Drivers of phosphorus limitation across soil microbial communities

Summary Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as such, it is central to soil and ecosystem models. According to ecological stoichiometry theory, when the carbon (C)‐to‐nutrient (E) r...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 30; no. 10; pp. 1705 - 1713
Main Authors Čapek, Petr, Kotas, Petr, Manzoni, Stefano, Šantrůčková, Hana
Format Journal Article
LanguageEnglish
Published London Wiley 01.10.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0269-8463
1365-2435
1365-2435
DOI10.1111/1365-2435.12650

Cover

Loading…
Abstract Summary Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as such, it is central to soil and ecosystem models. According to ecological stoichiometry theory, when the carbon (C)‐to‐nutrient (E) ratio of resources used by a microbial community is higher than a critical ratio (C : ECR), that nutrient is limiting. The C‐to‐phosphorus (P) critical ratio (C : PCR) that determines P limitation is largely unknown for soils, and thus, it is the subject of our study. Our results show that the C : PCR in widely different soils ranges from 26·6 to 465·1 or from 20·9 to 740·7 when accounting for 95% confidence intervals. Using constant or narrowly fluctuating C : PCR in ecosystem models is therefore inaccurate. The C : PCR cannot be simply predicted from microbial community C : P or available soil P. C : PCR was only related to relative abundance of phospholipid fatty acids, which reflects microbial community structure and physiology. Our data suggest complex controls over microbial community C : PCR. We further propose that using P storage compounds that allow the microbial community to temporarily buffer variability in available P can represent a widely adopted strategies across soils. Lay Summary
AbstractList Summary Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as such, it is central to soil and ecosystem models. According to ecological stoichiometry theory, when the carbon (C)-to-nutrient (E) ratio of resources used by a microbial community is higher than a critical ratio (C : ECR), that nutrient is limiting. The C-to-phosphorus (P) critical ratio (C : PCR) that determines P limitation is largely unknown for soils, and thus, it is the subject of our study. Our results show that the C : PCR in widely different soils ranges from 26·6 to 465·1 or from 20·9 to 740·7 when accounting for 95% confidence intervals. Using constant or narrowly fluctuating C : PCR in ecosystem models is therefore inaccurate. The C : PCR cannot be simply predicted from microbial community C : P or available soil P. C : PCR was only related to relative abundance of phospholipid fatty acids, which reflects microbial community structure and physiology. Our data suggest complex controls over microbial community C : PCR. We further propose that using P storage compounds that allow the microbial community to temporarily buffer variability in available P can represent a widely adopted strategies across soils.
Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as such, it is central to soil and ecosystem models. According to ecological stoichiometry theory, when the carbon (C)‐to‐nutrient (E) ratio of resources used by a microbial community is higher than a critical ratio (C : ECR), that nutrient is limiting. The C‐to‐phosphorus (P) critical ratio (C : PCR) that determines P limitation is largely unknown for soils, and thus, it is the subject of our study. Our results show that the C : PCR in widely different soils ranges from 26·6 to 465·1 or from 20·9 to 740·7 when accounting for 95% confidence intervals. Using constant or narrowly fluctuating C : PCR in ecosystem models is therefore inaccurate. The C : PCR cannot be simply predicted from microbial community C : P or available soil P. C : PCR was only related to relative abundance of phospholipid fatty acids, which reflects microbial community structure and physiology. Our data suggest complex controls over microbial community C : PCR. We further propose that using P storage compounds that allow the microbial community to temporarily buffer variability in available P can represent a widely adopted strategies across soils.
Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as such, it is central to soil and ecosystem models. According to ecological stoichiometry theory, when the carbon (C)-to-nutrient (E) ratio of resources used by a microbial community is higher than a critical ratio (C:E-CR), that nutrient is limiting. The C-to-phosphorus (P) critical ratio (C:P-CR) that determines P limitation is largely unknown for soils, and thus, it is the subject of our study. Our results show that the C:P-CR in widely different soils ranges from 26<bold></bold>6 to 465<bold></bold>1 or from 20<bold></bold>9 to 740<bold></bold>7 when accounting for 95% confidence intervals. Using constant or narrowly fluctuating C:P-CR in ecosystem models is therefore inaccurate. The C:P-CR cannot be simply predicted from microbial community C:P or available soil P. C:P-CR was only related to relative abundance of phospholipid fatty acids, which reflects microbial community structure and physiology. Our data suggest complex controls over microbial community C:P-CR. We further propose that using P storage compounds that allow the microbial community to temporarily buffer variability in available P can represent a widely adopted strategies across soils.
Summary Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as such, it is central to soil and ecosystem models. According to ecological stoichiometry theory, when the carbon (C)‐to‐nutrient (E) ratio of resources used by a microbial community is higher than a critical ratio (C : ECR), that nutrient is limiting. The C‐to‐phosphorus (P) critical ratio (C : PCR) that determines P limitation is largely unknown for soils, and thus, it is the subject of our study. Our results show that the C : PCR in widely different soils ranges from 26·6 to 465·1 or from 20·9 to 740·7 when accounting for 95% confidence intervals. Using constant or narrowly fluctuating C : PCR in ecosystem models is therefore inaccurate. The C : PCR cannot be simply predicted from microbial community C : P or available soil P. C : PCR was only related to relative abundance of phospholipid fatty acids, which reflects microbial community structure and physiology. Our data suggest complex controls over microbial community C : PCR. We further propose that using P storage compounds that allow the microbial community to temporarily buffer variability in available P can represent a widely adopted strategies across soils. Lay Summary
1. Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as such, it is central to soil and ecosystem models. 2. According to ecological stoichiometry theory, when the carbon (C)-to-nutrient (E) ratio of resources used by a microbial community is higher than a critical ratio (C : E sub(CR)), that nutrient is limiting. The C-to-phosphorus (P) critical ratio (C : P sub(CR)) that determines P limitation is largely unknown for soils, and thus, it is the subject of our study. 3. Our results show that the C : P sub(CR) in widely different soils ranges from 26.6 to 465.1 or from 20.9 to 740.7 when accounting for 95% confidence intervals. Using constant or narrowly fluctuating C : P sub(CR) in ecosystem models is therefore inaccurate. 4. The C : P sub(CR) cannot be simply predicted from microbial community C : P or available soil P. C : P sub(CR) was only related to relative abundance of phospholipid fatty acids, which reflects microbial community structure and physiology. Our data suggest complex controls over microbial community C : P sub(CR). 5. We further propose that using P storage compounds that allow the microbial community to temporarily buffer variability in available P can represent a widely adopted strategies across soils. Lay Summary
Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as such, it is central to soil and ecosystem models. According to ecological stoichiometry theory, when the carbon (C)‐to‐nutrient (E) ratio of resources used by a microbial community is higher than a critical ratio (C : E CR ), that nutrient is limiting. The C‐to‐phosphorus (P) critical ratio (C : P CR ) that determines P limitation is largely unknown for soils, and thus, it is the subject of our study. Our results show that the C : P CR in widely different soils ranges from 26·6 to 465·1 or from 20·9 to 740·7 when accounting for 95% confidence intervals. Using constant or narrowly fluctuating C : P CR in ecosystem models is therefore inaccurate. The C : P CR cannot be simply predicted from microbial community C : P or available soil P. C : P CR was only related to relative abundance of phospholipid fatty acids, which reflects microbial community structure and physiology. Our data suggest complex controls over microbial community C : P CR . We further propose that using P storage compounds that allow the microbial community to temporarily buffer variability in available P can represent a widely adopted strategies across soils.
Author Manzoni, Stefano
Kotas, Petr
Čapek, Petr
Šantrůčková, Hana
Author_xml – sequence: 1
  givenname: Petr
  surname: Čapek
  fullname: Čapek, Petr
– sequence: 2
  givenname: Petr
  surname: Kotas
  fullname: Kotas, Petr
– sequence: 3
  givenname: Stefano
  surname: Manzoni
  fullname: Manzoni, Stefano
– sequence: 4
  givenname: Hana
  surname: Šantrůčková
  fullname: Šantrůčková, Hana
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-136102$$DView record from Swedish Publication Index
BookMark eNqFkc1PwyAYxomZiZt69mTSxIsHu_FRPnqc-1ATEy_qlTBGlaUtE1rN_nup0x12cCSEAL_nfXl4BqBXu9oAcIHgEMUxQoTRFGeEDhFmFB6B_u6kB_oQszwVGSMnYBDCCkKYU4z74Hbq7afxIXFFsn53IU7fhqS0lW1UY12dKO1dCElwtkwqGzcLq8pEu6pqa9tYE87AcaHKYM5_11PwMp89T-7Tx6e7h8n4MdUU5jBdQrEsTLHMFhpTpTDXBaEEI5HRQmlTmHiPMrjgOWMkN0ooyjMiVIawIJoLcgputnXDl1m3C7n2tlJ-I52ycmpfx9L5NxlaGW0jiCN-vcXX3n20JjSyskGbslS1cW2QOP5BrM0ZOogigbnIORIwold76Mq1vo6-JSacwtiYkf-oWIsizmjevXC0pX5-2JtiZwlB2WXaWaGyS1D-ZBoVdE-hf2NqvLLlYd2XLc3mUBs5n03-dJdb3So0zu90maACE8zIN6h7vS0
CODEN FECOE5
CitedBy_id crossref_primary_10_3389_fmicb_2020_00143
crossref_primary_10_1007_s10533_022_00967_z
crossref_primary_10_1016_j_agee_2019_04_027
crossref_primary_10_1007_s11368_024_03783_0
crossref_primary_10_1016_j_chemosphere_2021_130501
crossref_primary_10_1016_j_jtbi_2020_110530
crossref_primary_10_1016_j_geoderma_2021_115320
crossref_primary_10_1016_j_jprot_2018_11_011
crossref_primary_10_1016_j_geoderma_2022_115782
crossref_primary_10_3390_fermentation9050406
crossref_primary_10_1016_j_soilbio_2024_109387
crossref_primary_10_3390_microorganisms9020381
crossref_primary_10_3390_f11020247
crossref_primary_10_3390_horticulturae9050536
crossref_primary_10_5194_bg_17_5309_2020
crossref_primary_10_1038_s41559_018_0662_8
crossref_primary_10_1007_s00374_023_01766_w
crossref_primary_10_1016_j_ejsobi_2021_103383
crossref_primary_10_1007_s11104_023_06134_z
crossref_primary_10_1016_j_geoderma_2020_114884
crossref_primary_10_1111_ele_70011
crossref_primary_10_1016_j_soilbio_2019_04_008
crossref_primary_10_1016_j_soilbio_2021_108366
crossref_primary_10_1016_j_jprot_2019_103623
crossref_primary_10_1007_s10533_018_0470_x
crossref_primary_10_1007_s00374_024_01829_6
Cites_doi 10.3389/fmicb.2014.00541
10.1038/nrmicro2504
10.1007/s10021-010-9408-4
10.1016/0038-0717(82)90001-3
10.1186/1475-2859-12-50
10.1016/j.soilbio.2014.05.011
10.1091/mbc.E09-07-0597
10.1016/S1389-1723(99)80189-3
10.1007/978-1-4899-2439-1_11
10.1890/03-9000
10.1002/bit.260160409
10.1007/s10021-004-0026-x
10.1128/aem.63.4.1531-1542.1997
10.1111/j.1469-8137.2010.03214.x
10.18637/jss.v033.i07
10.1111/geb.12029
10.1111/j.0030-1299.2005.14050.x
10.1016/j.soilbio.2013.09.010
10.1016/0038-0717(85)90144-0
10.1016/0016-7061(81)90024-0
10.1128/AEM.55.11.2837-2842.1989
10.1046/j.1365-2435.2003.00712.x
10.1371/journal.pone.0094076
10.1111/gcb.12809
10.1146/annurev-ecolsys-071112-124414
10.1111/j.1365-3040.1992.tb00973.x
10.1046/j.1461-0248.2003.00518.x
10.1016/j.soilbio.2009.02.031
10.1016/0038-0717(84)90127-5
10.1007/s00248-006-9040-1
10.1890/02-0249
10.1007/BF00566960
10.1016/j.soilbio.2013.08.024
10.1016/0038-0717(93)90113-P
10.1890/09-0179.1
10.1890/14-0777.1
10.1111/ele.12113
10.1007/s002489900063
10.1007/s10533-007-9132-0
10.1080/10408410590899228
10.1038/ismej.2013.219
ContentType Journal Article
Copyright 2016 The Authors. © 2016 British Ecological Society
2016 The Authors. Functional Ecology © 2016 British Ecological Society
Functional Ecology © 2016 British Ecological Society
Copyright_xml – notice: 2016 The Authors. © 2016 British Ecological Society
– notice: 2016 The Authors. Functional Ecology © 2016 British Ecological Society
– notice: Functional Ecology © 2016 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
ADTPV
AOWAS
DG7
DOI 10.1111/1365-2435.12650
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Stockholms universitet
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts
AGRICOLA


Ecology Abstracts
Entomology Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 1713
ExternalDocumentID oai_DiVA_org_su_136102
4201401861
10_1111_1365_2435_12650
FEC12650
48582326
Genre article
GrantInformation_xml – fundername:  
  funderid: 14‐09231S
– fundername: FORMAS
  funderid: 2015‐468
– fundername: US National Science Foundation
  funderid: DEB‐1145875/1145649
GroupedDBID .3N
.GA
05W
0R~
10A
1OC
24P
29H
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAISJ
AAKGQ
AAMMB
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AHBTC
AHXOZ
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
ZCA
ZZTAW
~02
~IA
~KM
~WT
.Y3
31~
42X
53G
AAHHS
ABEFU
ABTAH
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
JSODD
MVM
VOH
WRC
ZY4
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
ADTPV
AOWAS
DG7
ID FETCH-LOGICAL-c5090-d08dfefd4bc25aa27cf35321845facefe08d140b796639ea8a57438a41283c783
IEDL.DBID DR2
ISSN 0269-8463
1365-2435
IngestDate Thu Aug 21 06:24:20 EDT 2025
Fri Jul 11 18:24:40 EDT 2025
Fri Jul 11 06:26:38 EDT 2025
Fri Jul 25 20:53:39 EDT 2025
Mon Jul 14 07:47:56 EDT 2025
Tue Jul 01 01:15:45 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Wed Jan 22 16:33:16 EST 2025
Thu Jul 03 22:16:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5090-d08dfefd4bc25aa27cf35321845facefe08d140b796639ea8a57438a41283c783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9362-6384
OpenAccessLink https://besjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.12650
PQID 1825176592
PQPubID 1066355
PageCount 9
ParticipantIDs swepub_primary_oai_DiVA_org_su_136102
proquest_miscellaneous_2000412761
proquest_miscellaneous_1827897180
proquest_journals_2375002363
proquest_journals_1825176592
crossref_primary_10_1111_1365_2435_12650
crossref_citationtrail_10_1111_1365_2435_12650
wiley_primary_10_1111_1365_2435_12650_FEC12650
jstor_primary_48582326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2016
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: October 2016
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2016
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 1974; 16
1993; 25
2010; 33
1982; 14
2004; 85
2014b; 5
2006; 52
2009; 41
2009; 21
2010; 14
2013; 22
2013; 67
1997; 63
2006; 9
1998
1999; 88
2010; 186
1981; 26
2003; 17
1993
1992
1970
2002
2010; 80
1987; 19
1994; 40
2011; 9
1985; 17
1989; 55
2013; 16
1993; 94
1984; 16
2013; 12
2003; 6
2015; 85
2015; 21
2005; 31
2005; 109
1961
2015
2014
2007; 85
2014; 9
2012; 43
2014a; 8
2014; 76
1998; 35
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
Sterner R.W. (e_1_2_7_45_1) 2002
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
Schmidt K.S. (e_1_2_7_41_1) 1992
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
Ågren G.I. (e_1_2_7_2_1) 1998
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Herbert D. (e_1_2_7_20_1) 1961
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_36_1
Kalcik J. (e_1_2_7_24_1) 1994; 40
e_1_2_7_38_1
Veldkamp H. (e_1_2_7_47_1) 1970
References_xml – volume: 22
  start-page: 737
  year: 2013
  end-page: 749
  article-title: A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems
  publication-title: Global Ecology and Biogeography
– volume: 94
  start-page: 457
  year: 1993
  end-page: 471
  article-title: Patterns in decomposition rates among photosynthetic organisms ‐ the importance of detritus C‐N‐P content
  publication-title: Oecologia
– start-page: 426
  year: 1961
– volume: 9
  start-page: 1
  year: 2014
  end-page: 10
  article-title: Effects of soil organic matter properties and microbial community composition on enzyme activities in cryoturbated arctic soils
  publication-title: PLoS ONE
– volume: 14
  start-page: 319
  year: 1982
  end-page: 329
  article-title: Measurement of microbial biomass phosphorus in soil
  publication-title: Soil Biology & Biochemistry
– volume: 12
  start-page: 1
  year: 2013
  end-page: 14
  article-title: Accumulation of inorganic polyphosphate enables stress endurance and catalytic vigour in KT2440
  publication-title: Microbial Cell Factories
– volume: 76
  start-page: 278
  year: 2014
  end-page: 285
  article-title: Elemental stoichiometry of fungi and bacteria strains from grassland leaf litter
  publication-title: Soil Biology & Biochemistry
– year: 2014
– year: 1998
– volume: 85
  start-page: 1771
  year: 2004
  end-page: 1789
  article-title: Toward a metabolic theory of ecology
  publication-title: Ecology
– volume: 5
  start-page: 541
  year: 2014b
  article-title: Site‐ and horizon‐specific patterns of microbial community structure and enzyme activities in permafrost‐affected soils of Greenland
  publication-title: Frontiers in Microbiology
– volume: 26
  start-page: 267
  year: 1981
  end-page: 286
  article-title: Comparative aspects of cycling of organic C, N, S and P through soil organic matter
  publication-title: Geoderma
– volume: 85
  start-page: 235
  year: 2007
  end-page: 252
  article-title: C : N : P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?
  publication-title: Biogeochemistry
– volume: 6
  start-page: 936
  year: 2003
  end-page: 943
  article-title: Growth rate‐stoichiometry couplings in diverse biota
  publication-title: Ecology Letters
– volume: 33
  start-page: 1
  year: 2010
  end-page: 21
  article-title: grofit: Fitting Biological Growth Curves with R
  publication-title: Journal of Statistical Software
– volume: 85
  start-page: 133
  year: 2015
  end-page: 155
  article-title: The application of ecological stoichiometry to plant‐microbial‐soil organic matter transformations
  publication-title: Ecological Monographs
– volume: 9
  start-page: 119
  year: 2011
  end-page: 130
  article-title: Microbial seed banks: the ecological and evolutionary implications of dormancy
  publication-title: Nature Reviews Microbiology
– volume: 40
  start-page: 305
  year: 1994
  end-page: 314
  article-title: Profile distribution of the forms of soil‐phosphorus in dependence on the degree of anthropogenic effect
  publication-title: Rostlinna Vyroba
– volume: 21
  start-page: 1025
  year: 2015
  end-page: 1040
  article-title: Interactions between temperature and nutrients across levels of ecological organization
  publication-title: Global Change Biology
– start-page: 277
  year: 1993
– volume: 17
  start-page: 121
  year: 2003
  end-page: 130
  article-title: Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C : N : P stoichiometry
  publication-title: Functional Ecology
– volume: 88
  start-page: 111
  year: 1999
  end-page: 129
  article-title: New aspects of inorganic polyphosphate metabolism and function
  publication-title: Journal of Bioscience and Bioengineering
– volume: 52
  start-page: 26
  year: 2006
  end-page: 33
  article-title: Temperature affects stoichiometry and biochemical composition of
  publication-title: Microbial Ecology
– volume: 80
  start-page: 89
  year: 2010
  end-page: 106
  article-title: Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter
  publication-title: Ecological Monographs
– volume: 67
  start-page: 312
  year: 2013
  end-page: 318
  article-title: Estimating the critical N: C from litter decomposition data and its relation to soil organic matter stoichiometry
  publication-title: Soil Biology and Biochemistry
– year: 2015
– volume: 63
  start-page: 1531
  year: 1997
  end-page: 1542
  article-title: Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms
  publication-title: Applied and Environmental Microbiology
– volume: 21
  start-page: 198
  year: 2009
  end-page: 211
  article-title: Growth‐limiting intracellular metabolites in yeast growing under diverse nutrient limitations
  publication-title: Molecular Biology of the Cell
– volume: 14
  start-page: 261
  year: 2010
  end-page: 273
  article-title: Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches
  publication-title: Ecosystems
– start-page: 305
  year: 1970
  end-page: 355
– volume: 31
  start-page: 55
  year: 2005
  end-page: 67
  article-title: Ecological and agricultural significance of bacterial polyhydroxyalkanoates
  publication-title: Critical Reviews in Microbiology
– volume: 43
  start-page: 313
  year: 2012
  end-page: 343
  article-title: Ecoenzymatic stoichiometry and ecological theory
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 35
  start-page: 94
  year: 1998
  end-page: 101
  article-title: Screening of soil bacteria for poly‐beta‐hydroxybutyric acid production and its role in the survival of starvation
  publication-title: Microbial Ecology
– volume: 41
  start-page: 1355
  year: 2009
  end-page: 1379
  article-title: Soil carbon and nitrogen mineralization: theory and models across scales
  publication-title: Soil Biology and Biochemistry
– start-page: 31
  year: 1992
  end-page: 59
– volume: 9
  start-page: 46
  year: 2006
  end-page: 62
  article-title: Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests
  publication-title: Ecosystems
– year: 2015
  article-title: vegan: Community Ecology Package
– volume: 25
  start-page: 723
  year: 1993
  end-page: 730
  article-title: Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty‐acid analysis
  publication-title: Soil Biology & Biochemistry
– volume: 55
  start-page: 2837
  year: 1989
  end-page: 2842
  article-title: Membrane fatty‐acid and virulence changes in th viable but nonculturable state of vibrio‐vulnificus
  publication-title: Applied and Environmental Microbiology
– volume: 85
  start-page: 1217
  year: 2004
  end-page: 1229
  article-title: Fundamental connections among organism C : N : P stoichiometry, macromolecular composition, and growth
  publication-title: Ecology
– volume: 67
  start-page: 192
  year: 2013
  end-page: 211
  article-title: Active microorganisms in soil: critical review of estimation criteria and approaches
  publication-title: Soil Biology & Biochemistry
– volume: 17
  start-page: 837
  year: 1985
  end-page: 842
  article-title: Chloroform fumigation and the release of soil‐nitrogen ‐ a rapid direct extraction method to measure microbial biomass nitrogen in soil
  publication-title: Soil Biology & Biochemistry
– volume: 186
  start-page: 593
  year: 2010
  end-page: 608
  article-title: Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change
  publication-title: New Phytologist
– year: 2002
– volume: 16
  start-page: 63
  year: 1984
  end-page: 67
  article-title: Energy or nutrient regulation of decomposition – implications for the mineralization immobilization response to perturbations
  publication-title: Soil Biology & Biochemistry
– volume: 8
  start-page: 841
  year: 2014a
  end-page: 853
  article-title: Distinct microbial communities associated with buried soils in the Siberian tundra
  publication-title: ISME Journal
– volume: 109
  start-page: 40
  year: 2005
  end-page: 51
  article-title: A conceptual framework for ecosystem stoichiometry: balancing resource supply and demand
  publication-title: Oikos
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  article-title: An extraction method for measuring soil microbial biomass‐C
  publication-title: Soil Biology & Biochemistry
– volume: 16
  start-page: 930
  year: 2013
  end-page: 939
  article-title: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling
  publication-title: Ecology Letters
– volume: 16
  start-page: 531
  year: 1974
  end-page: 538
  article-title: Measurement of aerobic batch culture maxim specific growth‐rate and respiration coefficient using a dissolved‐oxygen probeS
  publication-title: Biotechnology and Bioengineering
– ident: e_1_2_7_18_1
  doi: 10.3389/fmicb.2014.00541
– ident: e_1_2_7_27_1
  doi: 10.1038/nrmicro2504
– ident: e_1_2_7_19_1
  doi: 10.1007/s10021-010-9408-4
– ident: e_1_2_7_7_1
  doi: 10.1016/0038-0717(82)90001-3
– ident: e_1_2_7_35_1
  doi: 10.1186/1475-2859-12-50
– ident: e_1_2_7_34_1
  doi: 10.1016/j.soilbio.2014.05.011
– ident: e_1_2_7_5_1
  doi: 10.1091/mbc.E09-07-0597
– ident: e_1_2_7_26_1
  doi: 10.1016/S1389-1723(99)80189-3
– ident: e_1_2_7_37_1
  doi: 10.1007/978-1-4899-2439-1_11
– start-page: 31
  volume-title: Modeling the Metabolic and Physiologic Activities of Microorganisms
  year: 1992
  ident: e_1_2_7_41_1
– ident: e_1_2_7_9_1
  doi: 10.1890/03-9000
– ident: e_1_2_7_39_1
– ident: e_1_2_7_21_1
  doi: 10.1002/bit.260160409
– ident: e_1_2_7_33_1
  doi: 10.1007/s10021-004-0026-x
– ident: e_1_2_7_38_1
– ident: e_1_2_7_25_1
  doi: 10.1128/aem.63.4.1531-1542.1997
– ident: e_1_2_7_14_1
  doi: 10.1111/j.1469-8137.2010.03214.x
– volume-title: Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere
  year: 2002
  ident: e_1_2_7_45_1
– volume: 40
  start-page: 305
  year: 1994
  ident: e_1_2_7_24_1
  article-title: Profile distribution of the forms of soil‐phosphorus in dependence on the degree of anthropogenic effect
  publication-title: Rostlinna Vyroba
– start-page: 426
  volume-title: Microbial Reaction to Environment: Eleventh Symposium of the Society for General Microbiology
  year: 1961
  ident: e_1_2_7_20_1
– ident: e_1_2_7_23_1
  doi: 10.18637/jss.v033.i07
– start-page: 305
  volume-title: Methods in Microbiology
  year: 1970
  ident: e_1_2_7_47_1
– ident: e_1_2_7_50_1
  doi: 10.1111/geb.12029
– ident: e_1_2_7_40_1
  doi: 10.1111/j.0030-1299.2005.14050.x
– ident: e_1_2_7_3_1
  doi: 10.1016/j.soilbio.2013.09.010
– ident: e_1_2_7_8_1
  doi: 10.1016/0038-0717(85)90144-0
– ident: e_1_2_7_32_1
  doi: 10.1016/0016-7061(81)90024-0
– ident: e_1_2_7_28_1
  doi: 10.1128/AEM.55.11.2837-2842.1989
– ident: e_1_2_7_29_1
  doi: 10.1046/j.1365-2435.2003.00712.x
– ident: e_1_2_7_42_1
  doi: 10.1371/journal.pone.0094076
– ident: e_1_2_7_12_1
  doi: 10.1111/gcb.12809
– ident: e_1_2_7_43_1
  doi: 10.1146/annurev-ecolsys-071112-124414
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1365-3040.1992.tb00973.x
– ident: e_1_2_7_36_1
– volume-title: Theoretical Ecosystem Ecology. Understanding Element Cycles
  year: 1998
  ident: e_1_2_7_2_1
– ident: e_1_2_7_13_1
  doi: 10.1046/j.1461-0248.2003.00518.x
– ident: e_1_2_7_30_1
  doi: 10.1016/j.soilbio.2009.02.031
– ident: e_1_2_7_6_1
  doi: 10.1016/0038-0717(84)90127-5
– ident: e_1_2_7_11_1
  doi: 10.1007/s00248-006-9040-1
– ident: e_1_2_7_48_1
  doi: 10.1890/02-0249
– ident: e_1_2_7_15_1
  doi: 10.1007/BF00566960
– ident: e_1_2_7_4_1
  doi: 10.1016/j.soilbio.2013.08.024
– ident: e_1_2_7_16_1
  doi: 10.1016/0038-0717(93)90113-P
– ident: e_1_2_7_31_1
  doi: 10.1890/09-0179.1
– ident: e_1_2_7_51_1
  doi: 10.1890/14-0777.1
– ident: e_1_2_7_44_1
  doi: 10.1111/ele.12113
– ident: e_1_2_7_49_1
  doi: 10.1007/s002489900063
– ident: e_1_2_7_10_1
  doi: 10.1007/s10533-007-9132-0
– ident: e_1_2_7_22_1
  doi: 10.1080/10408410590899228
– ident: e_1_2_7_17_1
  doi: 10.1038/ismej.2013.219
SSID ssj0009522
Score 2.3384929
Snippet Summary Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization,...
Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and as...
Summary Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization,...
1. Nutrient limitation of soil microbial communities controls the rates of plant litter and soil organic matter decomposition and nutrient mineralization, and...
SourceID swepub
proquest
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1705
SubjectTerms carbon
Community structure
confidence interval
Confidence intervals
ecological stoichiometry
Ecosystem models
ecosystems
Ecosystems ecology
Environment models
Fatty acids
Microbial activity
microbial communities
Microbiomes
Microorganisms
Mineralization
Monod equation
nutrient limitation
Nutrients
Organic matter
phospholipid fatty acid
phospholipid fatty acids
Phospholipids
Phosphorus
phosphorus mineralization and immobilization
physiology
plant litter
polymerase chain reaction
Relative abundance
soil microbial community
soil microorganisms
Soil organic matter
Soils
Stoichiometry
Title Drivers of phosphorus limitation across soil microbial communities
URI https://www.jstor.org/stable/48582326
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12650
https://www.proquest.com/docview/1825176592
https://www.proquest.com/docview/2375002363
https://www.proquest.com/docview/1827897180
https://www.proquest.com/docview/2000412761
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-136102
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED5GYdCX_Wgb5rYbHmywFwdbsi37sWsTymB7GOvom5BkeQtL4xLHD-tf3zvJ9prSMsYeAiKSjHS6s76z7j4BvONVbUWs80gxXAZ0UERUMhFHKlFVaiuscafnn7_k5xfpp8tsiCakXBjPDzF-cCPLcO9rMnCl2ztG7uOzcLefJix3Xjv9Q7DoK7tDu-vPEVheRrjT8p7ch2J57vXf2pd8aOI26PREotsY1m1C8-egh-H72JNf026jp-bmHrPjf83vBTzrIWp44nXqJTyxqz146i-t_I2lmelLk9mfLDns0L8m2n34eLZ24R5hU4fXP5sWf-uuDZeUTOU0IVROCmHbLJbh1cKRQeETjM9WIY7XA7iYz76dnkf9ZQ2RQcwRR1Vc4LLXVaoNy5RiwtQ84-RAZrUytrZYj86cFuhf8dKqQmUIXgqV4gbJjSj4BHZWzcq-ghA9nqqI8zpLTJkypco6MRrbWcOzqhQ6gOmwVNL046YLNZZy8GhIdpJkJ53sAvgwdrj2JB6PN524tR_bpUVWIOrMAzgelEH2Zt7KhBJ_BZ1MP1jNOOIxoujnAbwdq9F-6VBGrWzTuUeIokSEED_ehtKpcP4iTwJ47_VwHB_Rg58tvp_IZv1Dth3NBzEjisjp1t-mK-ezU1c4_NcOR7CL2DH3cY3HsLNZd_Y14rONfuNM8BbaKSuM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hIQQvfFfLGCNIIPGSKrGTOHkca6sC2x7QhvZmOY4D1UozNc3D-Ou5s9OsnZgQ4iGSJX8od76LfxffB8A7XlZGhEUaKIbbgAaKCHImwkBFqoxNiT329vzkNJ2ex58vkouNWBiXH6L_4UaaYb_XpOD0Q3pDy52DFh73w4ilZLbfp7reVMVg9JVtJN51NwkszQM8a3mX3oe8eW4tsHUyOefEbdjpUoluo1h7DE2egF4T4LxPLoftqhjqX7dyO_4fhU_hcYdS_UMnVs_gnlk8hweubuU1tsa6aw3GN4FyOKH7UjQv4ONoaT0-_Lryr37UDT7LtvHnFE9lhcFXlg1-U8_m_s-ZzQeFK2gXsEJpXl_C-WR8djQNunoNgUbYEQZlmOHOV2VcaJYoxYSueMLJhkwqpU1lsB_tuUKgicVzozKVIH7JVIxnJNci4wPYWdQLsws-Gj1lFqZVEuk8ZkrlVaQLHGc0T8pcFB4M13sldffeVFNjLtdGDfFOEu-k5Z0HH_oJVy6Px91DB3bz-3FxlmQIPFMP9tfSIDtNb2REsb-CLqf_2M04QjLK0s89eNt3owrTvYxamLq1S4gsR5AQ3j2GIqqQfpFGHrx3gti_H2UIH82-Hcp6-V02LdGDsBFZZIXrb-TKyfjINvb-dcIbeDg9OzmWx59Ov7yCRwglU-fmuA87q2VrXiNcWxUHVh9_A5AlL6Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQJhAvfFdkDAgSSLykSuzETh7H2mp8TQgxxJvlOPao6JqqaR62v353dhLWiQkhHipZ8ofs8138u_ruZ0Jes8oaEZc8UhS2ARwUERVUxJFKVJWaCmrc7fnnY350kn74kfXRhJgL4_khhj_c0DLc9xoNfFXZK0bu47PgtB8nlKPXvptyMBnERV_pFd5df5FAeRHBUcs6dh8M5rk2wNbB5GMTt1GnZxLdBrHuFJrdJ2U_fx988mvcbsqxvrhG7fhfC3xA7nUYNTzwSvWQ3DLLR-S2f7XyHEpT3ZVG099pctCh-040j8m7ydrFe4S1DVc_6wZ-67YJF5hN5VQhVE4KYVPPF-HZ3LFBwQjap6sgyesTcjKbfjs8irrXGiINoCOOqjiHfbdVWmqaKUWFtixj6EFmVmljDdSDN1cKcLBYYVSuMkAvuUrhhGRa5GxEdpb10jwlIbg8VR5zmyW6SKlShU10Ce2MZllViDIg436rpO7mjS9qLGTv0qDsJMpOOtkF5O3QYeVZPG5uOnJ7P7RL8ywH2MkDst8rg-zsvJEJZv4KvJr-YzVlAMiQo58F5NVQDQaMtzJqaerWDSHyAiBCfHMbzKeC9QueBOSN18NhfsgPPpl_P5D1-lQ2La4HQCOIyOnW35YrZ9NDV9j71w4vyZ0vk5n89P744zNyF3Ak9zGO-2Rns27Nc8Bqm_KFs8ZL5ZguXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drivers+of+phosphorus+limitation+across+soil+microbial+communities&rft.jtitle=Functional+ecology&rft.au=Capek%2C+Petr&rft.au=Kotas%2C+Petr&rft.au=Manzoni%2C+Stefano&rft.au=Santrckova%2C+Hana&rft.date=2016-10-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=30&rft.issue=10&rft.spage=1705&rft.epage=1713&rft_id=info:doi/10.1111%2F1365-2435.12650&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon