Martian planetary heavy ion sputtering of Phobos
The Martian moons, Phobos and Deimos, have long been suspected to be the sources of tenuous neutral gas tori encircling Mars. While direct outgassing has been ruled out as a strong source, micrometeoroid impact vaporization and charged particle sputtering must operate based on observations at other...
Saved in:
Published in | Geophysical research letters Vol. 41; no. 18; pp. 6335 - 6341 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington
Blackwell Publishing Ltd
28.09.2014
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0094-8276 1944-8007 |
DOI | 10.1002/2014GL061100 |
Cover
Abstract | The Martian moons, Phobos and Deimos, have long been suspected to be the sources of tenuous neutral gas tori encircling Mars. While direct outgassing has been ruled out as a strong source, micrometeoroid impact vaporization and charged particle sputtering must operate based on observations at other airless bodies. Previous models have addressed solar wind sputtering of Phobos; however, Phobos and Deimos are also subject to a significant, yet temporally variable, flux of heavy planetary ions escaping from Mars. In this report, we use a combination MHD/test‐particle model to calculate the planetary heavy ion flux to Phobos and the ensuing neutral sputtered flux. Depending on ambient solar wind conditions and the location of Phobos, heavy ion sputtering of Phobos generates neutral fluxes up to and exceeding that from solar wind sputtering. We model pickup ions from the Phobos torus itself with applications for observations by the upcoming Mars Atmospheric and Volatile Evolution mission.
Key Points
We assess neutral sputtering of Phobos by escaping Martian O+ ionsMartian O+ sputters at rates larger than solar wind depending on SW conditionsMAVEN may detect the Phobos torus via newly generated torus pickup ions |
---|---|
AbstractList | The Martian moons, Phobos and Deimos, have long been suspected to be the sources of tenuous neutral gas tori encircling Mars. While direct outgassing has been ruled out as a strong source, micrometeoroid impact vaporization and charged particle sputtering must operate based on observations at other airless bodies. Previous models have addressed solar wind sputtering of Phobos; however, Phobos and Deimos are also subject to a significant, yet temporally variable, flux of heavy planetary ions escaping from Mars. In this report, we use a combination MHD/test-particle model to calculate the planetary heavy ion flux to Phobos and the ensuing neutral sputtered flux. Depending on ambient solar wind conditions and the location of Phobos, heavy ion sputtering of Phobos generates neutral fluxes up to and exceeding that from solar wind sputtering. We model pickup ions from the Phobos torus itself with applications for observations by the upcoming Mars Atmospheric and Volatile Evolution mission. The Martian moons, Phobos and Deimos, have long been suspected to be the sources of tenuous neutral gas tori encircling Mars. While direct outgassing has been ruled out as a strong source, micrometeoroid impact vaporization and charged particle sputtering must operate based on observations at other airless bodies. Previous models have addressed solar wind sputtering of Phobos; however, Phobos and Deimos are also subject to a significant, yet temporally variable, flux of heavy planetary ions escaping from Mars. In this report, we use a combination MHD/test-particle model to calculate the planetary heavy ion flux to Phobos and the ensuing neutral sputtered flux. Depending on ambient solar wind conditions and the location of Phobos, heavy ion sputtering of Phobos generates neutral fluxes up to and exceeding that from solar wind sputtering. We model pickup ions from the Phobos torus itself with applications for observations by the upcoming Mars Atmospheric and Volatile Evolution mission. Key Points * We assess neutral sputtering of Phobos by escaping Martian O+ ions * Martian O+ sputters at rates larger than solar wind depending on SW conditions * MAVEN may detect the Phobos torus via newly generated torus pickup ions The Martian moons, Phobos and Deimos, have long been suspected to be the sources of tenuous neutral gas tori encircling Mars. While direct outgassing has been ruled out as a strong source, micrometeoroid impact vaporization and charged particle sputtering must operate based on observations at other airless bodies. Previous models have addressed solar wind sputtering of Phobos; however, Phobos and Deimos are also subject to a significant, yet temporally variable, flux of heavy planetary ions escaping from Mars. In this report, we use a combination MHD/test‐particle model to calculate the planetary heavy ion flux to Phobos and the ensuing neutral sputtered flux. Depending on ambient solar wind conditions and the location of Phobos, heavy ion sputtering of Phobos generates neutral fluxes up to and exceeding that from solar wind sputtering. We model pickup ions from the Phobos torus itself with applications for observations by the upcoming Mars Atmospheric and Volatile Evolution mission. Key Points We assess neutral sputtering of Phobos by escaping Martian O+ ionsMartian O+ sputters at rates larger than solar wind depending on SW conditionsMAVEN may detect the Phobos torus via newly generated torus pickup ions |
Author | Poppe, A. R. Curry, S. M. |
Author_xml | – sequence: 1 givenname: A. R. surname: Poppe fullname: Poppe, A. R. email: poppe@ssl.berkeley.edu organization: Space Sciences Laboratory, University of California, California, Berkeley, USA – sequence: 2 givenname: S. M. surname: Curry fullname: Curry, S. M. organization: Space Sciences Laboratory, University of California, California, Berkeley, USA |
BookMark | eNqFkM1OGzEURq0KpIbQXR9gJDZdMPT6P15WCAaiFKqohaXlmdqNYRgH22nJ2-MoFUJZwMrX0vnu_XQO0N4QBovQZwwnGIB8JYBZMwOBy-8DGmHFWD0BkHtoBKDKTKT4iA5SugMAChSPEHw3MXszVMveDDabuK4W1vxdVz4MVVqucrbRD3-q4Kofi9CGdIj2nemT_fT_HaNf52c_Ty_q2XVzefptVnccFK4pkw6rTnABDhNXJtm6lvNSjmJMhRQCjG2pay35TRRwKplg0FnVMdISR8foy3bvMobHlU1ZP_jU2X5TM6ySxoIQriYKq4Ie7aB3YRWH0k5jhUEJJuTkTUpySSaMw4Y63lJdDClF6_Qy-oeiRWPQG8n6teSCkx2889nkIi9H4_t3Qv98b9dvHtDNfMZJEVpC9TbkU7ZPLyET77WQVHJ9e9XoeTO_mk7ljVb0GRyvmho |
CitedBy_id | crossref_primary_10_1038_s41526_024_00373_9 crossref_primary_10_1029_2020JE006583 crossref_primary_10_1016_j_icarus_2023_115916 crossref_primary_10_1038_s42005_024_01766_8 crossref_primary_10_1029_2019JE006197 crossref_primary_10_1002_2017JE005426 crossref_primary_10_1002_2017JE005359 crossref_primary_10_1002_2015JE004948 crossref_primary_10_1186_s40623_021_01452_x crossref_primary_10_1002_2016GL068393 crossref_primary_10_1029_2018JE005647 crossref_primary_10_1038_s41561_020_00682_0 crossref_primary_10_1002_2015JA022324 crossref_primary_10_1186_s40623_021_01545_7 |
Cites_doi | 10.1016/S0168-583X(98)00399-1 10.1016/j.icarus.2011.01.036 10.1029/2003JA010367 10.1029/GL017i006p00857 10.1038/35084184 10.1029/2000JE001365 10.1029/90JA01753 10.1029/GL017i006p00861 10.1002/2014GL059515 10.1029/1999GL010703 10.1016/j.icarus.2009.07.017 10.1038/341604a0 10.1029/2007JE002915 10.1029/2001JA000328 10.1016/0032-0633(91)90133-U 10.1007/BF00614759 10.1016/j.icarus.2011.08.003 10.1016/j.icarus.2005.02.013 10.1016/j.icarus.2005.09.020 10.1002/2013JA019221 10.1016/j.icarus.2009.01.012 10.1007/BF00644558 10.1029/GL016i004p00287 10.1016/j.pss.2006.05.009 10.1029/2001JA000125 10.1002/jgra.50358 10.1016/0019-1035(88)90148-0 10.1016/j.nimb.2010.11.091 10.1126/science.269.5227.1075 10.1029/91GL02095 10.1029/JA086iA08p06926 10.1029/2012JA017665 10.1029/2007JA012736 |
ContentType | Journal Article |
Copyright | 2014. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2014. American Geophysical Union. All Rights Reserved. |
DBID | BSCLL AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7U5 |
DOI | 10.1002/2014GL061100 |
DatabaseName | Istex CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Solid State and Superconductivity Abstracts |
DatabaseTitleList | Aerospace Database Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | 6341 |
ExternalDocumentID | 3923147321 10_1002_2014GL061100 GRL52091 ark_67375_WNG_RGRNJJ7V_9 |
Genre | article |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BDRZF BENPR BMXJE BRXPI BSCLL CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AANHP ACRPL ACYXJ ADNMO AAFWJ AAYXX ACTHY AGQPQ CITATION 7TG 7TN 8FD AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L7M 7U5 |
ID | FETCH-LOGICAL-c5091-347f19c6560f12f9c67bfb55061311367660aeb3fbe2d2905374640ce9c42b2f3 |
ISSN | 0094-8276 |
IngestDate | Thu Aug 07 14:59:01 EDT 2025 Fri Jul 25 10:40:12 EDT 2025 Fri Jul 25 10:42:23 EDT 2025 Tue Jul 01 01:05:30 EDT 2025 Thu Apr 24 23:02:01 EDT 2025 Wed Jan 22 16:27:07 EST 2025 Wed Oct 30 09:52:46 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions http://doi.wiley.com/10.1002/tdm_license_1 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5091-347f19c6560f12f9c67bfb55061311367660aeb3fbe2d2905374640ce9c42b2f3 |
Notes | ArticleID:GRL52091 istex:F276DCAF8E89C2D8F80FB93C5B1A9AA81FA10D03 ark:/67375/WNG-RGRNJJ7V-9 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2014GL061100 |
PQID | 1757284508 |
PQPubID | 54723 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1622598919 proquest_journals_1910964678 proquest_journals_1757284508 crossref_primary_10_1002_2014GL061100 crossref_citationtrail_10_1002_2014GL061100 wiley_primary_10_1002_2014GL061100_GRL52091 istex_primary_ark_67375_WNG_RGRNJJ7V_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 28 September 2014 |
PublicationDateYYYYMMDD | 2014-09-28 |
PublicationDate_xml | – month: 09 year: 2014 text: 28 September 2014 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationTitleAlternate | Geophys. Res. Lett |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | Dubinin, E. M., N. F. Pissarenko, S. V. Barabash, A. V. Zakharov, R. Lundin, R. Pellinen, and K. Schwingenschuh (1991), Plasma and magnetic field effects associated with Phobos and Deimos tori, Planet. Space Sci., 39(1-2), 113-121. Curry, S. M., M. Liemohn, X. Fang, Y. Ma, and J. Espley (2013a), The influence of production mechanisms on pick-up ion loss at Mars, J. Geophys. Res. Space Physics, 118, 554-569, doi:10.1029/2012JA017665. Küstner, M., W. Eckstein, V. Dose, and J. Roth (1998), The influence of surface roughness on the angular dependence of the sputtering yield, Nucl. Instrum. Methods Phys. Res., Sect. B, 145(3), 320-331. Cassidy, T. A., and R. E. Johnson (2005), Monte Carlo model of sputtering and other ejection processes within a regolith, Icarus, 176, 499-507. Ma, Y., A. Nagy, I. V. Sokolov, and K. C. Hansen (2004), Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109, A07211, doi:10.1029/2003JA010367. Arkani-Hamed, J. (2001), A 50-degree spherical harmonic model of the magnetic field of Mars, J. Geophys. Res., 106(E10), 23,197-23,208. Fang, X., M. W. Liemohn, A. F. Nagy, J. G. Luhmann, and Y. Ma (2010), On the effect of the Martian crustal magnetic field on atmospheric erosion, Icarus, 206, 130-138. Behrisch, R., and W. Eckstein (2007), Sputtering by Particle Bombardment: Experiments and Computer Calculations From Threshold to MeV Energies, Topics in Applied Physics, vol. 110, Springer, Berlin, Heidelberg, New York. Biersack, J. P., and W. Eckstein (1984), Sputtering studies with the Monte Carlo Program TRIM.SP, Appl. Phys. A, 34, 73-94. Dong, C., S. Bougher, Y. Ma, G. Toth, A. Nagy, and D. Najib (2014), Solar wind interaction with Mars upper atmosphere: Results from the one-way coupling between the multi-fluid MHD model and the MTGCM model, Geophys. Res. Lett., 41, 2708-2715, doi:10.1002/2014GL059515. Meyer, F. W., P. R. Harris, C. N. Taylor, H. M. Meyer III, A. F. Barghouty, and J. H. Adams (2011), Sputtering of lunar regolith simulant by protons and singly and multicharged Ar ions at solar wind energies, Nucl. Instrum. Methods Phys. Res., Sect. B, 269, 1316-1320. Cravens, T. E., A. Hoppe, and S. A. Ledvina (2002), Pickup ions near Mars associated with escaping oxygen atoms, J. Geophys. Res., 107(A8), 1170-1180, doi:10.1029/2001JA000125. Showalter, M. R., D. P. Hamilton, and P. D. Nicholson (2006), A deep search for Martian dust rings and inner moons using the Hubble Space Telescope, Planet. Space Sci., 54, 844-854. Carlsson, E., et al. (2006), Mass composition of the escaping plasma at Mars, Icarus, 182, 320-328. Sauer, K., E. Dubinin, K. Baumgärtel, and A. Bogdanov (1995), Deimos: An obstacle to the solar wind, Science, 269(5227), 1075-1078. Vernazza, P., et al. (2010), Meteorite analogs for Phobos and Deimos: Unraveling the origin of the Martian moons, Meteorit. Planet. Sci. Suppl., 73, 5076. Jakosky, B. M., and R. J. Phillips (2002), Mars volatile and climate history, Nature, 412, 237-244. Curry, S. M., M. Liemohn, X. Fang, D. Brain, and Y. Ma (2013b), Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars, J. Geophys. Res. Space Physics, 118, 3700-3711, doi:10.1002/jgra.50358. Johnson, R. E., and R. Baragiola (1991), Lunar surface: Sputtering and secondary ion mass spectrometry, Geophys. Res. Lett., 18(11), 2169-2172. Cipriani, F., O. Witasse, F. Leblanc, R. Modolo, and R. E. Johnson (2011), A model of interaction of Phobos' surface with the Martian environment, Icarus, 212, 643-648. Huebner, W. F., J. J. Keady, and S. P. Lyon (1992), Solar photo rates for planetary atmospheres and atmospheric pollutants, Astrophys. Space Sci., 195, 1-294. Brecht, S. H., and S. A. Ledvina (2006), The solar wind interaction with the Martian ionosphere/atmosphere, Space Sci. Rev., 124(1-4), 164-173. Øieroset, M., D. A. Brain, E. Simpson, D. L. Mitchell, T. D. Phan, J. S. Halekas, R. P. Lin, and M. H. Acuña (2010), Search for Phobos and Deimos gas/dust tori using in situ observations from Mars global surveyor MAG/ER, Icarus, 206, 189-198. Fanale, F. P., and J. R. Salvail (1989), Loss of water from Phobos, Geophys. Res. Lett., 16(4), 287-290. Dubinin, E., R. Lundin, N. F. Pissarenko, S. V. Barabash, A. V. Zakharov, H. Koskinen, K. Schwingenshuh, and Y. G. Yeroshenko (1990), Indirect evidences for a gas/dust torus along the Phobos orbit, Geophys. Res. Lett., 17(6), 861-864. Nilsson, H., N. J. T. Edberg, G. Stenberg, S. Barabash, M. Holmström, Y. Futaana, R. Lundin, and A. Fedorov (2011), Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields, Icarus, 215, 475-484. Ip, W.-H., and M. Banaszkiewicz (1990), On the dust/gas tori of Phobos and Deimos, Geophys. Res. Lett., 17(6), 857-860. Mura, A., A. Milillo, S. Orsini, E. Kallio, and S. Barabash (2002), Energetic neutral atoms at Mars: 2. Imaging of the solar wind-Phobos interaction, J. Geophys. Res., 107(A10), 1278, doi:10.1029/2001JA000328. Chaufray, J. Y., R. Modolo, F. Leblanc, G. Chanteur, R. E. Johnson, and J. G. Luhmann (2007), Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space, J. Geophys. Res., 112, E09009, doi:10.1029/2007JE002915. Vignes, D., C. Mazelle, H. Rme, M. Acuña, J. E. P. Connerney, R. P. Lin, D. L. Mitchell, P. Cloutier, D. H. Crider, and N. F. Ness (2000), The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER experiment onboard Mars global surveyor, Geophys. Res. Lett., 27(1), 49-52. Luhmann, J. G., and J. U. Kozyra (1991), Dayside pickup oxygen ion precipitation at Venus and Mars: Spatial distributions, energy deposition and consequences, J. Geophys. Res., 96(A4), 5457-5467. Curry, S. M., M. Liemohn, X. Fang, Y. Ma, J. Slavin, J. Espley, S. Bougher, and C. F. Dong(2014), Test particle comparison of heavy atomic and molecular ion distributions at Mars, J. Geophys. Res. Space Physics, 119, 2328-2344, doi:10.1002/2013JA019221. Duxbury, T. C., and A. C. Ocampo (1988), Mars-Satellite and ring search from Viking, Icarus, 76, 160-162. Riedler, W., et al. (1989), Magnetic fields near Mars: First results, Nature, 341, 604-607. Fang, X., M. W. Liemohn, A. F. Nagy, Y. Ma, D. L. De Zeeuw, J. U. Kozyra, and T. H. Zurbuchen (2008), Pickup oxygen ion velocity space and spatial distribution around Mars, J. Geophys. Res., 113, A02210, doi:10.1029/2007JA012736. Soter, S. (1971), The dust belts of Mars, CRSR Rep. 462, Center for Radiophysics and Space Research (CRSR), Cornell Univ., Ithaca, N. Y. Bogdanov, A. V. (1981), Mars satellite Deimos interactions with the solar wind and its influence on flow around Mars, J. Geophys. Res., 86(A8), 6926-6932. 2011; 215 2014; 119 1991; 18 2011; 212 1991; 39 2000; 27 2005; 176 2010; 206 1990; 17 2006; 54 1991; 96 1988; 76 2007 2002; 412 1971 2014; 41 2004; 109 2013b; 118 1981; 86 2001; 106 2011; 269 2007; 112 1992; 195 2013a; 118 1984; 34 1989; 341 2002; 107 1995; 269 2006; 182 2008; 113 1989; 16 1998; 145 2010; 73 2006; 124 Curry (10.1002/2014GL061100-BIB0012|grl52091-cit-0012) 2013b; 118 Behrisch (10.1002/2014GL061100-BIB0002|grl52091-cit-0002) 2007 Fang (10.1002/2014GL061100-BIB0020|grl52091-cit-0020) 2010; 206 Küstner (10.1002/2014GL061100-BIB0025|grl52091-cit-0025) 1998; 145 Cassidy (10.1002/2014GL061100-BIB0007|grl52091-cit-0007) 2005; 176 Johnson (10.1002/2014GL061100-BIB0024|grl52091-cit-0024) 1991; 18 Vignes (10.1002/2014GL061100-BIB0037|grl52091-cit-0037) 2000; 27 Showalter (10.1002/2014GL061100-BIB0034|grl52091-cit-0034) 2006; 54 Fanale (10.1002/2014GL061100-BIB0018|grl52091-cit-0018) 1989; 16 Curry (10.1002/2014GL061100-BIB0011|grl52091-cit-0011) 2013a; 118 Riedler (10.1002/2014GL061100-BIB0032|grl52091-cit-0032) 1989; 341 Duxbury (10.1002/2014GL061100-BIB0017|grl52091-cit-0017) 1988; 76 Dubinin (10.1002/2014GL061100-BIB0015|grl52091-cit-0015) 1990; 17 Vernazza (10.1002/2014GL061100-BIB0036|grl52091-cit-0036) 2010; 73 Arkani-Hamed (10.1002/2014GL061100-BIB0001|grl52091-cit-0001) 2001; 106 Dubinin (10.1002/2014GL061100-BIB0016|grl52091-cit-0016) 1991; 39 Cravens (10.1002/2014GL061100-BIB0010|grl52091-cit-0010) 2002; 107 Meyer (10.1002/2014GL061100-BIB0028|grl52091-cit-0028) 2011; 269 Mura (10.1002/2014GL061100-BIB0029|grl52091-cit-0029) 2002; 107 Bogdanov (10.1002/2014GL061100-BIB0004|grl52091-cit-0004) 1981; 86 Huebner (10.1002/2014GL061100-BIB0021|grl52091-cit-0021) 1992; 195 Nilsson (10.1002/2014GL061100-BIB0030|grl52091-cit-0030) 2011; 215 Curry (10.1002/2014GL061100-BIB0013|grl52091-cit-0013) 2014; 119 Øieroset (10.1002/2014GL061100-BIB0031|grl52091-cit-0031) 2010; 206 Carlsson (10.1002/2014GL061100-BIB0006|grl52091-cit-0006) 2006; 182 Sauer (10.1002/2014GL061100-BIB0033|grl52091-cit-0033) 1995; 269 Brecht (10.1002/2014GL061100-BIB0005|grl52091-cit-0005) 2006; 124 Jakosky (10.1002/2014GL061100-BIB0023|grl52091-cit-0023) 2002; 412 Soter (10.1002/2014GL061100-BIB0035|grl52091-cit-0035) 1971 Dong (10.1002/2014GL061100-BIB0014|grl52091-cit-0014) 2014; 41 Ip (10.1002/2014GL061100-BIB0022|grl52091-cit-0022) 1990; 17 Biersack (10.1002/2014GL061100-BIB0003|grl52091-cit-0003) 1984; 34 Fang (10.1002/2014GL061100-BIB0019|grl52091-cit-0019) 2008; 113 Chaufray (10.1002/2014GL061100-BIB0008|grl52091-cit-0008) 2007; 112 Cipriani (10.1002/2014GL061100-BIB0009|grl52091-cit-0009) 2011; 212 Luhmann (10.1002/2014GL061100-BIB0026|grl52091-cit-0026) 1991; 96 Ma (10.1002/2014GL061100-BIB0027|grl52091-cit-0027) 2004; 109 |
References_xml | – reference: Dubinin, E., R. Lundin, N. F. Pissarenko, S. V. Barabash, A. V. Zakharov, H. Koskinen, K. Schwingenshuh, and Y. G. Yeroshenko (1990), Indirect evidences for a gas/dust torus along the Phobos orbit, Geophys. Res. Lett., 17(6), 861-864. – reference: Dong, C., S. Bougher, Y. Ma, G. Toth, A. Nagy, and D. Najib (2014), Solar wind interaction with Mars upper atmosphere: Results from the one-way coupling between the multi-fluid MHD model and the MTGCM model, Geophys. Res. Lett., 41, 2708-2715, doi:10.1002/2014GL059515. – reference: Bogdanov, A. V. (1981), Mars satellite Deimos interactions with the solar wind and its influence on flow around Mars, J. Geophys. Res., 86(A8), 6926-6932. – reference: Vignes, D., C. Mazelle, H. Rme, M. Acuña, J. E. P. Connerney, R. P. Lin, D. L. Mitchell, P. Cloutier, D. H. Crider, and N. F. Ness (2000), The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER experiment onboard Mars global surveyor, Geophys. Res. Lett., 27(1), 49-52. – reference: Øieroset, M., D. A. Brain, E. Simpson, D. L. Mitchell, T. D. Phan, J. S. Halekas, R. P. Lin, and M. H. Acuña (2010), Search for Phobos and Deimos gas/dust tori using in situ observations from Mars global surveyor MAG/ER, Icarus, 206, 189-198. – reference: Carlsson, E., et al. (2006), Mass composition of the escaping plasma at Mars, Icarus, 182, 320-328. – reference: Cipriani, F., O. Witasse, F. Leblanc, R. Modolo, and R. E. Johnson (2011), A model of interaction of Phobos' surface with the Martian environment, Icarus, 212, 643-648. – reference: Curry, S. M., M. Liemohn, X. Fang, Y. Ma, and J. Espley (2013a), The influence of production mechanisms on pick-up ion loss at Mars, J. Geophys. Res. Space Physics, 118, 554-569, doi:10.1029/2012JA017665. – reference: Vernazza, P., et al. (2010), Meteorite analogs for Phobos and Deimos: Unraveling the origin of the Martian moons, Meteorit. Planet. Sci. Suppl., 73, 5076. – reference: Soter, S. (1971), The dust belts of Mars, CRSR Rep. 462, Center for Radiophysics and Space Research (CRSR), Cornell Univ., Ithaca, N. Y. – reference: Cravens, T. E., A. Hoppe, and S. A. Ledvina (2002), Pickup ions near Mars associated with escaping oxygen atoms, J. Geophys. Res., 107(A8), 1170-1180, doi:10.1029/2001JA000125. – reference: Jakosky, B. M., and R. J. Phillips (2002), Mars volatile and climate history, Nature, 412, 237-244. – reference: Luhmann, J. G., and J. U. Kozyra (1991), Dayside pickup oxygen ion precipitation at Venus and Mars: Spatial distributions, energy deposition and consequences, J. Geophys. Res., 96(A4), 5457-5467. – reference: Huebner, W. F., J. J. Keady, and S. P. Lyon (1992), Solar photo rates for planetary atmospheres and atmospheric pollutants, Astrophys. Space Sci., 195, 1-294. – reference: Küstner, M., W. Eckstein, V. Dose, and J. Roth (1998), The influence of surface roughness on the angular dependence of the sputtering yield, Nucl. Instrum. Methods Phys. Res., Sect. B, 145(3), 320-331. – reference: Ip, W.-H., and M. Banaszkiewicz (1990), On the dust/gas tori of Phobos and Deimos, Geophys. Res. Lett., 17(6), 857-860. – reference: Duxbury, T. C., and A. C. Ocampo (1988), Mars-Satellite and ring search from Viking, Icarus, 76, 160-162. – reference: Fanale, F. P., and J. R. Salvail (1989), Loss of water from Phobos, Geophys. Res. Lett., 16(4), 287-290. – reference: Biersack, J. P., and W. Eckstein (1984), Sputtering studies with the Monte Carlo Program TRIM.SP, Appl. Phys. A, 34, 73-94. – reference: Meyer, F. W., P. R. Harris, C. N. Taylor, H. M. Meyer III, A. F. Barghouty, and J. H. Adams (2011), Sputtering of lunar regolith simulant by protons and singly and multicharged Ar ions at solar wind energies, Nucl. Instrum. Methods Phys. Res., Sect. B, 269, 1316-1320. – reference: Arkani-Hamed, J. (2001), A 50-degree spherical harmonic model of the magnetic field of Mars, J. Geophys. Res., 106(E10), 23,197-23,208. – reference: Fang, X., M. W. Liemohn, A. F. Nagy, Y. Ma, D. L. De Zeeuw, J. U. Kozyra, and T. H. Zurbuchen (2008), Pickup oxygen ion velocity space and spatial distribution around Mars, J. Geophys. Res., 113, A02210, doi:10.1029/2007JA012736. – reference: Brecht, S. H., and S. A. Ledvina (2006), The solar wind interaction with the Martian ionosphere/atmosphere, Space Sci. Rev., 124(1-4), 164-173. – reference: Fang, X., M. W. Liemohn, A. F. Nagy, J. G. Luhmann, and Y. Ma (2010), On the effect of the Martian crustal magnetic field on atmospheric erosion, Icarus, 206, 130-138. – reference: Riedler, W., et al. (1989), Magnetic fields near Mars: First results, Nature, 341, 604-607. – reference: Curry, S. M., M. Liemohn, X. Fang, D. Brain, and Y. Ma (2013b), Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars, J. Geophys. Res. Space Physics, 118, 3700-3711, doi:10.1002/jgra.50358. – reference: Ma, Y., A. Nagy, I. V. Sokolov, and K. C. Hansen (2004), Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109, A07211, doi:10.1029/2003JA010367. – reference: Sauer, K., E. Dubinin, K. Baumgärtel, and A. Bogdanov (1995), Deimos: An obstacle to the solar wind, Science, 269(5227), 1075-1078. – reference: Johnson, R. E., and R. Baragiola (1991), Lunar surface: Sputtering and secondary ion mass spectrometry, Geophys. Res. Lett., 18(11), 2169-2172. – reference: Showalter, M. R., D. P. Hamilton, and P. D. Nicholson (2006), A deep search for Martian dust rings and inner moons using the Hubble Space Telescope, Planet. Space Sci., 54, 844-854. – reference: Mura, A., A. Milillo, S. Orsini, E. Kallio, and S. Barabash (2002), Energetic neutral atoms at Mars: 2. Imaging of the solar wind-Phobos interaction, J. Geophys. Res., 107(A10), 1278, doi:10.1029/2001JA000328. – reference: Cassidy, T. A., and R. E. Johnson (2005), Monte Carlo model of sputtering and other ejection processes within a regolith, Icarus, 176, 499-507. – reference: Nilsson, H., N. J. T. Edberg, G. Stenberg, S. Barabash, M. Holmström, Y. Futaana, R. Lundin, and A. Fedorov (2011), Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields, Icarus, 215, 475-484. – reference: Behrisch, R., and W. Eckstein (2007), Sputtering by Particle Bombardment: Experiments and Computer Calculations From Threshold to MeV Energies, Topics in Applied Physics, vol. 110, Springer, Berlin, Heidelberg, New York. – reference: Curry, S. M., M. Liemohn, X. Fang, Y. Ma, J. Slavin, J. Espley, S. Bougher, and C. F. Dong(2014), Test particle comparison of heavy atomic and molecular ion distributions at Mars, J. Geophys. Res. Space Physics, 119, 2328-2344, doi:10.1002/2013JA019221. – reference: Dubinin, E. M., N. F. Pissarenko, S. V. Barabash, A. V. Zakharov, R. Lundin, R. Pellinen, and K. Schwingenschuh (1991), Plasma and magnetic field effects associated with Phobos and Deimos tori, Planet. Space Sci., 39(1-2), 113-121. – reference: Chaufray, J. Y., R. Modolo, F. Leblanc, G. Chanteur, R. E. Johnson, and J. G. Luhmann (2007), Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space, J. Geophys. Res., 112, E09009, doi:10.1029/2007JE002915. – volume: 34 start-page: 73 year: 1984 end-page: 94 article-title: Sputtering studies with the Monte Carlo Program TRIM.SP publication-title: Appl. Phys. A – volume: 118 start-page: 3700 year: 2013b end-page: 3711 article-title: Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars publication-title: J. Geophys. Res. Space Physics – volume: 112 year: 2007 article-title: Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space publication-title: J. Geophys. Res. – volume: 17 start-page: 857 issue: 6 year: 1990 end-page: 860 article-title: On the dust/gas tori of Phobos and Deimos publication-title: Geophys. Res. Lett. – volume: 107 start-page: 1170 issue: A8 year: 2002 end-page: 1180 article-title: Pickup ions near Mars associated with escaping oxygen atoms publication-title: J. Geophys. Res. – volume: 124 start-page: 164 issue: 1–4 year: 2006 end-page: 173 article-title: The solar wind interaction with the Martian ionosphere/atmosphere publication-title: Space Sci. Rev. – volume: 106 issue: E10 year: 2001 article-title: A 50‐degree spherical harmonic model of the magnetic field of Mars publication-title: J. Geophys. Res. – volume: 412 start-page: 237 year: 2002 end-page: 244 article-title: Mars volatile and climate history publication-title: Nature – volume: 119 start-page: 2328 year: 2014 end-page: 2344 article-title: Test particle comparison of heavy atomic and molecular ion distributions at Mars publication-title: J. Geophys. Res. Space Physics – volume: 27 start-page: 49 issue: 1 year: 2000 end-page: 52 article-title: The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile‐up boundary from the observations of the MAG/ER experiment onboard Mars global surveyor publication-title: Geophys. Res. Lett. – year: 2007 – volume: 16 start-page: 287 issue: 4 year: 1989 end-page: 290 article-title: Loss of water from Phobos publication-title: Geophys. Res. Lett. – volume: 195 start-page: 1 year: 1992 end-page: 294 article-title: Solar photo rates for planetary atmospheres and atmospheric pollutants publication-title: Astrophys. Space Sci. – volume: 86 start-page: 6926 issue: A8 year: 1981 end-page: 6932 article-title: Mars satellite Deimos interactions with the solar wind and its influence on flow around Mars publication-title: J. Geophys. Res. – volume: 269 start-page: 1075 issue: 5227 year: 1995 end-page: 1078 article-title: Deimos: An obstacle to the solar wind publication-title: Science – volume: 41 start-page: 2708 year: 2014 end-page: 2715 article-title: Solar wind interaction with Mars upper atmosphere: Results from the one‐way coupling between the multi‐fluid MHD model and the MTGCM model publication-title: Geophys. Res. Lett. – volume: 109 year: 2004 article-title: Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars publication-title: J. Geophys. Res. – volume: 182 start-page: 320 year: 2006 end-page: 328 article-title: Mass composition of the escaping plasma at Mars publication-title: Icarus – volume: 113 year: 2008 article-title: Pickup oxygen ion velocity space and spatial distribution around Mars publication-title: J. Geophys. Res. – volume: 18 start-page: 2169 issue: 11 year: 1991 end-page: 2172 article-title: Lunar surface: Sputtering and secondary ion mass spectrometry publication-title: Geophys. Res. Lett. – volume: 176 start-page: 499 year: 2005 end-page: 507 article-title: Monte Carlo model of sputtering and other ejection processes within a regolith publication-title: Icarus – year: 1971 article-title: The dust belts of Mars publication-title: CRSR Rep. 462 – volume: 269 start-page: 1316 year: 2011 end-page: 1320 article-title: Sputtering of lunar regolith simulant by protons and singly and multicharged Ar ions at solar wind energies publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B – volume: 17 start-page: 861 issue: 6 year: 1990 end-page: 864 article-title: Indirect evidences for a gas/dust torus along the Phobos orbit publication-title: Geophys. Res. Lett. – volume: 96 start-page: 5457 issue: A4 year: 1991 end-page: 5467 article-title: Dayside pickup oxygen ion precipitation at Venus and Mars: Spatial distributions, energy deposition and consequences publication-title: J. Geophys. Res. – volume: 118 start-page: 554 year: 2013a end-page: 569 article-title: The influence of production mechanisms on pick‐up ion loss at Mars publication-title: J. Geophys. Res. Space Physics – volume: 76 start-page: 160 year: 1988 end-page: 162 article-title: Mars—Satellite and ring search from Viking publication-title: Icarus – volume: 341 start-page: 604 year: 1989 end-page: 607 article-title: Magnetic fields near Mars: First results publication-title: Nature – volume: 145 start-page: 320 issue: 3 year: 1998 end-page: 331 article-title: The influence of surface roughness on the angular dependence of the sputtering yield publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B – volume: 54 start-page: 844 year: 2006 end-page: 854 article-title: A deep search for Martian dust rings and inner moons using the Hubble Space Telescope publication-title: Planet. Space Sci. – volume: 73 start-page: 5076 year: 2010 article-title: Meteorite analogs for Phobos and Deimos: Unraveling the origin of the Martian moons publication-title: Meteorit. Planet. Sci. Suppl. – volume: 107 start-page: 1278 issue: A10 year: 2002 article-title: Energetic neutral atoms at Mars: 2. Imaging of the solar wind‐Phobos interaction publication-title: J. Geophys. Res. – volume: 215 start-page: 475 year: 2011 end-page: 484 article-title: Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields publication-title: Icarus – volume: 212 start-page: 643 year: 2011 end-page: 648 article-title: A model of interaction of Phobos' surface with the Martian environment publication-title: Icarus – volume: 39 start-page: 113 issue: 1–2 year: 1991 end-page: 121 article-title: Plasma and magnetic field effects associated with Phobos and Deimos tori publication-title: Planet. Space Sci. – volume: 206 start-page: 189 year: 2010 end-page: 198 article-title: Search for Phobos and Deimos gas/dust tori using in situ observations from Mars global surveyor MAG/ER publication-title: Icarus – volume: 206 start-page: 130 year: 2010 end-page: 138 article-title: On the effect of the Martian crustal magnetic field on atmospheric erosion publication-title: Icarus – volume: 145 start-page: 320 issue: 3 year: 1998 ident: 10.1002/2014GL061100-BIB0025|grl52091-cit-0025 article-title: The influence of surface roughness on the angular dependence of the sputtering yield publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B doi: 10.1016/S0168-583X(98)00399-1 – volume: 212 start-page: 643 year: 2011 ident: 10.1002/2014GL061100-BIB0009|grl52091-cit-0009 article-title: A model of interaction of Phobos' surface with the Martian environment publication-title: Icarus doi: 10.1016/j.icarus.2011.01.036 – volume: 109 year: 2004 ident: 10.1002/2014GL061100-BIB0027|grl52091-cit-0027 article-title: Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars publication-title: J. Geophys. Res. doi: 10.1029/2003JA010367 – volume: 17 start-page: 857 issue: 6 year: 1990 ident: 10.1002/2014GL061100-BIB0022|grl52091-cit-0022 article-title: On the dust/gas tori of Phobos and Deimos publication-title: Geophys. Res. Lett. doi: 10.1029/GL017i006p00857 – volume: 412 start-page: 237 year: 2002 ident: 10.1002/2014GL061100-BIB0023|grl52091-cit-0023 article-title: Mars volatile and climate history publication-title: Nature doi: 10.1038/35084184 – volume: 106 issue: E10 year: 2001 ident: 10.1002/2014GL061100-BIB0001|grl52091-cit-0001 article-title: A 50-degree spherical harmonic model of the magnetic field of Mars publication-title: J. Geophys. Res. doi: 10.1029/2000JE001365 – volume: 96 start-page: 5457 issue: A4 year: 1991 ident: 10.1002/2014GL061100-BIB0026|grl52091-cit-0026 article-title: Dayside pickup oxygen ion precipitation at Venus and Mars: Spatial distributions, energy deposition and consequences publication-title: J. Geophys. Res. doi: 10.1029/90JA01753 – volume: 17 start-page: 861 issue: 6 year: 1990 ident: 10.1002/2014GL061100-BIB0015|grl52091-cit-0015 article-title: Indirect evidences for a gas/dust torus along the Phobos orbit publication-title: Geophys. Res. Lett. doi: 10.1029/GL017i006p00861 – volume: 41 start-page: 2708 year: 2014 ident: 10.1002/2014GL061100-BIB0014|grl52091-cit-0014 article-title: Solar wind interaction with Mars upper atmosphere: Results from the one-way coupling between the multi-fluid MHD model and the MTGCM model publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL059515 – volume: 27 start-page: 49 issue: 1 year: 2000 ident: 10.1002/2014GL061100-BIB0037|grl52091-cit-0037 article-title: The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER experiment onboard Mars global surveyor publication-title: Geophys. Res. Lett. doi: 10.1029/1999GL010703 – volume: 206 start-page: 189 year: 2010 ident: 10.1002/2014GL061100-BIB0031|grl52091-cit-0031 article-title: Search for Phobos and Deimos gas/dust tori using in situ observations from Mars global surveyor MAG/ER publication-title: Icarus doi: 10.1016/j.icarus.2009.07.017 – volume: 341 start-page: 604 year: 1989 ident: 10.1002/2014GL061100-BIB0032|grl52091-cit-0032 article-title: Magnetic fields near Mars: First results publication-title: Nature doi: 10.1038/341604a0 – volume: 112 year: 2007 ident: 10.1002/2014GL061100-BIB0008|grl52091-cit-0008 article-title: Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space publication-title: J. Geophys. Res. doi: 10.1029/2007JE002915 – volume: 107 start-page: 1278 issue: A10 year: 2002 ident: 10.1002/2014GL061100-BIB0029|grl52091-cit-0029 article-title: Energetic neutral atoms at Mars: 2. Imaging of the solar wind-Phobos interaction publication-title: J. Geophys. Res. doi: 10.1029/2001JA000328 – volume: 39 start-page: 113 issue: 1-2 year: 1991 ident: 10.1002/2014GL061100-BIB0016|grl52091-cit-0016 article-title: Plasma and magnetic field effects associated with Phobos and Deimos tori publication-title: Planet. Space Sci. doi: 10.1016/0032-0633(91)90133-U – volume: 34 start-page: 73 year: 1984 ident: 10.1002/2014GL061100-BIB0003|grl52091-cit-0003 article-title: Sputtering studies with the Monte Carlo Program TRIM.SP publication-title: Appl. Phys. A doi: 10.1007/BF00614759 – volume: 215 start-page: 475 year: 2011 ident: 10.1002/2014GL061100-BIB0030|grl52091-cit-0030 article-title: Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields publication-title: Icarus doi: 10.1016/j.icarus.2011.08.003 – volume: 176 start-page: 499 year: 2005 ident: 10.1002/2014GL061100-BIB0007|grl52091-cit-0007 article-title: Monte Carlo model of sputtering and other ejection processes within a regolith publication-title: Icarus doi: 10.1016/j.icarus.2005.02.013 – volume: 182 start-page: 320 year: 2006 ident: 10.1002/2014GL061100-BIB0006|grl52091-cit-0006 article-title: Mass composition of the escaping plasma at Mars publication-title: Icarus doi: 10.1016/j.icarus.2005.09.020 – volume: 119 start-page: 2328 year: 2014 ident: 10.1002/2014GL061100-BIB0013|grl52091-cit-0013 article-title: Test particle comparison of heavy atomic and molecular ion distributions at Mars publication-title: J. Geophys. Res. Space Physics doi: 10.1002/2013JA019221 – year: 1971 ident: 10.1002/2014GL061100-BIB0035|grl52091-cit-0035 article-title: The dust belts of Mars publication-title: CRSR Rep. 462 – volume: 206 start-page: 130 year: 2010 ident: 10.1002/2014GL061100-BIB0020|grl52091-cit-0020 article-title: On the effect of the Martian crustal magnetic field on atmospheric erosion publication-title: Icarus doi: 10.1016/j.icarus.2009.01.012 – volume: 195 start-page: 1 year: 1992 ident: 10.1002/2014GL061100-BIB0021|grl52091-cit-0021 article-title: Solar photo rates for planetary atmospheres and atmospheric pollutants publication-title: Astrophys. Space Sci. doi: 10.1007/BF00644558 – volume-title: Sputtering by Particle Bombardment: Experiments and Computer Calculations From Threshold to MeV Energies year: 2007 ident: 10.1002/2014GL061100-BIB0002|grl52091-cit-0002 – volume: 16 start-page: 287 issue: 4 year: 1989 ident: 10.1002/2014GL061100-BIB0018|grl52091-cit-0018 article-title: Loss of water from Phobos publication-title: Geophys. Res. Lett. doi: 10.1029/GL016i004p00287 – volume: 54 start-page: 844 year: 2006 ident: 10.1002/2014GL061100-BIB0034|grl52091-cit-0034 article-title: A deep search for Martian dust rings and inner moons using the Hubble Space Telescope publication-title: Planet. Space Sci. doi: 10.1016/j.pss.2006.05.009 – volume: 107 start-page: 1170 issue: A8 year: 2002 ident: 10.1002/2014GL061100-BIB0010|grl52091-cit-0010 article-title: Pickup ions near Mars associated with escaping oxygen atoms publication-title: J. Geophys. Res. doi: 10.1029/2001JA000125 – volume: 118 start-page: 3700 year: 2013b ident: 10.1002/2014GL061100-BIB0012|grl52091-cit-0012 article-title: Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars publication-title: J. Geophys. Res. Space Physics doi: 10.1002/jgra.50358 – volume: 76 start-page: 160 year: 1988 ident: 10.1002/2014GL061100-BIB0017|grl52091-cit-0017 article-title: Mars-Satellite and ring search from Viking publication-title: Icarus doi: 10.1016/0019-1035(88)90148-0 – volume: 269 start-page: 1316 year: 2011 ident: 10.1002/2014GL061100-BIB0028|grl52091-cit-0028 article-title: Sputtering of lunar regolith simulant by protons and singly and multicharged Ar ions at solar wind energies publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B doi: 10.1016/j.nimb.2010.11.091 – volume: 269 start-page: 1075 issue: 5227 year: 1995 ident: 10.1002/2014GL061100-BIB0033|grl52091-cit-0033 article-title: Deimos: An obstacle to the solar wind publication-title: Science doi: 10.1126/science.269.5227.1075 – volume: 18 start-page: 2169 issue: 11 year: 1991 ident: 10.1002/2014GL061100-BIB0024|grl52091-cit-0024 article-title: Lunar surface: Sputtering and secondary ion mass spectrometry publication-title: Geophys. Res. Lett. doi: 10.1029/91GL02095 – volume: 73 start-page: 5076 year: 2010 ident: 10.1002/2014GL061100-BIB0036|grl52091-cit-0036 article-title: Meteorite analogs for Phobos and Deimos: Unraveling the origin of the Martian moons publication-title: Meteorit. Planet. Sci. Suppl. – volume: 86 start-page: 6926 issue: A8 year: 1981 ident: 10.1002/2014GL061100-BIB0004|grl52091-cit-0004 article-title: Mars satellite Deimos interactions with the solar wind and its influence on flow around Mars publication-title: J. Geophys. Res. doi: 10.1029/JA086iA08p06926 – volume: 118 start-page: 554 year: 2013a ident: 10.1002/2014GL061100-BIB0011|grl52091-cit-0011 article-title: The influence of production mechanisms on pick-up ion loss at Mars publication-title: J. Geophys. Res. Space Physics doi: 10.1029/2012JA017665 – volume: 113 year: 2008 ident: 10.1002/2014GL061100-BIB0019|grl52091-cit-0019 article-title: Pickup oxygen ion velocity space and spatial distribution around Mars publication-title: J. Geophys. Res. doi: 10.1029/2007JA012736 – volume: 124 start-page: 164 issue: 1-4 year: 2006 ident: 10.1002/2014GL061100-BIB0005|grl52091-cit-0005 article-title: The solar wind interaction with the Martian ionosphere/atmosphere publication-title: Space Sci. Rev. |
SSID | ssj0003031 |
Score | 2.2151685 |
Snippet | The Martian moons, Phobos and Deimos, have long been suspected to be the sources of tenuous neutral gas tori encircling Mars. While direct outgassing has been... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6335 |
SubjectTerms | Atmospheric models Charged particles Deimos Evolution Fluctuations Flux Ion flux ion sputtering Ions Magnetohydrodynamics Mars Mars atmospheric loss Mars satellites Mathematical models Moons Outgassing Phobos Phobos neutral torus Solar wind Space exploration Sputtering Toruses Vaporization |
Title | Martian planetary heavy ion sputtering of Phobos |
URI | https://api.istex.fr/ark:/67375/WNG-RGRNJJ7V-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2014GL061100 https://www.proquest.com/docview/1757284508 https://www.proquest.com/docview/1910964678 https://www.proquest.com/docview/1622598919 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBejYbCXsU-WrRsebHsx9mxZlqzHMjaX0IaSNV3Zi4kUm0JLbPIx2v71u5Nkx2VdWfdijHwoju50H9bd7wj5UGVKzrSIApUJFTCwsYHSikOUkmhO9VxlDKuRD8d8f8pGp-lp27PdVZesVaivb60r-R-uwhjwFatk78HZblIYgHvgL1yBw3D9Jx4bDADYoA1mrK4x_w1U668rH1m6akwLapfUfHRWq3rV90Tzsm5aHjnEnzP_whT3dG72Ud009oNn6E_C7rhis7Rn799D_zDsfzaIGeY40KyvCiULMiocDrXVfpLBWGTb0Lbq0eJStWKQ9ZQdTyzSiDOcPLGkfyhlC_KKL5EfgPsQR9HW-LQH7h1dehelsbv55ABzdyDkHVAh8Gx-sHcy_TntDDBYZdso0f1DV-8A03_uT33DExngprq8EWb0gxXjbRw_IY9dmODtWZ4_JQ_KxTPyMDdtmK_gziTu6tVzEjkZ8DoZ8IwMeCAD3lYGvLryrAy8INNvX4-_7AeuC0ag0ZkLEiaqWGoESapiWsGdUJWCwJIjUhIC7vFoVqqkUiWdU4n4PIyzSJdSM6polbwkO4t6Ub7C-nyV6Djmc45uMpMqElzQkiuWplzNqyHx2xUptIOIx04lF4UFt6ZFf_2G5GNH3VholL_QfTKL2xHNlueYTijS4sc4Lyb5ZDwaiZNCDsluu_qF22WrAtxbAS4UxBG3PwZ3V3Kw9vD4ffcYVCSee8G61xug4WC0ZCZj-AXfMPXO9y1aAXt9L-o35NF2n-2SnfVyU74Fh3Wt3jkB_Q10MIco |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-6IfoifuJ0agX1RYptliXN4xDXObchw6n4EpasQVDW4aa4_967tqsTVPAtJdevS-_ul_TyO0KObaBl3wjP1YHQLoMY62qjOcxSKoZTM9ABw93I7Q5v9FjzofqQ1TnFvTApP0S-4IaWkfhrNHBckD7_Yg2F0MXCFsQjOF4kRQQ2tECKtbveYy93xuCh06J5krkBFTzLfYcrnM-f_y0qFVHBH98g5zxwTSJPfY2sZpDRqaVjvE4WouEGWQqTkrxTaCVJnGa8SbyEE6A_dEaYwTqBV3PA1b5PHdC9Mx4lJakhUjmxdW6eYh2Pt0ivfnl70XCzigiuwcDuVpiwvjRImGN9aqEltNUwyeDImoPka9zrw_TY6ogOqESuFsaZZyJpGNXUVrZJYRgPox3cq60rxvf5gCNkYlJ7ggsacc2qVa4HtkTOZhpRJqMLx6oVLyolOqZqXn8lcpJLj1KajF_kThPl5kL912dMLRNVdd8JVTfsdppNcadkiZRn2leZVY0VQB0B4RQw5c_dAH0kB88P3Ud5N5gL_gMBvcdvIMPBgclA-nCHs2RQ_3xeFXZbmCjk7_5L-pAsN27bLdW66lzvkRWUwRwTGpRJYfL6Fu0DkJnog-xj_QQ_iOQb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA_qUHwRP3F-VlBfRrHNsqR5FHXVOYcMp8OXsKQNgrION0X_e-_arm6ggm8tuX5dcne_pJffEXJoAy17RniuDoR2GcRYVxvNYZZSNZyaSAcMdyPftPhlhzW6tW6-4IZ7YTJ-iGLBDS0j9ddo4IPInnyThkLkYmETwhGcz5ISEuXBOC-d3nceO4UvBged1cyTzA2o4HnqO9zhZPL6qaBUQv1-TCHOSdyaBp76MlnKEaNzmnXxCpmJ-6tkPkwr8n7CUZrDaYZrxEspAXp9Z4AJrCP4Mgc87funA6p3hoO0IjUEKiexzu1TopPhOunUL-7OLt28IIJrMK67VSasLw3y5VifWjgS2mqYY3AkzUHuNe71YHZsdUwjKpGqhXHmmVgaRjW11Q0y10_68SZu1dZV4_s84oiYmNSe4ILGXLNajevIlkllrBFlcrZwLFrxojKeY6om9VcmR4X0IGPJ-EXuOFVuIdR7fcbMMlFTD61QtcN2q9EQ90qWyc5Y-yo3qqECpCMgmgKk_LkZkI_k4Pih-aBoBmvBXyCg9-QNZDj4LxlIH55QSTv1z_dVYbuJeUL-1r-k98nC7XldNa9a19tkEUUww4QGO2Ru9PoW7wKMGem9fKx-Ad3140Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Martian+planetary+heavy+ion+sputtering+of+Phobos&rft.jtitle=Geophysical+research+letters&rft.au=Poppe%2C+A.+R.&rft.au=Curry%2C+S.+M.&rft.date=2014-09-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=41&rft.issue=18&rft.spage=6335&rft.epage=6341&rft_id=info:doi/10.1002%2F2014GL061100&rft.externalDBID=10.1002%252F2014GL061100&rft.externalDocID=GRL52091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |