Drivers of phosphorus limitation across soil microbial communities
Summary Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as such, it is central to soil and ecosystem models. According to ecological stoichiometry theory, when the carbon (C)‐to‐nutrient (E) r...
Saved in:
Published in | Functional ecology Vol. 30; no. 10; pp. 1705 - 1713 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley
01.10.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0269-8463 1365-2435 1365-2435 |
DOI | 10.1111/1365-2435.12650 |
Cover
Loading…
Abstract | Summary
Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as such, it is central to soil and ecosystem models.
According to ecological stoichiometry theory, when the carbon (C)‐to‐nutrient (E) ratio of resources used by a microbial community is higher than a critical ratio (C : ECR), that nutrient is limiting. The C‐to‐phosphorus (P) critical ratio (C : PCR) that determines P limitation is largely unknown for soils, and thus, it is the subject of our study.
Our results show that the C : PCR in widely different soils ranges from 26·6 to 465·1 or from 20·9 to 740·7 when accounting for 95% confidence intervals. Using constant or narrowly fluctuating C : PCR in ecosystem models is therefore inaccurate.
The C : PCR cannot be simply predicted from microbial community C : P or available soil P. C : PCR was only related to relative abundance of phospholipid fatty acids, which reflects microbial community structure and physiology. Our data suggest complex controls over microbial community C : PCR.
We further propose that using P storage compounds that allow the microbial community to temporarily buffer variability in available P can represent a widely adopted strategies across soils.
Lay Summary |
---|---|
AbstractList | Summary Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as such, it is central to soil and ecosystem models. According to ecological stoichiometry theory, when the carbon (C)-to-nutrient (E) ratio of resources used by a microbial community is higher than a critical ratio (C : ECR), that nutrient is limiting. The C-to-phosphorus (P) critical ratio (C : PCR) that determines P limitation is largely unknown for soils, and thus, it is the subject of our study. Our results show that the C : PCR in widely different soils ranges from 26·6 to 465·1 or from 20·9 to 740·7 when accounting for 95% confidence intervals. Using constant or narrowly fluctuating C : PCR in ecosystem models is therefore inaccurate. The C : PCR cannot be simply predicted from microbial community C : P or available soil P. C : PCR was only related to relative abundance of phospholipid fatty acids, which reflects microbial community structure and physiology. Our data suggest complex controls over microbial community C : PCR. We further propose that using P storage compounds that allow the microbial community to temporarily buffer variability in available P can represent a widely adopted strategies across soils. Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as such, it is central to soil and ecosystem models. According to ecological stoichiometry theory, when the carbon (C)‐to‐nutrient (E) ratio of resources used by a microbial community is higher than a critical ratio (C : ECR), that nutrient is limiting. The C‐to‐phosphorus (P) critical ratio (C : PCR) that determines P limitation is largely unknown for soils, and thus, it is the subject of our study. Our results show that the C : PCR in widely different soils ranges from 26·6 to 465·1 or from 20·9 to 740·7 when accounting for 95% confidence intervals. Using constant or narrowly fluctuating C : PCR in ecosystem models is therefore inaccurate. The C : PCR cannot be simply predicted from microbial community C : P or available soil P. C : PCR was only related to relative abundance of phospholipid fatty acids, which reflects microbial community structure and physiology. Our data suggest complex controls over microbial community C : PCR. We further propose that using P storage compounds that allow the microbial community to temporarily buffer variability in available P can represent a widely adopted strategies across soils. Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as such, it is central to soil and ecosystem models. According to ecological stoichiometry theory, when the carbon (C)-to-nutrient (E) ratio of resources used by a microbial community is higher than a critical ratio (C:E-CR), that nutrient is limiting. The C-to-phosphorus (P) critical ratio (C:P-CR) that determines P limitation is largely unknown for soils, and thus, it is the subject of our study. Our results show that the C:P-CR in widely different soils ranges from 26<bold></bold>6 to 465<bold></bold>1 or from 20<bold></bold>9 to 740<bold></bold>7 when accounting for 95% confidence intervals. Using constant or narrowly fluctuating C:P-CR in ecosystem models is therefore inaccurate. The C:P-CR cannot be simply predicted from microbial community C:P or available soil P. C:P-CR was only related to relative abundance of phospholipid fatty acids, which reflects microbial community structure and physiology. Our data suggest complex controls over microbial community C:P-CR. We further propose that using P storage compounds that allow the microbial community to temporarily buffer variability in available P can represent a widely adopted strategies across soils. Summary Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as such, it is central to soil and ecosystem models. According to ecological stoichiometry theory, when the carbon (C)‐to‐nutrient (E) ratio of resources used by a microbial community is higher than a critical ratio (C : ECR), that nutrient is limiting. The C‐to‐phosphorus (P) critical ratio (C : PCR) that determines P limitation is largely unknown for soils, and thus, it is the subject of our study. Our results show that the C : PCR in widely different soils ranges from 26·6 to 465·1 or from 20·9 to 740·7 when accounting for 95% confidence intervals. Using constant or narrowly fluctuating C : PCR in ecosystem models is therefore inaccurate. The C : PCR cannot be simply predicted from microbial community C : P or available soil P. C : PCR was only related to relative abundance of phospholipid fatty acids, which reflects microbial community structure and physiology. Our data suggest complex controls over microbial community C : PCR. We further propose that using P storage compounds that allow the microbial community to temporarily buffer variability in available P can represent a widely adopted strategies across soils. Lay Summary 1. Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as such, it is central to soil and ecosystem models. 2. According to ecological stoichiometry theory, when the carbon (C)-to-nutrient (E) ratio of resources used by a microbial community is higher than a critical ratio (C : E sub(CR)), that nutrient is limiting. The C-to-phosphorus (P) critical ratio (C : P sub(CR)) that determines P limitation is largely unknown for soils, and thus, it is the subject of our study. 3. Our results show that the C : P sub(CR) in widely different soils ranges from 26.6 to 465.1 or from 20.9 to 740.7 when accounting for 95% confidence intervals. Using constant or narrowly fluctuating C : P sub(CR) in ecosystem models is therefore inaccurate. 4. The C : P sub(CR) cannot be simply predicted from microbial community C : P or available soil P. C : P sub(CR) was only related to relative abundance of phospholipid fatty acids, which reflects microbial community structure and physiology. Our data suggest complex controls over microbial community C : P sub(CR). 5. We further propose that using P storage compounds that allow the microbial community to temporarily buffer variability in available P can represent a widely adopted strategies across soils. Lay Summary Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as such, it is central to soil and ecosystem models. According to ecological stoichiometry theory, when the carbon (C)‐to‐nutrient (E) ratio of resources used by a microbial community is higher than a critical ratio (C : E CR ), that nutrient is limiting. The C‐to‐phosphorus (P) critical ratio (C : P CR ) that determines P limitation is largely unknown for soils, and thus, it is the subject of our study. Our results show that the C : P CR in widely different soils ranges from 26·6 to 465·1 or from 20·9 to 740·7 when accounting for 95% confidence intervals. Using constant or narrowly fluctuating C : P CR in ecosystem models is therefore inaccurate. The C : P CR cannot be simply predicted from microbial community C : P or available soil P. C : P CR was only related to relative abundance of phospholipid fatty acids, which reflects microbial community structure and physiology. Our data suggest complex controls over microbial community C : P CR . We further propose that using P storage compounds that allow the microbial community to temporarily buffer variability in available P can represent a widely adopted strategies across soils. |
Author | Manzoni, Stefano Kotas, Petr Čapek, Petr Šantrůčková, Hana |
Author_xml | – sequence: 1 givenname: Petr surname: Čapek fullname: Čapek, Petr – sequence: 2 givenname: Petr surname: Kotas fullname: Kotas, Petr – sequence: 3 givenname: Stefano surname: Manzoni fullname: Manzoni, Stefano – sequence: 4 givenname: Hana surname: Šantrůčková fullname: Šantrůčková, Hana |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-136102$$DView record from Swedish Publication Index |
BookMark | eNqFkc1PwyAYxomZiZt69mTSxIsHu_FRPnqc-1ATEy_qlTBGlaUtE1rN_nup0x12cCSEAL_nfXl4BqBXu9oAcIHgEMUxQoTRFGeEDhFmFB6B_u6kB_oQszwVGSMnYBDCCkKYU4z74Hbq7afxIXFFsn53IU7fhqS0lW1UY12dKO1dCElwtkwqGzcLq8pEu6pqa9tYE87AcaHKYM5_11PwMp89T-7Tx6e7h8n4MdUU5jBdQrEsTLHMFhpTpTDXBaEEI5HRQmlTmHiPMrjgOWMkN0ooyjMiVIawIJoLcgputnXDl1m3C7n2tlJ-I52ycmpfx9L5NxlaGW0jiCN-vcXX3n20JjSyskGbslS1cW2QOP5BrM0ZOogigbnIORIwold76Mq1vo6-JSacwtiYkf-oWIsizmjevXC0pX5-2JtiZwlB2WXaWaGyS1D-ZBoVdE-hf2NqvLLlYd2XLc3mUBs5n03-dJdb3So0zu90maACE8zIN6h7vS0 |
CODEN | FECOE5 |
CitedBy_id | crossref_primary_10_3389_fmicb_2020_00143 crossref_primary_10_1007_s10533_022_00967_z crossref_primary_10_1016_j_agee_2019_04_027 crossref_primary_10_1007_s11368_024_03783_0 crossref_primary_10_1016_j_chemosphere_2021_130501 crossref_primary_10_1016_j_jtbi_2020_110530 crossref_primary_10_1016_j_geoderma_2021_115320 crossref_primary_10_1016_j_jprot_2018_11_011 crossref_primary_10_1016_j_geoderma_2022_115782 crossref_primary_10_3390_fermentation9050406 crossref_primary_10_1016_j_soilbio_2024_109387 crossref_primary_10_3390_microorganisms9020381 crossref_primary_10_3390_f11020247 crossref_primary_10_3390_horticulturae9050536 crossref_primary_10_5194_bg_17_5309_2020 crossref_primary_10_1038_s41559_018_0662_8 crossref_primary_10_1007_s00374_023_01766_w crossref_primary_10_1016_j_ejsobi_2021_103383 crossref_primary_10_1007_s11104_023_06134_z crossref_primary_10_1016_j_geoderma_2020_114884 crossref_primary_10_1111_ele_70011 crossref_primary_10_1016_j_soilbio_2019_04_008 crossref_primary_10_1016_j_soilbio_2021_108366 crossref_primary_10_1016_j_jprot_2019_103623 crossref_primary_10_1007_s10533_018_0470_x crossref_primary_10_1007_s00374_024_01829_6 |
Cites_doi | 10.3389/fmicb.2014.00541 10.1038/nrmicro2504 10.1007/s10021-010-9408-4 10.1016/0038-0717(82)90001-3 10.1186/1475-2859-12-50 10.1016/j.soilbio.2014.05.011 10.1091/mbc.E09-07-0597 10.1016/S1389-1723(99)80189-3 10.1007/978-1-4899-2439-1_11 10.1890/03-9000 10.1002/bit.260160409 10.1007/s10021-004-0026-x 10.1128/aem.63.4.1531-1542.1997 10.1111/j.1469-8137.2010.03214.x 10.18637/jss.v033.i07 10.1111/geb.12029 10.1111/j.0030-1299.2005.14050.x 10.1016/j.soilbio.2013.09.010 10.1016/0038-0717(85)90144-0 10.1016/0016-7061(81)90024-0 10.1128/AEM.55.11.2837-2842.1989 10.1046/j.1365-2435.2003.00712.x 10.1371/journal.pone.0094076 10.1111/gcb.12809 10.1146/annurev-ecolsys-071112-124414 10.1111/j.1365-3040.1992.tb00973.x 10.1046/j.1461-0248.2003.00518.x 10.1016/j.soilbio.2009.02.031 10.1016/0038-0717(84)90127-5 10.1007/s00248-006-9040-1 10.1890/02-0249 10.1007/BF00566960 10.1016/j.soilbio.2013.08.024 10.1016/0038-0717(93)90113-P 10.1890/09-0179.1 10.1890/14-0777.1 10.1111/ele.12113 10.1007/s002489900063 10.1007/s10533-007-9132-0 10.1080/10408410590899228 10.1038/ismej.2013.219 |
ContentType | Journal Article |
Copyright | 2016 The Authors. © 2016 British Ecological Society 2016 The Authors. Functional Ecology © 2016 British Ecological Society Functional Ecology © 2016 British Ecological Society |
Copyright_xml | – notice: 2016 The Authors. © 2016 British Ecological Society – notice: 2016 The Authors. Functional Ecology © 2016 British Ecological Society – notice: Functional Ecology © 2016 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 ADTPV AOWAS DG7 |
DOI | 10.1111/1365-2435.12650 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic SwePub SwePub Articles SWEPUB Stockholms universitet |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA Ecology Abstracts Entomology Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 1713 |
ExternalDocumentID | oai_DiVA_org_su_136102 4201401861 10_1111_1365_2435_12650 FEC12650 48582326 |
Genre | article |
GrantInformation_xml | – fundername: funderid: 14‐09231S – fundername: FORMAS funderid: 2015‐468 – fundername: US National Science Foundation funderid: DEB‐1145875/1145649 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGUYK AGXDD AHBTC AHXOZ AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW ZCA ZZTAW ~02 ~IA ~KM ~WT .Y3 31~ 42X 53G AAHHS ABEFU ABTAH ACCFJ ACCMX ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX GTFYD HF~ HGD HGLYW HQ2 HTVGU JSODD MVM VOH WRC ZY4 AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 ADTPV AOWAS DG7 |
ID | FETCH-LOGICAL-c5090-d08dfefd4bc25aa27cf35321845facefe08d140b796639ea8a57438a41283c783 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 1365-2435 |
IngestDate | Thu Aug 21 06:24:20 EDT 2025 Fri Jul 11 18:24:40 EDT 2025 Fri Jul 11 06:26:38 EDT 2025 Fri Jul 25 20:53:39 EDT 2025 Mon Jul 14 07:47:56 EDT 2025 Tue Jul 01 01:15:45 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Wed Jan 22 16:33:16 EST 2025 Thu Jul 03 22:16:56 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5090-d08dfefd4bc25aa27cf35321845facefe08d140b796639ea8a57438a41283c783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9362-6384 |
OpenAccessLink | https://besjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.12650 |
PQID | 1825176592 |
PQPubID | 1066355 |
PageCount | 9 |
ParticipantIDs | swepub_primary_oai_DiVA_org_su_136102 proquest_miscellaneous_2000412761 proquest_miscellaneous_1827897180 proquest_journals_2375002363 proquest_journals_1825176592 crossref_primary_10_1111_1365_2435_12650 crossref_citationtrail_10_1111_1365_2435_12650 wiley_primary_10_1111_1365_2435_12650_FEC12650 jstor_primary_48582326 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2016 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2016 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 1974; 16 1993; 25 2010; 33 1982; 14 2004; 85 2014b; 5 2006; 52 2009; 41 2009; 21 2010; 14 2013; 22 2013; 67 1997; 63 2006; 9 1998 1999; 88 2010; 186 1981; 26 2003; 17 1993 1992 1970 2002 2010; 80 1987; 19 1994; 40 2011; 9 1985; 17 1989; 55 2013; 16 1993; 94 1984; 16 2013; 12 2003; 6 2015; 85 2015; 21 2005; 31 2005; 109 1961 2015 2014 2007; 85 2014; 9 2012; 43 2014a; 8 2014; 76 1998; 35 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 Sterner R.W. (e_1_2_7_45_1) 2002 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 Schmidt K.S. (e_1_2_7_41_1) 1992 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 Ågren G.I. (e_1_2_7_2_1) 1998 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Herbert D. (e_1_2_7_20_1) 1961 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_36_1 Kalcik J. (e_1_2_7_24_1) 1994; 40 e_1_2_7_38_1 Veldkamp H. (e_1_2_7_47_1) 1970 |
References_xml | – volume: 22 start-page: 737 year: 2013 end-page: 749 article-title: A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems publication-title: Global Ecology and Biogeography – volume: 94 start-page: 457 year: 1993 end-page: 471 article-title: Patterns in decomposition rates among photosynthetic organisms ‐ the importance of detritus C‐N‐P content publication-title: Oecologia – start-page: 426 year: 1961 – volume: 9 start-page: 1 year: 2014 end-page: 10 article-title: Effects of soil organic matter properties and microbial community composition on enzyme activities in cryoturbated arctic soils publication-title: PLoS ONE – volume: 14 start-page: 319 year: 1982 end-page: 329 article-title: Measurement of microbial biomass phosphorus in soil publication-title: Soil Biology & Biochemistry – volume: 12 start-page: 1 year: 2013 end-page: 14 article-title: Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in KT2440 publication-title: Microbial Cell Factories – volume: 76 start-page: 278 year: 2014 end-page: 285 article-title: Elemental stoichiometry of fungi and bacteria strains from grassland leaf litter publication-title: Soil Biology & Biochemistry – year: 2014 – year: 1998 – volume: 85 start-page: 1771 year: 2004 end-page: 1789 article-title: Toward a metabolic theory of ecology publication-title: Ecology – volume: 5 start-page: 541 year: 2014b article-title: Site‐ and horizon‐specific patterns of microbial community structure and enzyme activities in permafrost‐affected soils of Greenland publication-title: Frontiers in Microbiology – volume: 26 start-page: 267 year: 1981 end-page: 286 article-title: Comparative aspects of cycling of organic C, N, S and P through soil organic matter publication-title: Geoderma – volume: 85 start-page: 235 year: 2007 end-page: 252 article-title: C : N : P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? publication-title: Biogeochemistry – volume: 6 start-page: 936 year: 2003 end-page: 943 article-title: Growth rate‐stoichiometry couplings in diverse biota publication-title: Ecology Letters – volume: 33 start-page: 1 year: 2010 end-page: 21 article-title: grofit: Fitting Biological Growth Curves with R publication-title: Journal of Statistical Software – volume: 85 start-page: 133 year: 2015 end-page: 155 article-title: The application of ecological stoichiometry to plant‐microbial‐soil organic matter transformations publication-title: Ecological Monographs – volume: 9 start-page: 119 year: 2011 end-page: 130 article-title: Microbial seed banks: the ecological and evolutionary implications of dormancy publication-title: Nature Reviews Microbiology – volume: 40 start-page: 305 year: 1994 end-page: 314 article-title: Profile distribution of the forms of soil‐phosphorus in dependence on the degree of anthropogenic effect publication-title: Rostlinna Vyroba – volume: 21 start-page: 1025 year: 2015 end-page: 1040 article-title: Interactions between temperature and nutrients across levels of ecological organization publication-title: Global Change Biology – start-page: 277 year: 1993 – volume: 17 start-page: 121 year: 2003 end-page: 130 article-title: Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C : N : P stoichiometry publication-title: Functional Ecology – volume: 88 start-page: 111 year: 1999 end-page: 129 article-title: New aspects of inorganic polyphosphate metabolism and function publication-title: Journal of Bioscience and Bioengineering – volume: 52 start-page: 26 year: 2006 end-page: 33 article-title: Temperature affects stoichiometry and biochemical composition of publication-title: Microbial Ecology – volume: 80 start-page: 89 year: 2010 end-page: 106 article-title: Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter publication-title: Ecological Monographs – volume: 67 start-page: 312 year: 2013 end-page: 318 article-title: Estimating the critical N: C from litter decomposition data and its relation to soil organic matter stoichiometry publication-title: Soil Biology and Biochemistry – year: 2015 – volume: 63 start-page: 1531 year: 1997 end-page: 1542 article-title: Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms publication-title: Applied and Environmental Microbiology – volume: 21 start-page: 198 year: 2009 end-page: 211 article-title: Growth‐limiting intracellular metabolites in yeast growing under diverse nutrient limitations publication-title: Molecular Biology of the Cell – volume: 14 start-page: 261 year: 2010 end-page: 273 article-title: Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches publication-title: Ecosystems – start-page: 305 year: 1970 end-page: 355 – volume: 31 start-page: 55 year: 2005 end-page: 67 article-title: Ecological and agricultural significance of bacterial polyhydroxyalkanoates publication-title: Critical Reviews in Microbiology – volume: 43 start-page: 313 year: 2012 end-page: 343 article-title: Ecoenzymatic stoichiometry and ecological theory publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 35 start-page: 94 year: 1998 end-page: 101 article-title: Screening of soil bacteria for poly‐beta‐hydroxybutyric acid production and its role in the survival of starvation publication-title: Microbial Ecology – volume: 41 start-page: 1355 year: 2009 end-page: 1379 article-title: Soil carbon and nitrogen mineralization: theory and models across scales publication-title: Soil Biology and Biochemistry – start-page: 31 year: 1992 end-page: 59 – volume: 9 start-page: 46 year: 2006 end-page: 62 article-title: Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests publication-title: Ecosystems – year: 2015 article-title: vegan: Community Ecology Package – volume: 25 start-page: 723 year: 1993 end-page: 730 article-title: Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty‐acid analysis publication-title: Soil Biology & Biochemistry – volume: 55 start-page: 2837 year: 1989 end-page: 2842 article-title: Membrane fatty‐acid and virulence changes in th viable but nonculturable state of vibrio‐vulnificus publication-title: Applied and Environmental Microbiology – volume: 85 start-page: 1217 year: 2004 end-page: 1229 article-title: Fundamental connections among organism C : N : P stoichiometry, macromolecular composition, and growth publication-title: Ecology – volume: 67 start-page: 192 year: 2013 end-page: 211 article-title: Active microorganisms in soil: critical review of estimation criteria and approaches publication-title: Soil Biology & Biochemistry – volume: 17 start-page: 837 year: 1985 end-page: 842 article-title: Chloroform fumigation and the release of soil‐nitrogen ‐ a rapid direct extraction method to measure microbial biomass nitrogen in soil publication-title: Soil Biology & Biochemistry – volume: 186 start-page: 593 year: 2010 end-page: 608 article-title: Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change publication-title: New Phytologist – year: 2002 – volume: 16 start-page: 63 year: 1984 end-page: 67 article-title: Energy or nutrient regulation of decomposition – implications for the mineralization immobilization response to perturbations publication-title: Soil Biology & Biochemistry – volume: 8 start-page: 841 year: 2014a end-page: 853 article-title: Distinct microbial communities associated with buried soils in the Siberian tundra publication-title: ISME Journal – volume: 109 start-page: 40 year: 2005 end-page: 51 article-title: A conceptual framework for ecosystem stoichiometry: balancing resource supply and demand publication-title: Oikos – volume: 19 start-page: 703 year: 1987 end-page: 707 article-title: An extraction method for measuring soil microbial biomass‐C publication-title: Soil Biology & Biochemistry – volume: 16 start-page: 930 year: 2013 end-page: 939 article-title: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling publication-title: Ecology Letters – volume: 16 start-page: 531 year: 1974 end-page: 538 article-title: Measurement of aerobic batch culture maxim specific growth‐rate and respiration coefficient using a dissolved‐oxygen probeS publication-title: Biotechnology and Bioengineering – ident: e_1_2_7_18_1 doi: 10.3389/fmicb.2014.00541 – ident: e_1_2_7_27_1 doi: 10.1038/nrmicro2504 – ident: e_1_2_7_19_1 doi: 10.1007/s10021-010-9408-4 – ident: e_1_2_7_7_1 doi: 10.1016/0038-0717(82)90001-3 – ident: e_1_2_7_35_1 doi: 10.1186/1475-2859-12-50 – ident: e_1_2_7_34_1 doi: 10.1016/j.soilbio.2014.05.011 – ident: e_1_2_7_5_1 doi: 10.1091/mbc.E09-07-0597 – ident: e_1_2_7_26_1 doi: 10.1016/S1389-1723(99)80189-3 – ident: e_1_2_7_37_1 doi: 10.1007/978-1-4899-2439-1_11 – start-page: 31 volume-title: Modeling the Metabolic and Physiologic Activities of Microorganisms year: 1992 ident: e_1_2_7_41_1 – ident: e_1_2_7_9_1 doi: 10.1890/03-9000 – ident: e_1_2_7_39_1 – ident: e_1_2_7_21_1 doi: 10.1002/bit.260160409 – ident: e_1_2_7_33_1 doi: 10.1007/s10021-004-0026-x – ident: e_1_2_7_38_1 – ident: e_1_2_7_25_1 doi: 10.1128/aem.63.4.1531-1542.1997 – ident: e_1_2_7_14_1 doi: 10.1111/j.1469-8137.2010.03214.x – volume-title: Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere year: 2002 ident: e_1_2_7_45_1 – volume: 40 start-page: 305 year: 1994 ident: e_1_2_7_24_1 article-title: Profile distribution of the forms of soil‐phosphorus in dependence on the degree of anthropogenic effect publication-title: Rostlinna Vyroba – start-page: 426 volume-title: Microbial Reaction to Environment: Eleventh Symposium of the Society for General Microbiology year: 1961 ident: e_1_2_7_20_1 – ident: e_1_2_7_23_1 doi: 10.18637/jss.v033.i07 – start-page: 305 volume-title: Methods in Microbiology year: 1970 ident: e_1_2_7_47_1 – ident: e_1_2_7_50_1 doi: 10.1111/geb.12029 – ident: e_1_2_7_40_1 doi: 10.1111/j.0030-1299.2005.14050.x – ident: e_1_2_7_3_1 doi: 10.1016/j.soilbio.2013.09.010 – ident: e_1_2_7_8_1 doi: 10.1016/0038-0717(85)90144-0 – ident: e_1_2_7_32_1 doi: 10.1016/0016-7061(81)90024-0 – ident: e_1_2_7_28_1 doi: 10.1128/AEM.55.11.2837-2842.1989 – ident: e_1_2_7_29_1 doi: 10.1046/j.1365-2435.2003.00712.x – ident: e_1_2_7_42_1 doi: 10.1371/journal.pone.0094076 – ident: e_1_2_7_12_1 doi: 10.1111/gcb.12809 – ident: e_1_2_7_43_1 doi: 10.1146/annurev-ecolsys-071112-124414 – ident: e_1_2_7_46_1 doi: 10.1111/j.1365-3040.1992.tb00973.x – ident: e_1_2_7_36_1 – volume-title: Theoretical Ecosystem Ecology. Understanding Element Cycles year: 1998 ident: e_1_2_7_2_1 – ident: e_1_2_7_13_1 doi: 10.1046/j.1461-0248.2003.00518.x – ident: e_1_2_7_30_1 doi: 10.1016/j.soilbio.2009.02.031 – ident: e_1_2_7_6_1 doi: 10.1016/0038-0717(84)90127-5 – ident: e_1_2_7_11_1 doi: 10.1007/s00248-006-9040-1 – ident: e_1_2_7_48_1 doi: 10.1890/02-0249 – ident: e_1_2_7_15_1 doi: 10.1007/BF00566960 – ident: e_1_2_7_4_1 doi: 10.1016/j.soilbio.2013.08.024 – ident: e_1_2_7_16_1 doi: 10.1016/0038-0717(93)90113-P – ident: e_1_2_7_31_1 doi: 10.1890/09-0179.1 – ident: e_1_2_7_51_1 doi: 10.1890/14-0777.1 – ident: e_1_2_7_44_1 doi: 10.1111/ele.12113 – ident: e_1_2_7_49_1 doi: 10.1007/s002489900063 – ident: e_1_2_7_10_1 doi: 10.1007/s10533-007-9132-0 – ident: e_1_2_7_22_1 doi: 10.1080/10408410590899228 – ident: e_1_2_7_17_1 doi: 10.1038/ismej.2013.219 |
SSID | ssj0009522 |
Score | 2.3384929 |
Snippet | Summary
Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization,... Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as... Summary Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization,... 1. Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and... |
SourceID | swepub proquest crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1705 |
SubjectTerms | carbon Community structure confidence interval Confidence intervals ecological stoichiometry Ecosystem models ecosystems Ecosystems ecology Environment models Fatty acids Microbial activity microbial communities Microbiomes Microorganisms Mineralization Monod equation nutrient limitation Nutrients Organic matter phospholipid fatty acid phospholipid fatty acids Phospholipids Phosphorus phosphorus mineralization and immobilization physiology plant litter polymerase chain reaction Relative abundance soil microbial community soil microorganisms Soil organic matter Soils Stoichiometry |
Title | Drivers of phosphorus limitation across soil microbial communities |
URI | https://www.jstor.org/stable/48582326 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12650 https://www.proquest.com/docview/1825176592 https://www.proquest.com/docview/2375002363 https://www.proquest.com/docview/1827897180 https://www.proquest.com/docview/2000412761 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-136102 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED5GYdCX_Wgb5rYbHmywFwdbsi37sWsTymB7GOvom5BkeQtL4xLHD-tf3zvJ9prSMsYeAiKSjHS6s76z7j4BvONVbUWs80gxXAZ0UERUMhFHKlFVaiuscafnn7_k5xfpp8tsiCakXBjPDzF-cCPLcO9rMnCl2ztG7uOzcLefJix3Xjv9Q7DoK7tDu-vPEVheRrjT8p7ch2J57vXf2pd8aOI26PREotsY1m1C8-egh-H72JNf026jp-bmHrPjf83vBTzrIWp44nXqJTyxqz146i-t_I2lmelLk9mfLDns0L8m2n34eLZ24R5hU4fXP5sWf-uuDZeUTOU0IVROCmHbLJbh1cKRQeETjM9WIY7XA7iYz76dnkf9ZQ2RQcwRR1Vc4LLXVaoNy5RiwtQ84-RAZrUytrZYj86cFuhf8dKqQmUIXgqV4gbJjSj4BHZWzcq-ghA9nqqI8zpLTJkypco6MRrbWcOzqhQ6gOmwVNL046YLNZZy8GhIdpJkJ53sAvgwdrj2JB6PN524tR_bpUVWIOrMAzgelEH2Zt7KhBJ_BZ1MP1jNOOIxoujnAbwdq9F-6VBGrWzTuUeIokSEED_ehtKpcP4iTwJ47_VwHB_Rg58tvp_IZv1Dth3NBzEjisjp1t-mK-ezU1c4_NcOR7CL2DH3cY3HsLNZd_Y14rONfuNM8BbaKSuM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hIQQvfFfLGCNIIPGSKrGTOHkca6sC2x7QhvZmOY4D1UozNc3D-Ou5s9OsnZgQ4iGSJX8od76LfxffB8A7XlZGhEUaKIbbgAaKCHImwkBFqoxNiT329vzkNJ2ex58vkouNWBiXH6L_4UaaYb_XpOD0Q3pDy52DFh73w4ilZLbfp7reVMVg9JVtJN51NwkszQM8a3mX3oe8eW4tsHUyOefEbdjpUoluo1h7DE2egF4T4LxPLoftqhjqX7dyO_4fhU_hcYdS_UMnVs_gnlk8hweubuU1tsa6aw3GN4FyOKH7UjQv4ONoaT0-_Lryr37UDT7LtvHnFE9lhcFXlg1-U8_m_s-ZzQeFK2gXsEJpXl_C-WR8djQNunoNgUbYEQZlmOHOV2VcaJYoxYSueMLJhkwqpU1lsB_tuUKgicVzozKVIH7JVIxnJNci4wPYWdQLsws-Gj1lFqZVEuk8ZkrlVaQLHGc0T8pcFB4M13sldffeVFNjLtdGDfFOEu-k5Z0HH_oJVy6Px91DB3bz-3FxlmQIPFMP9tfSIDtNb2REsb-CLqf_2M04QjLK0s89eNt3owrTvYxamLq1S4gsR5AQ3j2GIqqQfpFGHrx3gti_H2UIH82-Hcp6-V02LdGDsBFZZIXrb-TKyfjINvb-dcIbeDg9OzmWx59Ov7yCRwglU-fmuA87q2VrXiNcWxUHVh9_A5AlL6Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQJhAvfFdkDAgSSLykSuzETh7H2mp8TQgxxJvlOPao6JqqaR62v353dhLWiQkhHipZ8ofs8138u_ruZ0Jes8oaEZc8UhS2ARwUERVUxJFKVJWaCmrc7fnnY350kn74kfXRhJgL4_khhj_c0DLc9xoNfFXZK0bu47PgtB8nlKPXvptyMBnERV_pFd5df5FAeRHBUcs6dh8M5rk2wNbB5GMTt1GnZxLdBrHuFJrdJ2U_fx988mvcbsqxvrhG7fhfC3xA7nUYNTzwSvWQ3DLLR-S2f7XyHEpT3ZVG099pctCh-040j8m7ydrFe4S1DVc_6wZ-67YJF5hN5VQhVE4KYVPPF-HZ3LFBwQjap6sgyesTcjKbfjs8irrXGiINoCOOqjiHfbdVWmqaKUWFtixj6EFmVmljDdSDN1cKcLBYYVSuMkAvuUrhhGRa5GxEdpb10jwlIbg8VR5zmyW6SKlShU10Ce2MZllViDIg436rpO7mjS9qLGTv0qDsJMpOOtkF5O3QYeVZPG5uOnJ7P7RL8ywH2MkDst8rg-zsvJEJZv4KvJr-YzVlAMiQo58F5NVQDQaMtzJqaerWDSHyAiBCfHMbzKeC9QueBOSN18NhfsgPPpl_P5D1-lQ2La4HQCOIyOnW35YrZ9NDV9j71w4vyZ0vk5n89P744zNyF3Ak9zGO-2Rns27Nc8Bqm_KFs8ZL5ZguXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drivers+of+phosphorus+limitation+across+soil+microbial+communities&rft.jtitle=Functional+ecology&rft.au=Capek%2C+Petr&rft.au=Kotas%2C+Petr&rft.au=Manzoni%2C+Stefano&rft.au=Santrckova%2C+Hana&rft.date=2016-10-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=30&rft.issue=10&rft.spage=1705&rft.epage=1713&rft_id=info:doi/10.1111%2F1365-2435.12650&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |