Dynamics of Escherichia coli type I‐E CRISPR spacers over 42 000 years

CRISPR‐Cas are nucleic acid‐based prokaryotic immune systems. CRISPR arrays accumulate spacers from foreign DNA and provide resistance to mobile genetic elements containing identical or similar sequences. Thus, the set of spacers present in a given bacterium can be regarded as a record of encounters...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology Vol. 26; no. 7; pp. 2019 - 2026
Main Authors Savitskaya, Ekaterina, Lopatina, Anna, Medvedeva, Sofia, Kapustin, Mikhail, Shmakov, Sergey, Tikhonov, Alexey, Artamonova, Irena I., Logacheva, Maria, Severinov, Konstantin
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.04.2017
Subjects
Online AccessGet full text
ISSN0962-1083
1365-294X
1365-294X
DOI10.1111/mec.13961

Cover

Loading…
Abstract CRISPR‐Cas are nucleic acid‐based prokaryotic immune systems. CRISPR arrays accumulate spacers from foreign DNA and provide resistance to mobile genetic elements containing identical or similar sequences. Thus, the set of spacers present in a given bacterium can be regarded as a record of encounters of its ancestors with genetic invaders. Such records should be specific for different lineages and change with time, as earlier acquired spacers get obsolete and are lost. Here, we studied type I‐E CRISPR spacers of Escherichia coli from extinct pachyderm. We find that many spacers recovered from intestines of a 42 000‐year‐old mammoth match spacers of present‐day E. coli. Present‐day CRISPR arrays can be reconstructed from palaeo sequences, indicating that the order of spacers has also been preserved. The results suggest that E. coli CRISPR arrays were not subject to intensive change through adaptive acquisition during this time.
AbstractList CRISPR ‐Cas are nucleic acid‐based prokaryotic immune systems. CRISPR arrays accumulate spacers from foreign DNA and provide resistance to mobile genetic elements containing identical or similar sequences. Thus, the set of spacers present in a given bacterium can be regarded as a record of encounters of its ancestors with genetic invaders. Such records should be specific for different lineages and change with time, as earlier acquired spacers get obsolete and are lost. Here, we studied type I‐E CRISPR spacers of Escherichia coli from extinct pachyderm. We find that many spacers recovered from intestines of a 42 000‐year‐old mammoth match spacers of present‐day E. coli . Present‐day CRISPR arrays can be reconstructed from palaeo sequences, indicating that the order of spacers has also been preserved. The results suggest that E. coli CRISPR arrays were not subject to intensive change through adaptive acquisition during this time.
CRISPR-Cas are nucleic acid-based prokaryotic immune systems. CRISPR arrays accumulate spacers from foreign DNA and provide resistance to mobile genetic elements containing identical or similar sequences. Thus, the set of spacers present in a given bacterium can be regarded as a record of encounters of its ancestors with genetic invaders. Such records should be specific for different lineages and change with time, as earlier acquired spacers get obsolete and are lost. Here, we studied type I-E CRISPR spacers of Escherichia coli from extinct pachyderm. We find that many spacers recovered from intestines of a 42 000-year-old mammoth match spacers of present-day E. coli . Present-day CRISPR arrays can be reconstructed from palaeo sequences, indicating that the order of spacers has also been preserved. The results suggest that E. coli CRISPR arrays were not subject to intensive change through adaptive acquisition during this time.
CRISPR-Cas are nucleic acid-based prokaryotic immune systems. CRISPR arrays accumulate spacers from foreign DNA and provide resistance to mobile genetic elements containing identical or similar sequences. Thus, the set of spacers present in a given bacterium can be regarded as a record of encounters of its ancestors with genetic invaders. Such records should be specific for different lineages and change with time, as earlier acquired spacers get obsolete and are lost. Here, we studied type I-E CRISPR spacers of Escherichia coli from extinct pachyderm. We find that many spacers recovered from intestines of a 42 000-year-old mammoth match spacers of present-day E. coli. Present-day CRISPR arrays can be reconstructed from palaeo sequences, indicating that the order of spacers has also been preserved. The results suggest that E. coli CRISPR arrays were not subject to intensive change through adaptive acquisition during this time.
CRISPR‐Cas are nucleic acid‐based prokaryotic immune systems. CRISPR arrays accumulate spacers from foreign DNA and provide resistance to mobile genetic elements containing identical or similar sequences. Thus, the set of spacers present in a given bacterium can be regarded as a record of encounters of its ancestors with genetic invaders. Such records should be specific for different lineages and change with time, as earlier acquired spacers get obsolete and are lost. Here, we studied type I‐E CRISPR spacers of Escherichia coli from extinct pachyderm. We find that many spacers recovered from intestines of a 42 000‐year‐old mammoth match spacers of present‐day E. coli. Present‐day CRISPR arrays can be reconstructed from palaeo sequences, indicating that the order of spacers has also been preserved. The results suggest that E. coli CRISPR arrays were not subject to intensive change through adaptive acquisition during this time.
CRISPR-Cas are nucleic acid-based prokaryotic immune systems. CRISPR arrays accumulate spacers from foreign DNA and provide resistance to mobile genetic elements containing identical or similar sequences. Thus, the set of spacers present in a given bacterium can be regarded as a record of encounters of its ancestors with genetic invaders. Such records should be specific for different lineages and change with time, as earlier acquired spacers get obsolete and are lost. Here, we studied type I-E CRISPR spacers of Escherichia coli from extinct pachyderm. We find that many spacers recovered from intestines of a 42 000-year-old mammoth match spacers of present-day E. coli. Present-day CRISPR arrays can be reconstructed from palaeo sequences, indicating that the order of spacers has also been preserved. The results suggest that E. coliCRISPR arrays were not subject to intensive change through adaptive acquisition during this time.
CRISPR-Cas are nucleic acid-based prokaryotic immune systems. CRISPR arrays accumulate spacers from foreign DNA and provide resistance to mobile genetic elements containing identical or similar sequences. Thus, the set of spacers present in a given bacterium can be regarded as a record of encounters of its ancestors with genetic invaders. Such records should be specific for different lineages and change with time, as earlier acquired spacers get obsolete and are lost. Here, we studied type I-E CRISPR spacers of Escherichia coli from extinct pachyderm. We find that many spacers recovered from intestines of a 42 000-year-old mammoth match spacers of present-day E. coli. Present-day CRISPR arrays can be reconstructed from palaeo sequences, indicating that the order of spacers has also been preserved. The results suggest that E. coli CRISPR arrays were not subject to intensive change through adaptive acquisition during this time.CRISPR-Cas are nucleic acid-based prokaryotic immune systems. CRISPR arrays accumulate spacers from foreign DNA and provide resistance to mobile genetic elements containing identical or similar sequences. Thus, the set of spacers present in a given bacterium can be regarded as a record of encounters of its ancestors with genetic invaders. Such records should be specific for different lineages and change with time, as earlier acquired spacers get obsolete and are lost. Here, we studied type I-E CRISPR spacers of Escherichia coli from extinct pachyderm. We find that many spacers recovered from intestines of a 42 000-year-old mammoth match spacers of present-day E. coli. Present-day CRISPR arrays can be reconstructed from palaeo sequences, indicating that the order of spacers has also been preserved. The results suggest that E. coli CRISPR arrays were not subject to intensive change through adaptive acquisition during this time.
Author Savitskaya, Ekaterina
Severinov, Konstantin
Tikhonov, Alexey
Kapustin, Mikhail
Lopatina, Anna
Artamonova, Irena I.
Medvedeva, Sofia
Logacheva, Maria
Shmakov, Sergey
AuthorAffiliation Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
Skolkovo Institute of Science and Technology, Skolkovo, Russia
Institute of Applied Ecology of the North, North-Eastern Federal University, Yakutsk, Russia
M.V. Lomonosov Moscow State University, Moscow, Russia
Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
A.A. Kharkevich Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
AuthorAffiliation_xml – name: Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
– name: Institute of Applied Ecology of the North, North-Eastern Federal University, Yakutsk, Russia
– name: A.A. Kharkevich Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
– name: Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
– name: Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
– name: Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
– name: N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
– name: M.V. Lomonosov Moscow State University, Moscow, Russia
– name: Skolkovo Institute of Science and Technology, Skolkovo, Russia
Author_xml – sequence: 1
  givenname: Ekaterina
  surname: Savitskaya
  fullname: Savitskaya, Ekaterina
  organization: Russian Academy of Sciences
– sequence: 2
  givenname: Anna
  surname: Lopatina
  fullname: Lopatina, Anna
  organization: Russian Academy of Sciences
– sequence: 3
  givenname: Sofia
  surname: Medvedeva
  fullname: Medvedeva, Sofia
  organization: Russian Academy of Sciences
– sequence: 4
  givenname: Mikhail
  surname: Kapustin
  fullname: Kapustin, Mikhail
  organization: Skolkovo Institute of Science and Technology
– sequence: 5
  givenname: Sergey
  surname: Shmakov
  fullname: Shmakov, Sergey
  organization: Skolkovo Institute of Science and Technology
– sequence: 6
  givenname: Alexey
  surname: Tikhonov
  fullname: Tikhonov, Alexey
  organization: North‐Eastern Federal University
– sequence: 7
  givenname: Irena I.
  surname: Artamonova
  fullname: Artamonova, Irena I.
  organization: Russian Academy of Sciences
– sequence: 8
  givenname: Maria
  surname: Logacheva
  fullname: Logacheva, Maria
  organization: M.V. Lomonosov Moscow State University
– sequence: 9
  givenname: Konstantin
  surname: Severinov
  fullname: Severinov, Konstantin
  email: severik@waksman.rutgers.edu
  organization: the State University of New Jersey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27997045$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9u1DAUhy1URKdTFlwARWJTFmn9J47tDRKaDjCoiKp0wc5ynBfGVRIPdqYoO47AEXqWHoWT4HamCCpQvfHC3_v8fvbbQzu97wGhZwQfkrSOOrCHhKmSPEITwkqeU1V83kETrEqaEyzZLtqL8QJjwijnT9AuFUoJXPAJen889qZzNma-yebRLiE4u3Qms7512TCuIFv8_P5jns3OFp9Oz7K4MhZCoi8hZAW9vsIYX1-NYELcR48b00Z4ut2n6PzN_Hz2Lj_5-HYxe32SW44VyStVUygqLjklFkhZ1oaUXAppeYEJraSqZQMNGGiKWlErmJCssQKEqCum2BS92mhX66qD2kI_BNPqVXCdCaP2xum_T3q31F_8pU43EqlkEhxsBcF_XUMcdOeihbY1Pfh11DRFYoWikjyIJh-RkvLbth5COaFKseSeohf30Au_Dn16s0RJQTCmrEjU8z9z_g5493cJONoANvgYAzTausEMzt_Edq0mWN9Mh07ToW-nI1W8vFdxJ_0Xu7V_cy2M_wf1h_lsU_ELytXIKQ
CitedBy_id crossref_primary_10_1099_mgen_0_000625
crossref_primary_10_1038_s41467_019_13205_2
crossref_primary_10_1128_ecosalplus_esp_0008_2018
crossref_primary_10_3389_fmicb_2021_664299
crossref_primary_10_1089_crispr_2021_0012
crossref_primary_10_1093_nar_gkab821
crossref_primary_10_1038_s42003_020_1014_1
crossref_primary_10_1016_j_biochi_2023_07_017
crossref_primary_10_1186_s12864_019_5922_8
crossref_primary_10_3389_fvets_2022_1055320
crossref_primary_10_2217_fmb_2022_0081
crossref_primary_10_3390_ani12040503
crossref_primary_10_1111_mec_14091
crossref_primary_10_3389_fmicb_2019_02054
crossref_primary_10_1016_j_vetmic_2022_109338
crossref_primary_10_3390_ijms232416195
crossref_primary_10_1128_mBio_01397_17
crossref_primary_10_3390_v10090479
crossref_primary_10_1016_j_chom_2023_08_005
crossref_primary_10_1038_s41467_017_00158_7
crossref_primary_10_1371_journal_pone_0209357
crossref_primary_10_1093_ismejo_wrae005
crossref_primary_10_3390_molecules24040784
Cites_doi 10.1111/j.1365-2958.2012.08171.x
10.1038/ncomms1937
10.1128/JB.01412-07
10.1111/j.1574-6941.2006.00105.x
10.1099/mic.0.036046-0
10.1111/j.1365-2958.2012.08172.x
10.3389/fmicb.2016.00398
10.1038/ismej.2015.162
10.1038/nrmicro3569
10.1128/JB.01307-10
10.1093/nar/gks216
10.1093/bioinformatics/btp450
10.1099/mic.0.28048-0
10.1038/ncomms2440
10.1371/journal.pone.0035888
10.1371/journal.pone.0124090
10.1126/science.1165771
10.1126/science.1159689
10.1093/nar/gku226
10.1016/j.tibs.2009.05.002
10.1128/JB.01415-07
10.1126/science.1138140
10.1111/j.1365-2958.2010.07073.x
10.1101/cshperspect.a012567
10.1007/s00239-004-0046-3
10.1111/j.1365-2958.2010.07265.x
10.1126/science.281.5375.402
10.1128/mBio.00262-15
10.1126/science.1157358
10.1101/gr.849004
10.1099/mic.0.27437-0
10.1002/bies.201400160
10.1093/gbe/evv113
10.1371/journal.pone.0011126
ContentType Journal Article
Copyright 2016 John Wiley & Sons Ltd
2016 John Wiley & Sons Ltd.
Copyright © 2017 John Wiley & Sons Ltd
Copyright_xml – notice: 2016 John Wiley & Sons Ltd
– notice: 2016 John Wiley & Sons Ltd.
– notice: Copyright © 2017 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7QL
7S9
L.6
5PM
DOI 10.1111/mec.13961
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

MEDLINE

AGRICOLA
Entomology Abstracts
MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 2026
ExternalDocumentID PMC5851898
4321672831
27997045
10_1111_mec_13961
MEC13961
Genre article
Journal Article
GrantInformation_xml – fundername: Russian Foundation for Basic Research
  funderid: 16‐04‐00767; 17‐04‐02144
– fundername: Russian Science Foundation
  funderid: 14‐14‐00988
– fundername: NIGMS NIH HHS
  grantid: R01 GM104071
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7QL
7S9
L.6
5PM
ID FETCH-LOGICAL-c5091-b9d2e4b58521ce166da165878c54012b89d8fefeaef4d92c73783fc7e77db393
IEDL.DBID DR2
ISSN 0962-1083
1365-294X
IngestDate Thu Aug 21 18:17:04 EDT 2025
Fri Jul 11 18:22:49 EDT 2025
Fri Jul 11 11:27:40 EDT 2025
Thu Jul 10 18:34:09 EDT 2025
Wed Aug 13 09:29:08 EDT 2025
Mon Jul 21 05:46:34 EDT 2025
Tue Jul 01 03:21:59 EDT 2025
Thu Apr 24 22:55:08 EDT 2025
Wed Jan 22 16:28:15 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords CRISPR arrays
CRISPR spacers
Escherichia coli
palaeo DNA
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5091-b9d2e4b58521ce166da165878c54012b89d8fefeaef4d92c73783fc7e77db393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5851898
PMID 27997045
PQID 1887100234
PQPubID 31465
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5851898
proquest_miscellaneous_2000349281
proquest_miscellaneous_1891882539
proquest_miscellaneous_1851299300
proquest_journals_1887100234
pubmed_primary_27997045
crossref_citationtrail_10_1111_mec_13961
crossref_primary_10_1111_mec_13961
wiley_primary_10_1111_mec_13961_MEC13961
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2017
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: April 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2015; 13
2010; 77
2008; 190
2015; 37
2009; 25
1998; 281
2010; 75
2015; 6
2005; 151
2013; 4
2015; 10
2016; 10
2005; 60
2008; 322
2008; 321
2008; 320
2013; 5
2015; 7
2011; 193
2009; 29
2014; 42
2009; 34
2016; 7
2012; 3
2007; 315
2004; 14
2010; 156
1953; 40
2012; 7
2010; 5
2012; 85
2012; 40
e_1_2_5_27_1
e_1_2_5_28_1
Fisher D (e_1_2_5_12_1) 2009; 29
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 6
  start-page: 1
  year: 2015
  end-page: 9
  article-title: CRISPR immunity drives rapid phage genome evolution in
  publication-title: mBio
– volume: 10
  start-page: e0124090
  year: 2015
  article-title: CRISPR diversity in isolates from australian animals, humans and environmental waters
  publication-title: PLoS One
– volume: 4
  start-page: 1430
  year: 2013
  article-title: Strong bias in the bacterial CRISPR elements that confer immunity to phage
  publication-title: Nature Communications
– volume: 40
  start-page: 5569
  year: 2012
  end-page: 5576
  article-title: Proteins and DNA elements essential for the CRISPR adaptation process in
  publication-title: Nucleic Acids Research
– volume: 321
  start-page: 960
  year: 2008
  end-page: 964
  article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes
  publication-title: Science
– volume: 281
  start-page: 402
  year: 1998
  end-page: 406
  article-title: Molecular coproscopy: dung and diet of the extinct ground sloth nothrotheriops shastensis
  publication-title: Science
– volume: 85
  start-page: 1057
  year: 2012
  end-page: 1071
  article-title: The highly dynamic CRISPR1 system of controls the diversity of its mobilome
  publication-title: Molecular Microbiology
– volume: 5
  start-page: a012567
  year: 2013
  article-title: Ancient DNA damage
  publication-title: Cold Spring Harbor Perspectives in Biology
– volume: 42
  start-page: 5907
  year: 2014
  end-page: 5916
  article-title: Pervasive generation of oppositely oriented spacers during CRISPR adaptation
  publication-title: Nucleic Acids Research
– volume: 5
  start-page: e11126
  year: 2010
  article-title: The small, slow and specialized CRISPR and anti‐CRISPR of and
  publication-title: PLoS One
– volume: 85
  start-page: 1044
  year: 2012
  end-page: 1056
  article-title: Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms
  publication-title: Molecular Microbiology
– volume: 25
  start-page: 2607
  year: 2009
  end-page: 2608
  article-title: ShortRead: a bioconductor package for input, quality assessment and exploration of high‐throughput sequence data
  publication-title: Bioinformatics (Oxford, England)
– volume: 151
  start-page: 2551
  year: 2005
  end-page: 2561
  article-title: Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
  publication-title: Microbiology
– volume: 156
  start-page: 1351
  year: 2010
  end-page: 1361
  article-title: Diversity of CRISPR loci in
  publication-title: Microbiology
– volume: 7
  start-page: 398
  year: 2016
  article-title: Metagenomic analysis of bacterial communities of antarctic surface snow
  publication-title: Frontiers in Microbiology
– volume: 320
  start-page: 1047
  year: 2008
  end-page: 1050
  article-title: Virus population dynamics and acquired virus resistance in natural microbial communities
  publication-title: Science
– volume: 190
  start-page: 1401
  year: 2008
  end-page: 1412
  article-title: Diversity, activity, and evolution of CRISPR loci in
  publication-title: Journal of Bacteriology
– volume: 322
  start-page: 1843
  year: 2008
  end-page: 1845
  article-title: CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
  publication-title: Science (New York, N.Y.)
– volume: 151
  start-page: 653
  year: 2005
  end-page: 663
  article-title: CRISPR elements in acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies
  publication-title: Microbiology
– volume: 37
  start-page: 284
  year: 2015
  end-page: 293
  article-title: The future of ancient DNA: Technical advances and conceptual shifts
  publication-title: Bioassay
– volume: 10
  start-page: 858
  year: 2016
  end-page: 870
  article-title: Metagenomic reconstructions of bacterial CRISPR loci constrain population histories
  publication-title: The ISME Journal
– volume: 193
  start-page: 2460
  year: 2011
  end-page: 2467
  article-title: CRISPR distribution within the species is not suggestive of immunity‐associated diversifying selection
  publication-title: Journal of Bacteriology
– volume: 190
  start-page: 1390
  year: 2008
  end-page: 1400
  article-title: Phage response to CRISPR‐encoded resistance in
  publication-title: Journal of Bacteriology
– volume: 34
  start-page: 401
  year: 2009
  end-page: 407
  article-title: CRISPR‐based adaptive and heritable immunity in prokaryotes
  publication-title: Trends in Biochemical Sciences
– volume: 75
  start-page: 1495
  year: 2010
  end-page: 1512
  article-title: Identification and characterization of CRISPR‐ promoters and their silencing by H‐NS
  publication-title: Molecular Microbiology
– volume: 7
  start-page: 1925
  year: 2015
  end-page: 1939
  article-title: The contribution of genetic recombination to CRISPR array evolution
  publication-title: Genome Biology and Evolution
– volume: 29
  start-page: 96A
  year: 2009
  article-title: Life history of remarkably preserved woolly mammoth calf from the Yamal peninsula, northwestern Siberia
  publication-title: Journal of Vertebrate Paleontology
– volume: 13
  start-page: 722
  year: 2015
  end-page: 736
  article-title: An updated evolutionary classification of CRISPR–Cas systems
  publication-title: Nature Reviews Microbiology
– volume: 3
  start-page: 945
  year: 2012
  article-title: Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system
  publication-title: Nature Communications
– volume: 40
  start-page: 237
  year: 1953
  end-page: 264
  article-title: The population frequencies of species and the estimation of population parameters
  publication-title: Biometrika
– volume: 315
  start-page: 1709
  year: 2007
  end-page: 1712
  article-title: CRISPR provides acquired resistance against viruses in prokaryotes
  publication-title: Science
– volume: 14
  start-page: 1188
  year: 2004
  end-page: 1190
  article-title: WebLogo: a sequence logo generator
  publication-title: Genome Research
– volume: 7
  start-page: e35888
  year: 2012
  article-title: CRISPR interference directs strand specific spacer acquisition
  publication-title: PLoS One
– volume: 77
  start-page: 1367
  year: 2010
  end-page: 1379
  article-title: Transcription, processing and function of CRISPR cassettes in
  publication-title: Molecular Microbiology
– volume: 60
  start-page: 174
  year: 2005
  end-page: 182
  article-title: Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
  publication-title: Journal of Molecular Evolution
– ident: e_1_2_5_11_1
  doi: 10.1111/j.1365-2958.2012.08171.x
– ident: e_1_2_5_8_1
  doi: 10.1038/ncomms1937
– ident: e_1_2_5_9_1
  doi: 10.1128/JB.01412-07
– ident: e_1_2_5_13_1
  doi: 10.1111/j.1574-6941.2006.00105.x
– ident: e_1_2_5_10_1
  doi: 10.1099/mic.0.036046-0
– ident: e_1_2_5_18_1
  doi: 10.1111/j.1365-2958.2012.08172.x
– ident: e_1_2_5_17_1
  doi: 10.3389/fmicb.2016.00398
– ident: e_1_2_5_32_1
  doi: 10.1038/ismej.2015.162
– ident: e_1_2_5_19_1
  doi: 10.1038/nrmicro3569
– ident: e_1_2_5_35_1
  doi: 10.1128/JB.01307-10
– ident: e_1_2_5_36_1
  doi: 10.1093/nar/gks216
– ident: e_1_2_5_22_1
  doi: 10.1093/bioinformatics/btp450
– ident: e_1_2_5_4_1
  doi: 10.1099/mic.0.28048-0
– ident: e_1_2_5_24_1
  doi: 10.1038/ncomms2440
– ident: e_1_2_5_33_1
  doi: 10.1371/journal.pone.0035888
– ident: e_1_2_5_30_1
  doi: 10.1371/journal.pone.0124090
– ident: e_1_2_5_20_1
  doi: 10.1126/science.1165771
– ident: e_1_2_5_5_1
  doi: 10.1126/science.1159689
– ident: e_1_2_5_31_1
  doi: 10.1093/nar/gku226
– ident: e_1_2_5_23_1
  doi: 10.1016/j.tibs.2009.05.002
– ident: e_1_2_5_15_1
  doi: 10.1128/JB.01415-07
– ident: e_1_2_5_3_1
  doi: 10.1126/science.1138140
– ident: e_1_2_5_29_1
  doi: 10.1111/j.1365-2958.2010.07073.x
– ident: e_1_2_5_7_1
  doi: 10.1101/cshperspect.a012567
– ident: e_1_2_5_21_1
  doi: 10.1007/s00239-004-0046-3
– ident: e_1_2_5_27_1
  doi: 10.1111/j.1365-2958.2010.07265.x
– ident: e_1_2_5_26_1
  doi: 10.1126/science.281.5375.402
– ident: e_1_2_5_25_1
  doi: 10.1128/mBio.00262-15
– volume: 29
  start-page: 96A
  year: 2009
  ident: e_1_2_5_12_1
  article-title: Life history of remarkably preserved woolly mammoth calf from the Yamal peninsula, northwestern Siberia
  publication-title: Journal of Vertebrate Paleontology
– ident: e_1_2_5_2_1
  doi: 10.1126/science.1157358
– ident: e_1_2_5_6_1
  doi: 10.1101/gr.849004
– ident: e_1_2_5_28_1
  doi: 10.1099/mic.0.27437-0
– ident: e_1_2_5_14_1
  doi: 10.1002/bies.201400160
– ident: e_1_2_5_16_1
  doi: 10.1093/gbe/evv113
– ident: e_1_2_5_34_1
  doi: 10.1371/journal.pone.0011126
SSID ssj0013255
Score 2.349049
Snippet CRISPR‐Cas are nucleic acid‐based prokaryotic immune systems. CRISPR arrays accumulate spacers from foreign DNA and provide resistance to mobile genetic...
CRISPR ‐Cas are nucleic acid‐based prokaryotic immune systems. CRISPR arrays accumulate spacers from foreign DNA and provide resistance to mobile genetic...
CRISPR-Cas are nucleic acid-based prokaryotic immune systems. CRISPR arrays accumulate spacers from foreign DNA and provide resistance to mobile genetic...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2019
SubjectTerms ancestry
Animals
bacteria
Biological Evolution
Clustered Regularly Interspaced Short Palindromic Repeats
CRISPR arrays
CRISPR spacers
DNA
DNA, Ancient
DNA, Bacterial - genetics
E coli
Escherichia coli
Escherichia coli - genetics
immune system
interspersed repetitive sequences
intestines
Intestines - microbiology
Mammoths - microbiology
Nucleic acids
palaeo DNA
Sequence Analysis, DNA
Title Dynamics of Escherichia coli type I‐E CRISPR spacers over 42 000 years
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.13961
https://www.ncbi.nlm.nih.gov/pubmed/27997045
https://www.proquest.com/docview/1887100234
https://www.proquest.com/docview/1851299300
https://www.proquest.com/docview/1891882539
https://www.proquest.com/docview/2000349281
https://pubmed.ncbi.nlm.nih.gov/PMC5851898
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VlZC48P-zUJBBHLhktbGT2BYntKRqKxWhpUg9IEW244gVkEVk97CceAQeoc_SR-FJmHF-tEspQtwS5Uvk2J7JZ8_kG4BnemK1yQQF3UsqYZaoyGQmjWxmMxciTSn973z8Ojt4lxydpqc78KL_F6bVhxg23Mgygr8mAze22TDyz96Nkb6EpQ_lahEhmvGNCEKoeIoMnaOrUaJTFaIsnuHO7W_RBYJ5MU9yk7-GD9D-dXjfN73NO_k4Xi3t2H37TdXxP9_tBlzriCl72c6km7Dj61twpS1VucajPMhbr2_D0au2iH3DFhXLGxr0OSVMMwTMGW3pssOf33_kbDo7fPtmxtBlOeSYjHJFWcLPz9A9np-t0cKaO3Cyn59MD6KuIkPkiFhEVpfcJxaXGDx2Ps6y0sRIYaRySPxibpUuVeUrb3yFQ8-dFFKJykkvZWmFFndht17U_j6wWPiyMpUvLS7IfJpY7gzC0H_ieczjETzvh6ZwnVo5Fc34VPSrFuyjIvTRCJ4O0C-tRMefQHv9-BadlTZFjB6WJGhFMoInw2W0LwqamNovVoQhSqTFZPI3jMZH8VToyzG8lQLiCptyr51WQ2u51Foitx6B3JpwA4A0wLev1PMPQQucorpKK-yuMJ8u74DiOJ-Ggwf_Dn0IVzmxmJCotAe7y68r_wg52NI-Dsb2CwtrLNQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB5VRQgu_P-kFFgQBy6O4l3_7EpcUOoqKU2FQpB6QZZ3vRYR4KAmOaSnPgKP0Gfpo_AkzKx_lFCKEDdb_mytd3fG3-6MvwF4pXpaZZGgoHtOJcwC6WVRFno60pFxkaaQ_nceHUWDj8HBcXi8BW-af2EqfYh2w40sw_lrMnDakF6z8m_WdJG_0NrnGlX0pvoFe2O-FkNwNU-Ro3N0NlLUukKUx9Peuvk1ukQxL2dKrjNY9wnavw2fmsZXmSdfusuF7prT33Qd__ft7sCtmpuyt9VkugtbtrwH16tqlSs8SpzC9eo-HOxVdeznbFawZE7jPqWcaYaAKaNdXTb8efYjYf3x8MP7MUOvZZBmMkoXZQG_OEcPeXG-QiObP4DJfjLpD7y6KINniFt4WuXcBhpXGdw31o-iPPORxcTSIPfzuZYql4UtbGYLHH1uYhFLUZjYxnGuhRIPYbuclfYxMF_YvMgKm2tck9kw0NxkCEMXiuc-9zvwuhmb1NSC5VQ342vaLFywj1LXRx142UK_VyodfwLtNgOc1oY6T310sqRCK4IOvGgvo4lR3CQr7WxJGGJFSvR6f8MofBQPhboawys1IC6xKY-qedW2lsdKxUivOxBvzLgWQDLgm1fK6WcnB06BXakkdpebUFd3QDpK-u5g59-hz-HGYDI6TA-HR--ewE1OpMblLe3C9uJkaZ8iJVvoZ87yfgGyzzDu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VrUBcWn7bhRYM4sAlq42dxLE4oW1W3UKrailSD0hR7DhiBWQrdvewnHgEHqHP0kfhSTrj_GiXUoS4JcqXyLE9k8-eyTcAL1VPqywSFHTPqYRZEHtZlIWejnRkXKQppP-dj46jgw_B4Vl4tgavm39hKn2IdsONLMP5azLw87xYMvKv1nSRvtDSZyOI0FiIEY34UgjBlTxFis7R18SilhWiNJ721tWP0TWGeT1RcpnAui_QYAs-Nm2vEk8-d-cz3TXff5N1_M-XuwubNTNlb6qpdA_WbHkfblW1Khd4lDh968UDONyvqthP2aRgyZRGfUwZ0wwBY0Z7umz468fPhPVHw_cnI4Y-yyDJZJQsygJ-eYH-8fJigSY2fQing-S0f-DVJRk8Q8zC0yrnNtC4xuC-sX4U5ZmPHEbGBpmfz3Ws8riwhc1sgWPPjRQyFoWRVspcCyUewXo5Ke0OMF_YvMgKm2tckdkw0NxkCEMHiuc-9zvwqhma1NRy5VQ140vaLFuwj1LXRx140ULPK42OP4F2m_FNazOdpj66WNKgFUEHnreX0cAoapKVdjInDHEiJXq9v2EUPoqHQt2M4ZUWEI-xKdvVtGpby6VSEsl1B-TKhGsBJAK-eqUcf3Ji4BTWjVWM3eXm080dkB4lfXfw-N-hz-D2yf4gfTc8fvsE7nBiNC5paRfWZ9_mdg_52Ew_dXZ3BR3nL6Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+Escherichia+coli+type+I%E2%80%90E+CRISPR+spacers+over+42%C2%A0000%C2%A0years&rft.jtitle=Molecular+ecology&rft.au=Savitskaya%2C+Ekaterina&rft.au=Lopatina%2C+Anna&rft.au=Medvedeva%2C+Sofia&rft.au=Kapustin%2C+Mikhail&rft.date=2017-04-01&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=26&rft.issue=7&rft.spage=2019&rft.epage=2026&rft_id=info:doi/10.1111%2Fmec.13961&rft.externalDBID=10.1111%252Fmec.13961&rft.externalDocID=MEC13961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon