Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola

Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 (SpHMA3) gene responsi...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 215; no. 2; pp. 687 - 698
Main Authors Liu, Huan, Zhao, Haixia, Wu, Longhua, Liu, Anna, Zhao, Fang‐Jie, Xu, Wenzhong
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.07.2017
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)-mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii. Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd-specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3-RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn. These results indicate that elevated expression of the tonoplast-localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd-contaminated soils.
AbstractList Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)-mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii. Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd-specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3-RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn. These results indicate that elevated expression of the tonoplast-localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd-contaminated soils.
Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)-mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii. Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd-specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3-RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn. These results indicate that elevated expression of the tonoplast-localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd-contaminated soils.Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)-mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii. Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd-specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3-RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn. These results indicate that elevated expression of the tonoplast-localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd-contaminated soils.
Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 ( SpHMA3 ) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola . RNA interference (RNAi)‐mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii . Heterologous expression of Sp HMA 3 in Saccharomyces cerevisiae showed Cd‐specific transport activity. Sp HMA 3 was highly expressed in the shoots and the protein was localized to the tonoplast. The Sp HMA 3 ‐ RNA i lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing Sp HMA 3 in the nonhyperaccumulating ecotype of S .  alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn. These results indicate that elevated expression of the tonoplast‐localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S .  plumbizincicola in Cd‐contaminated soils.
Summary Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)‐mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii. Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd‐specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3‐RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn. These results indicate that elevated expression of the tonoplast‐localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd‐contaminated soils.
Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear.Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)‐mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii.Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd‐specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3‐RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn.These results indicate that elevated expression of the tonoplast‐localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd‐contaminated soils.
Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)-mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii. Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd-specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3-RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn. These results indicate that elevated expression of the tonoplast-localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd-contaminated soils.
Author Haixia Zhao
Huan Liu
Wenzhong Xu
Longhua Wu
Anna Liu
Fang-Jie Zhao
Author_xml – sequence: 1
  givenname: Huan
  surname: Liu
  fullname: Liu, Huan
  organization: Nanjing Agricultural University
– sequence: 2
  givenname: Haixia
  surname: Zhao
  fullname: Zhao, Haixia
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Longhua
  surname: Wu
  fullname: Wu, Longhua
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Anna
  surname: Liu
  fullname: Liu, Anna
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Fang‐Jie
  surname: Zhao
  fullname: Zhao, Fang‐Jie
  organization: Nanjing Agricultural University
– sequence: 6
  givenname: Wenzhong
  surname: Xu
  fullname: Xu, Wenzhong
  email: xuwzh@ibcas.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28574163$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rFDEUx4NU7LZ68A9QAl7aw3RfkvmRHJdiXaFqwQrehkwmYbNkkjGZUbZ_vanb7aGgvsuDl8_nwcv3BB354DVCrwlckFxLP24uSFlT-gwtchcFJ6w5QgsAyou6rL8fo5OUtgAgqpq-QMeUV01JarZA81rLnzs86Ek6vLq9kUljhs_Wn1bsHKvgjY4JK9kPdh7wZjfqOAWno_RK4-DxtNGH1-Wd9WqPSKXmYXZyChF_1X02RzcPnb0nrApOvkTPjXRJv3rop-jb1fvby3Vx_eXDx8vVdaEqELQQpill05sOStoLUIpq3jXKAK-rWhsGTR5Ko0gHjBsBTW061ZVClYRko2On6Gy_d4zhx6zT1A42Ke2c9DrMqaVAgXPKGf8vSgRUDRM1h4y-e4Juwxx9PqSlFWEVLUXDMvX2gZq7QfftGO0g4649_H0GzveAiiGlqM0jQqC9z7XNubZ_cs3s8gmr7CQnG_wUpXX_Mn5Zp3d_X91-vlkfjDd7Y5tycI-GACCE5bN_A-XdvKQ
CitedBy_id crossref_primary_10_1016_j_jhazmat_2022_129904
crossref_primary_10_3389_fgene_2019_00322
crossref_primary_10_1007_s42976_024_00492_9
crossref_primary_10_3390_plants9111485
crossref_primary_10_1186_s12870_019_1887_7
crossref_primary_10_1002_tpg2_70013
crossref_primary_10_1007_s11356_024_31928_8
crossref_primary_10_3390_ijms21228869
crossref_primary_10_1007_s11368_019_02470_9
crossref_primary_10_1016_j_ecoenv_2020_111616
crossref_primary_10_3389_fpls_2022_859386
crossref_primary_10_1007_s11104_018_3666_x
crossref_primary_10_1016_j_pld_2019_06_006
crossref_primary_10_1016_j_scitotenv_2023_164597
crossref_primary_10_3389_fpls_2020_568887
crossref_primary_10_1139_er_2018_0023
crossref_primary_10_1016_j_jhazmat_2024_136848
crossref_primary_10_3390_ijms222111704
crossref_primary_10_1094_PDIS_04_23_0816_PDN
crossref_primary_10_1111_ppl_13433
crossref_primary_10_1016_j_scitotenv_2021_151306
crossref_primary_10_3390_genes13122395
crossref_primary_10_1016_j_pld_2019_02_001
crossref_primary_10_3390_plants9020223
crossref_primary_10_1007_s11356_018_3227_0
crossref_primary_10_3390_biology9070177
crossref_primary_10_3390_agronomy13122874
crossref_primary_10_1016_j_scitotenv_2024_176462
crossref_primary_10_1007_s00299_018_2336_z
crossref_primary_10_1007_s13762_021_03396_x
crossref_primary_10_3390_su151612158
crossref_primary_10_1111_nph_17173
crossref_primary_10_1007_s11427_020_1683_x
crossref_primary_10_3390_plants9121698
crossref_primary_10_1021_acssuschemeng_9b05518
crossref_primary_10_1111_ppl_13447
crossref_primary_10_3389_fpls_2022_1068383
crossref_primary_10_1016_j_scitotenv_2019_134534
crossref_primary_10_1111_pce_14167
crossref_primary_10_1007_s13762_023_05316_7
crossref_primary_10_1155_2018_4864365
crossref_primary_10_1016_j_jare_2022_04_001
crossref_primary_10_1007_s12033_019_00202_5
crossref_primary_10_1111_pce_13471
crossref_primary_10_1016_j_chemosphere_2021_132302
crossref_primary_10_1016_j_envexpbot_2023_105296
crossref_primary_10_1016_j_ecoenv_2022_114065
crossref_primary_10_1016_j_envpol_2020_114585
crossref_primary_10_1016_j_ecoenv_2024_117588
crossref_primary_10_1016_j_chemosphere_2024_143464
crossref_primary_10_3390_ijms22031297
crossref_primary_10_1016_j_envexpbot_2020_104121
crossref_primary_10_1080_07352689_2020_1792179
crossref_primary_10_3390_cells11030569
crossref_primary_10_1111_pbi_14379
crossref_primary_10_1016_j_scitotenv_2024_171024
crossref_primary_10_3390_su16198464
crossref_primary_10_1007_s42729_023_01525_8
crossref_primary_10_1016_j_plaphy_2024_109182
crossref_primary_10_1039_C8MT00247A
crossref_primary_10_1007_s00425_024_04393_3
crossref_primary_10_1021_acsagscitech_4c00006
crossref_primary_10_1016_j_envres_2023_118054
crossref_primary_10_1080_15320383_2023_2283121
crossref_primary_10_3389_fpls_2020_00142
crossref_primary_10_1016_j_chemosphere_2018_08_072
crossref_primary_10_15252_embj_2020105086
crossref_primary_10_3390_ijms20061479
crossref_primary_10_1016_j_jhazmat_2023_131933
crossref_primary_10_1016_j_jhazmat_2022_130206
crossref_primary_10_1016_j_jhazmat_2024_135936
crossref_primary_10_1094_PDIS_08_20_1849_PDN
crossref_primary_10_3390_ijms22147418
crossref_primary_10_3390_cells13110907
crossref_primary_10_1111_nph_18762
crossref_primary_10_3390_antiox11030456
crossref_primary_10_1016_j_envpol_2021_116837
crossref_primary_10_1016_j_eti_2021_101725
crossref_primary_10_1071_CP21467
crossref_primary_10_1016_j_psep_2024_12_013
crossref_primary_10_1016_j_ecoenv_2018_09_122
crossref_primary_10_1039_d0mt00043d
crossref_primary_10_1080_15226514_2021_1874290
crossref_primary_10_1111_pce_13456
crossref_primary_10_3389_fpls_2022_953717
crossref_primary_10_1021_acs_est_2c08220
crossref_primary_10_3390_toxics12050374
crossref_primary_10_1016_j_jhazmat_2023_130970
crossref_primary_10_1021_acs_jafc_1c08021
crossref_primary_10_1007_s13205_021_02865_x
crossref_primary_10_1016_j_envpol_2023_121546
crossref_primary_10_1007_s11816_024_00900_w
crossref_primary_10_1016_j_chemosphere_2021_132369
crossref_primary_10_1016_j_ecoenv_2021_113057
crossref_primary_10_1007_s11104_023_06360_5
crossref_primary_10_3390_ijms25158478
crossref_primary_10_1016_j_cj_2021_02_001
crossref_primary_10_1093_pcp_pcy226
crossref_primary_10_1007_s42398_020_00106_0
crossref_primary_10_1016_j_scitotenv_2024_172695
crossref_primary_10_1016_j_plaphy_2023_02_003
crossref_primary_10_1038_s41598_022_24561_3
crossref_primary_10_3390_ijms241411845
crossref_primary_10_1016_j_envpol_2022_120410
crossref_primary_10_3389_fpls_2018_00375
crossref_primary_10_1016_j_envpol_2024_124178
crossref_primary_10_3390_genes14101877
crossref_primary_10_3390_plants11020215
crossref_primary_10_1016_j_jhazmat_2024_135953
crossref_primary_10_3390_plants14050790
crossref_primary_10_1111_pce_13541
crossref_primary_10_3389_fpls_2022_845108
crossref_primary_10_1016_j_inoche_2019_107559
crossref_primary_10_1007_s11356_020_11454_z
crossref_primary_10_1007_s11356_021_16805_y
crossref_primary_10_1007_s11120_020_00768_1
crossref_primary_10_1007_s00425_023_04170_8
crossref_primary_10_1016_j_scienta_2024_113227
crossref_primary_10_1021_acs_jafc_0c04579
crossref_primary_10_1016_j_envpol_2022_119390
crossref_primary_10_1111_nph_16960
crossref_primary_10_3389_fpls_2020_00909
crossref_primary_10_1016_j_ecoenv_2023_114882
crossref_primary_10_3390_toxics10080411
crossref_primary_10_1016_j_envexpbot_2018_10_008
crossref_primary_10_1016_j_pbi_2018_02_008
crossref_primary_10_3390_plants11091273
crossref_primary_10_1007_s00425_020_03539_3
crossref_primary_10_1111_pce_13821
crossref_primary_10_1016_j_ecoenv_2021_112623
crossref_primary_10_1016_j_jenvman_2024_123192
crossref_primary_10_1016_j_jhazmat_2024_135703
crossref_primary_10_1007_s11270_024_07330_y
crossref_primary_10_1007_s00299_024_03387_5
crossref_primary_10_3390_ijms252010952
crossref_primary_10_1016_j_jhazmat_2023_131008
crossref_primary_10_3390_ijms20133117
crossref_primary_10_1007_s11103_019_00821_1
crossref_primary_10_1007_s11104_021_05123_4
crossref_primary_10_1111_pce_15296
crossref_primary_10_1016_j_plaphy_2024_108968
crossref_primary_10_1093_jxb_erz310
crossref_primary_10_3390_ijms24054378
crossref_primary_10_1016_j_plaphy_2024_108846
crossref_primary_10_1007_s10725_022_00917_7
crossref_primary_10_1016_j_jhazmat_2024_135827
crossref_primary_10_1111_jipb_13440
crossref_primary_10_15407_frg2022_04_279
crossref_primary_10_1007_s11240_019_01626_2
crossref_primary_10_1093_pcp_pcy006
crossref_primary_10_12677_AAC_2023_132022
crossref_primary_10_1016_j_seppur_2020_118121
crossref_primary_10_1016_j_jhazmat_2020_122411
crossref_primary_10_3390_ijms21010180
crossref_primary_10_3390_plants10071342
crossref_primary_10_3390_ijms22094300
crossref_primary_10_1111_ppl_14226
crossref_primary_10_1002_agj2_20614
crossref_primary_10_3390_plants12091848
crossref_primary_10_1016_j_ecoenv_2021_113149
crossref_primary_10_48130_cas_0024_0018
crossref_primary_10_3390_ijms242015052
crossref_primary_10_1016_j_envexpbot_2023_105343
crossref_primary_10_3389_fmicb_2017_02538
crossref_primary_10_3389_fpls_2024_1382121
crossref_primary_10_3390_ijms23169335
crossref_primary_10_3390_plants13020297
crossref_primary_10_1007_s00425_024_04388_0
crossref_primary_10_1016_j_bbamem_2019_183127
crossref_primary_10_1016_j_ecoenv_2022_113390
crossref_primary_10_1016_j_jenvman_2021_113081
crossref_primary_10_1371_journal_pone_0302940
crossref_primary_10_1016_j_jhazmat_2022_128324
crossref_primary_10_1093_pcp_pcac035
crossref_primary_10_1094_PDIS_07_19_1521_PDN
crossref_primary_10_1186_s12870_024_05201_6
crossref_primary_10_1016_j_eti_2020_100774
crossref_primary_10_1016_j_ecoenv_2020_111847
crossref_primary_10_7717_peerj_6741
crossref_primary_10_1016_j_envres_2022_113918
crossref_primary_10_3390_ijms252011026
crossref_primary_10_1016_j_ecoenv_2020_110520
crossref_primary_10_3390_ijms24043544
crossref_primary_10_1016_j_envexpbot_2020_104207
crossref_primary_10_3389_fpls_2024_1389207
crossref_primary_10_2298_BOTSERB2302309M
crossref_primary_10_3390_biology10060544
crossref_primary_10_1016_j_jhazmat_2024_134516
crossref_primary_10_1016_j_jhazmat_2024_134517
Cites_doi 10.1016/0375-6742(77)90074-7
10.1038/nature06877
10.1016/0304-4157(95)00017-8
10.1111/j.1365-3040.2010.02236.x
10.1021/es4012096
10.1371/journal.pgen.1002923
10.1046/j.1469-8137.2000.00560.x
10.1023/A:1022580325301
10.1023/B:PLSO.0000020956.24027.f2
10.1111/j.1469-8137.2010.03459.x
10.1016/S1360-1385(02)02295-1
10.1016/S1369-5266(99)80042-9
10.1007/s10534-013-9659-6
10.1046/j.1469-8137.2002.00432.x
10.1111/j.1469-8137.2008.02748.x
10.1007/s00606-012-0738-x
10.1046/j.1469-8137.2003.00820.x
10.1007/s00128-014-1284-8
10.1146/annurev-arplant-042809-112156
10.3389/fpls.2016.00303
10.1093/jxb/eru340
10.1016/S0958-1669(03)00060-0
10.1111/pce.12706
10.1111/j.1365-313X.2008.03754.x
10.1111/j.1365-313X.2011.04548.x
10.1111/pce.12747
10.1038/35030305
10.1021/es5047099
10.1046/j.1365-313x.2000.00768.x
10.1111/j.1742-4658.2010.07913.x
10.1007/s00425-015-2429-7
10.1111/j.1469-8137.2009.02969.x
10.1016/j.tplants.2005.08.008
10.1104/pp.123.3.825
10.1016/j.plantsci.2010.08.016
10.1016/j.tplants.2012.08.003
10.1111/j.1365-313X.2004.02143.x
10.1073/pnas.1005396107
10.1046/j.1365-313X.2003.01959.x
10.1016/S0014-5793(04)00072-9
10.1128/jb.153.1.163-168.1983
10.1104/pp.108.130294
ContentType Journal Article
Copyright 2017 New Phytologist Trust
2017 The Authors. New Phytologist © 2017 New Phytologist Trust
2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Copyright © 2017 New Phytologist Trust
Copyright_xml – notice: 2017 New Phytologist Trust
– notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust
– notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
– notice: Copyright © 2017 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.14622
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 698
ExternalDocumentID 28574163
10_1111_nph_14622
NPH14622
90011380
Genre article
Journal Article
GrantInformation_xml – fundername: Knowledge Innovation Programs of the Chinese Academy of Sciences
  funderid: KSCX2‐YW‐G053
– fundername: National Natural Science Foundation of China
  funderid: 41325003; 91117010
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5092-9f74a7dfb042d90cc2e8b7cf08656ef30790cafc1b038f9076fbcb49c41142db3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:30:28 EDT 2025
Fri Jul 11 04:20:06 EDT 2025
Sun Jul 13 03:18:57 EDT 2025
Wed Feb 19 02:40:24 EST 2025
Tue Jul 01 03:09:26 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Wed Jan 22 16:55:31 EST 2025
Thu Jul 03 22:32:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords transgenic plants
Sedum plubizincicola
hyperaccumulator
vacuole
transporter
heavy metal ATPase 3 (HMA3)
tolerance
cadmium (Cd)
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5092-9f74a7dfb042d90cc2e8b7cf08656ef30790cafc1b038f9076fbcb49c41142db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.14622
PMID 28574163
PQID 2513524973
PQPubID 2026848
PageCount 12
ParticipantIDs proquest_miscellaneous_2020882838
proquest_miscellaneous_1905739680
proquest_journals_2513524973
pubmed_primary_28574163
crossref_primary_10_1111_nph_14622
crossref_citationtrail_10_1111_nph_14622
wiley_primary_10_1111_nph_14622_NPH14622
jstor_primary_90011380
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2017
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2017
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 2004; 561
2013; 26
2013; 47
1983; 153
2010; 107
2009; 181
2006; 38
2002; 155
2002; 7
1998
2003; 14
2016; 243
2011; 34
1999; 2
2003; 159
2016; 39
1995; 5
2010; 61
2014; 65
2000; 407
2013; 18
2009; 57
2016; 7
2004; 259
2015; 49
2003; 249
2004; 39
2004; 37
2010; 277
1996; 1286
2013; 299
2011; 66
2006; 142
2005; 10
2009; 184
2011; 180
2000; 123
2000; 145
2008; 453
2014; 93
1977; 7
2011; 189
2012; 8
2009; 149
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Gietz RD (e_1_2_7_16_1) 1995; 5
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_40_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
Adams A (e_1_2_7_2_1) 1998
e_1_2_7_26_1
e_1_2_7_27_1
Wu LH (e_1_2_7_42_1) 2006; 38
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 407
  start-page: 319
  year: 2000
  end-page: 320
  article-title: Total silencing by intron‐spliced hairpin RNAs
  publication-title: Nature
– volume: 39
  start-page: 1112
  year: 2016
  end-page: 1126
  article-title: Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants
  publication-title: Plant, Cell & Environment
– volume: 57
  start-page: 1116
  year: 2009
  end-page: 1127
  article-title: MTP1‐dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn‐hyperaccumulating plants
  publication-title: Plant Journal
– volume: 180
  start-page: 169
  year: 2011
  end-page: 181
  article-title: Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?
  publication-title: Plant Science
– volume: 1286
  start-page: 1
  year: 1996
  end-page: 51
  article-title: Structural organization, ion transport, and energy transduction of P‐type ATPases
  publication-title: Biochimica et Biophysica Acta – Reviews on Biomembranes
– volume: 123
  start-page: 825
  year: 2000
  end-page: 832
  article-title: Phytochelatins and their roles in heavy metal detoxification
  publication-title: Plant Physiology
– volume: 2
  start-page: 244
  year: 1999
  end-page: 249
  article-title: Zeroing in on zinc uptake in yeast and plants
  publication-title: Current Opinion in Plant Biology
– volume: 7
  start-page: 303
  year: 2016
  article-title: Potential biotechnological strategies for the cleanup of heavy metals and metalloids
  publication-title: Frontiers in Plant Science
– volume: 5
  start-page: 255
  year: 1995
  end-page: 269
  article-title: Transforming yeast with DNA
  publication-title: Methods in Molecular and Cellular Biology
– volume: 249
  start-page: 9
  year: 2003
  end-page: 18
  article-title: Genetic basis of Cd tolerance and hyperaccumulation in
  publication-title: Plant and Soil
– volume: 107
  start-page: 16500
  year: 2010
  end-page: 16505
  article-title: Gene limiting cadmium accumulation in rice
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 561
  start-page: 22
  year: 2004
  end-page: 28
  article-title: AtHMA3, a plant P1B‐ATPase, functions as a Cd/Pb transporter in yeast
  publication-title: FEBS Letters
– volume: 34
  start-page: 208
  year: 2011
  end-page: 219
  article-title: Cadmium uptake and sequestration kinetics in individual leaf cell protoplasts of the Cd/Zn hyperaccumulator
  publication-title: Plant, Cell & Environment
– volume: 39
  start-page: 425
  year: 2004
  end-page: 439
  article-title: Two genes encoding MTP1 metal transport proteins co‐segregate with zinc tolerance and account for high transcript levels
  publication-title: Plant Journal
– volume: 181
  start-page: 759
  year: 2009
  end-page: 776
  article-title: Molecular mechanisms of metal hyperaccumulation in plants
  publication-title: New Phytologist
– volume: 184
  start-page: 323
  year: 2009
  end-page: 329
  article-title: Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in
  publication-title: New Phytologist
– volume: 39
  start-page: 1941
  year: 2016
  end-page: 1954
  article-title: A loss‐of‐function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars
  publication-title: Plant, Cell & Environment
– volume: 155
  start-page: 47
  year: 2002
  end-page: 57
  article-title: Do from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations?
  publication-title: New Phytologist
– volume: 14
  start-page: 277
  year: 2003
  end-page: 282
  article-title: Phytoextraction of metals and metalloids from contaminated soils
  publication-title: Current Opinion in Biotechnology
– year: 1998
– volume: 277
  start-page: 5086
  year: 2010
  end-page: 5096
  article-title: Cadmium – glutathione solution structures provide new insights into heavy metal detoxification
  publication-title: FEBS Journal
– volume: 47
  start-page: 9355
  year: 2013
  end-page: 9362
  article-title: Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach
  publication-title: Environmental Science & Technology
– volume: 66
  start-page: 852
  year: 2011
  end-page: 862
  article-title: Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd‐hyperaccumulating ecotype of
  publication-title: Plant Journal
– volume: 10
  start-page: 491
  year: 2005
  end-page: 502
  article-title: P‐1B‐ATPases – an ancient family of transition metal pumps with diverse functions in plants
  publication-title: Trends in Plant Sciences
– volume: 7
  start-page: 49
  year: 1977
  end-page: 57
  article-title: Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants
  publication-title: Journal of Geochemical Exploration
– volume: 153
  start-page: 163
  year: 1983
  end-page: 168
  article-title: Transformation of intact yeast cells treated with alkali cations
  publication-title: Journal of Bacteriology
– volume: 65
  start-page: 6013
  year: 2014
  end-page: 6021
  article-title: Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice
  publication-title: Journal of Experimental Botany
– volume: 259
  start-page: 181
  year: 2004
  end-page: 189
  article-title: Cadmium tolerance and hyperaccumulation in a new Zn‐hyperaccumulating plant species ( Hance)
  publication-title: Plant and Soil
– volume: 26
  start-page: 633
  year: 2013
  end-page: 638
  article-title: Tolerance to cadmium in plants: the special case of hyperaccumulators
  publication-title: BioMetals
– volume: 93
  start-page: 171
  year: 2014
  end-page: 176
  article-title: Accumulation and distribution characteristics of zinc and cadmium in the hyperaccumulator plant
  publication-title: Bulletin of Environmental Contamination and Toxicology
– volume: 149
  start-page: 894
  year: 2009
  end-page: 904
  article-title: AtHMA3, a P ‐ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis
  publication-title: Plant Physiology
– volume: 299
  start-page: 487
  year: 2013
  end-page: 498
  article-title: X.H. Guo et S.B. Zhou ex L.H. Wu (Crassulaceae): a new species from Zhejiang Province, China
  publication-title: Plant Systematics and Evolution
– volume: 38
  start-page: 632
  year: 2006
  end-page: 633
  article-title: , a new species of the Crassulaceae from Zhejiang, China
  publication-title: Soils
– volume: 61
  start-page: 517
  year: 2010
  end-page: 534
  article-title: Metal hyperaccumulation in plants
  publication-title: Annual Review of Plant Biology
– volume: 7
  start-page: 309
  year: 2002
  end-page: 315
  article-title: A long way ahead: understanding and engineering plant metal accumulation
  publication-title: Trends in Plant Sciences
– volume: 145
  start-page: 11
  year: 2000
  end-page: 20
  article-title: Cadmium accumulation in populations of and
  publication-title: New Phytologist
– volume: 8
  start-page: e1002923
  year: 2012
  article-title: Genome‐wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in
  publication-title: PLoS Genetics
– volume: 453
  start-page: 391
  year: 2008
  end-page: 395
  article-title: Evolution of metal hyperaccumulation required cis‐regulatory changes and triplication of HMA4
  publication-title: Nature
– volume: 243
  start-page: 577
  year: 2016
  end-page: 589
  article-title: Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Hance
  publication-title: Planta
– volume: 189
  start-page: 190
  year: 2011
  end-page: 199
  article-title: OsHMA3, a P1B‐type of ATPase affects root‐to‐shoot cadmium translocation in rice by mediating efflux into vacuoles
  publication-title: New Phytologist
– volume: 142
  start-page: 148
  year: 2006
  end-page: 167
  article-title: Zinc‐dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator
  publication-title: Plant Physiology
– volume: 159
  start-page: 351
  year: 2003
  end-page: 360
  article-title: , an attractive model species to study heavy metal hyperaccumulation in plants
  publication-title: New Phytologist
– volume: 49
  start-page: 750
  year: 2015
  end-page: 759
  article-title: Soil contamination in China: current status and mitigation strategies
  publication-title: Environmental Science & Technology
– volume: 37
  start-page: 251
  year: 2004
  end-page: 268
  article-title: Cross‐species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator
  publication-title: Plant Journal
– volume: 18
  start-page: 92
  year: 2013
  end-page: 99
  article-title: Plant science: the key to preventing slow cadmium poisoning
  publication-title: Trends in Plant Science
– ident: e_1_2_7_7_1
  doi: 10.1016/0375-6742(77)90074-7
– ident: e_1_2_7_21_1
  doi: 10.1038/nature06877
– ident: e_1_2_7_28_1
  doi: 10.1016/0304-4157(95)00017-8
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1365-3040.2010.02236.x
– ident: e_1_2_7_10_1
  doi: 10.1021/es4012096
– ident: e_1_2_7_9_1
  doi: 10.1371/journal.pgen.1002923
– ident: e_1_2_7_25_1
  doi: 10.1046/j.1469-8137.2000.00560.x
– ident: e_1_2_7_6_1
  doi: 10.1023/A:1022580325301
– ident: e_1_2_7_44_1
  doi: 10.1023/B:PLSO.0000020956.24027.f2
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1469-8137.2010.03459.x
– ident: e_1_2_7_12_1
  doi: 10.1016/S1360-1385(02)02295-1
– ident: e_1_2_7_18_1
  doi: 10.1016/S1369-5266(99)80042-9
– ident: e_1_2_7_39_1
  doi: 10.1007/s10534-013-9659-6
– ident: e_1_2_7_5_1
  doi: 10.1046/j.1469-8137.2002.00432.x
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1469-8137.2008.02748.x
– ident: e_1_2_7_41_1
  doi: 10.1007/s00606-012-0738-x
– ident: e_1_2_7_3_1
  doi: 10.1046/j.1469-8137.2003.00820.x
– ident: e_1_2_7_8_1
  doi: 10.1007/s00128-014-1284-8
– ident: e_1_2_7_23_1
  doi: 10.1146/annurev-arplant-042809-112156
– ident: e_1_2_7_30_1
  doi: 10.3389/fpls.2016.00303
– volume: 38
  start-page: 632
  year: 2006
  ident: e_1_2_7_42_1
  article-title: Sedum plumbizincicola, a new species of the Crassulaceae from Zhejiang, China
  publication-title: Soils
– ident: e_1_2_7_32_1
  doi: 10.1093/jxb/eru340
– ident: e_1_2_7_26_1
  doi: 10.1016/S0958-1669(03)00060-0
– ident: e_1_2_7_33_1
  doi: 10.1111/pce.12706
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1365-313X.2008.03754.x
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1365-313X.2011.04548.x
– ident: e_1_2_7_43_1
  doi: 10.1111/pce.12747
– ident: e_1_2_7_34_1
  doi: 10.1038/35030305
– ident: e_1_2_7_46_1
  doi: 10.1021/es5047099
– ident: e_1_2_7_35_1
  doi: 10.1046/j.1365-313x.2000.00768.x
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1742-4658.2010.07913.x
– ident: e_1_2_7_45_1
  doi: 10.1007/s00425-015-2429-7
– volume: 5
  start-page: 255
  year: 1995
  ident: e_1_2_7_16_1
  article-title: Transforming yeast with DNA
  publication-title: Methods in Molecular and Cellular Biology
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1469-8137.2009.02969.x
– ident: e_1_2_7_40_1
  doi: 10.1016/j.tplants.2005.08.008
– ident: e_1_2_7_13_1
  doi: 10.1104/pp.123.3.825
– ident: e_1_2_7_31_1
  doi: 10.1016/j.plantsci.2010.08.016
– ident: e_1_2_7_11_1
  doi: 10.1016/j.tplants.2012.08.003
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1365-313X.2004.02143.x
– volume-title: Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual
  year: 1998
  ident: e_1_2_7_2_1
– ident: e_1_2_7_37_1
  doi: 10.1073/pnas.1005396107
– ident: e_1_2_7_4_1
  doi: 10.1046/j.1365-313X.2003.01959.x
– ident: e_1_2_7_17_1
  doi: 10.1016/S0014-5793(04)00072-9
– ident: e_1_2_7_22_1
  doi: 10.1128/jb.153.1.163-168.1983
– ident: e_1_2_7_29_1
  doi: 10.1104/pp.108.130294
SSID ssj0009562
Score 2.6205237
Snippet Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The...
Summary Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 687
SubjectTerms Adenosine triphosphatase
Adenosine Triphosphatases - genetics
Adenosine Triphosphatases - metabolism
adenosinetriphosphatase
Cadmium
cadmium (Cd)
Cadmium - pharmacokinetics
Cadmium - toxicity
Cloning, Molecular
Detoxification
Drug Resistance - drug effects
Drug Resistance - genetics
Ecotype
Ecotypes
Gene expression
Gene Expression Regulation, Plant
gene overexpression
genes
heavy metal ATPase 3 (HMA3)
Heavy metals
heterologous gene expression
hyperaccumulator
hyperaccumulators
Leaves
Metals, Heavy - pharmacokinetics
Metals, Heavy - toxicity
Physiological functions
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Shoots - drug effects
Plant Shoots - genetics
Plant Shoots - metabolism
Plant species
Plants, Genetically Modified
Rare species
RNA Interference
RNA-mediated interference
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Sedum - drug effects
Sedum - genetics
Sedum - metabolism
Sedum plubizincicola
Sedum plumbizincicola
Shoots
Soil
Soil contamination
Soil pollution
Tissue Distribution
tissues
tolerance
tonoplast
Toxicity
transgenic plants
transporter
vacuole
Zinc
Zinc - pharmacokinetics
Zinc - toxicity
Title Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola
URI https://www.jstor.org/stable/90011380
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14622
https://www.ncbi.nlm.nih.gov/pubmed/28574163
https://www.proquest.com/docview/2513524973
https://www.proquest.com/docview/1905739680
https://www.proquest.com/docview/2020882838
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYh9NBL32ndpkEtPaQHp17JlmV6SkqCKSSENoE9FIwkS2RpbC-7diH59Z2RHyQhgdKLMdbY6DGPb-TRDCGfVCkj5fgsTGaOh7GAi5bGhZFzapYlSnKH-x3HJyI_j7_Pk_kG-TqehenzQ0wbbigZXl-jgCu9viHk9fICxZyh_sVYLQREP9iNhLuCjRmYRSzmQ1YhjOKZ3rxli_pwxPuA5m3c6g3P0VPya-xyH2_ye69r9Z65vpPN8T_H9Iw8GQAp3e856DnZsPUL8uigAdB49ZJ0uVV_rmhlW6Q5OwWbRzndzY_3-Wdq_GnBNTWqrBZdRS_Ap121zaXFYh2WNjUFdDm2frle1KYnUcZ0FZYNa1b0J5i6ii5BReoFUiBjqlfk_Ojw7FseDpUaQgOAg4WZS2OVlk6DCiizyBhmpU6NA38pEdaBHoGHypmZjrh04I8Lp42OMxPjUd5S8y2yWTe1fUOoKDmYSxnLiJWxtUKpBN0akSjGlLFlQHbHNSvMkMYcq2lcFqM7A5NY-EkMyMeJdNnn7riPaMsv_ESRIUrmMgrI9sgJxSDX6wLQICDWOEt5QD5MzSCR-JtF1bbp1gVArCTlmcBPPETDsDYqOLtcBuR1z2VTB5hMPEyGkXpeebjvxclp7m_e_jvpO_KYITLxEcfbZLNddfY94KpW73gB-guVuh1s
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgkQv_JcuFDAIpHJIydqJNzlwKJQqpd1VBVtpb8FxbHVFN1ntbkDbZ-JVeCdm8qcWtRKXHrhEUTyynHjG833OeAbgtUoDV1nRdfyuFY4n8ZIE2jqutaob-ioQlvY7-gMZHXufR_5oBX41Z2Gq_BDthhtZRrlek4HThvQ5K8-mJ2TnnNchlQdm-RMJ2_z9_i7O7hvO9z4NP0ZOXVPA0egauRPanqd6qU1QWdPQ1ZqbIOlpi8jel8aixuNDZXU3cUVgkTlKm-jEC7VHh07TRGC_N-AmVRCnTP27X_i5FL-SNzmfpSdHdR4jihtqh3rB-1UBkJdB24tIuXR1e3fhd_ORqgiX79vFItnWZ3_lj_xfvuI9uFNjbrZTGcl9WDHZA7j1IUdcvHwIRWTUjyWbmAXJDI_QrTPBtqL-jnjLdHkgcs60SifjYsJOkLbPFvmpoXokhuUZQwDdtL47G2e6ElFaFxOqjJbP2Ff05hM2RS-QjEmCbE89guNreeV1WM3yzGwAk6lARBB4gctTzxiplE_MTfqKc6VN2oGtRkliXWdqp4Ihp3HD2HDS4nLSOvCqFZ1W6UkuE1ovNa2VCIkIiMDtwGajenG9dM1jBLwIyr2wJzrwsm3GRYf-JKnM5MU8RhTp90QoqYurZDiVf0U-L4IOPK7Uuh0AD_ySCeCblsp59djjwVFU3jz5d9EXcDsa9g_jw_3BwVNY4wTEygDrTVhdzArzDGHkInleWi-Db9et6H8AibJ8WQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAX_guBAgaB1B5SsnbiJAcOhWWVUrpaQSvtLTiOra5oktVuAtq-Eq_CQzHOn1rUSlx64BJF8chy4hnP9znjGYDXIg0codnA9gaa2S7HSxJIbTtai0HoiYBps99xMObRkftp6k3X4Fd3FqbJD9FvuBnLqNdrY-DzVJ8x8nx-bMyc0jaicl-tfiJfW77bG-LkvqF09PHwQ2S3JQVsiZ6R2qH2XeGnOkFdTUNHSqqCxJcagb3HlUaFx4dCy0HisEAjceQ6kYkbStecOU0Thv1eg-sud0JTJ2L4hZ7J8Mtpl_KZu3zapjEyYUP9UM85vyb-8SJkex4o155udAd-d9-oCXD5vlOVyY48_St95H_yEe_C7RZxk93GRO7Bmsrvw433BaLi1QOoIiV-rEimSiNzOEGnThjZig522TaR9XHIJZEizWZVRo6RtC_K4kSZaiSKFDlB-Ny1vj2d5bIREVJWmamLVizIV_TlGZmjD0hmRsJYnngIR1fyyhuwnhe5egyEpwzxQOAGDk1dpbgQnuFt3BOUCqlSC7Y6HYllm6fdlAs5iTu-hpMW15NmwatedN4kJ7lIaKNWtF4iNDSABY4Fm53mxe3CtYwR7iIkd0OfWfCyb8Ylx_xHErkqqmWMGNLzWchNF5fJUFP8Fdk8Cyx41Gh1PwAaeDUPwDetdfPyscfjSVTfPPl30RdwczIcxZ_3xvtP4RY1KKyOrt6E9XJRqWeIIcvkeW27BL5dtZ7_AYdMewg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heavy+metal+ATPase+3+%28HMA3%29+confers+cadmium+hypertolerance+on+the+cadmium%2Fzinc+hyperaccumulator+Sedum+plumbizincicola&rft.jtitle=The+New+phytologist&rft.au=Liu%2C+Huan&rft.au=Zhao%2C+Haixia&rft.au=Wu%2C+Longhua&rft.au=Liu%2C+Anna&rft.date=2017-07-01&rft.issn=0028-646X&rft.volume=215&rft.issue=2+p.687-698&rft.spage=687&rft.epage=698&rft_id=info:doi/10.1111%2Fnph.14622&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon