Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola
Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 (SpHMA3) gene responsi...
Saved in:
Published in | The New phytologist Vol. 215; no. 2; pp. 687 - 698 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
New Phytologist Trust
01.07.2017
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear.
Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)-mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii.
Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd-specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3-RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn.
These results indicate that elevated expression of the tonoplast-localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd-contaminated soils. |
---|---|
AbstractList | Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear.
Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)-mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii.
Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd-specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3-RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn.
These results indicate that elevated expression of the tonoplast-localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd-contaminated soils. Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)-mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii. Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd-specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3-RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn. These results indicate that elevated expression of the tonoplast-localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd-contaminated soils.Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)-mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii. Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd-specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3-RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn. These results indicate that elevated expression of the tonoplast-localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd-contaminated soils. Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 ( SpHMA3 ) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola . RNA interference (RNAi)‐mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii . Heterologous expression of Sp HMA 3 in Saccharomyces cerevisiae showed Cd‐specific transport activity. Sp HMA 3 was highly expressed in the shoots and the protein was localized to the tonoplast. The Sp HMA 3 ‐ RNA i lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing Sp HMA 3 in the nonhyperaccumulating ecotype of S . alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn. These results indicate that elevated expression of the tonoplast‐localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S . plumbizincicola in Cd‐contaminated soils. Summary Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)‐mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii. Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd‐specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3‐RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn. These results indicate that elevated expression of the tonoplast‐localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd‐contaminated soils. Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear.Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)‐mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii.Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd‐specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3‐RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn.These results indicate that elevated expression of the tonoplast‐localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd‐contaminated soils. Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)-mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii. Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd-specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3-RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn. These results indicate that elevated expression of the tonoplast-localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd-contaminated soils. |
Author | Haixia Zhao Huan Liu Wenzhong Xu Longhua Wu Anna Liu Fang-Jie Zhao |
Author_xml | – sequence: 1 givenname: Huan surname: Liu fullname: Liu, Huan organization: Nanjing Agricultural University – sequence: 2 givenname: Haixia surname: Zhao fullname: Zhao, Haixia organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Longhua surname: Wu fullname: Wu, Longhua organization: Chinese Academy of Sciences – sequence: 4 givenname: Anna surname: Liu fullname: Liu, Anna organization: Chinese Academy of Sciences – sequence: 5 givenname: Fang‐Jie surname: Zhao fullname: Zhao, Fang‐Jie organization: Nanjing Agricultural University – sequence: 6 givenname: Wenzhong surname: Xu fullname: Xu, Wenzhong email: xuwzh@ibcas.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28574163$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9rFDEUx4NU7LZ68A9QAl7aw3RfkvmRHJdiXaFqwQrehkwmYbNkkjGZUbZ_vanb7aGgvsuDl8_nwcv3BB354DVCrwlckFxLP24uSFlT-gwtchcFJ6w5QgsAyou6rL8fo5OUtgAgqpq-QMeUV01JarZA81rLnzs86Ek6vLq9kUljhs_Wn1bsHKvgjY4JK9kPdh7wZjfqOAWno_RK4-DxtNGH1-Wd9WqPSKXmYXZyChF_1X02RzcPnb0nrApOvkTPjXRJv3rop-jb1fvby3Vx_eXDx8vVdaEqELQQpill05sOStoLUIpq3jXKAK-rWhsGTR5Ko0gHjBsBTW061ZVClYRko2On6Gy_d4zhx6zT1A42Ke2c9DrMqaVAgXPKGf8vSgRUDRM1h4y-e4Juwxx9PqSlFWEVLUXDMvX2gZq7QfftGO0g4649_H0GzveAiiGlqM0jQqC9z7XNubZ_cs3s8gmr7CQnG_wUpXX_Mn5Zp3d_X91-vlkfjDd7Y5tycI-GACCE5bN_A-XdvKQ |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2022_129904 crossref_primary_10_3389_fgene_2019_00322 crossref_primary_10_1007_s42976_024_00492_9 crossref_primary_10_3390_plants9111485 crossref_primary_10_1186_s12870_019_1887_7 crossref_primary_10_1002_tpg2_70013 crossref_primary_10_1007_s11356_024_31928_8 crossref_primary_10_3390_ijms21228869 crossref_primary_10_1007_s11368_019_02470_9 crossref_primary_10_1016_j_ecoenv_2020_111616 crossref_primary_10_3389_fpls_2022_859386 crossref_primary_10_1007_s11104_018_3666_x crossref_primary_10_1016_j_pld_2019_06_006 crossref_primary_10_1016_j_scitotenv_2023_164597 crossref_primary_10_3389_fpls_2020_568887 crossref_primary_10_1139_er_2018_0023 crossref_primary_10_1016_j_jhazmat_2024_136848 crossref_primary_10_3390_ijms222111704 crossref_primary_10_1094_PDIS_04_23_0816_PDN crossref_primary_10_1111_ppl_13433 crossref_primary_10_1016_j_scitotenv_2021_151306 crossref_primary_10_3390_genes13122395 crossref_primary_10_1016_j_pld_2019_02_001 crossref_primary_10_3390_plants9020223 crossref_primary_10_1007_s11356_018_3227_0 crossref_primary_10_3390_biology9070177 crossref_primary_10_3390_agronomy13122874 crossref_primary_10_1016_j_scitotenv_2024_176462 crossref_primary_10_1007_s00299_018_2336_z crossref_primary_10_1007_s13762_021_03396_x crossref_primary_10_3390_su151612158 crossref_primary_10_1111_nph_17173 crossref_primary_10_1007_s11427_020_1683_x crossref_primary_10_3390_plants9121698 crossref_primary_10_1021_acssuschemeng_9b05518 crossref_primary_10_1111_ppl_13447 crossref_primary_10_3389_fpls_2022_1068383 crossref_primary_10_1016_j_scitotenv_2019_134534 crossref_primary_10_1111_pce_14167 crossref_primary_10_1007_s13762_023_05316_7 crossref_primary_10_1155_2018_4864365 crossref_primary_10_1016_j_jare_2022_04_001 crossref_primary_10_1007_s12033_019_00202_5 crossref_primary_10_1111_pce_13471 crossref_primary_10_1016_j_chemosphere_2021_132302 crossref_primary_10_1016_j_envexpbot_2023_105296 crossref_primary_10_1016_j_ecoenv_2022_114065 crossref_primary_10_1016_j_envpol_2020_114585 crossref_primary_10_1016_j_ecoenv_2024_117588 crossref_primary_10_1016_j_chemosphere_2024_143464 crossref_primary_10_3390_ijms22031297 crossref_primary_10_1016_j_envexpbot_2020_104121 crossref_primary_10_1080_07352689_2020_1792179 crossref_primary_10_3390_cells11030569 crossref_primary_10_1111_pbi_14379 crossref_primary_10_1016_j_scitotenv_2024_171024 crossref_primary_10_3390_su16198464 crossref_primary_10_1007_s42729_023_01525_8 crossref_primary_10_1016_j_plaphy_2024_109182 crossref_primary_10_1039_C8MT00247A crossref_primary_10_1007_s00425_024_04393_3 crossref_primary_10_1021_acsagscitech_4c00006 crossref_primary_10_1016_j_envres_2023_118054 crossref_primary_10_1080_15320383_2023_2283121 crossref_primary_10_3389_fpls_2020_00142 crossref_primary_10_1016_j_chemosphere_2018_08_072 crossref_primary_10_15252_embj_2020105086 crossref_primary_10_3390_ijms20061479 crossref_primary_10_1016_j_jhazmat_2023_131933 crossref_primary_10_1016_j_jhazmat_2022_130206 crossref_primary_10_1016_j_jhazmat_2024_135936 crossref_primary_10_1094_PDIS_08_20_1849_PDN crossref_primary_10_3390_ijms22147418 crossref_primary_10_3390_cells13110907 crossref_primary_10_1111_nph_18762 crossref_primary_10_3390_antiox11030456 crossref_primary_10_1016_j_envpol_2021_116837 crossref_primary_10_1016_j_eti_2021_101725 crossref_primary_10_1071_CP21467 crossref_primary_10_1016_j_psep_2024_12_013 crossref_primary_10_1016_j_ecoenv_2018_09_122 crossref_primary_10_1039_d0mt00043d crossref_primary_10_1080_15226514_2021_1874290 crossref_primary_10_1111_pce_13456 crossref_primary_10_3389_fpls_2022_953717 crossref_primary_10_1021_acs_est_2c08220 crossref_primary_10_3390_toxics12050374 crossref_primary_10_1016_j_jhazmat_2023_130970 crossref_primary_10_1021_acs_jafc_1c08021 crossref_primary_10_1007_s13205_021_02865_x crossref_primary_10_1016_j_envpol_2023_121546 crossref_primary_10_1007_s11816_024_00900_w crossref_primary_10_1016_j_chemosphere_2021_132369 crossref_primary_10_1016_j_ecoenv_2021_113057 crossref_primary_10_1007_s11104_023_06360_5 crossref_primary_10_3390_ijms25158478 crossref_primary_10_1016_j_cj_2021_02_001 crossref_primary_10_1093_pcp_pcy226 crossref_primary_10_1007_s42398_020_00106_0 crossref_primary_10_1016_j_scitotenv_2024_172695 crossref_primary_10_1016_j_plaphy_2023_02_003 crossref_primary_10_1038_s41598_022_24561_3 crossref_primary_10_3390_ijms241411845 crossref_primary_10_1016_j_envpol_2022_120410 crossref_primary_10_3389_fpls_2018_00375 crossref_primary_10_1016_j_envpol_2024_124178 crossref_primary_10_3390_genes14101877 crossref_primary_10_3390_plants11020215 crossref_primary_10_1016_j_jhazmat_2024_135953 crossref_primary_10_3390_plants14050790 crossref_primary_10_1111_pce_13541 crossref_primary_10_3389_fpls_2022_845108 crossref_primary_10_1016_j_inoche_2019_107559 crossref_primary_10_1007_s11356_020_11454_z crossref_primary_10_1007_s11356_021_16805_y crossref_primary_10_1007_s11120_020_00768_1 crossref_primary_10_1007_s00425_023_04170_8 crossref_primary_10_1016_j_scienta_2024_113227 crossref_primary_10_1021_acs_jafc_0c04579 crossref_primary_10_1016_j_envpol_2022_119390 crossref_primary_10_1111_nph_16960 crossref_primary_10_3389_fpls_2020_00909 crossref_primary_10_1016_j_ecoenv_2023_114882 crossref_primary_10_3390_toxics10080411 crossref_primary_10_1016_j_envexpbot_2018_10_008 crossref_primary_10_1016_j_pbi_2018_02_008 crossref_primary_10_3390_plants11091273 crossref_primary_10_1007_s00425_020_03539_3 crossref_primary_10_1111_pce_13821 crossref_primary_10_1016_j_ecoenv_2021_112623 crossref_primary_10_1016_j_jenvman_2024_123192 crossref_primary_10_1016_j_jhazmat_2024_135703 crossref_primary_10_1007_s11270_024_07330_y crossref_primary_10_1007_s00299_024_03387_5 crossref_primary_10_3390_ijms252010952 crossref_primary_10_1016_j_jhazmat_2023_131008 crossref_primary_10_3390_ijms20133117 crossref_primary_10_1007_s11103_019_00821_1 crossref_primary_10_1007_s11104_021_05123_4 crossref_primary_10_1111_pce_15296 crossref_primary_10_1016_j_plaphy_2024_108968 crossref_primary_10_1093_jxb_erz310 crossref_primary_10_3390_ijms24054378 crossref_primary_10_1016_j_plaphy_2024_108846 crossref_primary_10_1007_s10725_022_00917_7 crossref_primary_10_1016_j_jhazmat_2024_135827 crossref_primary_10_1111_jipb_13440 crossref_primary_10_15407_frg2022_04_279 crossref_primary_10_1007_s11240_019_01626_2 crossref_primary_10_1093_pcp_pcy006 crossref_primary_10_12677_AAC_2023_132022 crossref_primary_10_1016_j_seppur_2020_118121 crossref_primary_10_1016_j_jhazmat_2020_122411 crossref_primary_10_3390_ijms21010180 crossref_primary_10_3390_plants10071342 crossref_primary_10_3390_ijms22094300 crossref_primary_10_1111_ppl_14226 crossref_primary_10_1002_agj2_20614 crossref_primary_10_3390_plants12091848 crossref_primary_10_1016_j_ecoenv_2021_113149 crossref_primary_10_48130_cas_0024_0018 crossref_primary_10_3390_ijms242015052 crossref_primary_10_1016_j_envexpbot_2023_105343 crossref_primary_10_3389_fmicb_2017_02538 crossref_primary_10_3389_fpls_2024_1382121 crossref_primary_10_3390_ijms23169335 crossref_primary_10_3390_plants13020297 crossref_primary_10_1007_s00425_024_04388_0 crossref_primary_10_1016_j_bbamem_2019_183127 crossref_primary_10_1016_j_ecoenv_2022_113390 crossref_primary_10_1016_j_jenvman_2021_113081 crossref_primary_10_1371_journal_pone_0302940 crossref_primary_10_1016_j_jhazmat_2022_128324 crossref_primary_10_1093_pcp_pcac035 crossref_primary_10_1094_PDIS_07_19_1521_PDN crossref_primary_10_1186_s12870_024_05201_6 crossref_primary_10_1016_j_eti_2020_100774 crossref_primary_10_1016_j_ecoenv_2020_111847 crossref_primary_10_7717_peerj_6741 crossref_primary_10_1016_j_envres_2022_113918 crossref_primary_10_3390_ijms252011026 crossref_primary_10_1016_j_ecoenv_2020_110520 crossref_primary_10_3390_ijms24043544 crossref_primary_10_1016_j_envexpbot_2020_104207 crossref_primary_10_3389_fpls_2024_1389207 crossref_primary_10_2298_BOTSERB2302309M crossref_primary_10_3390_biology10060544 crossref_primary_10_1016_j_jhazmat_2024_134516 crossref_primary_10_1016_j_jhazmat_2024_134517 |
Cites_doi | 10.1016/0375-6742(77)90074-7 10.1038/nature06877 10.1016/0304-4157(95)00017-8 10.1111/j.1365-3040.2010.02236.x 10.1021/es4012096 10.1371/journal.pgen.1002923 10.1046/j.1469-8137.2000.00560.x 10.1023/A:1022580325301 10.1023/B:PLSO.0000020956.24027.f2 10.1111/j.1469-8137.2010.03459.x 10.1016/S1360-1385(02)02295-1 10.1016/S1369-5266(99)80042-9 10.1007/s10534-013-9659-6 10.1046/j.1469-8137.2002.00432.x 10.1111/j.1469-8137.2008.02748.x 10.1007/s00606-012-0738-x 10.1046/j.1469-8137.2003.00820.x 10.1007/s00128-014-1284-8 10.1146/annurev-arplant-042809-112156 10.3389/fpls.2016.00303 10.1093/jxb/eru340 10.1016/S0958-1669(03)00060-0 10.1111/pce.12706 10.1111/j.1365-313X.2008.03754.x 10.1111/j.1365-313X.2011.04548.x 10.1111/pce.12747 10.1038/35030305 10.1021/es5047099 10.1046/j.1365-313x.2000.00768.x 10.1111/j.1742-4658.2010.07913.x 10.1007/s00425-015-2429-7 10.1111/j.1469-8137.2009.02969.x 10.1016/j.tplants.2005.08.008 10.1104/pp.123.3.825 10.1016/j.plantsci.2010.08.016 10.1016/j.tplants.2012.08.003 10.1111/j.1365-313X.2004.02143.x 10.1073/pnas.1005396107 10.1046/j.1365-313X.2003.01959.x 10.1016/S0014-5793(04)00072-9 10.1128/jb.153.1.163-168.1983 10.1104/pp.108.130294 |
ContentType | Journal Article |
Copyright | 2017 New Phytologist Trust 2017 The Authors. New Phytologist © 2017 New Phytologist Trust 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. Copyright © 2017 New Phytologist Trust |
Copyright_xml | – notice: 2017 New Phytologist Trust – notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust – notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. – notice: Copyright © 2017 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.14622 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 698 |
ExternalDocumentID | 28574163 10_1111_nph_14622 NPH14622 90011380 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Knowledge Innovation Programs of the Chinese Academy of Sciences funderid: KSCX2‐YW‐G053 – fundername: National Natural Science Foundation of China funderid: 41325003; 91117010 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ADXHL CITATION CGR CUY CVF ECM EIF NPM PKN 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c5092-9f74a7dfb042d90cc2e8b7cf08656ef30790cafc1b038f9076fbcb49c41142db3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:30:28 EDT 2025 Fri Jul 11 04:20:06 EDT 2025 Sun Jul 13 03:18:57 EDT 2025 Wed Feb 19 02:40:24 EST 2025 Tue Jul 01 03:09:26 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Wed Jan 22 16:55:31 EST 2025 Thu Jul 03 22:32:16 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | transgenic plants Sedum plubizincicola hyperaccumulator vacuole transporter heavy metal ATPase 3 (HMA3) tolerance cadmium (Cd) |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5092-9f74a7dfb042d90cc2e8b7cf08656ef30790cafc1b038f9076fbcb49c41142db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.14622 |
PMID | 28574163 |
PQID | 2513524973 |
PQPubID | 2026848 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2020882838 proquest_miscellaneous_1905739680 proquest_journals_2513524973 pubmed_primary_28574163 crossref_primary_10_1111_nph_14622 crossref_citationtrail_10_1111_nph_14622 wiley_primary_10_1111_nph_14622_NPH14622 jstor_primary_90011380 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2017 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: July 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2017 |
Publisher | New Phytologist Trust Wiley Subscription Services, Inc |
Publisher_xml | – name: New Phytologist Trust – name: Wiley Subscription Services, Inc |
References | 2004; 561 2013; 26 2013; 47 1983; 153 2010; 107 2009; 181 2006; 38 2002; 155 2002; 7 1998 2003; 14 2016; 243 2011; 34 1999; 2 2003; 159 2016; 39 1995; 5 2010; 61 2014; 65 2000; 407 2013; 18 2009; 57 2016; 7 2004; 259 2015; 49 2003; 249 2004; 39 2004; 37 2010; 277 1996; 1286 2013; 299 2011; 66 2006; 142 2005; 10 2009; 184 2011; 180 2000; 123 2000; 145 2008; 453 2014; 93 1977; 7 2011; 189 2012; 8 2009; 149 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 Gietz RD (e_1_2_7_16_1) 1995; 5 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_40_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 Adams A (e_1_2_7_2_1) 1998 e_1_2_7_26_1 e_1_2_7_27_1 Wu LH (e_1_2_7_42_1) 2006; 38 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 407 start-page: 319 year: 2000 end-page: 320 article-title: Total silencing by intron‐spliced hairpin RNAs publication-title: Nature – volume: 39 start-page: 1112 year: 2016 end-page: 1126 article-title: Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants publication-title: Plant, Cell & Environment – volume: 57 start-page: 1116 year: 2009 end-page: 1127 article-title: MTP1‐dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn‐hyperaccumulating plants publication-title: Plant Journal – volume: 180 start-page: 169 year: 2011 end-page: 181 article-title: Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? publication-title: Plant Science – volume: 1286 start-page: 1 year: 1996 end-page: 51 article-title: Structural organization, ion transport, and energy transduction of P‐type ATPases publication-title: Biochimica et Biophysica Acta – Reviews on Biomembranes – volume: 123 start-page: 825 year: 2000 end-page: 832 article-title: Phytochelatins and their roles in heavy metal detoxification publication-title: Plant Physiology – volume: 2 start-page: 244 year: 1999 end-page: 249 article-title: Zeroing in on zinc uptake in yeast and plants publication-title: Current Opinion in Plant Biology – volume: 7 start-page: 303 year: 2016 article-title: Potential biotechnological strategies for the cleanup of heavy metals and metalloids publication-title: Frontiers in Plant Science – volume: 5 start-page: 255 year: 1995 end-page: 269 article-title: Transforming yeast with DNA publication-title: Methods in Molecular and Cellular Biology – volume: 249 start-page: 9 year: 2003 end-page: 18 article-title: Genetic basis of Cd tolerance and hyperaccumulation in publication-title: Plant and Soil – volume: 107 start-page: 16500 year: 2010 end-page: 16505 article-title: Gene limiting cadmium accumulation in rice publication-title: Proceedings of the National Academy of Sciences, USA – volume: 561 start-page: 22 year: 2004 end-page: 28 article-title: AtHMA3, a plant P1B‐ATPase, functions as a Cd/Pb transporter in yeast publication-title: FEBS Letters – volume: 34 start-page: 208 year: 2011 end-page: 219 article-title: Cadmium uptake and sequestration kinetics in individual leaf cell protoplasts of the Cd/Zn hyperaccumulator publication-title: Plant, Cell & Environment – volume: 39 start-page: 425 year: 2004 end-page: 439 article-title: Two genes encoding MTP1 metal transport proteins co‐segregate with zinc tolerance and account for high transcript levels publication-title: Plant Journal – volume: 181 start-page: 759 year: 2009 end-page: 776 article-title: Molecular mechanisms of metal hyperaccumulation in plants publication-title: New Phytologist – volume: 184 start-page: 323 year: 2009 end-page: 329 article-title: Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in publication-title: New Phytologist – volume: 39 start-page: 1941 year: 2016 end-page: 1954 article-title: A loss‐of‐function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars publication-title: Plant, Cell & Environment – volume: 155 start-page: 47 year: 2002 end-page: 57 article-title: Do from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? publication-title: New Phytologist – volume: 14 start-page: 277 year: 2003 end-page: 282 article-title: Phytoextraction of metals and metalloids from contaminated soils publication-title: Current Opinion in Biotechnology – year: 1998 – volume: 277 start-page: 5086 year: 2010 end-page: 5096 article-title: Cadmium – glutathione solution structures provide new insights into heavy metal detoxification publication-title: FEBS Journal – volume: 47 start-page: 9355 year: 2013 end-page: 9362 article-title: Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach publication-title: Environmental Science & Technology – volume: 66 start-page: 852 year: 2011 end-page: 862 article-title: Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd‐hyperaccumulating ecotype of publication-title: Plant Journal – volume: 10 start-page: 491 year: 2005 end-page: 502 article-title: P‐1B‐ATPases – an ancient family of transition metal pumps with diverse functions in plants publication-title: Trends in Plant Sciences – volume: 7 start-page: 49 year: 1977 end-page: 57 article-title: Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants publication-title: Journal of Geochemical Exploration – volume: 153 start-page: 163 year: 1983 end-page: 168 article-title: Transformation of intact yeast cells treated with alkali cations publication-title: Journal of Bacteriology – volume: 65 start-page: 6013 year: 2014 end-page: 6021 article-title: Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice publication-title: Journal of Experimental Botany – volume: 259 start-page: 181 year: 2004 end-page: 189 article-title: Cadmium tolerance and hyperaccumulation in a new Zn‐hyperaccumulating plant species ( Hance) publication-title: Plant and Soil – volume: 26 start-page: 633 year: 2013 end-page: 638 article-title: Tolerance to cadmium in plants: the special case of hyperaccumulators publication-title: BioMetals – volume: 93 start-page: 171 year: 2014 end-page: 176 article-title: Accumulation and distribution characteristics of zinc and cadmium in the hyperaccumulator plant publication-title: Bulletin of Environmental Contamination and Toxicology – volume: 149 start-page: 894 year: 2009 end-page: 904 article-title: AtHMA3, a P ‐ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis publication-title: Plant Physiology – volume: 299 start-page: 487 year: 2013 end-page: 498 article-title: X.H. Guo et S.B. Zhou ex L.H. Wu (Crassulaceae): a new species from Zhejiang Province, China publication-title: Plant Systematics and Evolution – volume: 38 start-page: 632 year: 2006 end-page: 633 article-title: , a new species of the Crassulaceae from Zhejiang, China publication-title: Soils – volume: 61 start-page: 517 year: 2010 end-page: 534 article-title: Metal hyperaccumulation in plants publication-title: Annual Review of Plant Biology – volume: 7 start-page: 309 year: 2002 end-page: 315 article-title: A long way ahead: understanding and engineering plant metal accumulation publication-title: Trends in Plant Sciences – volume: 145 start-page: 11 year: 2000 end-page: 20 article-title: Cadmium accumulation in populations of and publication-title: New Phytologist – volume: 8 start-page: e1002923 year: 2012 article-title: Genome‐wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in publication-title: PLoS Genetics – volume: 453 start-page: 391 year: 2008 end-page: 395 article-title: Evolution of metal hyperaccumulation required cis‐regulatory changes and triplication of HMA4 publication-title: Nature – volume: 243 start-page: 577 year: 2016 end-page: 589 article-title: Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Hance publication-title: Planta – volume: 189 start-page: 190 year: 2011 end-page: 199 article-title: OsHMA3, a P1B‐type of ATPase affects root‐to‐shoot cadmium translocation in rice by mediating efflux into vacuoles publication-title: New Phytologist – volume: 142 start-page: 148 year: 2006 end-page: 167 article-title: Zinc‐dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator publication-title: Plant Physiology – volume: 159 start-page: 351 year: 2003 end-page: 360 article-title: , an attractive model species to study heavy metal hyperaccumulation in plants publication-title: New Phytologist – volume: 49 start-page: 750 year: 2015 end-page: 759 article-title: Soil contamination in China: current status and mitigation strategies publication-title: Environmental Science & Technology – volume: 37 start-page: 251 year: 2004 end-page: 268 article-title: Cross‐species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator publication-title: Plant Journal – volume: 18 start-page: 92 year: 2013 end-page: 99 article-title: Plant science: the key to preventing slow cadmium poisoning publication-title: Trends in Plant Science – ident: e_1_2_7_7_1 doi: 10.1016/0375-6742(77)90074-7 – ident: e_1_2_7_21_1 doi: 10.1038/nature06877 – ident: e_1_2_7_28_1 doi: 10.1016/0304-4157(95)00017-8 – ident: e_1_2_7_24_1 doi: 10.1111/j.1365-3040.2010.02236.x – ident: e_1_2_7_10_1 doi: 10.1021/es4012096 – ident: e_1_2_7_9_1 doi: 10.1371/journal.pgen.1002923 – ident: e_1_2_7_25_1 doi: 10.1046/j.1469-8137.2000.00560.x – ident: e_1_2_7_6_1 doi: 10.1023/A:1022580325301 – ident: e_1_2_7_44_1 doi: 10.1023/B:PLSO.0000020956.24027.f2 – ident: e_1_2_7_27_1 doi: 10.1111/j.1469-8137.2010.03459.x – ident: e_1_2_7_12_1 doi: 10.1016/S1360-1385(02)02295-1 – ident: e_1_2_7_18_1 doi: 10.1016/S1369-5266(99)80042-9 – ident: e_1_2_7_39_1 doi: 10.1007/s10534-013-9659-6 – ident: e_1_2_7_5_1 doi: 10.1046/j.1469-8137.2002.00432.x – ident: e_1_2_7_38_1 doi: 10.1111/j.1469-8137.2008.02748.x – ident: e_1_2_7_41_1 doi: 10.1007/s00606-012-0738-x – ident: e_1_2_7_3_1 doi: 10.1046/j.1469-8137.2003.00820.x – ident: e_1_2_7_8_1 doi: 10.1007/s00128-014-1284-8 – ident: e_1_2_7_23_1 doi: 10.1146/annurev-arplant-042809-112156 – ident: e_1_2_7_30_1 doi: 10.3389/fpls.2016.00303 – volume: 38 start-page: 632 year: 2006 ident: e_1_2_7_42_1 article-title: Sedum plumbizincicola, a new species of the Crassulaceae from Zhejiang, China publication-title: Soils – ident: e_1_2_7_32_1 doi: 10.1093/jxb/eru340 – ident: e_1_2_7_26_1 doi: 10.1016/S0958-1669(03)00060-0 – ident: e_1_2_7_33_1 doi: 10.1111/pce.12706 – ident: e_1_2_7_20_1 doi: 10.1111/j.1365-313X.2008.03754.x – ident: e_1_2_7_36_1 doi: 10.1111/j.1365-313X.2011.04548.x – ident: e_1_2_7_43_1 doi: 10.1111/pce.12747 – ident: e_1_2_7_34_1 doi: 10.1038/35030305 – ident: e_1_2_7_46_1 doi: 10.1021/es5047099 – ident: e_1_2_7_35_1 doi: 10.1046/j.1365-313x.2000.00768.x – ident: e_1_2_7_14_1 doi: 10.1111/j.1742-4658.2010.07913.x – ident: e_1_2_7_45_1 doi: 10.1007/s00425-015-2429-7 – volume: 5 start-page: 255 year: 1995 ident: e_1_2_7_16_1 article-title: Transforming yeast with DNA publication-title: Methods in Molecular and Cellular Biology – ident: e_1_2_7_19_1 doi: 10.1111/j.1469-8137.2009.02969.x – ident: e_1_2_7_40_1 doi: 10.1016/j.tplants.2005.08.008 – ident: e_1_2_7_13_1 doi: 10.1104/pp.123.3.825 – ident: e_1_2_7_31_1 doi: 10.1016/j.plantsci.2010.08.016 – ident: e_1_2_7_11_1 doi: 10.1016/j.tplants.2012.08.003 – ident: e_1_2_7_15_1 doi: 10.1111/j.1365-313X.2004.02143.x – volume-title: Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual year: 1998 ident: e_1_2_7_2_1 – ident: e_1_2_7_37_1 doi: 10.1073/pnas.1005396107 – ident: e_1_2_7_4_1 doi: 10.1046/j.1365-313X.2003.01959.x – ident: e_1_2_7_17_1 doi: 10.1016/S0014-5793(04)00072-9 – ident: e_1_2_7_22_1 doi: 10.1128/jb.153.1.163-168.1983 – ident: e_1_2_7_29_1 doi: 10.1104/pp.108.130294 |
SSID | ssj0009562 |
Score | 2.6205237 |
Snippet | Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The... Summary Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 687 |
SubjectTerms | Adenosine triphosphatase Adenosine Triphosphatases - genetics Adenosine Triphosphatases - metabolism adenosinetriphosphatase Cadmium cadmium (Cd) Cadmium - pharmacokinetics Cadmium - toxicity Cloning, Molecular Detoxification Drug Resistance - drug effects Drug Resistance - genetics Ecotype Ecotypes Gene expression Gene Expression Regulation, Plant gene overexpression genes heavy metal ATPase 3 (HMA3) Heavy metals heterologous gene expression hyperaccumulator hyperaccumulators Leaves Metals, Heavy - pharmacokinetics Metals, Heavy - toxicity Physiological functions Plant Proteins - genetics Plant Proteins - metabolism Plant Shoots - drug effects Plant Shoots - genetics Plant Shoots - metabolism Plant species Plants, Genetically Modified Rare species RNA Interference RNA-mediated interference Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Sedum - drug effects Sedum - genetics Sedum - metabolism Sedum plubizincicola Sedum plumbizincicola Shoots Soil Soil contamination Soil pollution Tissue Distribution tissues tolerance tonoplast Toxicity transgenic plants transporter vacuole Zinc Zinc - pharmacokinetics Zinc - toxicity |
Title | Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola |
URI | https://www.jstor.org/stable/90011380 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14622 https://www.ncbi.nlm.nih.gov/pubmed/28574163 https://www.proquest.com/docview/2513524973 https://www.proquest.com/docview/1905739680 https://www.proquest.com/docview/2020882838 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYh9NBL32ndpkEtPaQHp17JlmV6SkqCKSSENoE9FIwkS2RpbC-7diH59Z2RHyQhgdKLMdbY6DGPb-TRDCGfVCkj5fgsTGaOh7GAi5bGhZFzapYlSnKH-x3HJyI_j7_Pk_kG-TqehenzQ0wbbigZXl-jgCu9viHk9fICxZyh_sVYLQREP9iNhLuCjRmYRSzmQ1YhjOKZ3rxli_pwxPuA5m3c6g3P0VPya-xyH2_ye69r9Z65vpPN8T_H9Iw8GQAp3e856DnZsPUL8uigAdB49ZJ0uVV_rmhlW6Q5OwWbRzndzY_3-Wdq_GnBNTWqrBZdRS_Ap121zaXFYh2WNjUFdDm2frle1KYnUcZ0FZYNa1b0J5i6ii5BReoFUiBjqlfk_Ojw7FseDpUaQgOAg4WZS2OVlk6DCiizyBhmpU6NA38pEdaBHoGHypmZjrh04I8Lp42OMxPjUd5S8y2yWTe1fUOoKDmYSxnLiJWxtUKpBN0akSjGlLFlQHbHNSvMkMYcq2lcFqM7A5NY-EkMyMeJdNnn7riPaMsv_ESRIUrmMgrI9sgJxSDX6wLQICDWOEt5QD5MzSCR-JtF1bbp1gVArCTlmcBPPETDsDYqOLtcBuR1z2VTB5hMPEyGkXpeebjvxclp7m_e_jvpO_KYITLxEcfbZLNddfY94KpW73gB-guVuh1s |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgkQv_JcuFDAIpHJIydqJNzlwKJQqpd1VBVtpb8FxbHVFN1ntbkDbZ-JVeCdm8qcWtRKXHrhEUTyynHjG833OeAbgtUoDV1nRdfyuFY4n8ZIE2jqutaob-ioQlvY7-gMZHXufR_5oBX41Z2Gq_BDthhtZRrlek4HThvQ5K8-mJ2TnnNchlQdm-RMJ2_z9_i7O7hvO9z4NP0ZOXVPA0egauRPanqd6qU1QWdPQ1ZqbIOlpi8jel8aixuNDZXU3cUVgkTlKm-jEC7VHh07TRGC_N-AmVRCnTP27X_i5FL-SNzmfpSdHdR4jihtqh3rB-1UBkJdB24tIuXR1e3fhd_ORqgiX79vFItnWZ3_lj_xfvuI9uFNjbrZTGcl9WDHZA7j1IUdcvHwIRWTUjyWbmAXJDI_QrTPBtqL-jnjLdHkgcs60SifjYsJOkLbPFvmpoXokhuUZQwDdtL47G2e6ElFaFxOqjJbP2Ff05hM2RS-QjEmCbE89guNreeV1WM3yzGwAk6lARBB4gctTzxiplE_MTfqKc6VN2oGtRkliXWdqp4Ihp3HD2HDS4nLSOvCqFZ1W6UkuE1ovNa2VCIkIiMDtwGajenG9dM1jBLwIyr2wJzrwsm3GRYf-JKnM5MU8RhTp90QoqYurZDiVf0U-L4IOPK7Uuh0AD_ySCeCblsp59djjwVFU3jz5d9EXcDsa9g_jw_3BwVNY4wTEygDrTVhdzArzDGHkInleWi-Db9et6H8AibJ8WQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAX_guBAgaB1B5SsnbiJAcOhWWVUrpaQSvtLTiOra5oktVuAtq-Eq_CQzHOn1rUSlx64BJF8chy4hnP9znjGYDXIg0codnA9gaa2S7HSxJIbTtai0HoiYBps99xMObRkftp6k3X4Fd3FqbJD9FvuBnLqNdrY-DzVJ8x8nx-bMyc0jaicl-tfiJfW77bG-LkvqF09PHwQ2S3JQVsiZ6R2qH2XeGnOkFdTUNHSqqCxJcagb3HlUaFx4dCy0HisEAjceQ6kYkbStecOU0Thv1eg-sud0JTJ2L4hZ7J8Mtpl_KZu3zapjEyYUP9UM85vyb-8SJkex4o155udAd-d9-oCXD5vlOVyY48_St95H_yEe_C7RZxk93GRO7Bmsrvw433BaLi1QOoIiV-rEimSiNzOEGnThjZig522TaR9XHIJZEizWZVRo6RtC_K4kSZaiSKFDlB-Ny1vj2d5bIREVJWmamLVizIV_TlGZmjD0hmRsJYnngIR1fyyhuwnhe5egyEpwzxQOAGDk1dpbgQnuFt3BOUCqlSC7Y6HYllm6fdlAs5iTu-hpMW15NmwatedN4kJ7lIaKNWtF4iNDSABY4Fm53mxe3CtYwR7iIkd0OfWfCyb8Ylx_xHErkqqmWMGNLzWchNF5fJUFP8Fdk8Cyx41Gh1PwAaeDUPwDetdfPyscfjSVTfPPl30RdwczIcxZ_3xvtP4RY1KKyOrt6E9XJRqWeIIcvkeW27BL5dtZ7_AYdMewg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heavy+metal+ATPase+3+%28HMA3%29+confers+cadmium+hypertolerance+on+the+cadmium%2Fzinc+hyperaccumulator+Sedum+plumbizincicola&rft.jtitle=The+New+phytologist&rft.au=Liu%2C+Huan&rft.au=Zhao%2C+Haixia&rft.au=Wu%2C+Longhua&rft.au=Liu%2C+Anna&rft.date=2017-07-01&rft.issn=0028-646X&rft.volume=215&rft.issue=2+p.687-698&rft.spage=687&rft.epage=698&rft_id=info:doi/10.1111%2Fnph.14622&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |