High‐resolution analysis of individual spike peptide‐specific CD4+ T‐cell responses in vaccine recipients and COVID‐19 patients

Objectives Potential differences in the breadth, distribution and magnitude of CD4+ T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein between vaccinees, COVID‐19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide leve...

Full description

Saved in:
Bibliographic Details
Published inClinical & translational immunology Vol. 11; no. 8; pp. e1410 - n/a
Main Authors Karsten, Hendrik, Cords, Leon, Westphal, Tim, Knapp, Maximilian, Brehm, Thomas Theo, Hermanussen, Lennart, Omansen, Till Frederik, Schmiedel, Stefan, Woost, Robin, Ditt, Vanessa, Peine, Sven, Lütgehetmann, Marc, Huber, Samuel, Ackermann, Christin, Wittner, Melanie, Addo, Marylyn Martina, Sette, Alessandro, Sidney, John, Schulze zur Wiesch, Julian
Format Journal Article
LanguageEnglish
Published Australia John Wiley & Sons, Inc 2022
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text
ISSN2050-0068
2050-0068
DOI10.1002/cti2.1410

Cover

Loading…
Abstract Objectives Potential differences in the breadth, distribution and magnitude of CD4+ T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein between vaccinees, COVID‐19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level. Methods Following virus‐specific in vitro cultivation, we determined the T‐cell responses directed against 253 individual overlapping 15‐mer peptides covering the entire SARS‐CoV‐2 spike glycoprotein using IFN‐γ ELISpot and intracellular cytokine staining. In vitro HLA binding was determined for selected peptides. Results We mapped 955 single peptide‐specific CD4+ T‐cell responses in a cohort of COVID‐19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). Patients and vaccinees (two‐time and three‐time vaccinees alike) had a comparable number of CD4+ T‐cell responses (median 26 vs. 29, P = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these in vitro IFN‐γ CD4+ T‐cell responses was observed in COVID‐19 patients (median 0.35%), and three‐time vaccinees showed a higher magnitude than two‐time vaccinees (median 0.091% vs. 0.175%, P < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. In vitro HLA binding showed promiscuous presentation by DRB1 molecules for several peptides. Conclusion Both SARS‐CoV‐2 infection and vaccination prime broadly directed T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein. This comprehensive high‐resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike‐specific T‐cell responses. Individual CD4+ and CD8+ T‐cell responses directed against a total of 253 overlapping 15‐mer spike‐specific peptides were mapped in a cohort of COVID‐19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). We found that patients and vaccinees (two‐time and three‐time vaccinees alike) had a comparable number of CD4+ T‐cell responses (median 26 vs. 29, P = 0.7289) but differential magnitudes of these in vitro responses (median 0.35% vs. 0.12% IFN‐γ+ of CD4+ T cells, P < 0.0001). Most of the recognized specificities were conserved in the B.1.1.529 (omicron) Variant of Concern (VoC), and its sublineages and several peptides showed promiscuous presentation by DRB1 molecules in in vitro HLA‐binding assays.
AbstractList Objectives Potential differences in the breadth, distribution and magnitude of CD4+ T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein between vaccinees, COVID‐19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level. Methods Following virus‐specific in vitro cultivation, we determined the T‐cell responses directed against 253 individual overlapping 15‐mer peptides covering the entire SARS‐CoV‐2 spike glycoprotein using IFN‐γ ELISpot and intracellular cytokine staining. In vitro HLA binding was determined for selected peptides. Results We mapped 955 single peptide‐specific CD4+ T‐cell responses in a cohort of COVID‐19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). Patients and vaccinees (two‐time and three‐time vaccinees alike) had a comparable number of CD4+ T‐cell responses (median 26 vs. 29, P = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these in vitro IFN‐γ CD4+ T‐cell responses was observed in COVID‐19 patients (median 0.35%), and three‐time vaccinees showed a higher magnitude than two‐time vaccinees (median 0.091% vs. 0.175%, P < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. In vitro HLA binding showed promiscuous presentation by DRB1 molecules for several peptides. Conclusion Both SARS‐CoV‐2 infection and vaccination prime broadly directed T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein. This comprehensive high‐resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike‐specific T‐cell responses. Individual CD4+ and CD8+ T‐cell responses directed against a total of 253 overlapping 15‐mer spike‐specific peptides were mapped in a cohort of COVID‐19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). We found that patients and vaccinees (two‐time and three‐time vaccinees alike) had a comparable number of CD4+ T‐cell responses (median 26 vs. 29, P = 0.7289) but differential magnitudes of these in vitro responses (median 0.35% vs. 0.12% IFN‐γ+ of CD4+ T cells, P < 0.0001). Most of the recognized specificities were conserved in the B.1.1.529 (omicron) Variant of Concern (VoC), and its sublineages and several peptides showed promiscuous presentation by DRB1 molecules in in vitro HLA‐binding assays.
Potential differences in the breadth, distribution and magnitude of CD4 T-cell responses directed against the SARS-CoV-2 spike glycoprotein between vaccinees, COVID-19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level. Following virus-specific cultivation, we determined the T-cell responses directed against 253 individual overlapping 15-mer peptides covering the entire SARS-CoV-2 spike glycoprotein using IFN-γ ELISpot and intracellular cytokine staining. HLA binding was determined for selected peptides. We mapped 955 single peptide-specific CD4 T-cell responses in a cohort of COVID-19 patients (  = 8), uninfected vaccinees (  = 16) and individuals who experienced both infection and vaccination (  = 11). Patients and vaccinees (two-time and three-time vaccinees alike) had a comparable number of CD4 T-cell responses (median 26 vs. 29,  = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these IFN-γ CD4 T-cell responses was observed in COVID-19 patients (median 0.35%), and three-time vaccinees showed a higher magnitude than two-time vaccinees (median 0.091% vs. 0.175%,  < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. HLA binding showed promiscuous presentation by DRB1 molecules for several peptides. Both SARS-CoV-2 infection and vaccination prime broadly directed T-cell responses directed against the SARS-CoV-2 spike glycoprotein. This comprehensive high-resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike-specific T-cell responses.
Individual CD4 + and CD8 + T‐cell responses directed against a total of 253 overlapping 15‐mer spike‐specific peptides were mapped in a cohort of COVID‐19 patients ( n  = 8), uninfected vaccinees ( n  = 16) and individuals who experienced both infection and vaccination ( n  = 11). We found that patients and vaccinees (two‐time and three‐time vaccinees alike) had a comparable number of CD4 + T‐cell responses (median 26 vs. 29, P  = 0.7289) but differential magnitudes of these in vitro responses (median 0.35% vs. 0.12% IFN‐γ + of CD4 + T cells, P  < 0.0001). Most of the recognized specificities were conserved in the B.1.1.529 (omicron) Variant of Concern (VoC), and its sublineages and several peptides showed promiscuous presentation by DRB1 molecules in in vitro HLA‐binding assays.
Potential differences in the breadth, distribution and magnitude of CD4+ T-cell responses directed against the SARS-CoV-2 spike glycoprotein between vaccinees, COVID-19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level.ObjectivesPotential differences in the breadth, distribution and magnitude of CD4+ T-cell responses directed against the SARS-CoV-2 spike glycoprotein between vaccinees, COVID-19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level.Following virus-specific in vitro cultivation, we determined the T-cell responses directed against 253 individual overlapping 15-mer peptides covering the entire SARS-CoV-2 spike glycoprotein using IFN-γ ELISpot and intracellular cytokine staining. In vitro HLA binding was determined for selected peptides.MethodsFollowing virus-specific in vitro cultivation, we determined the T-cell responses directed against 253 individual overlapping 15-mer peptides covering the entire SARS-CoV-2 spike glycoprotein using IFN-γ ELISpot and intracellular cytokine staining. In vitro HLA binding was determined for selected peptides.We mapped 955 single peptide-specific CD4+ T-cell responses in a cohort of COVID-19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). Patients and vaccinees (two-time and three-time vaccinees alike) had a comparable number of CD4+ T-cell responses (median 26 vs. 29, P = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these in vitro IFN-γ CD4+ T-cell responses was observed in COVID-19 patients (median 0.35%), and three-time vaccinees showed a higher magnitude than two-time vaccinees (median 0.091% vs. 0.175%, P < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. In vitro HLA binding showed promiscuous presentation by DRB1 molecules for several peptides.ResultsWe mapped 955 single peptide-specific CD4+ T-cell responses in a cohort of COVID-19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). Patients and vaccinees (two-time and three-time vaccinees alike) had a comparable number of CD4+ T-cell responses (median 26 vs. 29, P = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these in vitro IFN-γ CD4+ T-cell responses was observed in COVID-19 patients (median 0.35%), and three-time vaccinees showed a higher magnitude than two-time vaccinees (median 0.091% vs. 0.175%, P < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. In vitro HLA binding showed promiscuous presentation by DRB1 molecules for several peptides.Both SARS-CoV-2 infection and vaccination prime broadly directed T-cell responses directed against the SARS-CoV-2 spike glycoprotein. This comprehensive high-resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike-specific T-cell responses.ConclusionBoth SARS-CoV-2 infection and vaccination prime broadly directed T-cell responses directed against the SARS-CoV-2 spike glycoprotein. This comprehensive high-resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike-specific T-cell responses.
ObjectivesPotential differences in the breadth, distribution and magnitude of CD4+ T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein between vaccinees, COVID‐19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level.MethodsFollowing virus‐specific in vitro cultivation, we determined the T‐cell responses directed against 253 individual overlapping 15‐mer peptides covering the entire SARS‐CoV‐2 spike glycoprotein using IFN‐γ ELISpot and intracellular cytokine staining. In vitro HLA binding was determined for selected peptides.ResultsWe mapped 955 single peptide‐specific CD4+ T‐cell responses in a cohort of COVID‐19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). Patients and vaccinees (two‐time and three‐time vaccinees alike) had a comparable number of CD4+ T‐cell responses (median 26 vs. 29, P = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these in vitro IFN‐γ CD4+ T‐cell responses was observed in COVID‐19 patients (median 0.35%), and three‐time vaccinees showed a higher magnitude than two‐time vaccinees (median 0.091% vs. 0.175%, P < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. In vitro HLA binding showed promiscuous presentation by DRB1 molecules for several peptides.ConclusionBoth SARS‐CoV‐2 infection and vaccination prime broadly directed T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein. This comprehensive high‐resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike‐specific T‐cell responses.
Abstract Objectives Potential differences in the breadth, distribution and magnitude of CD4+ T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein between vaccinees, COVID‐19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level. Methods Following virus‐specific in vitro cultivation, we determined the T‐cell responses directed against 253 individual overlapping 15‐mer peptides covering the entire SARS‐CoV‐2 spike glycoprotein using IFN‐γ ELISpot and intracellular cytokine staining. In vitro HLA binding was determined for selected peptides. Results We mapped 955 single peptide‐specific CD4+ T‐cell responses in a cohort of COVID‐19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). Patients and vaccinees (two‐time and three‐time vaccinees alike) had a comparable number of CD4+ T‐cell responses (median 26 vs. 29, P = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these in vitro IFN‐γ CD4+ T‐cell responses was observed in COVID‐19 patients (median 0.35%), and three‐time vaccinees showed a higher magnitude than two‐time vaccinees (median 0.091% vs. 0.175%, P < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. In vitro HLA binding showed promiscuous presentation by DRB1 molecules for several peptides. Conclusion Both SARS‐CoV‐2 infection and vaccination prime broadly directed T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein. This comprehensive high‐resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike‐specific T‐cell responses.
Author Karsten, Hendrik
Schmiedel, Stefan
Huber, Samuel
Schulze zur Wiesch, Julian
Brehm, Thomas Theo
Ackermann, Christin
Cords, Leon
Sette, Alessandro
Addo, Marylyn Martina
Ditt, Vanessa
Sidney, John
Peine, Sven
Knapp, Maximilian
Lütgehetmann, Marc
Wittner, Melanie
Woost, Robin
Omansen, Till Frederik
Westphal, Tim
Hermanussen, Lennart
AuthorAffiliation 1 Infectious Diseases Unit, 1. Department of Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany
3 Department of Tropical Medicine Bernhard Nocht Institute for Tropical Medicine Hamburg Germany
4 Institute of Transfusion Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany
5 Institute of Medical Microbiology, Virology and Hygiene University Medical Center Hamburg‐Eppendorf Hamburg Germany
6 Center for Infectious Disease and Vaccine Research La Jolla Institute for Immunology (LJI) La Jolla CA USA
2 German Center for Infection Research (DZIF) Partner Site Hamburg‐Lübeck‐Borstel‐Riems Hamburg Germany
AuthorAffiliation_xml – name: 3 Department of Tropical Medicine Bernhard Nocht Institute for Tropical Medicine Hamburg Germany
– name: 4 Institute of Transfusion Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany
– name: 1 Infectious Diseases Unit, 1. Department of Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany
– name: 5 Institute of Medical Microbiology, Virology and Hygiene University Medical Center Hamburg‐Eppendorf Hamburg Germany
– name: 2 German Center for Infection Research (DZIF) Partner Site Hamburg‐Lübeck‐Borstel‐Riems Hamburg Germany
– name: 6 Center for Infectious Disease and Vaccine Research La Jolla Institute for Immunology (LJI) La Jolla CA USA
Author_xml – sequence: 1
  givenname: Hendrik
  orcidid: 0000-0002-2767-0405
  surname: Karsten
  fullname: Karsten, Hendrik
  organization: University Medical Center Hamburg‐Eppendorf
– sequence: 2
  givenname: Leon
  orcidid: 0000-0003-1340-8817
  surname: Cords
  fullname: Cords, Leon
  organization: University Medical Center Hamburg‐Eppendorf
– sequence: 3
  givenname: Tim
  surname: Westphal
  fullname: Westphal, Tim
  organization: Partner Site Hamburg‐Lübeck‐Borstel‐Riems
– sequence: 4
  givenname: Maximilian
  orcidid: 0000-0002-9554-5067
  surname: Knapp
  fullname: Knapp, Maximilian
  organization: University Medical Center Hamburg‐Eppendorf
– sequence: 5
  givenname: Thomas Theo
  orcidid: 0000-0003-1737-161X
  surname: Brehm
  fullname: Brehm, Thomas Theo
  organization: Partner Site Hamburg‐Lübeck‐Borstel‐Riems
– sequence: 6
  givenname: Lennart
  surname: Hermanussen
  fullname: Hermanussen, Lennart
  organization: University Medical Center Hamburg‐Eppendorf
– sequence: 7
  givenname: Till Frederik
  orcidid: 0000-0003-0645-9683
  surname: Omansen
  fullname: Omansen, Till Frederik
  organization: Bernhard Nocht Institute for Tropical Medicine
– sequence: 8
  givenname: Stefan
  surname: Schmiedel
  fullname: Schmiedel, Stefan
  organization: University Medical Center Hamburg‐Eppendorf
– sequence: 9
  givenname: Robin
  surname: Woost
  fullname: Woost, Robin
  organization: University Medical Center Hamburg‐Eppendorf
– sequence: 10
  givenname: Vanessa
  surname: Ditt
  fullname: Ditt, Vanessa
  organization: University Medical Center Hamburg‐Eppendorf
– sequence: 11
  givenname: Sven
  surname: Peine
  fullname: Peine, Sven
  organization: University Medical Center Hamburg‐Eppendorf
– sequence: 12
  givenname: Marc
  surname: Lütgehetmann
  fullname: Lütgehetmann, Marc
  organization: University Medical Center Hamburg‐Eppendorf
– sequence: 13
  givenname: Samuel
  orcidid: 0000-0001-9325-8227
  surname: Huber
  fullname: Huber, Samuel
  organization: University Medical Center Hamburg‐Eppendorf
– sequence: 14
  givenname: Christin
  surname: Ackermann
  fullname: Ackermann, Christin
  organization: University Medical Center Hamburg‐Eppendorf
– sequence: 15
  givenname: Melanie
  surname: Wittner
  fullname: Wittner, Melanie
  organization: Partner Site Hamburg‐Lübeck‐Borstel‐Riems
– sequence: 16
  givenname: Marylyn Martina
  orcidid: 0000-0003-2836-9224
  surname: Addo
  fullname: Addo, Marylyn Martina
  organization: Bernhard Nocht Institute for Tropical Medicine
– sequence: 17
  givenname: Alessandro
  orcidid: 0000-0001-7013-2250
  surname: Sette
  fullname: Sette, Alessandro
  organization: La Jolla Institute for Immunology (LJI)
– sequence: 18
  givenname: John
  surname: Sidney
  fullname: Sidney, John
  organization: La Jolla Institute for Immunology (LJI)
– sequence: 19
  givenname: Julian
  orcidid: 0000-0002-5033-1938
  surname: Schulze zur Wiesch
  fullname: Schulze zur Wiesch, Julian
  email: julianszw@googlemail.com
  organization: Partner Site Hamburg‐Lübeck‐Borstel‐Riems
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35957961$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1u1DAUhSNURH_oghdAlthQoWn9FyfeVEJToCNV6mZgazm2M71Dxg5xMmh27NjyjDwJzswUtRWsbJ2c8-k49x5nBz54l2WvCD4nGNML0wM9J5zgZ9kRxTmeYCzKgwf3w-w0xiXGmDCOcyJeZIcsl3khBTnKfl7D4u73j1-di6EZeggeaa-bTYSIQo3AW1iDHXSDYgtfHWpd24N1KRFbZ6AGg6ZX_B2aJ8W4pkEJ1AYfXUxZtNbGgHdJNNCC831MdIumt19mVylAJGp1v9VfZs9r3UR3uj9Pss8fP8yn15Ob20-z6fubicmxxBNdFpwIZouSEmEqaytBWM20LCWnxElTa1GxnJrCYF4YLXhVskpaonNBak3YSTbbcW3QS9V2sNLdRgUNaiuEbqF014NpnMJ1zjmRtJAUc8lFRQpjbC6kYJrxkiXW5Y7VDtXKWZPe0enmEfTxFw93ahHWSjLBKBvLvN0DuvBtcLFXK4jjX9TehSEqWmBKSpJjkaxvnliXYejSpLaugktJxQh8_bDR3yr3806Gi53BdCHGztXKQK_HsaeC0CiC1bhUalwqNS5VSpw9SdxD_-Xd079D4zb_N6rpfEa3iT_IfN4d
CitedBy_id crossref_primary_10_1016_j_xcrm_2024_101442
crossref_primary_10_1016_j_chom_2023_12_003
crossref_primary_10_1016_j_ymthe_2024_05_003
crossref_primary_10_3389_fimmu_2023_1182504
crossref_primary_10_3390_vaccines10122132
crossref_primary_10_1016_j_xcrm_2022_100898
crossref_primary_10_1038_s41467_024_45043_2
crossref_primary_10_1172_jci_insight_166833
Cites_doi 10.1056/NEJMc2206576
10.1371/journal.pcbi.1000048
10.1038/s41586-020-2588-y
10.1093/oxfimm/iqab006
10.3389/fimmu.2021.637654
10.1038/s41598-021-92521-4
10.1016/j.chom.2020.03.002
10.1172/jci.insight.156559
10.1016/j.xcrm.2021.100204
10.15585/mmwr.mm7037e3
10.1016/j.cell.2020.02.058
10.1056/NEJMc2206900
10.1093/cid/ciaa1637
10.1002/ueg2.12218
10.1016/j.pep.2021.106003
10.1016/j.cell.2020.05.015
10.1038/s41586-020-2012-7
10.1038/s41577-021-00578-z
10.1038/s41586-021-03841-4
10.1126/science.abg8985
10.1038/s41586-020-2598-9
10.1126/science.abd3871
10.1016/j.cell.2020.06.011
10.1038/s41467-021-27649-y
10.3389/fimmu.2019.03037
10.1016/S2665-9913(21)00325-8
10.1056/NEJMc2031364
10.4049/jimmunol.198.Supp.157.6
10.15585/mmwr.mm7037e1
10.1016/j.ebiom.2022.103904
10.1016/j.xcrm.2020.100092
10.1172/JCI143120
10.1002/cyto.a.22317
10.1183/13993003.00547-2020
10.1172/jci.insight.142167
10.1016/j.cell.2020.10.001
10.1016/j.cmi.2022.02.028
10.4049/jimmunol.175.6.3603
10.21203/rs.3.rs‐1289622/v1
10.1038/s41591-022-01715-4
10.1016/j.cgh.2021.09.003
10.1016/j.celrep.2021.108728
10.1371/journal.pone.0186998
10.1126/sciimmunol.abo1303
10.1016/j.vaccine.2021.03.008
10.1016/j.humimm.2016.10.014
10.1182/blood-2004-06-2336
10.4049/jimmunol.2100727
10.1056/NEJMoa2116414
10.1016/j.virol.2017.12.015
10.15585/mmwr.mm7037e2
10.1016/j.cell.2020.02.052
10.1093/infdis/jiac178
10.1016/j.jcv.2020.104390
10.1016/j.ajpath.2020.08.009
10.1093/infdis/jiy549
10.1101/2022.03.04.483032
10.1126/science.abc7520
10.1038/s41586-021-03291-y
10.1016/j.cell.2022.01.015
10.1038/s41401-020-0485-4
10.1016/j.addr.2021.01.007
10.1016/j.chom.2020.04.009
10.1038/s41467-021-26602-3
10.1016/j.cell.2021.12.033
10.1126/science.abh1823
10.1016/j.immuni.2020.11.016
10.1186/1471-2105-11-568
10.1038/nri2274
10.1111/all.14657
10.1038/s41591-021-01377-8
10.1056/NEJMsb2104756
10.1016/S1473-3099(20)30483-7
10.1038/s41421-022-00373-7
10.1093/infdis/jiab593
10.3390/v14061265
10.1038/s41577-020-0308-3
10.1038/s41591-021-01527-y
10.1038/nprot.2006.1
10.1128/JVI.76.12.6104-6113.2002
10.1128/jvi.00509-22
10.4049/jimmunol.160.7.3363
10.1016/j.celrep.2022.110345
10.1371/journal.ppat.1009842
10.1126/science.8023162
10.3390/vaccines6030050
10.1016/j.vaccine.2022.01.007
10.1371/journal.ppat.1010203
10.1038/s41591-022-01700-x
10.1080/07391102.2020.1792347
10.1016/j.isci.2021.103353
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.
2022 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.
– notice: 2022 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1002/cti2.1410
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Spike peptide‐specific CD4+ T cells
EISSN 2050-0068
EndPage n/a
ExternalDocumentID oai_doaj_org_article_0f54419279204946b17ccd56963a3483
PMC9363231
35957961
10_1002_cti2_1410
CTI21410
Genre article
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: SFB1328 A12; SFB841 A6
– fundername: H2020 European Research Council
  funderid: 681032
– fundername: Deutsches Zentrum für Infektionsforschung
  funderid: TTU 04.816
– fundername: ;
  grantid: 681032
– fundername: ;
  grantid: SFB1328 A12; SFB841 A6
– fundername: ;
  grantid: TTU 04.816
GroupedDBID 0R~
1OC
24P
3V.
53G
5VS
7X7
8FE
8FH
8FI
8FJ
AAHHS
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACXQS
ADBBV
ADKYN
ADPDF
ADRAZ
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
DIK
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IHR
INH
ITC
KQ8
LK8
M48
M7P
M~E
NAO
O9-
OK1
OVD
OVEED
PIMPY
PQQKQ
PROAC
RNTTT
RPM
TEORI
UKHRP
WIN
AAYXX
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
PQGLB
7XB
8FK
AZQEC
COVID
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5090-a874163d78216cbddb613f3a989421e9cfa6b352c7c047ca64b83b9d1a561fa13
IEDL.DBID M48
ISSN 2050-0068
IngestDate Wed Aug 27 01:29:27 EDT 2025
Thu Aug 21 18:13:19 EDT 2025
Tue Aug 05 09:46:04 EDT 2025
Wed Aug 13 06:50:36 EDT 2025
Mon Jul 21 06:04:29 EDT 2025
Tue Jul 01 03:51:00 EDT 2025
Thu Apr 24 23:08:13 EDT 2025
Wed Jan 22 16:22:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords CD4+ T cells
MHC class II
B.1.1.529
SARS‐CoV‐2
vaccines
spike protein
Language English
License Attribution
2022 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5090-a874163d78216cbddb613f3a989421e9cfa6b352c7c047ca64b83b9d1a561fa13
Notes These authors contributed equally to this work and share first authorship.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1737-161X
0000-0003-2836-9224
0000-0003-1340-8817
0000-0001-7013-2250
0000-0001-9325-8227
0000-0002-5033-1938
0000-0002-9554-5067
0000-0003-0645-9683
0000-0002-2767-0405
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/cti2.1410
PMID 35957961
PQID 2707499261
PQPubID 2041959
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_0f54419279204946b17ccd56963a3483
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9363231
proquest_miscellaneous_2702181506
proquest_journals_2707499261
pubmed_primary_35957961
crossref_citationtrail_10_1002_cti2_1410
crossref_primary_10_1002_cti2_1410
wiley_primary_10_1002_cti2_1410_CTI21410
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Australia
PublicationPlace_xml – name: Australia
– name: Milton, Queensland
– name: Hoboken
PublicationTitle Clinical & translational immunology
PublicationTitleAlternate Clin Transl Immunology
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2010; 11
2021; 24
2021; 27
1998; 160
2021; 21
2005; 175
2020; 20
2020; 369
2020; 128
2008; 8
2022; 20
2020; 55
2020; 10
2008; 4
2017; 198
2021; 73
2013; 83A
2022; 28
2021; 70
2018; 6
2013; Chapter 18
2020; 5
1994; 265
2021; 76
2021; 34
2020; 1
2021; 597
2020; 53
2020; 130
2022; 40
2021; 39
2005; 105
2020; 370
2017; 78
2020; 48
2020; 579
2018; 219
2021; 592
2022; 77
2022; 208
2022; 368
2022; 38
2021; 191
2021; 43
2021; 2
2020; 383
2020; 41
2021; 225
2022; 190
2020; 181
2020; 182
2002; 76
2020; 183
2020; 584
2006; 1
2020; 587
2021; 385
2022; 387
2022; 185
2021; 12
2021; 11
2022
2022; 4
2022; 7
2021; 17
2022; 8
2017; 12
2021; 171
2020; 27
2022; 13
2022; 14
2018; 517
2022; 96
2021; 372
2022; 10
2021; 374
e_1_2_8_28_1
Koch J (e_1_2_8_37_1) 2021; 43
e_1_2_8_24_1
e_1_2_8_49_1
e_1_2_8_68_1
Gonzalez‐Galarza Faviel F (e_1_2_8_38_1) 2020; 48
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_41_1
e_1_2_8_60_1
Terpos E (e_1_2_8_26_1) 2022; 10
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_93_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
Sidney J (e_1_2_8_47_1) 2013; 18
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
Victor K (e_1_2_8_83_1) 2017; 198
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_92_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_96_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 55
  start-page: 2000547
  year: 2020
  article-title: Comorbidity and its impact on 1590 patients with COVID‐19 in China: a nationwide analysis
  publication-title: Eur Respir J
– volume: 27
  start-page: 2025
  year: 2021
  end-page: 2031
  article-title: Safety and immunogenicity of SARS‐CoV‐2 variant mRNA vaccine boosters in healthy adults: an interim analysis
  publication-title: Nat Med
– volume: 383
  start-page: 2291
  year: 2020
  end-page: 2293
  article-title: Persistence and evolution of SARS‐CoV‐2 in an immunocompromised host
  publication-title: N Engl J Med
– volume: Chapter 18
  start-page: Unit 18.3
  year: 2013
  article-title: Measurement of MHC/peptide interactions by gel filtration or monoclonal antibody capture
  publication-title: Curr Protoc Immunol
– volume: 13
  start-page: 153
  year: 2022
  article-title: Dynamics of spike‐and nucleocapsid specific immunity during long‐term follow‐up and vaccination of SARS‐CoV‐2 convalescents
  publication-title: Nat Commun
– volume: 70
  start-page: 1284
  year: 2021
  end-page: 1290
  article-title: Monitoring incidence of COVID‐19 cases, hospitalizations, and deaths, by vaccination status – 13 U.S. jurisdictions, April 4‐July 17, 2021
  publication-title: MMWR Morb Mortal Wkly Rep
– volume: 265
  start-page: 398
  year: 1994
  end-page: 402
  article-title: Importance of peptide amino and carboxyl termini to the stability of MHC class I molecules
  publication-title: Science
– volume: 12
  year: 2021
  article-title: A novel DNA vaccine against SARS‐CoV‐2 encoding a chimeric protein of its receptor‐binding domain (RBD) fused to the amino‐terminal region of hepatitis B virus preS1 with a W4P mutation
  publication-title: Front Immunol
– volume: 8
  start-page: 10
  year: 2022
  article-title: Robust induction of B cell and T cell responses by a third dose of inactivated SARS‐CoV‐2 vaccine
  publication-title: Cell Discov
– volume: 191
  start-page: 4
  year: 2021
  end-page: 17
  article-title: Immunopathology of hyperinflammation in COVID‐19
  publication-title: Am J Pathol
– volume: 20
  start-page: 269
  year: 2020
  end-page: 270
  article-title: COVID‐19: immunopathology and its implications for therapy
  publication-title: Nat Rev Immunol
– volume: 27
  year: 2020
  article-title: Complex immune dysregulation in COVID‐19 patients with severe respiratory failure
  publication-title: Cell Host Microbe
– volume: 130
  start-page: 6631
  year: 2020
  end-page: 6638
  article-title: Healthy donor T cell responses to common cold coronaviruses and SARS‐CoV‐2
  publication-title: J Clin Invest
– volume: 7
  start-page: eabo1303
  year: 2022
  article-title: Understanding T cell responses to COVID‐19 is essential for informing public health strategies
  publication-title: Sci Immunol
– volume: 77
  year: 2022
  article-title: Waning immune responses against SARS‐CoV‐2 variants of concern among vaccinees in Hong Kong
  publication-title: EBioMedicine
– volume: 368
  start-page: 1046
  year: 2022
  end-page: 1057
  article-title: Homologous and heterologous Covid‐19 booster vaccinations
  publication-title: N Engl J Med
– volume: 27
  start-page: 1205
  year: 2021
  end-page: 1211
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS‐CoV‐2 infection
  publication-title: Nat Med
– volume: 185
  year: 2022
  article-title: mRNA‐based COVID‐19 vaccine boosters induce neutralizing immunity against SARS‐CoV‐2 omicron variant
  publication-title: Cell
– volume: 4
  start-page: e33
  year: 2022
  end-page: e41
  article-title: Long‐term use of immunosuppressive medicines and in‐hospital COVID‐19 outcomes: a retrospective cohort study using data from the national COVID cohort collaborative
  publication-title: Lancet Rheumatol
– volume: 11
  start-page: 13164
  year: 2021
  article-title: Immunodominant T‐cell epitopes from the SARS‐CoV‐2 spike antigen reveal robust pre‐existing T‐cell immunity in unexposed individuals
  publication-title: Sci Rep
– volume: 387
  start-page: 277
  year: 2022
  end-page: 280
  article-title: Omicron SARS‐CoV‐2 neutralization from inactivated and ZF2001 vaccines
  publication-title: N Engl J Med
– volume: 48
  start-page: D783
  year: 2020
  end-page: D788
  article-title: Allele frequency net database (AFND) 2020 update: gold‐standard data classification, open access genotype data and new query tools
  publication-title: Nucleic Acids Res
– year: 2022
  article-title: Chimeric mRNA based COVID‐19 vaccine elicits potent neutralizing antibodies and protection against Omicron and Delta
  publication-title: bioRxiv
– volume: 14
  start-page: 1265
  year: 2022
  article-title: High and sustained ex vivo frequency but altered phenotype of SARS‐CoV‐2‐specific CD4 T‐cells in an anti‐CD20‐treated patient with prolonged COVID‐19
  publication-title: Viruses
– volume: 24
  year: 2021
  article-title: The impact of viral mutations on recognition by SARS‐CoV‐2 specific T cells
  publication-title: iScience
– volume: 21
  start-page: 475
  year: 2021
  end-page: 484
  article-title: Immunological mechanisms of vaccine‐induced protection against COVID‐19 in humans
  publication-title: Nat Rev Immunol
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– volume: 53
  year: 2020
  article-title: Low‐avidity CD4 T cell responses to SARS‐CoV‐2 in unexposed individuals and humans with severe COVID‐19
  publication-title: Immunity
– volume: 597
  start-page: 268
  year: 2021
  end-page: 273
  article-title: Rapid and stable mobilization of CD8+ T cells by SARS‐CoV‐2 mRNA vaccine
  publication-title: Nature
– volume: 70
  start-page: 1294
  year: 2021
  end-page: 1299
  article-title: Effectiveness of COVID‐19 mRNA vaccines against COVID‐19‐associated hospitalization – five veterans affairs medical centers, United States, February 1‐August 6, 2021
  publication-title: MMWR Morb Mortal Wkly Rep
– volume: 517
  start-page: 3
  year: 2018
  end-page: 8
  article-title: Physiological and molecular triggers for SARS‐CoV membrane fusion and entry into host cells
  publication-title: Virology
– volume: 8
  start-page: 247
  year: 2008
  end-page: 258
  article-title: T‐cell quality in memory and protection: implications for vaccine design
  publication-title: Nat Rev Immunol
– volume: 41
  start-page: 1141
  year: 2020
  end-page: 1149
  article-title: Structural and functional properties of SARS‐CoV‐2 spike protein: potential antivirus drug development for COVID‐19
  publication-title: Acta Pharmacol Sin
– volume: 160
  start-page: 3363
  year: 1998
  end-page: 3373
  article-title: Several common HLA‐DR types share largely overlapping peptide binding repertoires
  publication-title: J Immunol
– volume: 181
  year: 2020
  article-title: SARS‐CoV‐2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
– volume: 185
  year: 2022
  article-title: SARS‐CoV‐2 vaccination induces immunological T cell memory able to cross‐recognize variants from alpha to omicron
  publication-title: Cell
– volume: 28
  start-page: 1024.e1
  year: 2022
  end-page: 1024.e6
  article-title: B‐cell‐responses to vaccination with BNT162b2 and mRNA‐1273 six months after second dose
  publication-title: Clin Microbiol Infect
– volume: 1
  start-page: 1
  year: 2006
  end-page: 6
  article-title: Live‐cell assay to detect antigen‐specific CD4 T‐cell responses by CD154 expression
  publication-title: Nat Protoc
– volume: 10
  start-page: 338
  year: 2022
  article-title: Comparison of neutralizing antibody responses at 6 months post vaccination with BNT162b2 and AZD1222
  publication-title: Biomedicine
– volume: 76
  start-page: 428
  year: 2021
  end-page: 455
  article-title: Risk factors for severe and critically ill COVID‐19 patients: a review
  publication-title: Allergy
– volume: 181
  year: 2020
  article-title: Targets of T cell responses to SARS‐CoV‐2 coronavirus in humans with COVID‐19 disease and unexposed individuals
  publication-title: Cell
– start-page: jiac178
  year: 2022
  article-title: Cross‐neutralizing activity against omicron could be obtained in SARS‐CoV‐2 convalescent patients who received two doses of mRNA vaccination
  publication-title: J Infect Dis
– volume: 584
  start-page: 463
  year: 2020
  end-page: 469
  article-title: Longitudinal analyses reveal immunological misfiring in severe COVID‐19
  publication-title: Nature
– volume: 175
  start-page: 3603
  year: 2005
  end-page: 3613
  article-title: Broad repertoire of the CD4 Th cell response in spontaneously controlled hepatitis C virus infection includes dominant and highly promiscuous epitopes
  publication-title: J Immunol
– volume: 11
  start-page: 568
  year: 2010
  article-title: Peptide binding predictions for HLA DR, DP and DQ molecules
  publication-title: BMC Bioinform
– volume: 2
  year: 2021
  article-title: Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS‐CoV‐2 epitopes in COVID‐19 cases
  publication-title: Cell Rep Med
– volume: 387
  start-page: 86
  year: 2022
  end-page: 88
  article-title: Neutralization escape by SARS‐CoV‐2 omicron subvariants BA.2.12.1, BA.4, and BA.5
  publication-title: N Engl J Med
– volume: 4
  year: 2008
  article-title: A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach
  publication-title: PLoS Comput Biol
– volume: 2
  start-page: iqab006
  year: 2021
  article-title: The T‐cell response to SARS‐CoV‐2: kinetic and quantitative aspects and the case for their protective role
  publication-title: Oxf Open Immunol
– volume: 76
  start-page: 6104
  year: 2002
  end-page: 6113
  article-title: Comprehensive analysis of CD8 ‐T‐cell responses against hepatitis C virus reveals multiple unpredicted specificities
  publication-title: J Virol
– volume: 374
  start-page: eabh1823
  year: 2021
  article-title: Cross‐reactive CD4 T cells enhance SARS‐CoV‐2 immune responses upon infection and vaccination
  publication-title: Science
– volume: 370
  start-page: 89
  year: 2020
  end-page: 94
  article-title: Selective and cross‐reactive SARS‐CoV‐2 T cell epitopes in unexposed humans
  publication-title: Science
– volume: 171
  start-page: 29
  year: 2021
  end-page: 47
  article-title: In silico T cell epitope identification for SARS‐CoV‐2: progress and perspectives
  publication-title: Adv Drug Deliv Rev
– volume: 27
  year: 2020
  article-title: A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS‐CoV‐2
  publication-title: Cell Host Microbe
– volume: 190
  year: 2022
  article-title: Yeast‐expressed recombinant SARS‐CoV‐2 receptor binding domain RBD203‐N1 as a COVID‐19 protein vaccine candidate
  publication-title: Protein Expr Purif
– volume: 70
  start-page: 1291
  year: 2021
  end-page: 1293
  article-title: Interim estimates of COVID‐19 vaccine effectiveness against COVID‐19‐associated emergency department or urgent care clinic encounters and hospitalizations among adults during SARS‐CoV‐2 B.1.617.2 (Delta) variant predominance – nine states, June‐August 2021
  publication-title: MMWR Morb Mortal Wkly Rep
– volume: 12
  year: 2017
  article-title: Comparative analysis of activation induced marker (AIM) assays for sensitive identification of antigen‐specific CD4 T cells
  publication-title: PLoS One
– volume: 219
  start-page: 568
  year: 2018
  end-page: 577
  article-title: Detection of a broad range of Low‐level major histocompatibility complex class II–restricted, Hepatitis Delta virus (HDV)–specific T‐cell responses regardless of clinical status
  publication-title: J Infect Dis
– volume: 12
  start-page: 6405
  year: 2021
  article-title: Within‐host evolution of SARS‐CoV‐2 in an immunosuppressed COVID‐19 patient as a source of immune escape variants
  publication-title: Nat Commun
– volume: 43
  start-page: 16
  year: 2021
  end-page: 53
  article-title: STIKO‐Empfehlung zur COVID‐19‐Auffrischimpfung mit einem mRNA‐Impfstoff für Personen ≥ 70 Jahre und bestimmte Indikationsgruppen sowie Empfehlung zur Optimierung der Grundimmunisierung mit einem mRNA‐Impfstoff nach vorausgegangener Impfung mit der COVID‐19 Vaccine Janssen und die dazugehörige wissenschaftliche Begründung
  publication-title: Epid Bull
– volume: 372
  start-page: 1336
  year: 2021
  end-page: 1341
  article-title: Clonal analysis of immunodominance and cross‐reactivity of the CD4 T cell response to SARS‐CoV‐2
  publication-title: Science
– volume: 587
  start-page: 270
  year: 2020
  end-page: 274
  article-title: SARS‐CoV‐2‐reactive T cells in healthy donors and patients with COVID‐19
  publication-title: Nature
– volume: 17
  year: 2021
  article-title: Cross‐reactive and mono‐reactive SARS‐CoV‐2 CD4+ T cells in prepandemic and COVID‐19 convalescent individuals
  publication-title: PLoS Pathog
– volume: 592
  start-page: 277
  year: 2021
  end-page: 282
  article-title: SARS‐CoV‐2 evolution during treatment of chronic infection
  publication-title: Nature
– volume: 105
  start-page: 1170
  year: 2005
  end-page: 1178
  article-title: The magnitude and breadth of hepatitis C virus–specific CD8 T cells depend on absolute CD4 T‐cell count in individuals coinfected with HIV‐1
  publication-title: Blood
– volume: 28
  start-page: 496
  year: 2022
  end-page: 503
  article-title: Three exposures to the spike protein of SARS‐CoV‐2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern
  publication-title: Nat Med
– volume: 83A
  start-page: 692
  year: 2013
  end-page: 701
  article-title: Flow‐cytometric analysis of rare antigen‐specific T cells
  publication-title: Cytometry A
– volume: 1
  year: 2020
  article-title: Robust T cell response toward spike, membrane, and nucleocapsid SARS‐CoV‐2 proteins is not associated with recovery in critical COVID‐19 patients
  publication-title: Cell Rep Med
– volume: 38
  year: 2022
  article-title: Maintenance of broad neutralizing antibodies and memory B cells 1 year post‐infection is predicted by SARS‐CoV‐2‐specific CD4+ T cell responses
  publication-title: Cell Rep
– volume: 183
  year: 2020
  article-title: Imbalance of regulatory and cytotoxic SARS‐CoV‐2‐reactive CD4 T cells in COVID‐19
  publication-title: Cell
– volume: 78
  start-page: 88
  year: 2017
  end-page: 94
  article-title: Association between HLA genes and dust mite sensitivity in a Brazilian population
  publication-title: Hum Immunol
– volume: 39
  start-page: 2110
  year: 2021
  end-page: 2116
  article-title: Assessment of SARS‐CoV‐2 specific CD4(+) and CD8 (+) T cell responses using MHC class I and II tetramers
  publication-title: Vaccine
– volume: 181
  year: 2020
  article-title: Structure, function, and antigenicity of the SARS‐CoV‐2 spike glycoprotein
  publication-title: Cell
– volume: 208
  start-page: 429
  year: 2022
  end-page: 443
  article-title: Persistence of T cell and antibody responses to SARS‐CoV‐2 up to 9 months after symptom onset
  publication-title: J Immunol
– volume: 40
  start-page: 14
  year: 2022
  end-page: 30
  article-title: Designing a multi‐epitope vaccine against SARS‐CoV‐2: an immunoinformatics approach
  publication-title: J Biomol Struct Dyn
– volume: 385
  start-page: 562
  year: 2021
  end-page: 566
  article-title: SARS‐CoV‐2 variants in patients with immunosuppression
  publication-title: N Engl J Med
– volume: 5
  year: 2020
  article-title: High levels of SARS‐CoV‐2‐specific T cells with restricted functionality in severe courses of COVID‐19
  publication-title: JCI Insight
– volume: 73
  start-page: e4020
  year: 2021
  end-page: e4024
  article-title: Sustained response after Remdesivir and convalescent plasma therapy in a B‐cell‐depleted patient with protracted coronavirus disease 2019 (COVID‐19)
  publication-title: Clin Infect Dis
– volume: 20
  start-page: e192
  year: 2020
  end-page: e197
  article-title: A minimal common outcome measure set for COVID‐19 clinical research
  publication-title: Lancet Infect Dis
– volume: 225
  start-page: 1141
  year: 2021
  end-page: 1150
  article-title: Comparative immunogenicity and effectiveness of mRNA‐1273, BNT162b2, and Ad26.COV2.S COVID‐19 vaccines
  publication-title: J Infect Dis
– volume: 10
  start-page: 319
  year: 2022
  end-page: 329
  article-title: SARS‐CoV‐2 vaccination response in patients with autoimmune hepatitis and autoimmune cholestatic liver disease
  publication-title: United European Gastroenterol J
– volume: 128
  year: 2020
  article-title: Clinical evaluation of a SARS‐CoV‐2 RT‐PCR assay on a fully automated system for rapid on‐demand testing in the hospital setting
  publication-title: J Clin Virol
– volume: 6
  start-page: 50
  year: 2018
  article-title: Activation‐induced markers detect vaccine‐specific CD4 T cell responses not measured by assays conventionally used in clinical trials
  publication-title: Vaccine
– year: 2022
  article-title: Ablation of CD8 T‐cell recognition of an immunodominant epitope in SARS‐CoV‐2 omicron
  publication-title: Research Square
– volume: 17
  year: 2021
  article-title: Broadly directed SARS‐CoV‐2‐specific CD4 T cell response includes frequently detected peptide specificities within the membrane and nucleoprotein in patients with acute and resolved COVID‐19
  publication-title: PLoS Pathog
– volume: 10
  start-page: 3037
  year: 2020
  article-title: Detection of EXP1‐specific CD4+ T cell responses directed against a broad range of epitopes including two promiscuous MHC class II binders during acute plasmodium falciparum malaria
  publication-title: Front Immunol
– volume: 28
  start-page: 472
  year: 2022
  end-page: 476
  article-title: Ancestral SARS‐CoV‐2‐specific T cells cross‐recognize the omicron variant
  publication-title: Nat Med
– volume: 40
  start-page: 1162
  year: 2022
  end-page: 1169
  article-title: A recombinant SARS‐CoV‐2 receptor‐binding domain expressed in an engineered fungal strain of Thermothelomyces heterothallica induces a functional immune response in mice
  publication-title: Vaccine
– volume: 96
  year: 2022
  article-title: Longitudinal assessment of SARS‐CoV‐2‐specific T cell cytokine‐producing responses for 1 year reveals persistence of multicytokine proliferative responses, with greater immunity associated with disease severity
  publication-title: J Virol
– volume: 20
  year: 2022
  article-title: SARS‐CoV2‐specific humoral and T‐cell immune response after second vaccination in liver cirrhosis and transplant patients
  publication-title: Clin Gastroenterol Hepatol
– volume: 182
  year: 2020
  article-title: A SARS‐CoV‐2 infection model in mice demonstrates protection by neutralizing antibodies
  publication-title: Cell
– volume: 34
  year: 2021
  article-title: Early induction of functional SARS‐CoV‐2‐specific T cells associates with rapid viral clearance and mild disease in COVID‐19 patients
  publication-title: Cell Rep
– volume: 369
  start-page: 956
  year: 2020
  end-page: 963
  article-title: Isolation of potent SARS‐CoV‐2 neutralizing antibodies and protection from disease in a small animal model
  publication-title: Science
– volume: 198
  start-page: 157.156
  year: 2017
  article-title: Optimization of a multi‐parametric activation‐induced marker (AIM) assay for identifying antigen‐specific CD4 and CD8 T‐cells
  publication-title: J Immunol
– volume: 7
  year: 2022
  article-title: In‐depth analysis of SARS‐CoV‐2‐specific T cells reveals diverse differentiation hierarchies in vaccinated individuals
  publication-title: JCI Insight
– ident: e_1_2_8_44_1
  doi: 10.1056/NEJMc2206576
– ident: e_1_2_8_49_1
  doi: 10.1371/journal.pcbi.1000048
– ident: e_1_2_8_2_1
  doi: 10.1038/s41586-020-2588-y
– ident: e_1_2_8_19_1
  doi: 10.1093/oxfimm/iqab006
– ident: e_1_2_8_75_1
  doi: 10.3389/fimmu.2021.637654
– ident: e_1_2_8_78_1
  doi: 10.1038/s41598-021-92521-4
– ident: e_1_2_8_33_1
  doi: 10.1016/j.chom.2020.03.002
– ident: e_1_2_8_85_1
  doi: 10.1172/jci.insight.156559
– ident: e_1_2_8_51_1
  doi: 10.1016/j.xcrm.2021.100204
– ident: e_1_2_8_10_1
  doi: 10.15585/mmwr.mm7037e3
– ident: e_1_2_8_11_1
  doi: 10.1016/j.cell.2020.02.058
– ident: e_1_2_8_45_1
  doi: 10.1056/NEJMc2206900
– ident: e_1_2_8_64_1
  doi: 10.1093/cid/ciaa1637
– ident: e_1_2_8_58_1
  doi: 10.1002/ueg2.12218
– ident: e_1_2_8_73_1
  doi: 10.1016/j.pep.2021.106003
– ident: e_1_2_8_55_1
  doi: 10.1016/j.cell.2020.05.015
– ident: e_1_2_8_14_1
  doi: 10.1038/s41586-020-2012-7
– ident: e_1_2_8_16_1
  doi: 10.1038/s41577-021-00578-z
– ident: e_1_2_8_54_1
  doi: 10.1038/s41586-021-03841-4
– ident: e_1_2_8_71_1
  doi: 10.1126/science.abg8985
– volume: 43
  start-page: 16
  year: 2021
  ident: e_1_2_8_37_1
  article-title: STIKO‐Empfehlung zur COVID‐19‐Auffrischimpfung mit einem mRNA‐Impfstoff für Personen ≥ 70 Jahre und bestimmte Indikationsgruppen sowie Empfehlung zur Optimierung der Grundimmunisierung mit einem mRNA‐Impfstoff nach vorausgegangener Impfung mit der COVID‐19 Vaccine Janssen und die dazugehörige wissenschaftliche Begründung
  publication-title: Epid Bull
– ident: e_1_2_8_77_1
  doi: 10.1038/s41586-020-2598-9
– ident: e_1_2_8_79_1
  doi: 10.1126/science.abd3871
– ident: e_1_2_8_22_1
  doi: 10.1016/j.cell.2020.06.011
– ident: e_1_2_8_29_1
  doi: 10.1038/s41467-021-27649-y
– ident: e_1_2_8_43_1
  doi: 10.3389/fimmu.2019.03037
– ident: e_1_2_8_70_1
  doi: 10.1016/S2665-9913(21)00325-8
– ident: e_1_2_8_66_1
  doi: 10.1056/NEJMc2031364
– volume: 198
  start-page: 157.156
  year: 2017
  ident: e_1_2_8_83_1
  article-title: Optimization of a multi‐parametric activation‐induced marker (AIM) assay for identifying antigen‐specific CD4+ and CD8+ T‐cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.198.Supp.157.6
– ident: e_1_2_8_8_1
  doi: 10.15585/mmwr.mm7037e1
– ident: e_1_2_8_24_1
  doi: 10.1016/j.ebiom.2022.103904
– ident: e_1_2_8_56_1
  doi: 10.1016/j.xcrm.2020.100092
– ident: e_1_2_8_81_1
  doi: 10.1172/JCI143120
– ident: e_1_2_8_82_1
  doi: 10.1002/cyto.a.22317
– ident: e_1_2_8_7_1
  doi: 10.1183/13993003.00547-2020
– ident: e_1_2_8_17_1
  doi: 10.1172/jci.insight.142167
– ident: e_1_2_8_20_1
  doi: 10.1016/j.cell.2020.10.001
– ident: e_1_2_8_25_1
  doi: 10.1016/j.cmi.2022.02.028
– ident: e_1_2_8_41_1
  doi: 10.4049/jimmunol.175.6.3603
– ident: e_1_2_8_93_1
  doi: 10.21203/rs.3.rs‐1289622/v1
– ident: e_1_2_8_90_1
  doi: 10.1038/s41591-022-01715-4
– ident: e_1_2_8_95_1
  doi: 10.1016/j.cgh.2021.09.003
– ident: e_1_2_8_18_1
  doi: 10.1016/j.celrep.2021.108728
– ident: e_1_2_8_84_1
  doi: 10.1371/journal.pone.0186998
– ident: e_1_2_8_87_1
  doi: 10.1126/sciimmunol.abo1303
– ident: e_1_2_8_53_1
  doi: 10.1016/j.vaccine.2021.03.008
– ident: e_1_2_8_96_1
  doi: 10.1016/j.humimm.2016.10.014
– ident: e_1_2_8_40_1
  doi: 10.1182/blood-2004-06-2336
– ident: e_1_2_8_63_1
  doi: 10.4049/jimmunol.2100727
– volume: 48
  start-page: D783
  year: 2020
  ident: e_1_2_8_38_1
  article-title: Allele frequency net database (AFND) 2020 update: gold‐standard data classification, open access genotype data and new query tools
  publication-title: Nucleic Acids Res
– volume: 18
  start-page: Unit 18.3
  year: 2013
  ident: e_1_2_8_47_1
  article-title: Measurement of MHC/peptide interactions by gel filtration or monoclonal antibody capture
  publication-title: Curr Protoc Immunol
– ident: e_1_2_8_30_1
  doi: 10.1056/NEJMoa2116414
– ident: e_1_2_8_15_1
  doi: 10.1016/j.virol.2017.12.015
– ident: e_1_2_8_9_1
  doi: 10.15585/mmwr.mm7037e2
– ident: e_1_2_8_13_1
  doi: 10.1016/j.cell.2020.02.052
– ident: e_1_2_8_89_1
  doi: 10.1093/infdis/jiac178
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jcv.2020.104390
– ident: e_1_2_8_4_1
  doi: 10.1016/j.ajpath.2020.08.009
– ident: e_1_2_8_42_1
  doi: 10.1093/infdis/jiy549
– ident: e_1_2_8_46_1
  doi: 10.1101/2022.03.04.483032
– ident: e_1_2_8_21_1
  doi: 10.1126/science.abc7520
– ident: e_1_2_8_67_1
  doi: 10.1038/s41586-021-03291-y
– ident: e_1_2_8_88_1
  doi: 10.1016/j.cell.2022.01.015
– volume: 10
  start-page: 338
  year: 2022
  ident: e_1_2_8_26_1
  article-title: Comparison of neutralizing antibody responses at 6 months post vaccination with BNT162b2 and AZD1222
  publication-title: Biomedicine
– ident: e_1_2_8_12_1
  doi: 10.1038/s41401-020-0485-4
– ident: e_1_2_8_32_1
  doi: 10.1016/j.addr.2021.01.007
– ident: e_1_2_8_3_1
  doi: 10.1016/j.chom.2020.04.009
– ident: e_1_2_8_68_1
  doi: 10.1038/s41467-021-26602-3
– ident: e_1_2_8_28_1
  doi: 10.1016/j.cell.2021.12.033
– ident: e_1_2_8_76_1
  doi: 10.1126/science.abh1823
– ident: e_1_2_8_80_1
  doi: 10.1016/j.immuni.2020.11.016
– ident: e_1_2_8_50_1
  doi: 10.1186/1471-2105-11-568
– ident: e_1_2_8_86_1
  doi: 10.1038/nri2274
– ident: e_1_2_8_6_1
  doi: 10.1111/all.14657
– ident: e_1_2_8_23_1
  doi: 10.1038/s41591-021-01377-8
– ident: e_1_2_8_69_1
  doi: 10.1056/NEJMsb2104756
– ident: e_1_2_8_35_1
  doi: 10.1016/S1473-3099(20)30483-7
– ident: e_1_2_8_60_1
  doi: 10.1038/s41421-022-00373-7
– ident: e_1_2_8_61_1
  doi: 10.1093/infdis/jiab593
– ident: e_1_2_8_65_1
  doi: 10.3390/v14061265
– ident: e_1_2_8_5_1
  doi: 10.1038/s41577-020-0308-3
– ident: e_1_2_8_27_1
  doi: 10.1038/s41591-021-01527-y
– ident: e_1_2_8_57_1
  doi: 10.1038/nprot.2006.1
– ident: e_1_2_8_39_1
  doi: 10.1128/JVI.76.12.6104-6113.2002
– ident: e_1_2_8_62_1
  doi: 10.1128/jvi.00509-22
– ident: e_1_2_8_48_1
  doi: 10.4049/jimmunol.160.7.3363
– ident: e_1_2_8_72_1
  doi: 10.1016/j.celrep.2022.110345
– ident: e_1_2_8_36_1
  doi: 10.1371/journal.ppat.1009842
– ident: e_1_2_8_94_1
  doi: 10.1126/science.8023162
– ident: e_1_2_8_59_1
  doi: 10.3390/vaccines6030050
– ident: e_1_2_8_74_1
  doi: 10.1016/j.vaccine.2022.01.007
– ident: e_1_2_8_52_1
  doi: 10.1371/journal.ppat.1010203
– ident: e_1_2_8_91_1
  doi: 10.1038/s41591-022-01700-x
– ident: e_1_2_8_31_1
  doi: 10.1080/07391102.2020.1792347
– ident: e_1_2_8_92_1
  doi: 10.1016/j.isci.2021.103353
SSID ssj0001340516
Score 2.236553
Snippet Objectives Potential differences in the breadth, distribution and magnitude of CD4+ T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein between...
Potential differences in the breadth, distribution and magnitude of CD4 T-cell responses directed against the SARS-CoV-2 spike glycoprotein between vaccinees,...
ObjectivesPotential differences in the breadth, distribution and magnitude of CD4+ T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein between...
Potential differences in the breadth, distribution and magnitude of CD4+ T-cell responses directed against the SARS-CoV-2 spike glycoprotein between vaccinees,...
Individual CD4 + and CD8 + T‐cell responses directed against a total of 253 overlapping 15‐mer spike‐specific peptides were mapped in a cohort of COVID‐19...
Abstract Objectives Potential differences in the breadth, distribution and magnitude of CD4+ T‐cell responses directed against the SARS‐CoV‐2 spike...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1410
SubjectTerms Antibodies
B.1.1.529
CD4 antigen
CD4+ T cells
Coronaviruses
COVID-19
COVID-19 vaccines
Cytokines
Drb1 protein
Enzyme-linked immunosorbent assay
Glycoproteins
Histocompatibility antigen HLA
Infections
Interferon
Lymphocytes
MHC class II
Original
Patients
Peptides
SARS‐CoV‐2
Severe acute respiratory syndrome coronavirus 2
Spike glycoprotein
spike protein
Vaccination
vaccines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4lEgUJBb9YCEQuMkduJju6VqKxUuW9Sb5adYgbKrpuXcW6_8Rn4JM4432hVFXHqL_IrjGXs-OzOfCdkVTHMeNM-FrXVeh7bIDViJvIGlMASjXcswUPjsszg-r08v-MXKVV_oEzbQAw8Dt1cEvCVLIs8dUpkIwxprHRegOLqq28jzCTZvZTMVT1cqACJMLKmEinIPVo_yIzo1rhmgyNN_F7j820dyFbtG43P0hDxOqJHuD719Sh747hl5eJb-iz8nt-iu8fvmF-ydkypRndhG6DzQ2Rh1RfvF7LunC_RlcR5qYKQlegvRyWH9gU4hBY_y6eXgOut7qEt_aouvoUiEscD4yR5ad3Ty5evJIVRgkiZ21n6TnB99mk6O83TFQm4BKRS5biMic4ATmLDGOQPmPVQaadlL5qUNWhjAaLaxRd1YLWrTVkY6kLBgQbPqBdno5p1_RWjLpa08ctEIVwOq1Nw3rRWhtdwW0HRG3i_HXdnEP47XYPxQA3NyqVBECkWUkZ2x6GIg3bir0AEKbyyAPNkxAbRHJe1R_9OejGwtRa_S5O1V2QCukhL2lhnZHrNh2qEAdOfn17EMgiNeiIy8HDRl7AnGOjcSazdrOrTW1fWcbvYtUnvLSlSAuGGsorb9--vVZHpS4sPr-xiGN-RRiWEd8Whpi2xcXV77twC2rsy7OK_-AMhRKRI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIhLxZtAQQZxQEKhcR52ckKwpWqRCpct2pvlZ1mBknTTcubGld_IL2HG8aasKNyixM5rxjNfJjPfEPKcM1VVXlUpN6VKS19nqQYvkQowhd5rZWuGhcJHH_jBcfl-US1iwG2IaZVrmxgMte0Mxsh3cwHOrmkA8L_uT1PsGoV_V2MLjavkGlKXYUqXWIiLGEsBcITxNaFQlu-CDclfYWrjhhsKbP2XQcy_MyX_RLDBBe3fJNsRO9I3o7BvkSuuvU2uH8W_43fID0za-PX9J3xBR4WiKnKO0M7T5VR7RYd--cXRHjNarIMZWG-JOUN0tle-pHPYgwF9uhoTaN0Ac-k3ZfAyFOkweqyiHODsls4-fjrcgwmsoZGjdbhLjvffzWcHaWy0kBrAC1mq6oDLLKAFxo22VoOT94VCcvacucZ4xTUgNSNMVgqjeKnrQjcW5MyZV6y4R7barnUPCK2rxhQOGWm4LQFbqsqJ2nBfm8pkcOqEvFi_d2kiCzk2w_gqR_7kXKKIJIooIc-mof1IvXHZoLcovGkAsmWHHd3qRMbFJzOPndYa5EpEOhyumTDGVhyMjyrKukjIzlr0Mi7hQV4oXEKeTodh8aEAVOu68zAGIVKV8YTcHzVluhOseBYNzhYbOrRxq5tH2uXnQPDdFLwA3A3vKmjbv59ezuaHOW48_P8TPCI3cizbCKGjHbJ1tjp3jwFMneknYcX8BhsKIrM
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKkRAXxJtAiwzigIRCk_iRRJzKlqpFKnDYot4sP-mqKLvatJy5ceU38kuYcbwpK4rELUpm8hqP_cWZ7zMhL2SphQha5NJynfPQFLmBUSKvoSsMwWjXlEgUPvogD475-xNxskHerLgwgz7EOOGGmRH7a0xwbfqdS9FQ6A6q11ileI1cR2otCudX_NPlBAsDLBKXPq0Kgexp2ayUhYpqZ_ReG4-ibP9VWPPvksk_oWwci_Zvk1sJRNLdIep3yIbv7pIbR-k3-T3yA6s3fn3_CZ_SqWVRncRH6DzQ2UjCov1idubpAktbnAcPJF5i8RCd7PFXdAp7cGafLodKWt-DL_2mLV6Goi7GAumUPZzd0cnHz4d74FC2NIm19vfJ8f676eQgTysu5BaAQ5HrJgI0B7ChlNY4Z2C0D0yjSntV-tYGLQ1ANlvbgtdWS24aZloHAZdl0CV7QDa7eecfEdqI1jKP0jTScQCZWvi6sTI0VtgCTp2Rl6v3rmySI8dVMb6qQUi5UhgihSHKyPPRdDFocFxl9BaDNxqgbHbcMV9-USkLVRFwybUWRRNRF0easrbWCQm9kGa8YRnZWoVepVzuVVUDzGpb-NTMyLPxMGQhBkB3fn4RbRAriUJm5OHQUsY7Qepz3aJ3vdaG1m51_Ug3O41K3y2TDAA4vKvY2v799GoyPaxw4_H_mz4hNyvkcsT5pC2yeb688NuAsM7N05hJvwE9hiRm
  priority: 102
  providerName: Wiley-Blackwell
Title High‐resolution analysis of individual spike peptide‐specific CD4+ T‐cell responses in vaccine recipients and COVID‐19 patients
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcti2.1410
https://www.ncbi.nlm.nih.gov/pubmed/35957961
https://www.proquest.com/docview/2707499261
https://www.proquest.com/docview/2702181506
https://pubmed.ncbi.nlm.nih.gov/PMC9363231
https://doaj.org/article/0f54419279204946b17ccd56963a3483
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IVW9IN4EysogDkgoJc7DTg4I0W2rFmlLhXbR3iLHcWBFlV02LYIbR478Rn4JM44TdcVy4RJFiZ1kPTOez96ZbwCeCa6SpFKJL3Ss_LhKA79AL-FLnAqrqlBlyilReHQmTibx22ky3YCuxqYbwGbt0o7qSU2WF_vfvnx_jQb_yhGIvsSJIdyneMVN2EaHJMk-Rw7l262WCFEJFx2v0PUeu7BDmakyE3zFMVn-_nWg8-_YyeuY1jql45tww6FJ9qYV_y3YMPVt2Bm5_8vvwE8K4_j94xeuqZ2KMeVYSNi8YrM-G4s1i9lnwxYU41Ia7EEZmBRFxIaHMXvBxniJ9vjZso2pNQ12Zl-VpvcwYshYUGJlg48v2fDdh9ND7MAz5mhbm7swOT4aD098V3vB1wghAl-lFqqVCCC40EVZFuj3q0gRX3vITaYrJQoEb1rqIJZaibhIoyIrUfSCV4pH92CrntfmAbA0yXRkiKRGlDHCTZUYmWpRpTrRAT7ag-fdwOfaEZNTfYyLvKVUDnMSV07i8uBp33TRsnGsa3RA0usbEIG2vTBffsydPeZBRcXXMqJPJIYcUXCpdZkInI9UFKeRB3ud7PNOKfNQIuDKMlx0evCkv432SAJQtZlf2TaEmpJAeHC_VZX-SzpV80CuKNHKp67eqWefLOd3FokIoTiOlVW3f__6fDg-Denk4X-_5BHshpTkYTea9mDrcnllHiP0uiwGsBnG53iUUzmA7YOjs_P3A7uNMbAm9wfcljYh
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEP8EChgEEhIKTeLESQ4I0d1Wu7S7ILRFvQXHdmAFSsKmBXHjxpUn4aF4EmbyV1YUbr2tEjsbZ8Yzn-2ZbwAeCFcGQSYDWyhf2n4WOXaKXsIO0RRmWSp15FKi8HQmxvv-i4PgYA1-drkwFFbZ2cTaUOtC0R75pheis4tjBPzPyk82VY2i09WuhEajFrvm6xdcslVPJyOU70PP29meD8d2W1XAVugcHVtGNQjR6BpdoVKtU_RoGZfERO65JlaZFCnCEhUqxw-VFH4a8TTWOCjhZtLl-NwzsO5zXMoMYH1re_bq9fGuDkcA5IqOwsjxNtFqeU8omHLF8dX1AU4CtX_HZv6JmWunt3MRLrRolT1v1OsSrJn8MpydtufxV-A7hYn8-vYD1-ytCjPZspywImOLPtuLVeXig2ElxdBogz0ow5OilNhw5D9mc7xCRwhs2YTsmgr7ss9S0d8wIuAoKW-zwqdrNnz5ZjLCDm7MWlbY6irsn4oQrsEgL3JzA1gUxIob4sAR2kc0KwMTRkpkkQqUg4-24FH33RPV8p5T-Y2PScPY7CUkooREZMH9vmnZkH2c1GiLhNc3IH7u-kKxfJe00z1xMqrtFhM7IxHwiNQNldKBQHMnuR9xCzY60Set0aiSYxW34F5_G6c7CUDmpjiq2xAoCxxhwfVGU_o3oRzrMKbe4YoOrbzq6p188b6mFI-54Ij08VvV2vbv0SfD-cSjHzf_P4K7cG48n-4le5PZ7i0471HSSL1xtQGDw-WRuY1Q7jC9084fBm9Pe8r-BocsYCo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkSouiH9SChgEEhJKN3-2kwNCsMuqS2nhsEV7M45j0xUoWTYtiBs3rjwPj8OTMJM4KSsKt95Wie2NMzOeL_bMN4Q84KFizCrmc50oP7Fp4OfgJXwBS6G1uSrSEBOF9_b5zkHycsZma-RnlwuDYZXdmtgs1EWlcY98EAlwdlkGgH9gXVjEm9H46eKTjxWk8KS1K6fRqsiu-foFPt_qJ5MRyPphFI1fTIc7vqsw4GtwlIGv0gaQFOAmQ67zosjBu9lYISt5FJpMW8VzgCha6CARWvEkT-M8K2CCPLQqjGHcc-S8iFmINiZm4mR_JwYoFPKOzCiIBrB-RdsYVrniAptKAafB27-jNP9Ez437G18iFx1upc9aRbtM1kx5hWzsuZP5q-Q7Boz8-vYDvt6dMlPl-E5oZem8z_ui9WL-wdAFRtMUBnpgrifGK9HhKHlMp3AFDxPosg3eNTX0pZ-Vxr-hSMWxwAzOGkYv6PD128kIOoQZdfyw9TVycCYiuE7Wy6o0NwlNWaZjg2w4vEgA1ypmRKq5TTXTAQztkUfde5faMaBjIY6PsuVujiSKSKKIPHK_b7poaT9Oa_Qchdc3QKbu5kK1fC-d4cvAYpW3DHkakYqH56HQumAcFj4VJ2nska1O9NItH7U8UXaP3Otvg-GjAFRpquOmDcIzFnCP3Gg1pX8SzLYWGfYWKzq08qird8r5YUMunsU8BswP76rRtn_PXg6nkwh_bP5_BnfJBhiqfDXZ371FLkSYPdLsYG2R9aPlsbkNmO4ov9MYDyXvztpafwPJHGL6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90resolution+analysis+of+individual+spike+peptide%E2%80%90specific+CD4+%2B+T%E2%80%90cell+responses+in+vaccine+recipients+and+COVID%E2%80%9019+patients&rft.jtitle=Clinical+%26+translational+immunology&rft.au=Karsten%2C+Hendrik&rft.au=Cords%2C+Leon&rft.au=Westphal%2C+Tim&rft.au=Knapp%2C+Maximilian&rft.date=2022&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2050-0068&rft.volume=11&rft.issue=8&rft_id=info:doi/10.1002%2Fcti2.1410&rft_id=info%3Apmid%2F35957961&rft.externalDocID=PMC9363231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0068&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0068&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0068&client=summon