZJf_2Hssr-gsp2cZK |
CODEN | CEUJED |
CitedBy_id | crossref_primary_10_1021_jp209969f crossref_primary_10_1002_cplu_201402067 crossref_primary_10_1016_j_ccr_2020_213763 crossref_primary_10_1021_acs_inorgchem_5b02234 crossref_primary_10_1021_acs_inorgchem_9b00016 crossref_primary_10_1039_c2cc33939k crossref_primary_10_1016_j_ccr_2013_01_029 crossref_primary_10_1007_s11237_017_9517_7 crossref_primary_10_1021_cr2003147 crossref_primary_10_1021_acs_chemmater_5b03723 crossref_primary_10_1002_slct_201802086 crossref_primary_10_1039_D0CS01236J crossref_primary_10_1002_elps_201400079 crossref_primary_10_1016_j_ica_2012_08_012 crossref_primary_10_1002_chem_201501315 crossref_primary_10_1016_j_supmat_2023_100039 crossref_primary_10_1063_5_0144827 crossref_primary_10_1007_s00216_013_6714_7 crossref_primary_10_1002_jssc_201600808 crossref_primary_10_1016_j_ccr_2012_10_002 crossref_primary_10_1002_advs_202003143 crossref_primary_10_1080_01614940_2014_864145 crossref_primary_10_1016_j_poly_2019_02_008 crossref_primary_10_1080_00958972_2015_1100300 crossref_primary_10_1039_C1CC16209H crossref_primary_10_1021_acs_chemrev_1c00740 crossref_primary_10_1039_C6RA09353A crossref_primary_10_1080_00958972_2022_2053958 crossref_primary_10_1002_ajoc_201300140 crossref_primary_10_1039_C5CC05779E crossref_primary_10_1039_C5CC02706C crossref_primary_10_3390_sym15020508 crossref_primary_10_1016_j_poly_2018_12_018 crossref_primary_10_1134_S1070428019060101 crossref_primary_10_1002_asia_201402785 crossref_primary_10_1021_acs_inorgchem_8b00948 crossref_primary_10_1016_j_tetasy_2012_06_023 crossref_primary_10_1016_j_micromeso_2015_03_019 crossref_primary_10_1002_cite_201000188 crossref_primary_10_1134_S1070328416090013 crossref_primary_10_1016_j_inoche_2019_107730 crossref_primary_10_1021_jacs_7b10112 crossref_primary_10_1002_jssc_202400073 crossref_primary_10_1002_mrc_4262 crossref_primary_10_1007_s11237_015_9396_8 crossref_primary_10_1039_c2nj40447h crossref_primary_10_1039_C9DT00257J crossref_primary_10_1002_ange_202204066 crossref_primary_10_1021_cr200274s crossref_primary_10_1007_s11172_018_2211_7 crossref_primary_10_1021_acs_inorgchem_6b00894 crossref_primary_10_1007_s11172_013_0098_x crossref_primary_10_1039_c2cc32595k crossref_primary_10_1007_s11172_015_0910_x crossref_primary_10_1016_j_ica_2011_09_049 crossref_primary_10_1016_j_poly_2021_115354 crossref_primary_10_1021_ic4021367 crossref_primary_10_1002_anie_202204066 crossref_primary_10_1039_C5NJ00524H crossref_primary_10_1021_acs_cgd_8b00778 crossref_primary_10_1134_S0022476619020148 crossref_primary_10_1016_j_jssc_2013_11_011 crossref_primary_10_1021_cg500474j |
Cites_doi | 10.1038/35010088 10.1557/mrs2007.104 10.1039/B600408C 10.1021/ja0316420 10.1021/jm00098a004 10.1021/cr040700c 10.1021/ic7009226 10.1021/ja901440g 10.1002/anie.200504212 10.1021/ja0163772 10.1016/0927-0256(96)00008-0 10.1002/1521-3757(20011203)113:23<4554::AID-ANGE4554>3.0.CO;2-A 10.1039/B714083E 10.1021/cr990372u 10.1103/PhysRevB.13.5188 10.1002/ange.200504212 10.1002/anie.200351595 10.1002/ange.200351595 10.1107/S0021889802022112 10.1007/s11173-005-0088-0 10.1002/ange.200602242 10.1002/chem.200501387 10.1002/ange.200300610 10.1038/nature03852 10.1002/anie.200300610 10.1021/ja052431t 10.1039/b807083k 10.1021/ja076276p 10.1016/j.cct.2003.08.004 10.1103/PhysRevB.46.6671 10.1002/anie.200503023 10.1002/1521-3773(20011203)40:23<4422::AID-ANIE4422>3.0.CO;2-G 10.1107/S0108767307043930 10.1103/PhysRevB.50.17953 10.1002/ange.200503023 10.1002/anie.200602242 10.1002/chem.200701556 10.1002/9780470034408.ch16 10.1103/PhysRevB.54.11169 |
ContentType | Journal Article |
Copyright | Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201000522 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 10356 |
ExternalDocumentID | 3957666601 10_1002_chem_201000522 20730747 CHEM201000522 ark_67375_WNG_BB5T7VK1_W |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Russian Foundation for Basic Research funderid: 08‐03‐12007; 09‐03‐90414 – fundername: Ministry of Education, Science and Technology of Korea funderid: R31‐2008‐000‐10059‐0 – fundername: Korea Science and Engineering Foundation – fundername: Ministry of Education, Culture, Sports, Science, and Technology of Japan funderid: 19651039 |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c5092-f267d2b931f757785a540cc2930c844ee75faa5090311286daddd91393f7aad53 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 |
IngestDate | Wed Dec 04 01:06:07 EST 2024 Tue Dec 03 23:28:57 EST 2024 Sun Dec 01 11:06:59 EST 2024 Fri Dec 06 04:03:16 EST 2024 Sat Sep 28 07:47:09 EDT 2024 Sat Aug 24 00:59:03 EDT 2024 Wed Oct 30 09:56:37 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5092-f267d2b931f757785a540cc2930c844ee75faa5090311286daddd91393f7aad53 |
Notes | Korea Science and Engineering Foundation ArticleID:CHEM201000522 ark:/67375/WNG-BB5T7VK1-W Ministry of Education, Science and Technology of Korea - No. R31-2008-000-10059-0 Ministry of Education, Culture, Sports, Science, and Technology of Japan - No. 19651039 istex:B51C1566CB4747A1BAD8CEB1124D3E2D4E034F74 Russian Foundation for Basic Research - No. 08-03-12007; No. 09-03-90414 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20730747 |
PQID | 1766594831 |
PQPubID | 986340 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_755186754 proquest_miscellaneous_1777993927 proquest_journals_1766594831 crossref_primary_10_1002_chem_201000522 pubmed_primary_20730747 wiley_primary_10_1002_chem_201000522_CHEM201000522 istex_primary_ark_67375_WNG_BB5T7VK1_W |
PublicationCentury | 2000 |
PublicationDate | September 10, 2010 |
PublicationDateYYYYMMDD | 2010-09-10 |
PublicationDate_xml | – month: 09 year: 2010 text: September 10, 2010 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry - A European Journal |
PublicationYear | 2010 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | O. R. Evans, H. L. Ngo, W. Lin, J. Am. Chem. Soc. 2001, 123, 10395-10396. K. P. Bryliakov, E. P. Talsi in Transition Metal Chemistry: New Research (Eds.: B. Varga, L. Kis), Nova Science Publishers, New York, 2008, pp. 1-13. K. Tanaka, S. Oda, M. Shiro, Chem. Commun. 2008, 820-822. A. L. Nuzhdin, D. N. Dybtsev, K. P. Bryliakov, E. P. Talsi, V. P. Fedin, J. Am. Chem. Soc. 2007, 129, 12958-12959 V. Farina, J. T. Reeves, C. H. Senanayake, J. J. Song, Chem. Rev. 2006, 106, 2734-2793. D. Bradshaw, T. J. Prior, E. J. Cussen, J. B. Claridge, M. J. Rosseinsky, J. Am. Chem. Soc. 2004, 126, 6106-6114 C.-D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 2005, 127, 8940-8941 Angew. Chem. Int. Ed. 2001, 40, 4422-4425 A. Kalir, H. H. Kalir in The Chemistry of Sulfur-Containing Functional Groups (Eds.: S. Patai, Z. Rappoport), Wiley, New York, 1993, pp. 957-975 J. S. Seo, D. Wand, H. Lee, S. I. Jun, J. Oh, Y. Jeon, K. Kim, Nature 2000, 404, 982-986. J. Perez Barrio, J.-N. Rebilly, B. Carter, D. Bradshaw, J. Bacsa, A. Y. Ganin, H. Park, A. Trewin, R. Vaidhyanathan, A. I. Cooper, J. E. Warren, M. J. Rosseinsky, Chem. Eur. J. 2008, 14, 4521-4532. P. E. Blöchl, Phys. Rev. B 1994, 50, 17953-17979. W. Lin, MRS Bull. 2007, 32, 544-548 Angew. Chem. Int. Ed. 2006, 45, 6495-6499. M. Heitbaum, F. Glorius, I. Escher, Angew. Chem. 2006, 118, 4850-4881 Angew. Chem. Int. Ed. 2006, 45, 4732-4762. Angew. Chem. Int. Ed. 2006, 45, 916-920. I. Fernández, N. Khiar, Chem. Rev. 2003, 103, 3651-3705 D. N. Dybtsev, M. P. Yutkin, E. V. Peresypkina, A. V. Virovets, C. Serre, G. Ferey, V. P. Fedin, Inorg. Chem. 2007, 46, 6843-6845. G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169-11186 G. Kresse, J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15-50. A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7-13. T. J. Brown, R. F. Chapman, D. C. Cook, T. W. Hart, I. M. McLay, R. Jordan, J. S. Mason, M. N. Palfreyman, R. J. A. Walsh, M. T. Withnall, J.-C. Aloup, I. Cavero, D. Fargen, C. James, S. Mondot, J. Med. Chem. 1992, 35, 3613-3624 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671-6687. K. Ding, Z. Wang, X. Wang, Y. Liang, X. Wang, Chem. Eur. J. 2006, 12, 5188-5197 J. C. Leffingwell, Chirality & Bioactivity I: Pharmacology, Vol. 3, Leffingwell Reports, 2003. L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248-1256 R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature 2005, 436, 238-241. Y. V. Mironov, N. G. Naumov, K. A. Brylev, V. E. Fedorov, K. Hegetschweiler, Angew. Chem. 2004, 116, 1317-1321 B. Kesanli, W. Lin, Coord. Chem. Rev. 2003, 246, 305-326. Angew. Chem. Int. Ed. 2004, 43, 2334-2375. G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112-122. H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188-5192. R.-G. Xiong, X.-Z. You, B. F. Abrahams, Z. Xue, C.-M. Che, Angew. Chem. 2001, 113, 4554-4557 Y. V. Mironov, N. G. Naumov, K. A. Brylev, O. A. Efremova, V. E. Fedorov, K. Hegetschweiler, Russ. J. Coord. Chem. 2005, 31, 269-281. R. Vaidhyanathan, D. Bradshaw, J.-N. Rebilly, J. P. Barrio, J. A. Gould, N. G. Berry, M. J. Rosseinsky, Angew. Chem. 2006, 118, 6645-6649 Angew. Chem. Int. Ed. 2004, 43, 1297-1300 D. N. Dybtsev, A. L. Nuzhdin, H. Chun, K. P. Bryliakov, E. P. Talsi, V. P. Fedin, K. Kim, Angew. Chem. 2006, 118, 930-934 S.-H. Cho, B. Ma, S. T. Nguyen, J. T. Hupp, T. E. Albrecht-Schmitt, Chem. Commun. 2006, 2563-2565 S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. 2004, 116, 2388-2430 M. Banerjee, S. Das, M. Yoon, H. J. Choi, M. H. Hyun, S. M. Park, G. Seo, K. Kim, J. Am. Chem. Soc. 2009, 131, 7524-7525 2004 2004; 116 43 2001; 123 2007; 129 2004; 126 2006; 12 2005; 436 2008; 14 2008 2003; 36 2006 1992; 35 1993 2003 2009; 131 2007; 32 1996; 54 2006 2006; 118 45 1976; 13 2001 2001; 113 40 2000; 404 2005; 127 2005; 31 1992; 46 2008; 64 2003; 246 2003; 103 1994; 50 2006; 106 2009; 38 2007; 46 1996; 6 Bryliakov K. P. (e_1_2_6_9_2) 2008 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_7_2 e_1_2_6_3_2 e_1_2_6_5_3 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_22_3 e_1_2_6_22_2 e_1_2_6_1_2 e_1_2_6_20_3 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_12_3 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 Leffingwell J. C. (e_1_2_6_10_2) 2003 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_21_3 e_1_2_6_21_2 e_1_2_6_27_3 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 |
References_xml | – volume: 38 start-page: 1248 year: 2009 end-page: 1256 publication-title: Chem. Soc. Rev. – start-page: 820 year: 2008 end-page: 822 publication-title: Chem. Commun. – volume: 116 43 start-page: 1317 1297 year: 2004 2004 end-page: 1321 1300 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 31 start-page: 269 year: 2005 end-page: 281 publication-title: Russ. J. Coord. Chem. – volume: 436 start-page: 238 year: 2005 end-page: 241 publication-title: Nature – volume: 13 start-page: 5188 year: 1976 end-page: 5192 publication-title: Phys. Rev. B – volume: 126 start-page: 6106 year: 2004 end-page: 6114 publication-title: J. Am. Chem. Soc. – year: 2003 – volume: 123 start-page: 10395 year: 2001 end-page: 10396 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 11169 year: 1996 end-page: 11186 publication-title: Phys. Rev. B – volume: 113 40 start-page: 4554 4422 year: 2001 2001 end-page: 4557 4425 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 131 start-page: 7524 year: 2009 end-page: 7525 publication-title: J. Am. Chem. Soc. – volume: 36 start-page: 7 year: 2003 end-page: 13 publication-title: J. Appl. Crystallogr. – volume: 116 43 start-page: 2388 2334 year: 2004 2004 end-page: 2430 2375 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 404 start-page: 982 year: 2000 end-page: 986 publication-title: Nature – volume: 246 start-page: 305 year: 2003 end-page: 326 publication-title: Coord. Chem. Rev. – volume: 118 45 start-page: 6645 6495 year: 2006 2006 end-page: 6649 6499 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – start-page: 1 year: 2008 end-page: 13 – volume: 129 start-page: 12958 year: 2007 end-page: 12959 publication-title: J. Am. Chem. Soc. – volume: 103 start-page: 3651 year: 2003 end-page: 3705 publication-title: Chem. Rev. – volume: 6 start-page: 15 year: 1996 end-page: 50 publication-title: Comput. Mater. Sci. – volume: 118 45 start-page: 4850 4732 year: 2006 2006 end-page: 4881 4762 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 118 45 start-page: 930 916 year: 2006 2006 end-page: 934 920 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 46 start-page: 6843 year: 2007 end-page: 6845 publication-title: Inorg. Chem. – volume: 50 start-page: 17953 year: 1994 end-page: 17979 publication-title: Phys. Rev. B – volume: 12 start-page: 5188 year: 2006 end-page: 5197 publication-title: Chem. Eur. J. – volume: 32 start-page: 544 year: 2007 end-page: 548 publication-title: MRS Bull. – volume: 127 start-page: 8940 year: 2005 end-page: 8941 publication-title: J. Am. Chem. Soc. – volume: 106 start-page: 2734 year: 2006 end-page: 2793 publication-title: Chem. Rev. – start-page: 2563 year: 2006 end-page: 2565 publication-title: Chem. Commun. – volume: 14 start-page: 4521 year: 2008 end-page: 4532 publication-title: Chem. Eur. J. – volume: 64 start-page: 112 year: 2008 end-page: 122 publication-title: Acta Crystallogr. Sect. A – start-page: 957 year: 1993 end-page: 975 – volume: 46 start-page: 6671 year: 1992 end-page: 6687 publication-title: Phys. Rev. B – volume: 35 start-page: 3613 year: 1992 end-page: 3624 publication-title: J. Med. Chem. – ident: e_1_2_6_2_2 – start-page: 1 volume-title: Transition Metal Chemistry: New Research year: 2008 ident: e_1_2_6_9_2 contributor: fullname: Bryliakov K. P. – ident: e_1_2_6_13_2 – ident: e_1_2_6_6_2 doi: 10.1038/35010088 – ident: e_1_2_6_8_2 doi: 10.1557/mrs2007.104 – ident: e_1_2_6_16_2 doi: 10.1039/B600408C – ident: e_1_2_6_19_2 doi: 10.1021/ja0316420 – ident: e_1_2_6_35_2 – ident: e_1_2_6_34_2 doi: 10.1021/jm00098a004 – ident: e_1_2_6_11_2 doi: 10.1021/cr040700c – ident: e_1_2_6_29_2 doi: 10.1021/ic7009226 – ident: e_1_2_6_15_2 doi: 10.1021/ja901440g – ident: e_1_2_6_12_3 doi: 10.1002/anie.200504212 – ident: e_1_2_6_25_2 doi: 10.1021/ja0163772 – ident: e_1_2_6_42_2 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_2_6_20_2 doi: 10.1002/1521-3757(20011203)113:23<4554::AID-ANGE4554>3.0.CO;2-A – ident: e_1_2_6_17_2 doi: 10.1039/B714083E – ident: e_1_2_6_33_2 doi: 10.1021/cr990372u – ident: e_1_2_6_45_2 doi: 10.1103/PhysRevB.13.5188 – ident: e_1_2_6_12_2 doi: 10.1002/ange.200504212 – ident: e_1_2_6_27_3 doi: 10.1002/anie.200351595 – ident: e_1_2_6_27_2 doi: 10.1002/ange.200351595 – ident: e_1_2_6_39_2 doi: 10.1107/S0021889802022112 – ident: e_1_2_6_28_2 doi: 10.1007/s11173-005-0088-0 – volume-title: Chirality & Bioactivity I: Pharmacology, Vol. 3 year: 2003 ident: e_1_2_6_10_2 contributor: fullname: Leffingwell J. C. – ident: e_1_2_6_21_2 doi: 10.1002/ange.200602242 – ident: e_1_2_6_4_2 doi: 10.1002/chem.200501387 – ident: e_1_2_6_5_2 doi: 10.1002/ange.200300610 – ident: e_1_2_6_36_2 doi: 10.1038/nature03852 – ident: e_1_2_6_5_3 doi: 10.1002/anie.200300610 – ident: e_1_2_6_14_2 doi: 10.1021/ja052431t – ident: e_1_2_6_3_2 doi: 10.1039/b807083k – ident: e_1_2_6_24_2 doi: 10.1021/ja076276p – ident: e_1_2_6_1_2 doi: 10.1016/j.cct.2003.08.004 – ident: e_1_2_6_43_2 doi: 10.1103/PhysRevB.46.6671 – ident: e_1_2_6_22_3 doi: 10.1002/anie.200503023 – ident: e_1_2_6_26_2 – ident: e_1_2_6_31_2 – ident: e_1_2_6_23_2 – ident: e_1_2_6_20_3 doi: 10.1002/1521-3773(20011203)40:23<4422::AID-ANIE4422>3.0.CO;2-G – ident: e_1_2_6_18_2 – ident: e_1_2_6_38_2 doi: 10.1107/S0108767307043930 – ident: e_1_2_6_40_2 – ident: e_1_2_6_44_2 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_6_37_2 – ident: e_1_2_6_22_2 doi: 10.1002/ange.200503023 – ident: e_1_2_6_21_3 doi: 10.1002/anie.200602242 – ident: e_1_2_6_7_2 – ident: e_1_2_6_30_2 doi: 10.1002/chem.200701556 – ident: e_1_2_6_32_2 doi: 10.1002/9780470034408.ch16 – ident: e_1_2_6_41_2 doi: 10.1103/PhysRevB.54.11169 |
SSID | ssj0009633 |
Score | 2.3318243 |
Snippet | Two new, homochiral, porous metal–organic coordination polymers [Zn2(ndc){(R)‐man}(dmf)]⋅3DMF and [Zn2(bpdc){(R)‐man}(dmf)]⋅2DMF... Two new, homochiral, porous metal-organic coordination polymers [Zn(2)(ndc){(R)-man}(dmf)]⋅3DMF and [Zn(2)(bpdc){(R)-man}(dmf)]⋅2DMF... Two new, homochiral, porous metal–organic coordination polymers [Zn 2 (ndc){( R )‐man}(dmf)]⋅3DMF and [Zn 2 (bpdc){( R )‐man}(dmf)]⋅2DMF... Two new, homochiral, porous metal-organic coordination polymers [Zn2(ndc){(R)-man}(dmf)]3DMF and [Zn2(bpdc){(R)-man}(dmf)]2DMF... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 10348 |
SubjectTerms | Chemistry chirality Coordination polymers Crystals density functional calculations Dimethylformamide - chemistry Drugs Exchange Heating Hydrogen Bonding Mathematical models metal-organic frameworks Models, Molecular Modular Molecular Structure Organometallic Compounds - chemistry Polymers Polymers - chemistry Porosity porous materials Quantum Theory Sorption Stereoisomerism X-Ray Diffraction Zinc - chemistry |
Title | Modular, Homochiral, Porous Coordination Polymers: Rational Design, Enantioselective Guest Exchange Sorption and Ab Initio Calculations of Host-Guest Interactions |
URI | https://api.istex.fr/ark:/67375/WNG-BB5T7VK1-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201000522 https://www.ncbi.nlm.nih.gov/pubmed/20730747 https://www.proquest.com/docview/1766594831 https://search.proquest.com/docview/1777993927 https://search.proquest.com/docview/755186754 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQWcCG9yNQkJEQbCZt4jycsGun0w4gKlRa2p3lOI4YdRqjZEYqrPgHfoEv40u4105SBoGQYBNpMrbkx_X18c3xuYQ8zSIVgUOUPqBpeIQq9_M4UH6mGE9YFZTcsS320-lR_OokOfnpFr_ThxgCbrgyrL_GBS6LdvNCNBT6dGapWRjZRCccRhw5fTsHF_pRYF0ul3zMfdRg7VUbA7a5Wn1lV7qMA3z-O8i5imDtFrR7nci-8Y55crqxXBQb6vMvuo7_07sb5FqHT-mWM6ib5JKub5Er4z4t3G3y7Y0pkbo6olNzZtSHWSPnI_rWNGbZ0rGBs-zMBRjh3fwTRsVf0IMu4kh3LF9kRCdIv5mZ1ibhAX9L93AA6OTc3UOm70xjXRmVdUm3CvoSKU6GjuVcdenGWmoqaEG7-P7lq6tsY5vumkZ7hxztTg7HU79L9eArQCzMr1jKS1bkUVjxhPMskYAklQIsEqgsjrXmSSVlgkElAIhZWoJbLlHRNKq4lGUS3SVrtan1fULTikmVqjDSKo-LiMsqZIHmKtEpr3SoPPK8n2rx0Sl6CKfdzASOuhhG3SPPrCUMxWRzijw4nojj_T2xvZ0c8vevQ3HskfXeVETnAlqBypuohROFHnky_A2ThV9kZK1hVqAM5wAQc8Y9Qv9QhqNmHhzrYo_cc1Y4tIehf4bzoEeYtaW_9Eegysbw68G_VHpIrjr6RA779zpZWzRL_QhQ2aJ4bFfeD6lhL9w |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLbQdjFu-P_JNsBICG6aLXHiOOFu67p1bKvQ6Bh3luMkoloXo6SVBle8A6_Ak_EknBM3mYpASHATqakt-ef4-PPJ5-8Q8iIOdAAOUbmApuHh68RNQk-7sWaCs8LLhGVbjKLhWfjmA2_ZhHgXxupDdAE3XBmNv8YFjgHp7WvVUOjUZcPNwtAmeOFVWPM-srr2Tq8VpMC-bDb5ULiowtrqNnpse7n-0r60ikN89TvQuYxhm01o_zZJ2-Zb7snF1nyWbukvvyg7_lf_7pBbC4hKd6xN3SU38vIeWeu3meHuk-8nJkP2ao8OzaXRHyeVmvboW1OZeU37Bo6zExtjhHfTzxgYf01PF0FHutdQRnp0gAyciambPDzgcukBjgAdXNmryPSdqRpvRlWZ0Z2UHiLLydC-mupFxrGamgJaUM9-fP1mKzfhTXtTo35AzvYH4_7QXWR7cDWAFuYWLBIZS5PALwQXIuYKwKTWAEc8HYdhngteKMUxrgQYMY4y8MwZipoGhVAq48FDslKaMn9MaFQwpSPtB7lOwjQQqvCZlwvN80gUua8d8qqda_nJinpIK9_MJI667EbdIS8bU-iKqeoCqXCCy_PRgdzd5WPx_siX5w7ZbG1FLrxALVF8E-VwAt8hz7u_YbLwo4wqc5gVKCMEYMSECYfQP5QRKJsHJ7vQIY-sGXbtYeii4UjoENYY01_6I1Foo_u1_i-VnpG14fjkWB4fjo42yE3LpkhgO98kK7Nqnj8BkDZLnzbL8CehKTP9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQKwEb3o-UAkZCsJm0ifNwwq6dR6cURlVpaXeW4yTqqNO4Smakwop_4Bf4Mr6Ee-MkZRAICTaRJmNLflxfH98cn0vIy8hTHjhEaQOahoerYjv2HWVHivGA5U7KDdtiEo6P_LcnwclPt_iNPkQXcMOVUftrXOAXab55JRoKfTqvqVkY2QQnvOqHLEb1_MHBlYAUmJdJJu9zG0VYW9lGh20u11_allZxhC9_hzmXIWy9B41uE9m23lBPzjYW82RDff5F2PF_uneH3GoAKt0yFnWXXMuKe-RGv80Ld598e69T5K726Fifa3U6LeWsR_d1qRcV7Ws4zE5NhBHezT5hWPwNPWhCjnRQE0Z6dIj8m6mu6iw84HDpDg4AHV6ai8j0gy5rX0ZlkdKthO4ix0nTvpypJt9YRXUOLajm3798NZXr4Ka5p1E9IEej4WF_bDe5HmwFkIXZOQt5ypLYc3MecB4FEqCkUgBGHBX5fpbxIJcywKgSIMQoTMEvpyhp6uVcyjTwHpKVQhfZY0LDnEkVKtfLVOwnHpe5y5yMqyALeZ65yiKv26kWF0bSQxjxZiZw1EU36hZ5VVtCV0yWZ0iE44E4nuyI7e3gkH_cc8WxRdZbUxGND6gESm-iGI7nWuRF9zdMFn6SkUUGswJlOAeEGDNuEfqHMhxF8-Bc51vkkbHCrj0MHTQcCC3Calv6S38Eymx0v9b-pdJzcn1_MBLvdid7T8hNQ6WIYS9fJyvzcpE9BYQ2T57Vi_AH2rQyrA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modular%2C+Homochiral%2C+Porous+Coordination+Polymers%3A+Rational+Design%2C+Enantioselective+Guest+Exchange+Sorption+and+Ab+Initio+Calculations+of+Host%E2%80%93Guest+Interactions&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Dybtsev%2C+Danil%E2%80%85N.&rft.au=Yutkin%2C+Maxim%E2%80%85P.&rft.au=Samsonenko%2C+Denis%E2%80%85G.&rft.au=Fedin%2C+Vladimir%E2%80%85P.&rft.date=2010-09-10&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=16&rft.issue=34&rft.spage=10348&rft.epage=10356&rft_id=info:doi/10.1002%2Fchem.201000522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_201000522 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |