OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice
Soil contamination with arsenic (As) can cause phytotoxicity and elevated As accumulation in rice grain. Here, we used a forward genetics approach to investigate the mechanism of arsenate (As(V)) tolerance and accumulation in rice. A rice mutant hypersensitive to As(V), but not to As(III), was isola...
Saved in:
Published in | The New phytologist Vol. 215; no. 3; pp. 1090 - 1101 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
New Phytologist Trust
01.08.2017
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil contamination with arsenic (As) can cause phytotoxicity and elevated As accumulation in rice grain. Here, we used a forward genetics approach to investigate the mechanism of arsenate (As(V)) tolerance and accumulation in rice.
A rice mutant hypersensitive to As(V), but not to As(III), was isolated. Genomic resequencing and complementation tests were used to identify the causal gene. The function of the gene, its expression pattern and subcellular localization were characterized.
OsHAC4 is the causal gene for the As(V)-hypersensitive phenotype. The gene encodes a rhodanase-like protein that shows As(V) reductase activity when expressed in Escherichia coli. OsHAC4 was highly expressed in roots and was induced by As(V). In OsHAC4pro-GUS transgenic plants, the gene was expressed exclusively in the root epidermis and exodermis. OsHAC4-eGFP was localized in the cytoplasm and the nucleus. Mutation in OsHAC4 resulted in decreased As(V) reduction in roots, decreased As(III) efflux to the external medium and markedly increased As accumulation in rice shoots. Overexpression of OsHAC4 increased As (V) tolerance and decreased As accumulation in rice plants.
OsHAC4 is an As(V) reductase that is critical for As(V) detoxification and for the control of As accumulation in rice. As(V) reduction, followed by As(III) efflux, is an important mechanism of As(V) detoxification. |
---|---|
AbstractList | Soil contamination with arsenic (As) can cause phytotoxicity and elevated As accumulation in rice grain. Here, we used a forward genetics approach to investigate the mechanism of arsenate (As(V)) tolerance and accumulation in rice. A rice mutant hypersensitive to As(V), but not to As(III), was isolated. Genomic resequencing and complementation tests were used to identify the causal gene. The function of the gene, its expression pattern and subcellular localization were characterized. OsHAC4 is the causal gene for the As(V)-hypersensitive phenotype. The gene encodes a rhodanase-like protein that shows As(V) reductase activity when expressed in Escherichia coli. OsHAC4 was highly expressed in roots and was induced by As(V). In OsHAC4pro-GUS transgenic plants, the gene was expressed exclusively in the root epidermis and exodermis. OsHAC4-eGFP was localized in the cytoplasm and the nucleus. Mutation in OsHAC4 resulted in decreased As(V) reduction in roots, decreased As(III) efflux to the external medium and markedly increased As accumulation in rice shoots. Overexpression of OsHAC4 increased As(V) tolerance and decreased As accumulation in rice plants. OsHAC4 is an As(V) reductase that is critical for As(V) detoxification and for the control of As accumulation in rice. As(V) reduction, followed by As(III) efflux, is an important mechanism of As(V) detoxification. Summary Soil contamination with arsenic (As) can cause phytotoxicity and elevated As accumulation in rice grain. Here, we used a forward genetics approach to investigate the mechanism of arsenate (As(V)) tolerance and accumulation in rice. A rice mutant hypersensitive to As(V), but not to As(III), was isolated. Genomic resequencing and complementation tests were used to identify the causal gene. The function of the gene, its expression pattern and subcellular localization were characterized. OsHAC4 is the causal gene for the As(V)‐hypersensitive phenotype. The gene encodes a rhodanase‐like protein that shows As(V) reductase activity when expressed in Escherichia coli. OsHAC4 was highly expressed in roots and was induced by As(V). In OsHAC4pro‐GUS transgenic plants, the gene was expressed exclusively in the root epidermis and exodermis. OsHAC4‐eGFP was localized in the cytoplasm and the nucleus. Mutation in OsHAC4 resulted in decreased As(V) reduction in roots, decreased As(III) efflux to the external medium and markedly increased As accumulation in rice shoots. Overexpression of OsHAC4 increased As(V) tolerance and decreased As accumulation in rice plants. OsHAC4 is an As(V) reductase that is critical for As(V) detoxification and for the control of As accumulation in rice. As(V) reduction, followed by As(III) efflux, is an important mechanism of As(V) detoxification. See also the Commentary on this article by Salt, 215: 926–928. Summary Soil contamination with arsenic (As) can cause phytotoxicity and elevated As accumulation in rice grain. Here, we used a forward genetics approach to investigate the mechanism of arsenate (As(V)) tolerance and accumulation in rice. A rice mutant hypersensitive to As(V), but not to As(III), was isolated. Genomic resequencing and complementation tests were used to identify the causal gene. The function of the gene, its expression pattern and subcellular localization were characterized. OsHAC4 is the causal gene for the As(V)-hypersensitive phenotype. The gene encodes a rhodanase-like protein that shows As(V) reductase activity when expressed in Escherichia coli. OsHAC4 was highly expressed in roots and was induced by As(V). In OsHAC4pro-GUS transgenic plants, the gene was expressed exclusively in the root epidermis and exodermis. OsHAC4-eGFP was localized in the cytoplasm and the nucleus. Mutation in OsHAC4 resulted in decreased As(V) reduction in roots, decreased As(III) efflux to the external medium and markedly increased As accumulation in rice shoots. Overexpression of OsHAC4 increased As(V) tolerance and decreased As accumulation in rice plants. OsHAC4 is an As(V) reductase that is critical for As(V) detoxification and for the control of As accumulation in rice. As(V) reduction, followed by As(III) efflux, is an important mechanism of As(V) detoxification. See also the Commentary on this article by Salt, 215: 926-928. Soil contamination with arsenic (As) can cause phytotoxicity and elevated As accumulation in rice grain. Here, we used a forward genetics approach to investigate the mechanism of arsenate (As(V)) tolerance and accumulation in rice. A rice mutant hypersensitive to As(V), but not to As(III), was isolated. Genomic resequencing and complementation tests were used to identify the causal gene. The function of the gene, its expression pattern and subcellular localization were characterized. OsHAC4 is the causal gene for the As(V)-hypersensitive phenotype. The gene encodes a rhodanase-like protein that shows As(V) reductase activity when expressed in Escherichia coli. OsHAC4 was highly expressed in roots and was induced by As(V). In OsHAC4pro-GUS transgenic plants, the gene was expressed exclusively in the root epidermis and exodermis. OsHAC4-eGFP was localized in the cytoplasm and the nucleus. Mutation in OsHAC4 resulted in decreased As(V) reduction in roots, decreased As(III) efflux to the external medium and markedly increased As accumulation in rice shoots. Overexpression of OsHAC4 increased As (V) tolerance and decreased As accumulation in rice plants. OsHAC4 is an As(V) reductase that is critical for As(V) detoxification and for the control of As accumulation in rice. As(V) reduction, followed by As(III) efflux, is an important mechanism of As(V) detoxification. Soil contamination with arsenic (As) can cause phytotoxicity and elevated As accumulation in rice grain. Here, we used a forward genetics approach to investigate the mechanism of arsenate (As(V)) tolerance and accumulation in rice. A rice mutant hypersensitive to As(V), but not to As(III), was isolated. Genomic resequencing and complementation tests were used to identify the causal gene. The function of the gene, its expression pattern and subcellular localization were characterized. OsHAC4 is the causal gene for the As(V)-hypersensitive phenotype. The gene encodes a rhodanase-like protein that shows As(V) reductase activity when expressed in Escherichia coli. OsHAC4 was highly expressed in roots and was induced by As(V). In OsHAC4pro-GUS transgenic plants, the gene was expressed exclusively in the root epidermis and exodermis. OsHAC4-eGFP was localized in the cytoplasm and the nucleus. Mutation in OsHAC4 resulted in decreased As(V) reduction in roots, decreased As(III) efflux to the external medium and markedly increased As accumulation in rice shoots. Overexpression of OsHAC4 increased As(V) tolerance and decreased As accumulation in rice plants. OsHAC4 is an As(V) reductase that is critical for As(V) detoxification and for the control of As accumulation in rice. As(V) reduction, followed by As(III) efflux, is an important mechanism of As(V) detoxification.Soil contamination with arsenic (As) can cause phytotoxicity and elevated As accumulation in rice grain. Here, we used a forward genetics approach to investigate the mechanism of arsenate (As(V)) tolerance and accumulation in rice. A rice mutant hypersensitive to As(V), but not to As(III), was isolated. Genomic resequencing and complementation tests were used to identify the causal gene. The function of the gene, its expression pattern and subcellular localization were characterized. OsHAC4 is the causal gene for the As(V)-hypersensitive phenotype. The gene encodes a rhodanase-like protein that shows As(V) reductase activity when expressed in Escherichia coli. OsHAC4 was highly expressed in roots and was induced by As(V). In OsHAC4pro-GUS transgenic plants, the gene was expressed exclusively in the root epidermis and exodermis. OsHAC4-eGFP was localized in the cytoplasm and the nucleus. Mutation in OsHAC4 resulted in decreased As(V) reduction in roots, decreased As(III) efflux to the external medium and markedly increased As accumulation in rice shoots. Overexpression of OsHAC4 increased As(V) tolerance and decreased As accumulation in rice plants. OsHAC4 is an As(V) reductase that is critical for As(V) detoxification and for the control of As accumulation in rice. As(V) reduction, followed by As(III) efflux, is an important mechanism of As(V) detoxification. Soil contamination with arsenic (As) can cause phytotoxicity and elevated As accumulation in rice grain. Here, we used a forward genetics approach to investigate the mechanism of arsenate (As(V)) tolerance and accumulation in rice. A rice mutant hypersensitive to As(V), but not to As(III), was isolated. Genomic resequencing and complementation tests were used to identify the causal gene. The function of the gene, its expression pattern and subcellular localization were characterized. OsHAC4 is the causal gene for the As(V)‐hypersensitive phenotype. The gene encodes a rhodanase‐like protein that shows As(V) reductase activity when expressed in Escherichia coli . Os HAC 4 was highly expressed in roots and was induced by As(V). In Os HAC 4pro‐ GUS transgenic plants, the gene was expressed exclusively in the root epidermis and exodermis. Os HAC 4‐ eGFP was localized in the cytoplasm and the nucleus. Mutation in Os HAC 4 resulted in decreased As(V) reduction in roots, decreased As( III ) efflux to the external medium and markedly increased As accumulation in rice shoots. Overexpression of Os HAC 4 increased As(V) tolerance and decreased As accumulation in rice plants. Os HAC 4 is an As(V) reductase that is critical for As(V) detoxification and for the control of As accumulation in rice. As(V) reduction, followed by As( III ) efflux, is an important mechanism of As(V) detoxification. See also the Commentary on this article by Salt, 215 : 926–928 . |
Author | Zhong Tang Yifeng Wang Lei Wang Xinlu Zhu Shulin Shi Fang-Jie Zhao Tingting Lv Xiaomeng Ding Jiming Xu Zhongchang Wu |
Author_xml | – sequence: 1 givenname: Jiming surname: Xu fullname: Xu, Jiming organization: Zhejiang University – sequence: 2 givenname: Shulin surname: Shi fullname: Shi, Shulin organization: Nanjing Agricultural University – sequence: 3 givenname: Lei surname: Wang fullname: Wang, Lei organization: Zhejiang University – sequence: 4 givenname: Zhong surname: Tang fullname: Tang, Zhong organization: Nanjing Agricultural University – sequence: 5 givenname: Tingting surname: Lv fullname: Lv, Tingting organization: Zhejiang University – sequence: 6 givenname: Xinlu surname: Zhu fullname: Zhu, Xinlu organization: Zhejiang University – sequence: 7 givenname: Xiaomeng surname: Ding fullname: Ding, Xiaomeng organization: Zhejiang University – sequence: 8 givenname: Yifeng surname: Wang fullname: Wang, Yifeng organization: Zhejiang University – sequence: 9 givenname: Fang‐Jie surname: Zhao fullname: Zhao, Fang‐Jie email: Fangjie.Zhao@njau.edu.cn organization: Rothamsted Research – sequence: 10 givenname: Zhongchang surname: Wu fullname: Wu, Zhongchang email: wzchang@zju.edu.cn organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28407265$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UtrVDEUB_AgFTutLvwASsCNXdw278eyDOoUinVRwV3I5KEZ7iRjci-l396003ZRULNJOPz-B3LOETjIJQcA3mJ0ivs5y7tfp5hxSV6ABWZCDwpTeQAWCBE1CCZ-HIKj1jYIIc0FeQUOiWJIEsEX4Pqqrc6XDKYGXU1TcnaEsVRoawvZTgFOZQzVZhegzR7W8HMee7ntQXLQOjdv72qpZJgyrMmF1-BltGMLbx7uY_D986fr5Wq4vPpysTy_HBxHmgyUIs69Z-sYPdFWRRmVc5oqjvtrHaXw1DshEGOBRe2k814SZiXlXmAt6DH4uO-7q-X3HNpktqm5MI42hzI3QxBBShFN2X8pVkoJhbHgnX54Rjdlrrl_xGCNpSBKYtLV-wc1r7fBm11NW1tvzeNoOzjZA1dLazXEJ4KRuVub6Wsz92vr9uyZdWm6H-lUbRr_lbhJY7j9e2vz9dvqMfFun9i0qdSnhEaoByihfwCaNbBh |
CitedBy_id | crossref_primary_10_3389_fgene_2019_00322 crossref_primary_10_1007_s10725_022_00945_3 crossref_primary_10_1021_acssuschemeng_1c08289 crossref_primary_10_1016_j_scitotenv_2022_155870 crossref_primary_10_1016_j_tifs_2024_104725 crossref_primary_10_1016_j_envpol_2023_121141 crossref_primary_10_1186_s12870_022_03475_2 crossref_primary_10_1016_j_tplants_2020_11_003 crossref_primary_10_1111_pbr_12550 crossref_primary_10_1016_j_tplants_2017_09_015 crossref_primary_10_1016_j_chemosphere_2022_136590 crossref_primary_10_3390_cells11172741 crossref_primary_10_1016_j_ecoenv_2023_115382 crossref_primary_10_1093_pcp_pcx204 crossref_primary_10_1371_journal_pone_0217516 crossref_primary_10_1021_acs_est_7b03369 crossref_primary_10_1111_pbi_12905 crossref_primary_10_1016_j_rsci_2024_08_003 crossref_primary_10_1186_s40168_025_02073_2 crossref_primary_10_1007_s11427_020_1683_x crossref_primary_10_1016_j_biotechadv_2023_108239 crossref_primary_10_1016_j_envpol_2022_118940 crossref_primary_10_1016_j_chemosphere_2021_131050 crossref_primary_10_3390_plants12091815 crossref_primary_10_1007_s12011_021_03018_0 crossref_primary_10_1080_10643389_2020_1795053 crossref_primary_10_1016_j_ecoenv_2020_111196 crossref_primary_10_1016_j_envint_2019_02_058 crossref_primary_10_1080_15226514_2022_2080803 crossref_primary_10_1186_s12951_024_02371_1 crossref_primary_10_1016_j_jia_2024_01_013 crossref_primary_10_1007_s12374_021_09336_z crossref_primary_10_1007_s11356_021_14507_z crossref_primary_10_1016_j_envexpbot_2021_104764 crossref_primary_10_1111_nph_14691 crossref_primary_10_1016_j_chemosphere_2018_07_152 crossref_primary_10_1021_acs_est_2c01206 crossref_primary_10_1016_j_jhazmat_2020_124751 crossref_primary_10_3390_plants14040606 crossref_primary_10_1016_j_scitotenv_2018_06_030 crossref_primary_10_1039_c8mt00320c crossref_primary_10_1021_acs_est_8b02202 crossref_primary_10_1021_acs_est_9b02418 crossref_primary_10_1021_acs_est_9b05486 crossref_primary_10_1186_s12870_020_2316_7 crossref_primary_10_1021_acs_est_9b00592 crossref_primary_10_1016_j_envpol_2021_117389 crossref_primary_10_3390_stresses2020013 crossref_primary_10_1007_s44154_023_00136_8 crossref_primary_10_1021_acs_est_7b03028 crossref_primary_10_1007_s10534_019_00174_8 crossref_primary_10_1016_j_envpol_2022_120039 crossref_primary_10_1007_s11104_019_04374_6 crossref_primary_10_1007_s42729_022_00961_2 crossref_primary_10_1016_j_tplants_2023_03_008 crossref_primary_10_1111_pce_14023 crossref_primary_10_1016_j_jhazmat_2021_127891 crossref_primary_10_1016_j_scitotenv_2022_158944 crossref_primary_10_3390_nano11092228 crossref_primary_10_1016_j_sajb_2024_03_020 crossref_primary_10_1016_j_envexpbot_2020_104366 crossref_primary_10_1016_j_envexpbot_2022_105136 crossref_primary_10_1016_j_jhazmat_2020_124495 crossref_primary_10_3389_fpls_2019_00061 crossref_primary_10_1093_jxb_eraa113 crossref_primary_10_7717_peerj_14866 crossref_primary_10_1007_s00425_022_03869_4 crossref_primary_10_1016_j_scitotenv_2021_149796 crossref_primary_10_1016_j_jplph_2019_02_013 crossref_primary_10_1016_j_rsci_2018_06_007 crossref_primary_10_3390_ijms241311031 crossref_primary_10_1016_j_stress_2022_100076 crossref_primary_10_3389_fpls_2017_01007 crossref_primary_10_1016_j_jhazmat_2021_128170 crossref_primary_10_1016_j_molp_2021_09_016 crossref_primary_10_1111_nph_19727 crossref_primary_10_3390_ijms22137182 crossref_primary_10_1016_j_ecoenv_2019_109791 crossref_primary_10_1007_s00709_020_01577_y crossref_primary_10_1093_jxb_eraa465 crossref_primary_10_1186_s12860_020_00312_y crossref_primary_10_1016_j_scitotenv_2019_134330 crossref_primary_10_1111_nph_15190 crossref_primary_10_3389_fpls_2018_01330 crossref_primary_10_1007_s10646_019_02135_w crossref_primary_10_1016_j_plaphy_2024_108848 crossref_primary_10_1016_j_scitotenv_2023_165232 crossref_primary_10_3390_genes14122186 crossref_primary_10_1093_jxb_erz310 crossref_primary_10_1016_j_cropro_2022_106030 crossref_primary_10_1016_j_envpol_2022_119038 crossref_primary_10_1111_jipb_13440 crossref_primary_10_1093_pcp_pcy006 crossref_primary_10_1007_s11104_025_07236_6 crossref_primary_10_1016_j_jhazmat_2020_122895 crossref_primary_10_1007_s10725_024_01141_1 crossref_primary_10_3390_ijms25052861 crossref_primary_10_3389_fsufs_2020_00053 crossref_primary_10_1002_pld3_272 crossref_primary_10_1021_acs_est_0c02877 crossref_primary_10_1016_j_envpol_2021_117987 crossref_primary_10_3389_fpls_2019_01326 crossref_primary_10_1016_j_envpol_2021_117586 crossref_primary_10_1007_s00284_023_03434_6 crossref_primary_10_1016_j_envexpbot_2021_104730 crossref_primary_10_1016_j_envexpbot_2020_104057 crossref_primary_10_1080_10643389_2019_1618691 crossref_primary_10_1007_s00344_023_11073_1 crossref_primary_10_1093_jxb_erz366 crossref_primary_10_1111_tpj_17124 crossref_primary_10_1111_nph_14761 crossref_primary_10_1016_j_jenvman_2022_115289 crossref_primary_10_1071_FP21218 crossref_primary_10_3390_agronomy7040067 crossref_primary_10_3390_toxics12060418 crossref_primary_10_1111_pce_14188 crossref_primary_10_1007_s10653_021_01069_9 crossref_primary_10_1093_pcp_pcz054 crossref_primary_10_1016_j_hazadv_2024_100543 |
Cites_doi | 10.1016/j.febslet.2008.04.022 10.1007/s11104-008-9786-y 10.1104/pp.122.4.1171 10.3389/fphys.2012.00182 10.1021/es101952f 10.1111/j.1469-8137.2010.03192.x 10.1021/es5047099 10.1104/pp.112.210831 10.1046/j.1365-313X.2003.01860.x 10.1104/pp.111.181669 10.1016/j.molp.2015.01.005 10.1111/j.1469-8137.2008.02716.x 10.1111/j.1469-8137.2007.02009.x 10.1021/es0259842 10.1111/j.1365-313X.2004.02161.x 10.1021/es8001103 10.1074/jbc.M806881200 10.1016/j.envint.2011.05.007 10.1104/pp.109.150862 10.1111/j.1469-8137.2005.01519.x 10.1111/j.1365-313X.2004.02219.x 10.1007/7171_2006_086 10.1021/cr300015c 10.1371/journal.pbio.1002009 10.1093/jxb/erw362 10.1105/tpc.106.041871 10.1105/tpc.11.6.1153 10.1289/ehp.9462 10.1021/es101139z 10.1073/pnas.0802361105 10.1073/pnas.1414968111 10.1021/es802612a 10.1073/pnas.1013964107 10.1111/mmi.13371 10.1111/nph.13908 10.1146/annurev-arplant-042809-112152 10.1186/1741-7007-6-26 10.1073/pnas.0509770102 10.1111/j.1365-2958.1994.tb01018.x 10.1038/ncomms5617 10.1080/00380768.2013.804390 10.1111/j.1469-8137.2007.02195.x 10.1007/s11104-015-2739-3 10.1038/nbt.2095 10.1371/journal.pone.0042408 10.1016/j.envint.2009.02.008 10.1021/es802412r 10.1021/bi00579a006 10.1104/pp.107.111443 10.1016/j.agwat.2004.11.007 10.1104/pp.109.140350 10.1104/pp.16.01332 10.1104/pp.111.178921 |
ContentType | Journal Article |
Copyright | 2017 New Phytologist Trust 2017 The Authors. New Phytologist © 2017 New Phytologist Trust 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. Copyright © 2017 New Phytologist Trust |
Copyright_xml | – notice: 2017 New Phytologist Trust – notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust – notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. – notice: Copyright © 2017 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.14572 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1101 |
ExternalDocumentID | 28407265 10_1111_nph_14572 NPH14572 90011132 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province funderid: LY16C020001 – fundername: National Key Research and Development Program of China funderid: 2016YFD0100700 – fundername: National Natural Science Foundation of China funderid: 31520103914; 31570244 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ADXHL CITATION CGR CUY CVF ECM EIF NPM PKN 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c5092-33055dd4bffd29a8f7f8cc938517f8bf76d3dc66044e4f9c7cdd724a735d61963 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:35:28 EDT 2025 Fri Jul 11 05:02:18 EDT 2025 Fri Jul 25 10:36:19 EDT 2025 Wed Feb 19 02:35:03 EST 2025 Thu Apr 24 23:07:04 EDT 2025 Tue Jul 01 03:09:26 EDT 2025 Wed Jan 22 16:22:37 EST 2025 Thu Jul 03 22:32:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | arsenic (As) arsenic accumulation rice (Oryza sativa) arsenite arsenate reductase detoxification arsenate |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5092-33055dd4bffd29a8f7f8cc938517f8bf76d3dc66044e4f9c7cdd724a735d61963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.14572 |
PMID | 28407265 |
PQID | 1917628712 |
PQPubID | 2026848 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2020882934 proquest_miscellaneous_1888681165 proquest_journals_1917628712 pubmed_primary_28407265 crossref_primary_10_1111_nph_14572 crossref_citationtrail_10_1111_nph_14572 wiley_primary_10_1111_nph_14572_NPH14572 jstor_primary_90011132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2017 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: August 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2017 |
Publisher | New Phytologist Trust Wiley Subscription Services, Inc |
Publisher_xml | – name: New Phytologist Trust – name: Wiley Subscription Services, Inc |
References | 2011; 157 2009; 43 2010; 107 1976 2016; 100 2009; 150 2008; 105 2008; 6 2008; 146 2009; 317 2013; 161 2008; 582 2010a; 186 2013; 59 2014; 5 2015; 49 2004; 39 2007; 176 2007; 174 2005; 74 1999; 11 2010; 152 2013; 113 2009; 284 2000; 122 2014; 12 2007; 19 1979; 18 2004; 40 2009; 181 2003; 36 2007 2003; 37 2011; 37 2016; 401 2014; 111 2015; 8 2012; 30 2010; 44 2007; 115 2009; 35 2012; 3 2005; 168 1994; 12 2016; 211 2010b; 61 2008; 42 2012; 7 2006; 103 2016; 67 2016; 172 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_28_1 Yoshida S (e_1_2_7_49_1) 1976 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 28695678 - New Phytol. 2017 Aug;215(3):926-928 |
References_xml | – volume: 7 start-page: e42408 year: 2012 article-title: Knocking out ACR2 does not affect arsenic redox status in : implications for As detoxification and accumulation in plants publication-title: PLoS ONE – volume: 19 start-page: 1123 year: 2007 end-page: 1133 article-title: A mutant of the phosphate transporter PHT1;1 displays enhanced arsenic accumulation publication-title: Plant Cell – volume: 35 start-page: 856 year: 2009 end-page: 863 article-title: Mitigation of arsenic contamination in irrigated paddy soils in South and South‐east Asia publication-title: Environment International – volume: 36 start-page: 105 year: 2003 end-page: 113 article-title: Distribution and characterization of over 1000 T‐DNA tags in rice genome publication-title: Plant Journal – volume: 107 start-page: 21187 year: 2010 end-page: 21192 article-title: Arsenic tolerance in Arabidopsis is mediated by two ABCC‐type phytochelatin transporters publication-title: Proceedings of the National Academy of Sciences, USA – volume: 150 start-page: 2071 year: 2009 end-page: 2080 article-title: The rice aquaporin Lsi1 mediates uptake of methylated arsenic species publication-title: Plant Physiology – volume: 44 start-page: 8108 year: 2010 end-page: 8113 article-title: Arsenic localization, speciation, and co‐occurrence with iron on rice ( L.) roots having variable Fe coatings publication-title: Environmental Science & Technology – volume: 3 start-page: 182 year: 2012 article-title: Arsenic toxicity: the effects on plant metabolism publication-title: Frontiers in Physiology – volume: 37 start-page: 1219 year: 2011 end-page: 1225 article-title: Inorganic arsenic in Chinese food and its cancer risk publication-title: Environment International – start-page: 371 year: 2007 end-page: 406 – volume: 317 start-page: 31 year: 2009 end-page: 39 article-title: Arsenic toxicity to rice ( L.) in Bangladesh publication-title: Plant and Soil – volume: 168 start-page: 551 year: 2005 end-page: 558 article-title: Uptake, translocation and transformation of arsenate and arsenite in sunflower ( ): formation of arsenic–phytochelatin complexes during exposure to high arsenic concentrations publication-title: New Phytologist – volume: 100 start-page: 945 year: 2016 end-page: 953 article-title: Synergistic interaction of glyceraldehyde‐3‐phosphate dehydrogenase and ArsJ, a novel organoarsenical efflux permease, confers arsenate resistance publication-title: Molecular Microbiology – volume: 146 start-page: 1673 year: 2008 end-page: 1686 article-title: OsPHR2 is involved in phosphate‐starvation signaling and excessive phosphate accumulation in shoots of plants publication-title: Plant Physiology – volume: 5 start-page: 4617 year: 2014 article-title: Natural variation in arsenate tolerance identifies an arsenate reductase in publication-title: Nature Communications – volume: 211 start-page: 658 year: 2016 end-page: 670 article-title: OsCLT1, a CRT‐like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice publication-title: New Phytologist – volume: 67 start-page: 6051 year: 2016 end-page: 6059 article-title: The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice publication-title: Journal of Experimental Botany – volume: 43 start-page: 637 year: 2009 end-page: 642 article-title: Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China publication-title: Environmental Science & Technology – volume: 113 start-page: 7769 year: 2013 end-page: 7792 article-title: Arsenic binding to proteins publication-title: Chemical Reviews – volume: 152 start-page: 2211 year: 2010 end-page: 2221 article-title: Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis publication-title: Plant Physiology – volume: 49 start-page: 750 year: 2015 end-page: 759 article-title: Soil contamination in China: current status and mitigation strategies publication-title: Environmental Science & Technology – year: 1976 – volume: 43 start-page: 1612 year: 2009 end-page: 1617 article-title: Geographical variation in total and inorganic arsenic content of polished (white) rice publication-title: Environmental Science & Technology – volume: 12 start-page: 301 year: 1994 end-page: 306 article-title: Arsenate reduction mediated by the plasmid‐encoded Arsc protein is coupled to glutathione publication-title: Molecular Microbiology – volume: 12 start-page: e1002009 year: 2014 article-title: Genome‐wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants publication-title: PLoS Biology – volume: 44 start-page: 8515 year: 2010 end-page: 8521 article-title: Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils publication-title: Environmental Science & Technology – volume: 61 start-page: 535 year: 2010b end-page: 559 article-title: Arsenic as a food‐chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies publication-title: Annual Review of Plant Biology – volume: 59 start-page: 580 year: 2013 end-page: 590 article-title: Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice publication-title: Soil Science and Plant Nutrition – volume: 174 start-page: 311 year: 2007 end-page: 321 article-title: A CDC25 homologue from rice functions as an arsenate reductase publication-title: New Phytologist – volume: 157 start-page: 498 year: 2011 end-page: 508 article-title: Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice publication-title: Plant Physiology – volume: 157 start-page: 269 year: 2011 end-page: 278 article-title: OsPHF1 regulates the plasma membrane localization of low‐ and high‐affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice publication-title: Plant Physiology – volume: 105 start-page: 9931 year: 2008 end-page: 9935 article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain publication-title: Proceedings of the National Academy of Sciences, USA – volume: 40 start-page: 428 year: 2004 end-page: 438 article-title: Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation publication-title: Plant Journal – volume: 42 start-page: 5008 year: 2008 end-page: 5013 article-title: High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice publication-title: Environmental Science & Technology – volume: 8 start-page: 722 year: 2015 end-page: 733 article-title: Arabidopsis NIP3;1 plays an important role in arsenic uptake and root‐to‐shoot translocation under arsenite stress conditions publication-title: Molecular Plant – volume: 115 start-page: 889 year: 2007 end-page: 893 article-title: Dietary arsenic exposure in Bangladesh publication-title: Environmental Health Perspectives – volume: 176 start-page: 590 year: 2007 end-page: 599 article-title: Rapid reduction of arsenate in the medium mediated by plant roots publication-title: New Phytologist – volume: 172 start-page: 1708 year: 2016 end-page: 1719 article-title: OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation publication-title: Plant Physiology – volume: 161 start-page: 2036 year: 2013 end-page: 2048 article-title: Identification of a dual‐targeted protein belonging to the mitochondrial carrier family that is required for early leaf development in rice publication-title: Plant Physiology – volume: 181 start-page: 777 year: 2009 end-page: 794 article-title: Arsenic uptake and metabolism in plants publication-title: New Phytologist – volume: 18 start-page: 2471 year: 1979 end-page: 2480 article-title: Interaction of phosphate analogues with glyceraldehyde‐3‐phosphate dehydrogenase publication-title: Biochemistry – volume: 6 start-page: 26 year: 2008 article-title: A subgroup of plant aquaporins facilitate the bi‐directional diffusion of As(OH) and Sb(OH) across membranes publication-title: BMC Biology – volume: 122 start-page: 1171 year: 2000 end-page: 1177 article-title: Reduction and coordination of arsenic in Indian mustard publication-title: Plant Physiology – volume: 39 start-page: 629 year: 2004 end-page: 642 article-title: Phosphate transport in : Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low‐ and high‐phosphate environments publication-title: Plant Journal – volume: 11 start-page: 1153 year: 1999 end-page: 1163 article-title: Phytochelatin synthase genes from and the yeast publication-title: Plant Cell – volume: 103 start-page: 5413 year: 2006 end-page: 5418 article-title: Hyperaccumulation of arsenic in the shoots of silenced for arsenate reductase (ACR2) publication-title: Proceedings of the National Academy of Sciences, USA – volume: 186 start-page: 392 year: 2010a end-page: 399 article-title: The role of the rice aquaporin Lsi1 in arsenite efflux from roots publication-title: New Phytologist – volume: 74 start-page: 87 year: 2005 end-page: 105 article-title: Yield and water use of irrigated tropical aerobic rice systems publication-title: Agricultural Water Management – volume: 582 start-page: 1625 year: 2008 end-page: 1628 article-title: The aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake publication-title: FEBS Letters – volume: 284 start-page: 2114 year: 2009 end-page: 2120 article-title: NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of publication-title: Journal of Biological Chemistry – volume: 401 start-page: 243 year: 2016 end-page: 257 article-title: Phytotoxicity and detoxification mechanism differ among inorganic and methylated arsenic species in publication-title: Plant and Soil – volume: 111 start-page: 15699 year: 2014 end-page: 15704 article-title: A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain publication-title: Proceedings of the National Academy of Sciences, USA – volume: 30 start-page: 174 year: 2012 end-page: 178 article-title: Genome sequencing reveals agronomically important loci in rice using MutMap publication-title: Nature Biotechnology – volume: 37 start-page: 229 year: 2003 end-page: 234 article-title: Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption publication-title: Environmental Science & Technology – ident: e_1_2_7_17_1 doi: 10.1016/j.febslet.2008.04.022 – ident: e_1_2_7_30_1 doi: 10.1007/s11104-008-9786-y – ident: e_1_2_7_31_1 doi: 10.1104/pp.122.4.1171 – ident: e_1_2_7_15_1 doi: 10.3389/fphys.2012.00182 – ident: e_1_2_7_20_1 doi: 10.1021/es101952f – ident: e_1_2_7_50_1 doi: 10.1111/j.1469-8137.2010.03192.x – ident: e_1_2_7_52_1 doi: 10.1021/es5047099 – ident: e_1_2_7_45_1 doi: 10.1104/pp.112.210831 – ident: e_1_2_7_12_1 doi: 10.1046/j.1365-313X.2003.01860.x – ident: e_1_2_7_11_1 doi: 10.1104/pp.111.181669 – ident: e_1_2_7_46_1 doi: 10.1016/j.molp.2015.01.005 – ident: e_1_2_7_51_1 doi: 10.1111/j.1469-8137.2008.02716.x – ident: e_1_2_7_14_1 doi: 10.1111/j.1469-8137.2007.02009.x – ident: e_1_2_7_27_1 doi: 10.1021/es0259842 – ident: e_1_2_7_37_1 doi: 10.1111/j.1365-313X.2004.02161.x – ident: e_1_2_7_55_1 doi: 10.1021/es8001103 – ident: e_1_2_7_19_1 doi: 10.1074/jbc.M806881200 – ident: e_1_2_7_22_1 doi: 10.1016/j.envint.2011.05.007 – ident: e_1_2_7_25_1 doi: 10.1104/pp.109.150862 – ident: e_1_2_7_32_1 doi: 10.1111/j.1469-8137.2005.01519.x – ident: e_1_2_7_41_1 doi: 10.1111/j.1365-313X.2004.02219.x – ident: e_1_2_7_3_1 doi: 10.1007/7171_2006_086 – ident: e_1_2_7_35_1 doi: 10.1021/cr300015c – ident: e_1_2_7_9_1 doi: 10.1371/journal.pbio.1002009 – ident: e_1_2_7_42_1 doi: 10.1093/jxb/erw362 – ident: e_1_2_7_8_1 doi: 10.1105/tpc.106.041871 – ident: e_1_2_7_16_1 doi: 10.1105/tpc.11.6.1153 – ident: e_1_2_7_21_1 doi: 10.1289/ehp.9462 – ident: e_1_2_7_34_1 doi: 10.1021/es101139z – ident: e_1_2_7_26_1 doi: 10.1073/pnas.0802361105 – ident: e_1_2_7_39_1 doi: 10.1073/pnas.1414968111 – ident: e_1_2_7_28_1 doi: 10.1021/es802612a – ident: e_1_2_7_38_1 doi: 10.1073/pnas.1013964107 – ident: e_1_2_7_10_1 doi: 10.1111/mmi.13371 – ident: e_1_2_7_48_1 doi: 10.1111/nph.13908 – ident: e_1_2_7_53_1 doi: 10.1146/annurev-arplant-042809-112152 – ident: e_1_2_7_4_1 doi: 10.1186/1741-7007-6-26 – ident: e_1_2_7_13_1 doi: 10.1073/pnas.0509770102 – ident: e_1_2_7_29_1 doi: 10.1111/j.1365-2958.1994.tb01018.x – ident: e_1_2_7_33_1 doi: 10.1038/ncomms5617 – ident: e_1_2_7_18_1 doi: 10.1080/00380768.2013.804390 – ident: e_1_2_7_47_1 doi: 10.1111/j.1469-8137.2007.02195.x – ident: e_1_2_7_40_1 doi: 10.1007/s11104-015-2739-3 – ident: e_1_2_7_2_1 doi: 10.1038/nbt.2095 – ident: e_1_2_7_24_1 doi: 10.1371/journal.pone.0042408 – ident: e_1_2_7_6_1 doi: 10.1016/j.envint.2009.02.008 – ident: e_1_2_7_43_1 doi: 10.1021/es802412r – ident: e_1_2_7_7_1 doi: 10.1021/bi00579a006 – volume-title: Routine procedures for growing rice plants in culture solution year: 1976 ident: e_1_2_7_49_1 – ident: e_1_2_7_54_1 doi: 10.1104/pp.107.111443 – ident: e_1_2_7_5_1 doi: 10.1016/j.agwat.2004.11.007 – ident: e_1_2_7_23_1 doi: 10.1104/pp.109.140350 – ident: e_1_2_7_36_1 doi: 10.1104/pp.16.01332 – ident: e_1_2_7_44_1 doi: 10.1104/pp.111.178921 – reference: 28695678 - New Phytol. 2017 Aug;215(3):926-928 |
SSID | ssj0009562 |
Score | 2.583057 |
Snippet | Soil contamination with arsenic (As) can cause phytotoxicity and elevated As accumulation in rice grain. Here, we used a forward genetics approach to... Summary Soil contamination with arsenic (As) can cause phytotoxicity and elevated As accumulation in rice grain. Here, we used a forward genetics approach to... Summary Soil contamination with arsenic (As) can cause phytotoxicity and elevated As accumulation in rice grain. Here, we used a forward genetics approach to... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1090 |
SubjectTerms | Accumulation Adaptation, Physiological - drug effects arsenate arsenate reductase Arsenate Reductases - metabolism Arsenates Arsenates - toxicity Arsenic arsenic (As) Arsenic - metabolism arsenic accumulation arsenite Base Sequence Cloning, Molecular Complementation Contamination Cytoplasm Detoxification E coli Efflux enzyme activity Epidermis epidermis (plant) Escherichia coli Gene expression Gene Expression Regulation, Plant genes Genetic Complementation Test Genetics Grain Localization mutants Mutation Mutation - genetics Nuclei Nucleus Oryza - genetics Oryza - metabolism Phenotype Phenotypes Phytotoxicity Plant Proteins - metabolism Plant Roots - metabolism Plant Shoots - metabolism Pollution Protein Transport Proteins Reductase Rice rice (Oryza sativa) Roots Shoots Skin Soil Soil contamination Soil pollution Subcellular Fractions - metabolism Tests Time Factors Transgenic plants Xylem - metabolism |
Title | OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice |
URI | https://www.jstor.org/stable/90011132 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14572 https://www.ncbi.nlm.nih.gov/pubmed/28407265 https://www.proquest.com/docview/1917628712 https://www.proquest.com/docview/1888681165 https://www.proquest.com/docview/2020882934 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PSx0xEB5EPPSi1VZ9rZa09OBlZc1mkyyeVCqPQq2IwjsUlvzEh3afuO8d2r_emf2FFgXpLZAJZDfzJd9sZr8B-Jr6PJeWiySLXmCA4nlSSBsTYZGdG6l9jHSj--NMjq_E90k-WYLD_l-YVh9i-OBGyGj2awK4sfUjkFd31wjzXNH-S7laRIgu-CPBXcl7BWYp5KRTFaIsnmHkk7OoTUd8jmg-5a3NwXO6Br_6Kbf5Jjf7i7ndd3__UXP8z2d6C6sdIWVHrQetw1KoNmDleIak8c87uPxZj49OBJvWzHVFERjSXIbhcKiQprL57DZQbY7ATOXZfVvZPtStwdQx49zid1cijE0rRhpG7-Hq9NvlyTjpCjEkDvkETzKSBfNe2Bg9L4yOKmrnigzZGrZsVNJn3kmZChFELJxy3isujMpyLwnim7BczaqwDcwY7RWpAHqBsdkBN1lqo0OH0dynURUj2OuXpHSdSjkVy7gt-2gF31HZvKMRfBlM71ppjueMNpt1HSwKIsEYgo9gp1_osoNtXVLwKimGxO7PQzcCjm5RTBVmC7TRWktNqkUv23AqfaqRSYkRbLVONEwA-UCqOI3ea1zh5bmXZ-fjpvHh9aYf4Q0n4tGkKO7A8vx-EXaRNs3tpwYfDxQQEOk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQX3qULBQwCqZdUqeM4zoFDaalS2i4IbaW9pY4fsGrJVs2uUPlN_BX-EzN5qUWtxKUHbpE8iZx4xv7GnnwfwJvQxrEsuAgibwUmKJYHqSx8IApE51oq6z2d6O4PZXYgPo7j8QL86v6Fafgh-g03iox6vqYApw3pc1FennzDOI8T3pZU7rqzH5iwVe92tnB033K-_WG0mQWtpkBgcGnkQUQMV9aKwnvLU6184pUxaUQS9V4VPpE2skbKUAgnfGoSY23ChU6i2EryVnzuDbhJCuLE1L_1hZ-j-JW843yWQo5bHiOqG-q7emH1awogL4O2F5FyvdRt34Pf3UdqKlyO1uazYs38_Is_8n_5ivfhbou52UYTJA9gwZUP4db7KeLis0cw-lRlG5uCTSpmWt0HhkieYcbvSkTibDY9diQ_4pguLTt1X0nxzFWNwcQwbcz8e6uCxiYlI5qmx3BwLW-0BIvltHTLwLRWNiGiQysw_VznOgoLbzAmFLehT9IBrHY-kJuWiJ30QI7zLiHDMcnrMRnA6970pGEfucxoqXak3iIlnL8eYcNK51l5OzNVOeXnktJkbH7VN-OcQgdFunTTOdoopaQiYqarbTipuyoEi2IATxqv7TuAkCdMON29Wvve1X3Ph5-z-uLpv5u-hNvZaH8v39sZ7j6DO5xwVl2RuQKLs9O5e44ocVa8qIOTweF1-_EfTdFvLg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglAvvEsXChgEUi-pUsdxnAOH0mW1pbBUqJX2Fhw_yoo2u2p2hcpf4q_wo5jJSy1qJS49cIvkSeTYM_Y38eT7AF6HNo5lzkUQeSswQbE8SGXuA5EjOtdSWe_pRPfTSA4PxYdxPF6CX-2_MDU_RPfBjSKjWq8pwGfWnwvyYvYNwzxOeFNRuefOfmC-Vr7d7ePkvuF88P5gZxg0kgKBwZ2RBxERXFkrcu8tT7XyiVfGpBEp1HuV-0TayBopQyGc8KlJjLUJFzqJYivJWfG5N-CmkGFKOhH9L_wcw6_kLeWzFHLc0BhR2VDX1QubX13_eBmyvQiUq51ucBd-t2NUF7h831zM803z8y_6yP9kEO_BnQZxs-06RO7DkisewK13U0TFZw_h4HM53N4RbFIy06g-MMTxDPN9VyAOZ_PpsSPxEcd0YdmpOyK9M1fWBhPDtDGLk0YDjU0KRiRNj-DwWt5oFZaLaeHWgGmtbEI0h1Zg8rnFdRTm3mBEKG5Dn6Q92GhdIDMNDTupgRxnbTqGc5JVc9KDV53prOYeucxotfKjziIllL8VYcN661hZsy6VGWXnkpJkbH7ZNeOKQsdEunDTBdoopaQiWqarbThpuyqEiqIHj2un7TqAgCdMON29Ubne1X3PRvvD6uLJv5u-gNv7_UH2cXe09xRWOIGsqhxzHZbnpwv3DCHiPH9ehSaDr9ftxn8AeNJt3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OsHAC4+is+critical+for+arsenate+tolerance+and+regulates+arsenic+accumulation+in+rice&rft.jtitle=The+New+phytologist&rft.au=Xu%2C+Jiming&rft.au=Shi%2C+Shulin&rft.au=Wang%2C+Lei&rft.au=Tang%2C+Zhong&rft.date=2017-08-01&rft.eissn=1469-8137&rft.volume=215&rft.issue=3&rft.spage=1090&rft_id=info:doi/10.1111%2Fnph.14572&rft_id=info%3Apmid%2F28407265&rft.externalDocID=28407265 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |