Martian planetary heavy ion sputtering of Phobos

The Martian moons, Phobos and Deimos, have long been suspected to be the sources of tenuous neutral gas tori encircling Mars. While direct outgassing has been ruled out as a strong source, micrometeoroid impact vaporization and charged particle sputtering must operate based on observations at other...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 41; no. 18; pp. 6335 - 6341
Main Authors Poppe, A. R., Curry, S. M.
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 28.09.2014
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN0094-8276
1944-8007
DOI10.1002/2014GL061100

Cover

Abstract The Martian moons, Phobos and Deimos, have long been suspected to be the sources of tenuous neutral gas tori encircling Mars. While direct outgassing has been ruled out as a strong source, micrometeoroid impact vaporization and charged particle sputtering must operate based on observations at other airless bodies. Previous models have addressed solar wind sputtering of Phobos; however, Phobos and Deimos are also subject to a significant, yet temporally variable, flux of heavy planetary ions escaping from Mars. In this report, we use a combination MHD/test‐particle model to calculate the planetary heavy ion flux to Phobos and the ensuing neutral sputtered flux. Depending on ambient solar wind conditions and the location of Phobos, heavy ion sputtering of Phobos generates neutral fluxes up to and exceeding that from solar wind sputtering. We model pickup ions from the Phobos torus itself with applications for observations by the upcoming Mars Atmospheric and Volatile Evolution mission. Key Points We assess neutral sputtering of Phobos by escaping Martian O+ ionsMartian O+ sputters at rates larger than solar wind depending on SW conditionsMAVEN may detect the Phobos torus via newly generated torus pickup ions
AbstractList The Martian moons, Phobos and Deimos, have long been suspected to be the sources of tenuous neutral gas tori encircling Mars. While direct outgassing has been ruled out as a strong source, micrometeoroid impact vaporization and charged particle sputtering must operate based on observations at other airless bodies. Previous models have addressed solar wind sputtering of Phobos; however, Phobos and Deimos are also subject to a significant, yet temporally variable, flux of heavy planetary ions escaping from Mars. In this report, we use a combination MHD/test-particle model to calculate the planetary heavy ion flux to Phobos and the ensuing neutral sputtered flux. Depending on ambient solar wind conditions and the location of Phobos, heavy ion sputtering of Phobos generates neutral fluxes up to and exceeding that from solar wind sputtering. We model pickup ions from the Phobos torus itself with applications for observations by the upcoming Mars Atmospheric and Volatile Evolution mission.
The Martian moons, Phobos and Deimos, have long been suspected to be the sources of tenuous neutral gas tori encircling Mars. While direct outgassing has been ruled out as a strong source, micrometeoroid impact vaporization and charged particle sputtering must operate based on observations at other airless bodies. Previous models have addressed solar wind sputtering of Phobos; however, Phobos and Deimos are also subject to a significant, yet temporally variable, flux of heavy planetary ions escaping from Mars. In this report, we use a combination MHD/test-particle model to calculate the planetary heavy ion flux to Phobos and the ensuing neutral sputtered flux. Depending on ambient solar wind conditions and the location of Phobos, heavy ion sputtering of Phobos generates neutral fluxes up to and exceeding that from solar wind sputtering. We model pickup ions from the Phobos torus itself with applications for observations by the upcoming Mars Atmospheric and Volatile Evolution mission. Key Points * We assess neutral sputtering of Phobos by escaping Martian O+ ions * Martian O+ sputters at rates larger than solar wind depending on SW conditions * MAVEN may detect the Phobos torus via newly generated torus pickup ions
The Martian moons, Phobos and Deimos, have long been suspected to be the sources of tenuous neutral gas tori encircling Mars. While direct outgassing has been ruled out as a strong source, micrometeoroid impact vaporization and charged particle sputtering must operate based on observations at other airless bodies. Previous models have addressed solar wind sputtering of Phobos; however, Phobos and Deimos are also subject to a significant, yet temporally variable, flux of heavy planetary ions escaping from Mars. In this report, we use a combination MHD/test‐particle model to calculate the planetary heavy ion flux to Phobos and the ensuing neutral sputtered flux. Depending on ambient solar wind conditions and the location of Phobos, heavy ion sputtering of Phobos generates neutral fluxes up to and exceeding that from solar wind sputtering. We model pickup ions from the Phobos torus itself with applications for observations by the upcoming Mars Atmospheric and Volatile Evolution mission. Key Points We assess neutral sputtering of Phobos by escaping Martian O+ ionsMartian O+ sputters at rates larger than solar wind depending on SW conditionsMAVEN may detect the Phobos torus via newly generated torus pickup ions
Author Poppe, A. R.
Curry, S. M.
Author_xml – sequence: 1
  givenname: A. R.
  surname: Poppe
  fullname: Poppe, A. R.
  email: poppe@ssl.berkeley.edu
  organization: Space Sciences Laboratory, University of California, California, Berkeley, USA
– sequence: 2
  givenname: S. M.
  surname: Curry
  fullname: Curry, S. M.
  organization: Space Sciences Laboratory, University of California, California, Berkeley, USA
BookMark eNqFkM1OGzEURq0KpIbQXR9gJDZdMPT6P15WCAaiFKqohaXlmdqNYRgH22nJ2-MoFUJZwMrX0vnu_XQO0N4QBovQZwwnGIB8JYBZMwOBy-8DGmHFWD0BkHtoBKDKTKT4iA5SugMAChSPEHw3MXszVMveDDabuK4W1vxdVz4MVVqucrbRD3-q4Kofi9CGdIj2nemT_fT_HaNf52c_Ty_q2XVzefptVnccFK4pkw6rTnABDhNXJtm6lvNSjmJMhRQCjG2pay35TRRwKplg0FnVMdISR8foy3bvMobHlU1ZP_jU2X5TM6ySxoIQriYKq4Ie7aB3YRWH0k5jhUEJJuTkTUpySSaMw4Y63lJdDClF6_Qy-oeiRWPQG8n6teSCkx2889nkIi9H4_t3Qv98b9dvHtDNfMZJEVpC9TbkU7ZPLyET77WQVHJ9e9XoeTO_mk7ljVb0GRyvmho
CitedBy_id crossref_primary_10_1038_s41526_024_00373_9
crossref_primary_10_1029_2020JE006583
crossref_primary_10_1016_j_icarus_2023_115916
crossref_primary_10_1038_s42005_024_01766_8
crossref_primary_10_1029_2019JE006197
crossref_primary_10_1002_2017JE005426
crossref_primary_10_1002_2017JE005359
crossref_primary_10_1002_2015JE004948
crossref_primary_10_1186_s40623_021_01452_x
crossref_primary_10_1002_2016GL068393
crossref_primary_10_1029_2018JE005647
crossref_primary_10_1038_s41561_020_00682_0
crossref_primary_10_1002_2015JA022324
crossref_primary_10_1186_s40623_021_01545_7
Cites_doi 10.1016/S0168-583X(98)00399-1
10.1016/j.icarus.2011.01.036
10.1029/2003JA010367
10.1029/GL017i006p00857
10.1038/35084184
10.1029/2000JE001365
10.1029/90JA01753
10.1029/GL017i006p00861
10.1002/2014GL059515
10.1029/1999GL010703
10.1016/j.icarus.2009.07.017
10.1038/341604a0
10.1029/2007JE002915
10.1029/2001JA000328
10.1016/0032-0633(91)90133-U
10.1007/BF00614759
10.1016/j.icarus.2011.08.003
10.1016/j.icarus.2005.02.013
10.1016/j.icarus.2005.09.020
10.1002/2013JA019221
10.1016/j.icarus.2009.01.012
10.1007/BF00644558
10.1029/GL016i004p00287
10.1016/j.pss.2006.05.009
10.1029/2001JA000125
10.1002/jgra.50358
10.1016/0019-1035(88)90148-0
10.1016/j.nimb.2010.11.091
10.1126/science.269.5227.1075
10.1029/91GL02095
10.1029/JA086iA08p06926
10.1029/2012JA017665
10.1029/2007JA012736
ContentType Journal Article
Copyright 2014. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2014. American Geophysical Union. All Rights Reserved.
DBID BSCLL
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7U5
DOI 10.1002/2014GL061100
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Solid State and Superconductivity Abstracts
DatabaseTitleList Aerospace Database
Aerospace Database

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 6341
ExternalDocumentID 3923147321
10_1002_2014GL061100
GRL52091
ark_67375_WNG_RGRNJJ7V_9
Genre article
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BDRZF
BENPR
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AANHP
ACRPL
ACYXJ
ADNMO
AAFWJ
AAYXX
ACTHY
AGQPQ
CITATION
7TG
7TN
8FD
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7U5
ID FETCH-LOGICAL-c5091-347f19c6560f12f9c67bfb55061311367660aeb3fbe2d2905374640ce9c42b2f3
ISSN 0094-8276
IngestDate Thu Aug 07 14:59:01 EDT 2025
Fri Jul 25 10:40:12 EDT 2025
Fri Jul 25 10:42:23 EDT 2025
Tue Jul 01 01:05:30 EDT 2025
Thu Apr 24 23:02:01 EDT 2025
Wed Jan 22 16:27:07 EST 2025
Wed Oct 30 09:52:46 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License http://onlinelibrary.wiley.com/termsAndConditions
http://doi.wiley.com/10.1002/tdm_license_1
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5091-347f19c6560f12f9c67bfb55061311367660aeb3fbe2d2905374640ce9c42b2f3
Notes ArticleID:GRL52091
istex:F276DCAF8E89C2D8F80FB93C5B1A9AA81FA10D03
ark:/67375/WNG-RGRNJJ7V-9
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2014GL061100
PQID 1757284508
PQPubID 54723
PageCount 7
ParticipantIDs proquest_miscellaneous_1622598919
proquest_journals_1910964678
proquest_journals_1757284508
crossref_primary_10_1002_2014GL061100
crossref_citationtrail_10_1002_2014GL061100
wiley_primary_10_1002_2014GL061100_GRL52091
istex_primary_ark_67375_WNG_RGRNJJ7V_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 28 September 2014
PublicationDateYYYYMMDD 2014-09-28
PublicationDate_xml – month: 09
  year: 2014
  text: 28 September 2014
  day: 28
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationTitleAlternate Geophys. Res. Lett
PublicationYear 2014
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Dubinin, E. M., N. F. Pissarenko, S. V. Barabash, A. V. Zakharov, R. Lundin, R. Pellinen, and K. Schwingenschuh (1991), Plasma and magnetic field effects associated with Phobos and Deimos tori, Planet. Space Sci., 39(1-2), 113-121.
Curry, S. M., M. Liemohn, X. Fang, Y. Ma, and J. Espley (2013a), The influence of production mechanisms on pick-up ion loss at Mars, J. Geophys. Res. Space Physics, 118, 554-569, doi:10.1029/2012JA017665.
Küstner, M., W. Eckstein, V. Dose, and J. Roth (1998), The influence of surface roughness on the angular dependence of the sputtering yield, Nucl. Instrum. Methods Phys. Res., Sect. B, 145(3), 320-331.
Cassidy, T. A., and R. E. Johnson (2005), Monte Carlo model of sputtering and other ejection processes within a regolith, Icarus, 176, 499-507.
Ma, Y., A. Nagy, I. V. Sokolov, and K. C. Hansen (2004), Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109, A07211, doi:10.1029/2003JA010367.
Arkani-Hamed, J. (2001), A 50-degree spherical harmonic model of the magnetic field of Mars, J. Geophys. Res., 106(E10), 23,197-23,208.
Fang, X., M. W. Liemohn, A. F. Nagy, J. G. Luhmann, and Y. Ma (2010), On the effect of the Martian crustal magnetic field on atmospheric erosion, Icarus, 206, 130-138.
Behrisch, R., and W. Eckstein (2007), Sputtering by Particle Bombardment: Experiments and Computer Calculations From Threshold to MeV Energies, Topics in Applied Physics, vol. 110, Springer, Berlin, Heidelberg, New York.
Biersack, J. P., and W. Eckstein (1984), Sputtering studies with the Monte Carlo Program TRIM.SP, Appl. Phys. A, 34, 73-94.
Dong, C., S. Bougher, Y. Ma, G. Toth, A. Nagy, and D. Najib (2014), Solar wind interaction with Mars upper atmosphere: Results from the one-way coupling between the multi-fluid MHD model and the MTGCM model, Geophys. Res. Lett., 41, 2708-2715, doi:10.1002/2014GL059515.
Meyer, F. W., P. R. Harris, C. N. Taylor, H. M. Meyer III, A. F. Barghouty, and J. H. Adams (2011), Sputtering of lunar regolith simulant by protons and singly and multicharged Ar ions at solar wind energies, Nucl. Instrum. Methods Phys. Res., Sect. B, 269, 1316-1320.
Cravens, T. E., A. Hoppe, and S. A. Ledvina (2002), Pickup ions near Mars associated with escaping oxygen atoms, J. Geophys. Res., 107(A8), 1170-1180, doi:10.1029/2001JA000125.
Showalter, M. R., D. P. Hamilton, and P. D. Nicholson (2006), A deep search for Martian dust rings and inner moons using the Hubble Space Telescope, Planet. Space Sci., 54, 844-854.
Carlsson, E., et al. (2006), Mass composition of the escaping plasma at Mars, Icarus, 182, 320-328.
Sauer, K., E. Dubinin, K. Baumgärtel, and A. Bogdanov (1995), Deimos: An obstacle to the solar wind, Science, 269(5227), 1075-1078.
Vernazza, P., et al. (2010), Meteorite analogs for Phobos and Deimos: Unraveling the origin of the Martian moons, Meteorit. Planet. Sci. Suppl., 73, 5076.
Jakosky, B. M., and R. J. Phillips (2002), Mars volatile and climate history, Nature, 412, 237-244.
Curry, S. M., M. Liemohn, X. Fang, D. Brain, and Y. Ma (2013b), Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars, J. Geophys. Res. Space Physics, 118, 3700-3711, doi:10.1002/jgra.50358.
Johnson, R. E., and R. Baragiola (1991), Lunar surface: Sputtering and secondary ion mass spectrometry, Geophys. Res. Lett., 18(11), 2169-2172.
Cipriani, F., O. Witasse, F. Leblanc, R. Modolo, and R. E. Johnson (2011), A model of interaction of Phobos' surface with the Martian environment, Icarus, 212, 643-648.
Huebner, W. F., J. J. Keady, and S. P. Lyon (1992), Solar photo rates for planetary atmospheres and atmospheric pollutants, Astrophys. Space Sci., 195, 1-294.
Brecht, S. H., and S. A. Ledvina (2006), The solar wind interaction with the Martian ionosphere/atmosphere, Space Sci. Rev., 124(1-4), 164-173.
Øieroset, M., D. A. Brain, E. Simpson, D. L. Mitchell, T. D. Phan, J. S. Halekas, R. P. Lin, and M. H. Acuña (2010), Search for Phobos and Deimos gas/dust tori using in situ observations from Mars global surveyor MAG/ER, Icarus, 206, 189-198.
Fanale, F. P., and J. R. Salvail (1989), Loss of water from Phobos, Geophys. Res. Lett., 16(4), 287-290.
Dubinin, E., R. Lundin, N. F. Pissarenko, S. V. Barabash, A. V. Zakharov, H. Koskinen, K. Schwingenshuh, and Y. G. Yeroshenko (1990), Indirect evidences for a gas/dust torus along the Phobos orbit, Geophys. Res. Lett., 17(6), 861-864.
Nilsson, H., N. J. T. Edberg, G. Stenberg, S. Barabash, M. Holmström, Y. Futaana, R. Lundin, and A. Fedorov (2011), Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields, Icarus, 215, 475-484.
Ip, W.-H., and M. Banaszkiewicz (1990), On the dust/gas tori of Phobos and Deimos, Geophys. Res. Lett., 17(6), 857-860.
Mura, A., A. Milillo, S. Orsini, E. Kallio, and S. Barabash (2002), Energetic neutral atoms at Mars: 2. Imaging of the solar wind-Phobos interaction, J. Geophys. Res., 107(A10), 1278, doi:10.1029/2001JA000328.
Chaufray, J. Y., R. Modolo, F. Leblanc, G. Chanteur, R. E. Johnson, and J. G. Luhmann (2007), Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space, J. Geophys. Res., 112, E09009, doi:10.1029/2007JE002915.
Vignes, D., C. Mazelle, H. Rme, M. Acuña, J. E. P. Connerney, R. P. Lin, D. L. Mitchell, P. Cloutier, D. H. Crider, and N. F. Ness (2000), The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER experiment onboard Mars global surveyor, Geophys. Res. Lett., 27(1), 49-52.
Luhmann, J. G., and J. U. Kozyra (1991), Dayside pickup oxygen ion precipitation at Venus and Mars: Spatial distributions, energy deposition and consequences, J. Geophys. Res., 96(A4), 5457-5467.
Curry, S. M., M. Liemohn, X. Fang, Y. Ma, J. Slavin, J. Espley, S. Bougher, and C. F. Dong(2014), Test particle comparison of heavy atomic and molecular ion distributions at Mars, J. Geophys. Res. Space Physics, 119, 2328-2344, doi:10.1002/2013JA019221.
Duxbury, T. C., and A. C. Ocampo (1988), Mars-Satellite and ring search from Viking, Icarus, 76, 160-162.
Riedler, W., et al. (1989), Magnetic fields near Mars: First results, Nature, 341, 604-607.
Fang, X., M. W. Liemohn, A. F. Nagy, Y. Ma, D. L. De Zeeuw, J. U. Kozyra, and T. H. Zurbuchen (2008), Pickup oxygen ion velocity space and spatial distribution around Mars, J. Geophys. Res., 113, A02210, doi:10.1029/2007JA012736.
Soter, S. (1971), The dust belts of Mars, CRSR Rep. 462, Center for Radiophysics and Space Research (CRSR), Cornell Univ., Ithaca, N. Y.
Bogdanov, A. V. (1981), Mars satellite Deimos interactions with the solar wind and its influence on flow around Mars, J. Geophys. Res., 86(A8), 6926-6932.
2011; 215
2014; 119
1991; 18
2011; 212
1991; 39
2000; 27
2005; 176
2010; 206
1990; 17
2006; 54
1991; 96
1988; 76
2007
2002; 412
1971
2014; 41
2004; 109
2013b; 118
1981; 86
2001; 106
2011; 269
2007; 112
1992; 195
2013a; 118
1984; 34
1989; 341
2002; 107
1995; 269
2006; 182
2008; 113
1989; 16
1998; 145
2010; 73
2006; 124
Curry (10.1002/2014GL061100-BIB0012|grl52091-cit-0012) 2013b; 118
Behrisch (10.1002/2014GL061100-BIB0002|grl52091-cit-0002) 2007
Fang (10.1002/2014GL061100-BIB0020|grl52091-cit-0020) 2010; 206
Küstner (10.1002/2014GL061100-BIB0025|grl52091-cit-0025) 1998; 145
Cassidy (10.1002/2014GL061100-BIB0007|grl52091-cit-0007) 2005; 176
Johnson (10.1002/2014GL061100-BIB0024|grl52091-cit-0024) 1991; 18
Vignes (10.1002/2014GL061100-BIB0037|grl52091-cit-0037) 2000; 27
Showalter (10.1002/2014GL061100-BIB0034|grl52091-cit-0034) 2006; 54
Fanale (10.1002/2014GL061100-BIB0018|grl52091-cit-0018) 1989; 16
Curry (10.1002/2014GL061100-BIB0011|grl52091-cit-0011) 2013a; 118
Riedler (10.1002/2014GL061100-BIB0032|grl52091-cit-0032) 1989; 341
Duxbury (10.1002/2014GL061100-BIB0017|grl52091-cit-0017) 1988; 76
Dubinin (10.1002/2014GL061100-BIB0015|grl52091-cit-0015) 1990; 17
Vernazza (10.1002/2014GL061100-BIB0036|grl52091-cit-0036) 2010; 73
Arkani-Hamed (10.1002/2014GL061100-BIB0001|grl52091-cit-0001) 2001; 106
Dubinin (10.1002/2014GL061100-BIB0016|grl52091-cit-0016) 1991; 39
Cravens (10.1002/2014GL061100-BIB0010|grl52091-cit-0010) 2002; 107
Meyer (10.1002/2014GL061100-BIB0028|grl52091-cit-0028) 2011; 269
Mura (10.1002/2014GL061100-BIB0029|grl52091-cit-0029) 2002; 107
Bogdanov (10.1002/2014GL061100-BIB0004|grl52091-cit-0004) 1981; 86
Huebner (10.1002/2014GL061100-BIB0021|grl52091-cit-0021) 1992; 195
Nilsson (10.1002/2014GL061100-BIB0030|grl52091-cit-0030) 2011; 215
Curry (10.1002/2014GL061100-BIB0013|grl52091-cit-0013) 2014; 119
Øieroset (10.1002/2014GL061100-BIB0031|grl52091-cit-0031) 2010; 206
Carlsson (10.1002/2014GL061100-BIB0006|grl52091-cit-0006) 2006; 182
Sauer (10.1002/2014GL061100-BIB0033|grl52091-cit-0033) 1995; 269
Brecht (10.1002/2014GL061100-BIB0005|grl52091-cit-0005) 2006; 124
Jakosky (10.1002/2014GL061100-BIB0023|grl52091-cit-0023) 2002; 412
Soter (10.1002/2014GL061100-BIB0035|grl52091-cit-0035) 1971
Dong (10.1002/2014GL061100-BIB0014|grl52091-cit-0014) 2014; 41
Ip (10.1002/2014GL061100-BIB0022|grl52091-cit-0022) 1990; 17
Biersack (10.1002/2014GL061100-BIB0003|grl52091-cit-0003) 1984; 34
Fang (10.1002/2014GL061100-BIB0019|grl52091-cit-0019) 2008; 113
Chaufray (10.1002/2014GL061100-BIB0008|grl52091-cit-0008) 2007; 112
Cipriani (10.1002/2014GL061100-BIB0009|grl52091-cit-0009) 2011; 212
Luhmann (10.1002/2014GL061100-BIB0026|grl52091-cit-0026) 1991; 96
Ma (10.1002/2014GL061100-BIB0027|grl52091-cit-0027) 2004; 109
References_xml – reference: Dubinin, E., R. Lundin, N. F. Pissarenko, S. V. Barabash, A. V. Zakharov, H. Koskinen, K. Schwingenshuh, and Y. G. Yeroshenko (1990), Indirect evidences for a gas/dust torus along the Phobos orbit, Geophys. Res. Lett., 17(6), 861-864.
– reference: Dong, C., S. Bougher, Y. Ma, G. Toth, A. Nagy, and D. Najib (2014), Solar wind interaction with Mars upper atmosphere: Results from the one-way coupling between the multi-fluid MHD model and the MTGCM model, Geophys. Res. Lett., 41, 2708-2715, doi:10.1002/2014GL059515.
– reference: Bogdanov, A. V. (1981), Mars satellite Deimos interactions with the solar wind and its influence on flow around Mars, J. Geophys. Res., 86(A8), 6926-6932.
– reference: Vignes, D., C. Mazelle, H. Rme, M. Acuña, J. E. P. Connerney, R. P. Lin, D. L. Mitchell, P. Cloutier, D. H. Crider, and N. F. Ness (2000), The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER experiment onboard Mars global surveyor, Geophys. Res. Lett., 27(1), 49-52.
– reference: Øieroset, M., D. A. Brain, E. Simpson, D. L. Mitchell, T. D. Phan, J. S. Halekas, R. P. Lin, and M. H. Acuña (2010), Search for Phobos and Deimos gas/dust tori using in situ observations from Mars global surveyor MAG/ER, Icarus, 206, 189-198.
– reference: Carlsson, E., et al. (2006), Mass composition of the escaping plasma at Mars, Icarus, 182, 320-328.
– reference: Cipriani, F., O. Witasse, F. Leblanc, R. Modolo, and R. E. Johnson (2011), A model of interaction of Phobos' surface with the Martian environment, Icarus, 212, 643-648.
– reference: Curry, S. M., M. Liemohn, X. Fang, Y. Ma, and J. Espley (2013a), The influence of production mechanisms on pick-up ion loss at Mars, J. Geophys. Res. Space Physics, 118, 554-569, doi:10.1029/2012JA017665.
– reference: Vernazza, P., et al. (2010), Meteorite analogs for Phobos and Deimos: Unraveling the origin of the Martian moons, Meteorit. Planet. Sci. Suppl., 73, 5076.
– reference: Soter, S. (1971), The dust belts of Mars, CRSR Rep. 462, Center for Radiophysics and Space Research (CRSR), Cornell Univ., Ithaca, N. Y.
– reference: Cravens, T. E., A. Hoppe, and S. A. Ledvina (2002), Pickup ions near Mars associated with escaping oxygen atoms, J. Geophys. Res., 107(A8), 1170-1180, doi:10.1029/2001JA000125.
– reference: Jakosky, B. M., and R. J. Phillips (2002), Mars volatile and climate history, Nature, 412, 237-244.
– reference: Luhmann, J. G., and J. U. Kozyra (1991), Dayside pickup oxygen ion precipitation at Venus and Mars: Spatial distributions, energy deposition and consequences, J. Geophys. Res., 96(A4), 5457-5467.
– reference: Huebner, W. F., J. J. Keady, and S. P. Lyon (1992), Solar photo rates for planetary atmospheres and atmospheric pollutants, Astrophys. Space Sci., 195, 1-294.
– reference: Küstner, M., W. Eckstein, V. Dose, and J. Roth (1998), The influence of surface roughness on the angular dependence of the sputtering yield, Nucl. Instrum. Methods Phys. Res., Sect. B, 145(3), 320-331.
– reference: Ip, W.-H., and M. Banaszkiewicz (1990), On the dust/gas tori of Phobos and Deimos, Geophys. Res. Lett., 17(6), 857-860.
– reference: Duxbury, T. C., and A. C. Ocampo (1988), Mars-Satellite and ring search from Viking, Icarus, 76, 160-162.
– reference: Fanale, F. P., and J. R. Salvail (1989), Loss of water from Phobos, Geophys. Res. Lett., 16(4), 287-290.
– reference: Biersack, J. P., and W. Eckstein (1984), Sputtering studies with the Monte Carlo Program TRIM.SP, Appl. Phys. A, 34, 73-94.
– reference: Meyer, F. W., P. R. Harris, C. N. Taylor, H. M. Meyer III, A. F. Barghouty, and J. H. Adams (2011), Sputtering of lunar regolith simulant by protons and singly and multicharged Ar ions at solar wind energies, Nucl. Instrum. Methods Phys. Res., Sect. B, 269, 1316-1320.
– reference: Arkani-Hamed, J. (2001), A 50-degree spherical harmonic model of the magnetic field of Mars, J. Geophys. Res., 106(E10), 23,197-23,208.
– reference: Fang, X., M. W. Liemohn, A. F. Nagy, Y. Ma, D. L. De Zeeuw, J. U. Kozyra, and T. H. Zurbuchen (2008), Pickup oxygen ion velocity space and spatial distribution around Mars, J. Geophys. Res., 113, A02210, doi:10.1029/2007JA012736.
– reference: Brecht, S. H., and S. A. Ledvina (2006), The solar wind interaction with the Martian ionosphere/atmosphere, Space Sci. Rev., 124(1-4), 164-173.
– reference: Fang, X., M. W. Liemohn, A. F. Nagy, J. G. Luhmann, and Y. Ma (2010), On the effect of the Martian crustal magnetic field on atmospheric erosion, Icarus, 206, 130-138.
– reference: Riedler, W., et al. (1989), Magnetic fields near Mars: First results, Nature, 341, 604-607.
– reference: Curry, S. M., M. Liemohn, X. Fang, D. Brain, and Y. Ma (2013b), Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars, J. Geophys. Res. Space Physics, 118, 3700-3711, doi:10.1002/jgra.50358.
– reference: Ma, Y., A. Nagy, I. V. Sokolov, and K. C. Hansen (2004), Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109, A07211, doi:10.1029/2003JA010367.
– reference: Sauer, K., E. Dubinin, K. Baumgärtel, and A. Bogdanov (1995), Deimos: An obstacle to the solar wind, Science, 269(5227), 1075-1078.
– reference: Johnson, R. E., and R. Baragiola (1991), Lunar surface: Sputtering and secondary ion mass spectrometry, Geophys. Res. Lett., 18(11), 2169-2172.
– reference: Showalter, M. R., D. P. Hamilton, and P. D. Nicholson (2006), A deep search for Martian dust rings and inner moons using the Hubble Space Telescope, Planet. Space Sci., 54, 844-854.
– reference: Mura, A., A. Milillo, S. Orsini, E. Kallio, and S. Barabash (2002), Energetic neutral atoms at Mars: 2. Imaging of the solar wind-Phobos interaction, J. Geophys. Res., 107(A10), 1278, doi:10.1029/2001JA000328.
– reference: Cassidy, T. A., and R. E. Johnson (2005), Monte Carlo model of sputtering and other ejection processes within a regolith, Icarus, 176, 499-507.
– reference: Nilsson, H., N. J. T. Edberg, G. Stenberg, S. Barabash, M. Holmström, Y. Futaana, R. Lundin, and A. Fedorov (2011), Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields, Icarus, 215, 475-484.
– reference: Behrisch, R., and W. Eckstein (2007), Sputtering by Particle Bombardment: Experiments and Computer Calculations From Threshold to MeV Energies, Topics in Applied Physics, vol. 110, Springer, Berlin, Heidelberg, New York.
– reference: Curry, S. M., M. Liemohn, X. Fang, Y. Ma, J. Slavin, J. Espley, S. Bougher, and C. F. Dong(2014), Test particle comparison of heavy atomic and molecular ion distributions at Mars, J. Geophys. Res. Space Physics, 119, 2328-2344, doi:10.1002/2013JA019221.
– reference: Dubinin, E. M., N. F. Pissarenko, S. V. Barabash, A. V. Zakharov, R. Lundin, R. Pellinen, and K. Schwingenschuh (1991), Plasma and magnetic field effects associated with Phobos and Deimos tori, Planet. Space Sci., 39(1-2), 113-121.
– reference: Chaufray, J. Y., R. Modolo, F. Leblanc, G. Chanteur, R. E. Johnson, and J. G. Luhmann (2007), Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space, J. Geophys. Res., 112, E09009, doi:10.1029/2007JE002915.
– volume: 34
  start-page: 73
  year: 1984
  end-page: 94
  article-title: Sputtering studies with the Monte Carlo Program TRIM.SP
  publication-title: Appl. Phys. A
– volume: 118
  start-page: 3700
  year: 2013b
  end-page: 3711
  article-title: Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars
  publication-title: J. Geophys. Res. Space Physics
– volume: 112
  year: 2007
  article-title: Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space
  publication-title: J. Geophys. Res.
– volume: 17
  start-page: 857
  issue: 6
  year: 1990
  end-page: 860
  article-title: On the dust/gas tori of Phobos and Deimos
  publication-title: Geophys. Res. Lett.
– volume: 107
  start-page: 1170
  issue: A8
  year: 2002
  end-page: 1180
  article-title: Pickup ions near Mars associated with escaping oxygen atoms
  publication-title: J. Geophys. Res.
– volume: 124
  start-page: 164
  issue: 1–4
  year: 2006
  end-page: 173
  article-title: The solar wind interaction with the Martian ionosphere/atmosphere
  publication-title: Space Sci. Rev.
– volume: 106
  issue: E10
  year: 2001
  article-title: A 50‐degree spherical harmonic model of the magnetic field of Mars
  publication-title: J. Geophys. Res.
– volume: 412
  start-page: 237
  year: 2002
  end-page: 244
  article-title: Mars volatile and climate history
  publication-title: Nature
– volume: 119
  start-page: 2328
  year: 2014
  end-page: 2344
  article-title: Test particle comparison of heavy atomic and molecular ion distributions at Mars
  publication-title: J. Geophys. Res. Space Physics
– volume: 27
  start-page: 49
  issue: 1
  year: 2000
  end-page: 52
  article-title: The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile‐up boundary from the observations of the MAG/ER experiment onboard Mars global surveyor
  publication-title: Geophys. Res. Lett.
– year: 2007
– volume: 16
  start-page: 287
  issue: 4
  year: 1989
  end-page: 290
  article-title: Loss of water from Phobos
  publication-title: Geophys. Res. Lett.
– volume: 195
  start-page: 1
  year: 1992
  end-page: 294
  article-title: Solar photo rates for planetary atmospheres and atmospheric pollutants
  publication-title: Astrophys. Space Sci.
– volume: 86
  start-page: 6926
  issue: A8
  year: 1981
  end-page: 6932
  article-title: Mars satellite Deimos interactions with the solar wind and its influence on flow around Mars
  publication-title: J. Geophys. Res.
– volume: 269
  start-page: 1075
  issue: 5227
  year: 1995
  end-page: 1078
  article-title: Deimos: An obstacle to the solar wind
  publication-title: Science
– volume: 41
  start-page: 2708
  year: 2014
  end-page: 2715
  article-title: Solar wind interaction with Mars upper atmosphere: Results from the one‐way coupling between the multi‐fluid MHD model and the MTGCM model
  publication-title: Geophys. Res. Lett.
– volume: 109
  year: 2004
  article-title: Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars
  publication-title: J. Geophys. Res.
– volume: 182
  start-page: 320
  year: 2006
  end-page: 328
  article-title: Mass composition of the escaping plasma at Mars
  publication-title: Icarus
– volume: 113
  year: 2008
  article-title: Pickup oxygen ion velocity space and spatial distribution around Mars
  publication-title: J. Geophys. Res.
– volume: 18
  start-page: 2169
  issue: 11
  year: 1991
  end-page: 2172
  article-title: Lunar surface: Sputtering and secondary ion mass spectrometry
  publication-title: Geophys. Res. Lett.
– volume: 176
  start-page: 499
  year: 2005
  end-page: 507
  article-title: Monte Carlo model of sputtering and other ejection processes within a regolith
  publication-title: Icarus
– year: 1971
  article-title: The dust belts of Mars
  publication-title: CRSR Rep. 462
– volume: 269
  start-page: 1316
  year: 2011
  end-page: 1320
  article-title: Sputtering of lunar regolith simulant by protons and singly and multicharged Ar ions at solar wind energies
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
– volume: 17
  start-page: 861
  issue: 6
  year: 1990
  end-page: 864
  article-title: Indirect evidences for a gas/dust torus along the Phobos orbit
  publication-title: Geophys. Res. Lett.
– volume: 96
  start-page: 5457
  issue: A4
  year: 1991
  end-page: 5467
  article-title: Dayside pickup oxygen ion precipitation at Venus and Mars: Spatial distributions, energy deposition and consequences
  publication-title: J. Geophys. Res.
– volume: 118
  start-page: 554
  year: 2013a
  end-page: 569
  article-title: The influence of production mechanisms on pick‐up ion loss at Mars
  publication-title: J. Geophys. Res. Space Physics
– volume: 76
  start-page: 160
  year: 1988
  end-page: 162
  article-title: Mars—Satellite and ring search from Viking
  publication-title: Icarus
– volume: 341
  start-page: 604
  year: 1989
  end-page: 607
  article-title: Magnetic fields near Mars: First results
  publication-title: Nature
– volume: 145
  start-page: 320
  issue: 3
  year: 1998
  end-page: 331
  article-title: The influence of surface roughness on the angular dependence of the sputtering yield
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
– volume: 54
  start-page: 844
  year: 2006
  end-page: 854
  article-title: A deep search for Martian dust rings and inner moons using the Hubble Space Telescope
  publication-title: Planet. Space Sci.
– volume: 73
  start-page: 5076
  year: 2010
  article-title: Meteorite analogs for Phobos and Deimos: Unraveling the origin of the Martian moons
  publication-title: Meteorit. Planet. Sci. Suppl.
– volume: 107
  start-page: 1278
  issue: A10
  year: 2002
  article-title: Energetic neutral atoms at Mars: 2. Imaging of the solar wind‐Phobos interaction
  publication-title: J. Geophys. Res.
– volume: 215
  start-page: 475
  year: 2011
  end-page: 484
  article-title: Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields
  publication-title: Icarus
– volume: 212
  start-page: 643
  year: 2011
  end-page: 648
  article-title: A model of interaction of Phobos' surface with the Martian environment
  publication-title: Icarus
– volume: 39
  start-page: 113
  issue: 1–2
  year: 1991
  end-page: 121
  article-title: Plasma and magnetic field effects associated with Phobos and Deimos tori
  publication-title: Planet. Space Sci.
– volume: 206
  start-page: 189
  year: 2010
  end-page: 198
  article-title: Search for Phobos and Deimos gas/dust tori using in situ observations from Mars global surveyor MAG/ER
  publication-title: Icarus
– volume: 206
  start-page: 130
  year: 2010
  end-page: 138
  article-title: On the effect of the Martian crustal magnetic field on atmospheric erosion
  publication-title: Icarus
– volume: 145
  start-page: 320
  issue: 3
  year: 1998
  ident: 10.1002/2014GL061100-BIB0025|grl52091-cit-0025
  article-title: The influence of surface roughness on the angular dependence of the sputtering yield
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
  doi: 10.1016/S0168-583X(98)00399-1
– volume: 212
  start-page: 643
  year: 2011
  ident: 10.1002/2014GL061100-BIB0009|grl52091-cit-0009
  article-title: A model of interaction of Phobos' surface with the Martian environment
  publication-title: Icarus
  doi: 10.1016/j.icarus.2011.01.036
– volume: 109
  year: 2004
  ident: 10.1002/2014GL061100-BIB0027|grl52091-cit-0027
  article-title: Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars
  publication-title: J. Geophys. Res.
  doi: 10.1029/2003JA010367
– volume: 17
  start-page: 857
  issue: 6
  year: 1990
  ident: 10.1002/2014GL061100-BIB0022|grl52091-cit-0022
  article-title: On the dust/gas tori of Phobos and Deimos
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/GL017i006p00857
– volume: 412
  start-page: 237
  year: 2002
  ident: 10.1002/2014GL061100-BIB0023|grl52091-cit-0023
  article-title: Mars volatile and climate history
  publication-title: Nature
  doi: 10.1038/35084184
– volume: 106
  issue: E10
  year: 2001
  ident: 10.1002/2014GL061100-BIB0001|grl52091-cit-0001
  article-title: A 50-degree spherical harmonic model of the magnetic field of Mars
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JE001365
– volume: 96
  start-page: 5457
  issue: A4
  year: 1991
  ident: 10.1002/2014GL061100-BIB0026|grl52091-cit-0026
  article-title: Dayside pickup oxygen ion precipitation at Venus and Mars: Spatial distributions, energy deposition and consequences
  publication-title: J. Geophys. Res.
  doi: 10.1029/90JA01753
– volume: 17
  start-page: 861
  issue: 6
  year: 1990
  ident: 10.1002/2014GL061100-BIB0015|grl52091-cit-0015
  article-title: Indirect evidences for a gas/dust torus along the Phobos orbit
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/GL017i006p00861
– volume: 41
  start-page: 2708
  year: 2014
  ident: 10.1002/2014GL061100-BIB0014|grl52091-cit-0014
  article-title: Solar wind interaction with Mars upper atmosphere: Results from the one-way coupling between the multi-fluid MHD model and the MTGCM model
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL059515
– volume: 27
  start-page: 49
  issue: 1
  year: 2000
  ident: 10.1002/2014GL061100-BIB0037|grl52091-cit-0037
  article-title: The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER experiment onboard Mars global surveyor
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/1999GL010703
– volume: 206
  start-page: 189
  year: 2010
  ident: 10.1002/2014GL061100-BIB0031|grl52091-cit-0031
  article-title: Search for Phobos and Deimos gas/dust tori using in situ observations from Mars global surveyor MAG/ER
  publication-title: Icarus
  doi: 10.1016/j.icarus.2009.07.017
– volume: 341
  start-page: 604
  year: 1989
  ident: 10.1002/2014GL061100-BIB0032|grl52091-cit-0032
  article-title: Magnetic fields near Mars: First results
  publication-title: Nature
  doi: 10.1038/341604a0
– volume: 112
  year: 2007
  ident: 10.1002/2014GL061100-BIB0008|grl52091-cit-0008
  article-title: Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space
  publication-title: J. Geophys. Res.
  doi: 10.1029/2007JE002915
– volume: 107
  start-page: 1278
  issue: A10
  year: 2002
  ident: 10.1002/2014GL061100-BIB0029|grl52091-cit-0029
  article-title: Energetic neutral atoms at Mars: 2. Imaging of the solar wind-Phobos interaction
  publication-title: J. Geophys. Res.
  doi: 10.1029/2001JA000328
– volume: 39
  start-page: 113
  issue: 1-2
  year: 1991
  ident: 10.1002/2014GL061100-BIB0016|grl52091-cit-0016
  article-title: Plasma and magnetic field effects associated with Phobos and Deimos tori
  publication-title: Planet. Space Sci.
  doi: 10.1016/0032-0633(91)90133-U
– volume: 34
  start-page: 73
  year: 1984
  ident: 10.1002/2014GL061100-BIB0003|grl52091-cit-0003
  article-title: Sputtering studies with the Monte Carlo Program TRIM.SP
  publication-title: Appl. Phys. A
  doi: 10.1007/BF00614759
– volume: 215
  start-page: 475
  year: 2011
  ident: 10.1002/2014GL061100-BIB0030|grl52091-cit-0030
  article-title: Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields
  publication-title: Icarus
  doi: 10.1016/j.icarus.2011.08.003
– volume: 176
  start-page: 499
  year: 2005
  ident: 10.1002/2014GL061100-BIB0007|grl52091-cit-0007
  article-title: Monte Carlo model of sputtering and other ejection processes within a regolith
  publication-title: Icarus
  doi: 10.1016/j.icarus.2005.02.013
– volume: 182
  start-page: 320
  year: 2006
  ident: 10.1002/2014GL061100-BIB0006|grl52091-cit-0006
  article-title: Mass composition of the escaping plasma at Mars
  publication-title: Icarus
  doi: 10.1016/j.icarus.2005.09.020
– volume: 119
  start-page: 2328
  year: 2014
  ident: 10.1002/2014GL061100-BIB0013|grl52091-cit-0013
  article-title: Test particle comparison of heavy atomic and molecular ion distributions at Mars
  publication-title: J. Geophys. Res. Space Physics
  doi: 10.1002/2013JA019221
– year: 1971
  ident: 10.1002/2014GL061100-BIB0035|grl52091-cit-0035
  article-title: The dust belts of Mars
  publication-title: CRSR Rep. 462
– volume: 206
  start-page: 130
  year: 2010
  ident: 10.1002/2014GL061100-BIB0020|grl52091-cit-0020
  article-title: On the effect of the Martian crustal magnetic field on atmospheric erosion
  publication-title: Icarus
  doi: 10.1016/j.icarus.2009.01.012
– volume: 195
  start-page: 1
  year: 1992
  ident: 10.1002/2014GL061100-BIB0021|grl52091-cit-0021
  article-title: Solar photo rates for planetary atmospheres and atmospheric pollutants
  publication-title: Astrophys. Space Sci.
  doi: 10.1007/BF00644558
– volume-title: Sputtering by Particle Bombardment: Experiments and Computer Calculations From Threshold to MeV Energies
  year: 2007
  ident: 10.1002/2014GL061100-BIB0002|grl52091-cit-0002
– volume: 16
  start-page: 287
  issue: 4
  year: 1989
  ident: 10.1002/2014GL061100-BIB0018|grl52091-cit-0018
  article-title: Loss of water from Phobos
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/GL016i004p00287
– volume: 54
  start-page: 844
  year: 2006
  ident: 10.1002/2014GL061100-BIB0034|grl52091-cit-0034
  article-title: A deep search for Martian dust rings and inner moons using the Hubble Space Telescope
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2006.05.009
– volume: 107
  start-page: 1170
  issue: A8
  year: 2002
  ident: 10.1002/2014GL061100-BIB0010|grl52091-cit-0010
  article-title: Pickup ions near Mars associated with escaping oxygen atoms
  publication-title: J. Geophys. Res.
  doi: 10.1029/2001JA000125
– volume: 118
  start-page: 3700
  year: 2013b
  ident: 10.1002/2014GL061100-BIB0012|grl52091-cit-0012
  article-title: Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars
  publication-title: J. Geophys. Res. Space Physics
  doi: 10.1002/jgra.50358
– volume: 76
  start-page: 160
  year: 1988
  ident: 10.1002/2014GL061100-BIB0017|grl52091-cit-0017
  article-title: Mars-Satellite and ring search from Viking
  publication-title: Icarus
  doi: 10.1016/0019-1035(88)90148-0
– volume: 269
  start-page: 1316
  year: 2011
  ident: 10.1002/2014GL061100-BIB0028|grl52091-cit-0028
  article-title: Sputtering of lunar regolith simulant by protons and singly and multicharged Ar ions at solar wind energies
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
  doi: 10.1016/j.nimb.2010.11.091
– volume: 269
  start-page: 1075
  issue: 5227
  year: 1995
  ident: 10.1002/2014GL061100-BIB0033|grl52091-cit-0033
  article-title: Deimos: An obstacle to the solar wind
  publication-title: Science
  doi: 10.1126/science.269.5227.1075
– volume: 18
  start-page: 2169
  issue: 11
  year: 1991
  ident: 10.1002/2014GL061100-BIB0024|grl52091-cit-0024
  article-title: Lunar surface: Sputtering and secondary ion mass spectrometry
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/91GL02095
– volume: 73
  start-page: 5076
  year: 2010
  ident: 10.1002/2014GL061100-BIB0036|grl52091-cit-0036
  article-title: Meteorite analogs for Phobos and Deimos: Unraveling the origin of the Martian moons
  publication-title: Meteorit. Planet. Sci. Suppl.
– volume: 86
  start-page: 6926
  issue: A8
  year: 1981
  ident: 10.1002/2014GL061100-BIB0004|grl52091-cit-0004
  article-title: Mars satellite Deimos interactions with the solar wind and its influence on flow around Mars
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA086iA08p06926
– volume: 118
  start-page: 554
  year: 2013a
  ident: 10.1002/2014GL061100-BIB0011|grl52091-cit-0011
  article-title: The influence of production mechanisms on pick-up ion loss at Mars
  publication-title: J. Geophys. Res. Space Physics
  doi: 10.1029/2012JA017665
– volume: 113
  year: 2008
  ident: 10.1002/2014GL061100-BIB0019|grl52091-cit-0019
  article-title: Pickup oxygen ion velocity space and spatial distribution around Mars
  publication-title: J. Geophys. Res.
  doi: 10.1029/2007JA012736
– volume: 124
  start-page: 164
  issue: 1-4
  year: 2006
  ident: 10.1002/2014GL061100-BIB0005|grl52091-cit-0005
  article-title: The solar wind interaction with the Martian ionosphere/atmosphere
  publication-title: Space Sci. Rev.
SSID ssj0003031
Score 2.2151685
Snippet The Martian moons, Phobos and Deimos, have long been suspected to be the sources of tenuous neutral gas tori encircling Mars. While direct outgassing has been...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6335
SubjectTerms Atmospheric models
Charged particles
Deimos
Evolution
Fluctuations
Flux
Ion flux
ion sputtering
Ions
Magnetohydrodynamics
Mars
Mars atmospheric loss
Mars satellites
Mathematical models
Moons
Outgassing
Phobos
Phobos neutral torus
Solar wind
Space exploration
Sputtering
Toruses
Vaporization
Title Martian planetary heavy ion sputtering of Phobos
URI https://api.istex.fr/ark:/67375/WNG-RGRNJJ7V-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2014GL061100
https://www.proquest.com/docview/1757284508
https://www.proquest.com/docview/1910964678
https://www.proquest.com/docview/1622598919
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBejYbCXsU-WrRsebHsx9mxZlqzHMjaX0IaSNV3Zi4kUm0JLbPIx2v71u5Nkx2VdWfdijHwoju50H9bd7wj5UGVKzrSIApUJFTCwsYHSikOUkmhO9VxlDKuRD8d8f8pGp-lp27PdVZesVaivb60r-R-uwhjwFatk78HZblIYgHvgL1yBw3D9Jx4bDADYoA1mrK4x_w1U668rH1m6akwLapfUfHRWq3rV90Tzsm5aHjnEnzP_whT3dG72Ud009oNn6E_C7rhis7Rn799D_zDsfzaIGeY40KyvCiULMiocDrXVfpLBWGTb0Lbq0eJStWKQ9ZQdTyzSiDOcPLGkfyhlC_KKL5EfgPsQR9HW-LQH7h1dehelsbv55ABzdyDkHVAh8Gx-sHcy_TntDDBYZdso0f1DV-8A03_uT33DExngprq8EWb0gxXjbRw_IY9dmODtWZ4_JQ_KxTPyMDdtmK_gziTu6tVzEjkZ8DoZ8IwMeCAD3lYGvLryrAy8INNvX4-_7AeuC0ag0ZkLEiaqWGoESapiWsGdUJWCwJIjUhIC7vFoVqqkUiWdU4n4PIyzSJdSM6polbwkO4t6Ub7C-nyV6Djmc45uMpMqElzQkiuWplzNqyHx2xUptIOIx04lF4UFt6ZFf_2G5GNH3VholL_QfTKL2xHNlueYTijS4sc4Lyb5ZDwaiZNCDsluu_qF22WrAtxbAS4UxBG3PwZ3V3Kw9vD4ffcYVCSee8G61xug4WC0ZCZj-AXfMPXO9y1aAXt9L-o35NF2n-2SnfVyU74Fh3Wt3jkB_Q10MIco
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-6IfoifuJ0agX1RYptliXN4xDXObchw6n4EpasQVDW4aa4_967tqsTVPAtJdevS-_ul_TyO0KObaBl3wjP1YHQLoMY62qjOcxSKoZTM9ABw93I7Q5v9FjzofqQ1TnFvTApP0S-4IaWkfhrNHBckD7_Yg2F0MXCFsQjOF4kRQQ2tECKtbveYy93xuCh06J5krkBFTzLfYcrnM-f_y0qFVHBH98g5zxwTSJPfY2sZpDRqaVjvE4WouEGWQqTkrxTaCVJnGa8SbyEE6A_dEaYwTqBV3PA1b5PHdC9Mx4lJakhUjmxdW6eYh2Pt0ivfnl70XCzigiuwcDuVpiwvjRImGN9aqEltNUwyeDImoPka9zrw_TY6ogOqESuFsaZZyJpGNXUVrZJYRgPox3cq60rxvf5gCNkYlJ7ggsacc2qVa4HtkTOZhpRJqMLx6oVLyolOqZqXn8lcpJLj1KajF_kThPl5kL912dMLRNVdd8JVTfsdppNcadkiZRn2leZVY0VQB0B4RQw5c_dAH0kB88P3Ud5N5gL_gMBvcdvIMPBgclA-nCHs2RQ_3xeFXZbmCjk7_5L-pAsN27bLdW66lzvkRWUwRwTGpRJYfL6Fu0DkJnog-xj_QQ_iOQb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA_qUHwRP3F-VlBfRrHNsqR5FHXVOYcMp8OXsKQNgrION0X_e-_arm6ggm8tuX5dcne_pJffEXJoAy17RniuDoR2GcRYVxvNYZZSNZyaSAcMdyPftPhlhzW6tW6-4IZ7YTJ-iGLBDS0j9ddo4IPInnyThkLkYmETwhGcz5ISEuXBOC-d3nceO4UvBged1cyTzA2o4HnqO9zhZPL6qaBUQv1-TCHOSdyaBp76MlnKEaNzmnXxCpmJ-6tkPkwr8n7CUZrDaYZrxEspAXp9Z4AJrCP4Mgc87funA6p3hoO0IjUEKiexzu1TopPhOunUL-7OLt28IIJrMK67VSasLw3y5VifWjgS2mqYY3AkzUHuNe71YHZsdUwjKpGqhXHmmVgaRjW11Q0y10_68SZu1dZV4_s84oiYmNSe4ILGXLNajevIlkllrBFlcrZwLFrxojKeY6om9VcmR4X0IGPJ-EXuOFVuIdR7fcbMMlFTD61QtcN2q9EQ90qWyc5Y-yo3qqECpCMgmgKk_LkZkI_k4Pih-aBoBmvBXyCg9-QNZDj4LxlIH55QSTv1z_dVYbuJeUL-1r-k98nC7XldNa9a19tkEUUww4QGO2Ru9PoW7wKMGem9fKx-Ad3140Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Martian+planetary+heavy+ion+sputtering+of+Phobos&rft.jtitle=Geophysical+research+letters&rft.au=Poppe%2C+A.+R.&rft.au=Curry%2C+S.+M.&rft.date=2014-09-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=41&rft.issue=18&rft.spage=6335&rft.epage=6341&rft_id=info:doi/10.1002%2F2014GL061100&rft.externalDBID=10.1002%252F2014GL061100&rft.externalDocID=GRL52091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon