High‐resolution analysis of individual spike peptide‐specific CD4+ T‐cell responses in vaccine recipients and COVID‐19 patients
Objectives Potential differences in the breadth, distribution and magnitude of CD4+ T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein between vaccinees, COVID‐19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide leve...
Saved in:
Published in | Clinical & translational immunology Vol. 11; no. 8; pp. e1410 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Australia
John Wiley & Sons, Inc
2022
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2050-0068 2050-0068 |
DOI | 10.1002/cti2.1410 |
Cover
Loading…
Abstract | Objectives
Potential differences in the breadth, distribution and magnitude of CD4+ T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein between vaccinees, COVID‐19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level.
Methods
Following virus‐specific in vitro cultivation, we determined the T‐cell responses directed against 253 individual overlapping 15‐mer peptides covering the entire SARS‐CoV‐2 spike glycoprotein using IFN‐γ ELISpot and intracellular cytokine staining. In vitro HLA binding was determined for selected peptides.
Results
We mapped 955 single peptide‐specific CD4+ T‐cell responses in a cohort of COVID‐19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). Patients and vaccinees (two‐time and three‐time vaccinees alike) had a comparable number of CD4+ T‐cell responses (median 26 vs. 29, P = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these in vitro IFN‐γ CD4+ T‐cell responses was observed in COVID‐19 patients (median 0.35%), and three‐time vaccinees showed a higher magnitude than two‐time vaccinees (median 0.091% vs. 0.175%, P < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. In vitro HLA binding showed promiscuous presentation by DRB1 molecules for several peptides.
Conclusion
Both SARS‐CoV‐2 infection and vaccination prime broadly directed T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein. This comprehensive high‐resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike‐specific T‐cell responses.
Individual CD4+ and CD8+ T‐cell responses directed against a total of 253 overlapping 15‐mer spike‐specific peptides were mapped in a cohort of COVID‐19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). We found that patients and vaccinees (two‐time and three‐time vaccinees alike) had a comparable number of CD4+ T‐cell responses (median 26 vs. 29, P = 0.7289) but differential magnitudes of these in vitro responses (median 0.35% vs. 0.12% IFN‐γ+ of CD4+ T cells, P < 0.0001). Most of the recognized specificities were conserved in the B.1.1.529 (omicron) Variant of Concern (VoC), and its sublineages and several peptides showed promiscuous presentation by DRB1 molecules in in vitro HLA‐binding assays. |
---|---|
AbstractList | Objectives
Potential differences in the breadth, distribution and magnitude of CD4+ T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein between vaccinees, COVID‐19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level.
Methods
Following virus‐specific in vitro cultivation, we determined the T‐cell responses directed against 253 individual overlapping 15‐mer peptides covering the entire SARS‐CoV‐2 spike glycoprotein using IFN‐γ ELISpot and intracellular cytokine staining. In vitro HLA binding was determined for selected peptides.
Results
We mapped 955 single peptide‐specific CD4+ T‐cell responses in a cohort of COVID‐19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). Patients and vaccinees (two‐time and three‐time vaccinees alike) had a comparable number of CD4+ T‐cell responses (median 26 vs. 29, P = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these in vitro IFN‐γ CD4+ T‐cell responses was observed in COVID‐19 patients (median 0.35%), and three‐time vaccinees showed a higher magnitude than two‐time vaccinees (median 0.091% vs. 0.175%, P < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. In vitro HLA binding showed promiscuous presentation by DRB1 molecules for several peptides.
Conclusion
Both SARS‐CoV‐2 infection and vaccination prime broadly directed T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein. This comprehensive high‐resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike‐specific T‐cell responses.
Individual CD4+ and CD8+ T‐cell responses directed against a total of 253 overlapping 15‐mer spike‐specific peptides were mapped in a cohort of COVID‐19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). We found that patients and vaccinees (two‐time and three‐time vaccinees alike) had a comparable number of CD4+ T‐cell responses (median 26 vs. 29, P = 0.7289) but differential magnitudes of these in vitro responses (median 0.35% vs. 0.12% IFN‐γ+ of CD4+ T cells, P < 0.0001). Most of the recognized specificities were conserved in the B.1.1.529 (omicron) Variant of Concern (VoC), and its sublineages and several peptides showed promiscuous presentation by DRB1 molecules in in vitro HLA‐binding assays. Potential differences in the breadth, distribution and magnitude of CD4 T-cell responses directed against the SARS-CoV-2 spike glycoprotein between vaccinees, COVID-19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level. Following virus-specific cultivation, we determined the T-cell responses directed against 253 individual overlapping 15-mer peptides covering the entire SARS-CoV-2 spike glycoprotein using IFN-γ ELISpot and intracellular cytokine staining. HLA binding was determined for selected peptides. We mapped 955 single peptide-specific CD4 T-cell responses in a cohort of COVID-19 patients ( = 8), uninfected vaccinees ( = 16) and individuals who experienced both infection and vaccination ( = 11). Patients and vaccinees (two-time and three-time vaccinees alike) had a comparable number of CD4 T-cell responses (median 26 vs. 29, = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these IFN-γ CD4 T-cell responses was observed in COVID-19 patients (median 0.35%), and three-time vaccinees showed a higher magnitude than two-time vaccinees (median 0.091% vs. 0.175%, < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. HLA binding showed promiscuous presentation by DRB1 molecules for several peptides. Both SARS-CoV-2 infection and vaccination prime broadly directed T-cell responses directed against the SARS-CoV-2 spike glycoprotein. This comprehensive high-resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike-specific T-cell responses. Individual CD4 + and CD8 + T‐cell responses directed against a total of 253 overlapping 15‐mer spike‐specific peptides were mapped in a cohort of COVID‐19 patients ( n = 8), uninfected vaccinees ( n = 16) and individuals who experienced both infection and vaccination ( n = 11). We found that patients and vaccinees (two‐time and three‐time vaccinees alike) had a comparable number of CD4 + T‐cell responses (median 26 vs. 29, P = 0.7289) but differential magnitudes of these in vitro responses (median 0.35% vs. 0.12% IFN‐γ + of CD4 + T cells, P < 0.0001). Most of the recognized specificities were conserved in the B.1.1.529 (omicron) Variant of Concern (VoC), and its sublineages and several peptides showed promiscuous presentation by DRB1 molecules in in vitro HLA‐binding assays. Potential differences in the breadth, distribution and magnitude of CD4+ T-cell responses directed against the SARS-CoV-2 spike glycoprotein between vaccinees, COVID-19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level.ObjectivesPotential differences in the breadth, distribution and magnitude of CD4+ T-cell responses directed against the SARS-CoV-2 spike glycoprotein between vaccinees, COVID-19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level.Following virus-specific in vitro cultivation, we determined the T-cell responses directed against 253 individual overlapping 15-mer peptides covering the entire SARS-CoV-2 spike glycoprotein using IFN-γ ELISpot and intracellular cytokine staining. In vitro HLA binding was determined for selected peptides.MethodsFollowing virus-specific in vitro cultivation, we determined the T-cell responses directed against 253 individual overlapping 15-mer peptides covering the entire SARS-CoV-2 spike glycoprotein using IFN-γ ELISpot and intracellular cytokine staining. In vitro HLA binding was determined for selected peptides.We mapped 955 single peptide-specific CD4+ T-cell responses in a cohort of COVID-19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). Patients and vaccinees (two-time and three-time vaccinees alike) had a comparable number of CD4+ T-cell responses (median 26 vs. 29, P = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these in vitro IFN-γ CD4+ T-cell responses was observed in COVID-19 patients (median 0.35%), and three-time vaccinees showed a higher magnitude than two-time vaccinees (median 0.091% vs. 0.175%, P < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. In vitro HLA binding showed promiscuous presentation by DRB1 molecules for several peptides.ResultsWe mapped 955 single peptide-specific CD4+ T-cell responses in a cohort of COVID-19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). Patients and vaccinees (two-time and three-time vaccinees alike) had a comparable number of CD4+ T-cell responses (median 26 vs. 29, P = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these in vitro IFN-γ CD4+ T-cell responses was observed in COVID-19 patients (median 0.35%), and three-time vaccinees showed a higher magnitude than two-time vaccinees (median 0.091% vs. 0.175%, P < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. In vitro HLA binding showed promiscuous presentation by DRB1 molecules for several peptides.Both SARS-CoV-2 infection and vaccination prime broadly directed T-cell responses directed against the SARS-CoV-2 spike glycoprotein. This comprehensive high-resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike-specific T-cell responses.ConclusionBoth SARS-CoV-2 infection and vaccination prime broadly directed T-cell responses directed against the SARS-CoV-2 spike glycoprotein. This comprehensive high-resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike-specific T-cell responses. ObjectivesPotential differences in the breadth, distribution and magnitude of CD4+ T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein between vaccinees, COVID‐19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level.MethodsFollowing virus‐specific in vitro cultivation, we determined the T‐cell responses directed against 253 individual overlapping 15‐mer peptides covering the entire SARS‐CoV‐2 spike glycoprotein using IFN‐γ ELISpot and intracellular cytokine staining. In vitro HLA binding was determined for selected peptides.ResultsWe mapped 955 single peptide‐specific CD4+ T‐cell responses in a cohort of COVID‐19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). Patients and vaccinees (two‐time and three‐time vaccinees alike) had a comparable number of CD4+ T‐cell responses (median 26 vs. 29, P = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these in vitro IFN‐γ CD4+ T‐cell responses was observed in COVID‐19 patients (median 0.35%), and three‐time vaccinees showed a higher magnitude than two‐time vaccinees (median 0.091% vs. 0.175%, P < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. In vitro HLA binding showed promiscuous presentation by DRB1 molecules for several peptides.ConclusionBoth SARS‐CoV‐2 infection and vaccination prime broadly directed T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein. This comprehensive high‐resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike‐specific T‐cell responses. Abstract Objectives Potential differences in the breadth, distribution and magnitude of CD4+ T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein between vaccinees, COVID‐19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level. Methods Following virus‐specific in vitro cultivation, we determined the T‐cell responses directed against 253 individual overlapping 15‐mer peptides covering the entire SARS‐CoV‐2 spike glycoprotein using IFN‐γ ELISpot and intracellular cytokine staining. In vitro HLA binding was determined for selected peptides. Results We mapped 955 single peptide‐specific CD4+ T‐cell responses in a cohort of COVID‐19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). Patients and vaccinees (two‐time and three‐time vaccinees alike) had a comparable number of CD4+ T‐cell responses (median 26 vs. 29, P = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these in vitro IFN‐γ CD4+ T‐cell responses was observed in COVID‐19 patients (median 0.35%), and three‐time vaccinees showed a higher magnitude than two‐time vaccinees (median 0.091% vs. 0.175%, P < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. In vitro HLA binding showed promiscuous presentation by DRB1 molecules for several peptides. Conclusion Both SARS‐CoV‐2 infection and vaccination prime broadly directed T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein. This comprehensive high‐resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike‐specific T‐cell responses. |
Author | Karsten, Hendrik Schmiedel, Stefan Huber, Samuel Schulze zur Wiesch, Julian Brehm, Thomas Theo Ackermann, Christin Cords, Leon Sette, Alessandro Addo, Marylyn Martina Ditt, Vanessa Sidney, John Peine, Sven Knapp, Maximilian Lütgehetmann, Marc Wittner, Melanie Woost, Robin Omansen, Till Frederik Westphal, Tim Hermanussen, Lennart |
AuthorAffiliation | 1 Infectious Diseases Unit, 1. Department of Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany 3 Department of Tropical Medicine Bernhard Nocht Institute for Tropical Medicine Hamburg Germany 4 Institute of Transfusion Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany 5 Institute of Medical Microbiology, Virology and Hygiene University Medical Center Hamburg‐Eppendorf Hamburg Germany 6 Center for Infectious Disease and Vaccine Research La Jolla Institute for Immunology (LJI) La Jolla CA USA 2 German Center for Infection Research (DZIF) Partner Site Hamburg‐Lübeck‐Borstel‐Riems Hamburg Germany |
AuthorAffiliation_xml | – name: 3 Department of Tropical Medicine Bernhard Nocht Institute for Tropical Medicine Hamburg Germany – name: 4 Institute of Transfusion Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany – name: 1 Infectious Diseases Unit, 1. Department of Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany – name: 5 Institute of Medical Microbiology, Virology and Hygiene University Medical Center Hamburg‐Eppendorf Hamburg Germany – name: 2 German Center for Infection Research (DZIF) Partner Site Hamburg‐Lübeck‐Borstel‐Riems Hamburg Germany – name: 6 Center for Infectious Disease and Vaccine Research La Jolla Institute for Immunology (LJI) La Jolla CA USA |
Author_xml | – sequence: 1 givenname: Hendrik orcidid: 0000-0002-2767-0405 surname: Karsten fullname: Karsten, Hendrik organization: University Medical Center Hamburg‐Eppendorf – sequence: 2 givenname: Leon orcidid: 0000-0003-1340-8817 surname: Cords fullname: Cords, Leon organization: University Medical Center Hamburg‐Eppendorf – sequence: 3 givenname: Tim surname: Westphal fullname: Westphal, Tim organization: Partner Site Hamburg‐Lübeck‐Borstel‐Riems – sequence: 4 givenname: Maximilian orcidid: 0000-0002-9554-5067 surname: Knapp fullname: Knapp, Maximilian organization: University Medical Center Hamburg‐Eppendorf – sequence: 5 givenname: Thomas Theo orcidid: 0000-0003-1737-161X surname: Brehm fullname: Brehm, Thomas Theo organization: Partner Site Hamburg‐Lübeck‐Borstel‐Riems – sequence: 6 givenname: Lennart surname: Hermanussen fullname: Hermanussen, Lennart organization: University Medical Center Hamburg‐Eppendorf – sequence: 7 givenname: Till Frederik orcidid: 0000-0003-0645-9683 surname: Omansen fullname: Omansen, Till Frederik organization: Bernhard Nocht Institute for Tropical Medicine – sequence: 8 givenname: Stefan surname: Schmiedel fullname: Schmiedel, Stefan organization: University Medical Center Hamburg‐Eppendorf – sequence: 9 givenname: Robin surname: Woost fullname: Woost, Robin organization: University Medical Center Hamburg‐Eppendorf – sequence: 10 givenname: Vanessa surname: Ditt fullname: Ditt, Vanessa organization: University Medical Center Hamburg‐Eppendorf – sequence: 11 givenname: Sven surname: Peine fullname: Peine, Sven organization: University Medical Center Hamburg‐Eppendorf – sequence: 12 givenname: Marc surname: Lütgehetmann fullname: Lütgehetmann, Marc organization: University Medical Center Hamburg‐Eppendorf – sequence: 13 givenname: Samuel orcidid: 0000-0001-9325-8227 surname: Huber fullname: Huber, Samuel organization: University Medical Center Hamburg‐Eppendorf – sequence: 14 givenname: Christin surname: Ackermann fullname: Ackermann, Christin organization: University Medical Center Hamburg‐Eppendorf – sequence: 15 givenname: Melanie surname: Wittner fullname: Wittner, Melanie organization: Partner Site Hamburg‐Lübeck‐Borstel‐Riems – sequence: 16 givenname: Marylyn Martina orcidid: 0000-0003-2836-9224 surname: Addo fullname: Addo, Marylyn Martina organization: Bernhard Nocht Institute for Tropical Medicine – sequence: 17 givenname: Alessandro orcidid: 0000-0001-7013-2250 surname: Sette fullname: Sette, Alessandro organization: La Jolla Institute for Immunology (LJI) – sequence: 18 givenname: John surname: Sidney fullname: Sidney, John organization: La Jolla Institute for Immunology (LJI) – sequence: 19 givenname: Julian orcidid: 0000-0002-5033-1938 surname: Schulze zur Wiesch fullname: Schulze zur Wiesch, Julian email: julianszw@googlemail.com organization: Partner Site Hamburg‐Lübeck‐Borstel‐Riems |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35957961$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1u1DAUhSNURH_oghdAlthQoWn9FyfeVEJToCNV6mZgazm2M71Dxg5xMmh27NjyjDwJzswUtRWsbJ2c8-k49x5nBz54l2WvCD4nGNML0wM9J5zgZ9kRxTmeYCzKgwf3w-w0xiXGmDCOcyJeZIcsl3khBTnKfl7D4u73j1-di6EZeggeaa-bTYSIQo3AW1iDHXSDYgtfHWpd24N1KRFbZ6AGg6ZX_B2aJ8W4pkEJ1AYfXUxZtNbGgHdJNNCC831MdIumt19mVylAJGp1v9VfZs9r3UR3uj9Pss8fP8yn15Ob20-z6fubicmxxBNdFpwIZouSEmEqaytBWM20LCWnxElTa1GxnJrCYF4YLXhVskpaonNBak3YSTbbcW3QS9V2sNLdRgUNaiuEbqF014NpnMJ1zjmRtJAUc8lFRQpjbC6kYJrxkiXW5Y7VDtXKWZPe0enmEfTxFw93ahHWSjLBKBvLvN0DuvBtcLFXK4jjX9TehSEqWmBKSpJjkaxvnliXYejSpLaugktJxQh8_bDR3yr3806Gi53BdCHGztXKQK_HsaeC0CiC1bhUalwqNS5VSpw9SdxD_-Xd079D4zb_N6rpfEa3iT_IfN4d |
CitedBy_id | crossref_primary_10_1016_j_xcrm_2024_101442 crossref_primary_10_1016_j_chom_2023_12_003 crossref_primary_10_1016_j_ymthe_2024_05_003 crossref_primary_10_3389_fimmu_2023_1182504 crossref_primary_10_3390_vaccines10122132 crossref_primary_10_1016_j_xcrm_2022_100898 crossref_primary_10_1038_s41467_024_45043_2 crossref_primary_10_1172_jci_insight_166833 |
Cites_doi | 10.1056/NEJMc2206576 10.1371/journal.pcbi.1000048 10.1038/s41586-020-2588-y 10.1093/oxfimm/iqab006 10.3389/fimmu.2021.637654 10.1038/s41598-021-92521-4 10.1016/j.chom.2020.03.002 10.1172/jci.insight.156559 10.1016/j.xcrm.2021.100204 10.15585/mmwr.mm7037e3 10.1016/j.cell.2020.02.058 10.1056/NEJMc2206900 10.1093/cid/ciaa1637 10.1002/ueg2.12218 10.1016/j.pep.2021.106003 10.1016/j.cell.2020.05.015 10.1038/s41586-020-2012-7 10.1038/s41577-021-00578-z 10.1038/s41586-021-03841-4 10.1126/science.abg8985 10.1038/s41586-020-2598-9 10.1126/science.abd3871 10.1016/j.cell.2020.06.011 10.1038/s41467-021-27649-y 10.3389/fimmu.2019.03037 10.1016/S2665-9913(21)00325-8 10.1056/NEJMc2031364 10.4049/jimmunol.198.Supp.157.6 10.15585/mmwr.mm7037e1 10.1016/j.ebiom.2022.103904 10.1016/j.xcrm.2020.100092 10.1172/JCI143120 10.1002/cyto.a.22317 10.1183/13993003.00547-2020 10.1172/jci.insight.142167 10.1016/j.cell.2020.10.001 10.1016/j.cmi.2022.02.028 10.4049/jimmunol.175.6.3603 10.21203/rs.3.rs‐1289622/v1 10.1038/s41591-022-01715-4 10.1016/j.cgh.2021.09.003 10.1016/j.celrep.2021.108728 10.1371/journal.pone.0186998 10.1126/sciimmunol.abo1303 10.1016/j.vaccine.2021.03.008 10.1016/j.humimm.2016.10.014 10.1182/blood-2004-06-2336 10.4049/jimmunol.2100727 10.1056/NEJMoa2116414 10.1016/j.virol.2017.12.015 10.15585/mmwr.mm7037e2 10.1016/j.cell.2020.02.052 10.1093/infdis/jiac178 10.1016/j.jcv.2020.104390 10.1016/j.ajpath.2020.08.009 10.1093/infdis/jiy549 10.1101/2022.03.04.483032 10.1126/science.abc7520 10.1038/s41586-021-03291-y 10.1016/j.cell.2022.01.015 10.1038/s41401-020-0485-4 10.1016/j.addr.2021.01.007 10.1016/j.chom.2020.04.009 10.1038/s41467-021-26602-3 10.1016/j.cell.2021.12.033 10.1126/science.abh1823 10.1016/j.immuni.2020.11.016 10.1186/1471-2105-11-568 10.1038/nri2274 10.1111/all.14657 10.1038/s41591-021-01377-8 10.1056/NEJMsb2104756 10.1016/S1473-3099(20)30483-7 10.1038/s41421-022-00373-7 10.1093/infdis/jiab593 10.3390/v14061265 10.1038/s41577-020-0308-3 10.1038/s41591-021-01527-y 10.1038/nprot.2006.1 10.1128/JVI.76.12.6104-6113.2002 10.1128/jvi.00509-22 10.4049/jimmunol.160.7.3363 10.1016/j.celrep.2022.110345 10.1371/journal.ppat.1009842 10.1126/science.8023162 10.3390/vaccines6030050 10.1016/j.vaccine.2022.01.007 10.1371/journal.ppat.1010203 10.1038/s41591-022-01700-x 10.1080/07391102.2020.1792347 10.1016/j.isci.2021.103353 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc. 2022 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc. – notice: 2022 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1002/cti2.1410 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Spike peptide‐specific CD4+ T cells |
EISSN | 2050-0068 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_0f54419279204946b17ccd56963a3483 PMC9363231 35957961 10_1002_cti2_1410 CTI21410 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: SFB1328 A12; SFB841 A6 – fundername: H2020 European Research Council funderid: 681032 – fundername: Deutsches Zentrum für Infektionsforschung funderid: TTU 04.816 – fundername: ; grantid: 681032 – fundername: ; grantid: SFB1328 A12; SFB841 A6 – fundername: ; grantid: TTU 04.816 |
GroupedDBID | 0R~ 1OC 24P 3V. 53G 5VS 7X7 8FE 8FH 8FI 8FJ AAHHS ABDBF ABUWG ACCFJ ACCMX ACGFS ACXQS ADBBV ADKYN ADPDF ADRAZ ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU DIK EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAO IHR INH ITC KQ8 LK8 M48 M7P M~E NAO O9- OK1 OVD OVEED PIMPY PQQKQ PROAC RNTTT RPM TEORI UKHRP WIN AAYXX CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM PQGLB 7XB 8FK AZQEC COVID DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5090-a874163d78216cbddb613f3a989421e9cfa6b352c7c047ca64b83b9d1a561fa13 |
IEDL.DBID | M48 |
ISSN | 2050-0068 |
IngestDate | Wed Aug 27 01:29:27 EDT 2025 Thu Aug 21 18:13:19 EDT 2025 Tue Aug 05 09:46:04 EDT 2025 Wed Aug 13 06:50:36 EDT 2025 Mon Jul 21 06:04:29 EDT 2025 Tue Jul 01 03:51:00 EDT 2025 Thu Apr 24 23:08:13 EDT 2025 Wed Jan 22 16:22:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | CD4+ T cells MHC class II B.1.1.529 SARS‐CoV‐2 vaccines spike protein |
Language | English |
License | Attribution 2022 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5090-a874163d78216cbddb613f3a989421e9cfa6b352c7c047ca64b83b9d1a561fa13 |
Notes | These authors contributed equally to this work and share first authorship. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1737-161X 0000-0003-2836-9224 0000-0003-1340-8817 0000-0001-7013-2250 0000-0001-9325-8227 0000-0002-5033-1938 0000-0002-9554-5067 0000-0003-0645-9683 0000-0002-2767-0405 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/cti2.1410 |
PMID | 35957961 |
PQID | 2707499261 |
PQPubID | 2041959 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0f54419279204946b17ccd56963a3483 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9363231 proquest_miscellaneous_2702181506 proquest_journals_2707499261 pubmed_primary_35957961 crossref_citationtrail_10_1002_cti2_1410 crossref_primary_10_1002_cti2_1410 wiley_primary_10_1002_cti2_1410_CTI21410 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022 |
PublicationDecade | 2020 |
PublicationPlace | Australia |
PublicationPlace_xml | – name: Australia – name: Milton, Queensland – name: Hoboken |
PublicationTitle | Clinical & translational immunology |
PublicationTitleAlternate | Clin Transl Immunology |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2010; 11 2021; 24 2021; 27 1998; 160 2021; 21 2005; 175 2020; 20 2020; 369 2020; 128 2008; 8 2022; 20 2020; 55 2020; 10 2008; 4 2017; 198 2021; 73 2013; 83A 2022; 28 2021; 70 2018; 6 2013; Chapter 18 2020; 5 1994; 265 2021; 76 2021; 34 2020; 1 2021; 597 2020; 53 2020; 130 2022; 40 2021; 39 2005; 105 2020; 370 2017; 78 2020; 48 2020; 579 2018; 219 2021; 592 2022; 77 2022; 208 2022; 368 2022; 38 2021; 191 2021; 43 2021; 2 2020; 383 2020; 41 2021; 225 2022; 190 2020; 181 2020; 182 2002; 76 2020; 183 2020; 584 2006; 1 2020; 587 2021; 385 2022; 387 2022; 185 2021; 12 2021; 11 2022 2022; 4 2022; 7 2021; 17 2022; 8 2017; 12 2021; 171 2020; 27 2022; 13 2022; 14 2018; 517 2022; 96 2021; 372 2022; 10 2021; 374 e_1_2_8_28_1 Koch J (e_1_2_8_37_1) 2021; 43 e_1_2_8_24_1 e_1_2_8_49_1 e_1_2_8_68_1 Gonzalez‐Galarza Faviel F (e_1_2_8_38_1) 2020; 48 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_41_1 e_1_2_8_60_1 Terpos E (e_1_2_8_26_1) 2022; 10 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_93_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 Sidney J (e_1_2_8_47_1) 2013; 18 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 Victor K (e_1_2_8_83_1) 2017; 198 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_92_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_96_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 55 start-page: 2000547 year: 2020 article-title: Comorbidity and its impact on 1590 patients with COVID‐19 in China: a nationwide analysis publication-title: Eur Respir J – volume: 27 start-page: 2025 year: 2021 end-page: 2031 article-title: Safety and immunogenicity of SARS‐CoV‐2 variant mRNA vaccine boosters in healthy adults: an interim analysis publication-title: Nat Med – volume: 383 start-page: 2291 year: 2020 end-page: 2293 article-title: Persistence and evolution of SARS‐CoV‐2 in an immunocompromised host publication-title: N Engl J Med – volume: Chapter 18 start-page: Unit 18.3 year: 2013 article-title: Measurement of MHC/peptide interactions by gel filtration or monoclonal antibody capture publication-title: Curr Protoc Immunol – volume: 13 start-page: 153 year: 2022 article-title: Dynamics of spike‐and nucleocapsid specific immunity during long‐term follow‐up and vaccination of SARS‐CoV‐2 convalescents publication-title: Nat Commun – volume: 70 start-page: 1284 year: 2021 end-page: 1290 article-title: Monitoring incidence of COVID‐19 cases, hospitalizations, and deaths, by vaccination status – 13 U.S. jurisdictions, April 4‐July 17, 2021 publication-title: MMWR Morb Mortal Wkly Rep – volume: 265 start-page: 398 year: 1994 end-page: 402 article-title: Importance of peptide amino and carboxyl termini to the stability of MHC class I molecules publication-title: Science – volume: 12 year: 2021 article-title: A novel DNA vaccine against SARS‐CoV‐2 encoding a chimeric protein of its receptor‐binding domain (RBD) fused to the amino‐terminal region of hepatitis B virus preS1 with a W4P mutation publication-title: Front Immunol – volume: 8 start-page: 10 year: 2022 article-title: Robust induction of B cell and T cell responses by a third dose of inactivated SARS‐CoV‐2 vaccine publication-title: Cell Discov – volume: 191 start-page: 4 year: 2021 end-page: 17 article-title: Immunopathology of hyperinflammation in COVID‐19 publication-title: Am J Pathol – volume: 20 start-page: 269 year: 2020 end-page: 270 article-title: COVID‐19: immunopathology and its implications for therapy publication-title: Nat Rev Immunol – volume: 27 year: 2020 article-title: Complex immune dysregulation in COVID‐19 patients with severe respiratory failure publication-title: Cell Host Microbe – volume: 130 start-page: 6631 year: 2020 end-page: 6638 article-title: Healthy donor T cell responses to common cold coronaviruses and SARS‐CoV‐2 publication-title: J Clin Invest – volume: 7 start-page: eabo1303 year: 2022 article-title: Understanding T cell responses to COVID‐19 is essential for informing public health strategies publication-title: Sci Immunol – volume: 77 year: 2022 article-title: Waning immune responses against SARS‐CoV‐2 variants of concern among vaccinees in Hong Kong publication-title: EBioMedicine – volume: 368 start-page: 1046 year: 2022 end-page: 1057 article-title: Homologous and heterologous Covid‐19 booster vaccinations publication-title: N Engl J Med – volume: 27 start-page: 1205 year: 2021 end-page: 1211 article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS‐CoV‐2 infection publication-title: Nat Med – volume: 185 year: 2022 article-title: mRNA‐based COVID‐19 vaccine boosters induce neutralizing immunity against SARS‐CoV‐2 omicron variant publication-title: Cell – volume: 4 start-page: e33 year: 2022 end-page: e41 article-title: Long‐term use of immunosuppressive medicines and in‐hospital COVID‐19 outcomes: a retrospective cohort study using data from the national COVID cohort collaborative publication-title: Lancet Rheumatol – volume: 11 start-page: 13164 year: 2021 article-title: Immunodominant T‐cell epitopes from the SARS‐CoV‐2 spike antigen reveal robust pre‐existing T‐cell immunity in unexposed individuals publication-title: Sci Rep – volume: 387 start-page: 277 year: 2022 end-page: 280 article-title: Omicron SARS‐CoV‐2 neutralization from inactivated and ZF2001 vaccines publication-title: N Engl J Med – volume: 48 start-page: D783 year: 2020 end-page: D788 article-title: Allele frequency net database (AFND) 2020 update: gold‐standard data classification, open access genotype data and new query tools publication-title: Nucleic Acids Res – year: 2022 article-title: Chimeric mRNA based COVID‐19 vaccine elicits potent neutralizing antibodies and protection against Omicron and Delta publication-title: bioRxiv – volume: 14 start-page: 1265 year: 2022 article-title: High and sustained ex vivo frequency but altered phenotype of SARS‐CoV‐2‐specific CD4 T‐cells in an anti‐CD20‐treated patient with prolonged COVID‐19 publication-title: Viruses – volume: 24 year: 2021 article-title: The impact of viral mutations on recognition by SARS‐CoV‐2 specific T cells publication-title: iScience – volume: 21 start-page: 475 year: 2021 end-page: 484 article-title: Immunological mechanisms of vaccine‐induced protection against COVID‐19 in humans publication-title: Nat Rev Immunol – volume: 579 start-page: 270 year: 2020 end-page: 273 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature – volume: 53 year: 2020 article-title: Low‐avidity CD4 T cell responses to SARS‐CoV‐2 in unexposed individuals and humans with severe COVID‐19 publication-title: Immunity – volume: 597 start-page: 268 year: 2021 end-page: 273 article-title: Rapid and stable mobilization of CD8+ T cells by SARS‐CoV‐2 mRNA vaccine publication-title: Nature – volume: 70 start-page: 1294 year: 2021 end-page: 1299 article-title: Effectiveness of COVID‐19 mRNA vaccines against COVID‐19‐associated hospitalization – five veterans affairs medical centers, United States, February 1‐August 6, 2021 publication-title: MMWR Morb Mortal Wkly Rep – volume: 517 start-page: 3 year: 2018 end-page: 8 article-title: Physiological and molecular triggers for SARS‐CoV membrane fusion and entry into host cells publication-title: Virology – volume: 8 start-page: 247 year: 2008 end-page: 258 article-title: T‐cell quality in memory and protection: implications for vaccine design publication-title: Nat Rev Immunol – volume: 41 start-page: 1141 year: 2020 end-page: 1149 article-title: Structural and functional properties of SARS‐CoV‐2 spike protein: potential antivirus drug development for COVID‐19 publication-title: Acta Pharmacol Sin – volume: 160 start-page: 3363 year: 1998 end-page: 3373 article-title: Several common HLA‐DR types share largely overlapping peptide binding repertoires publication-title: J Immunol – volume: 181 year: 2020 article-title: SARS‐CoV‐2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell – volume: 185 year: 2022 article-title: SARS‐CoV‐2 vaccination induces immunological T cell memory able to cross‐recognize variants from alpha to omicron publication-title: Cell – volume: 28 start-page: 1024.e1 year: 2022 end-page: 1024.e6 article-title: B‐cell‐responses to vaccination with BNT162b2 and mRNA‐1273 six months after second dose publication-title: Clin Microbiol Infect – volume: 1 start-page: 1 year: 2006 end-page: 6 article-title: Live‐cell assay to detect antigen‐specific CD4 T‐cell responses by CD154 expression publication-title: Nat Protoc – volume: 10 start-page: 338 year: 2022 article-title: Comparison of neutralizing antibody responses at 6 months post vaccination with BNT162b2 and AZD1222 publication-title: Biomedicine – volume: 76 start-page: 428 year: 2021 end-page: 455 article-title: Risk factors for severe and critically ill COVID‐19 patients: a review publication-title: Allergy – volume: 181 year: 2020 article-title: Targets of T cell responses to SARS‐CoV‐2 coronavirus in humans with COVID‐19 disease and unexposed individuals publication-title: Cell – start-page: jiac178 year: 2022 article-title: Cross‐neutralizing activity against omicron could be obtained in SARS‐CoV‐2 convalescent patients who received two doses of mRNA vaccination publication-title: J Infect Dis – volume: 584 start-page: 463 year: 2020 end-page: 469 article-title: Longitudinal analyses reveal immunological misfiring in severe COVID‐19 publication-title: Nature – volume: 175 start-page: 3603 year: 2005 end-page: 3613 article-title: Broad repertoire of the CD4 Th cell response in spontaneously controlled hepatitis C virus infection includes dominant and highly promiscuous epitopes publication-title: J Immunol – volume: 11 start-page: 568 year: 2010 article-title: Peptide binding predictions for HLA DR, DP and DQ molecules publication-title: BMC Bioinform – volume: 2 year: 2021 article-title: Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS‐CoV‐2 epitopes in COVID‐19 cases publication-title: Cell Rep Med – volume: 387 start-page: 86 year: 2022 end-page: 88 article-title: Neutralization escape by SARS‐CoV‐2 omicron subvariants BA.2.12.1, BA.4, and BA.5 publication-title: N Engl J Med – volume: 4 year: 2008 article-title: A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach publication-title: PLoS Comput Biol – volume: 2 start-page: iqab006 year: 2021 article-title: The T‐cell response to SARS‐CoV‐2: kinetic and quantitative aspects and the case for their protective role publication-title: Oxf Open Immunol – volume: 76 start-page: 6104 year: 2002 end-page: 6113 article-title: Comprehensive analysis of CD8 ‐T‐cell responses against hepatitis C virus reveals multiple unpredicted specificities publication-title: J Virol – volume: 374 start-page: eabh1823 year: 2021 article-title: Cross‐reactive CD4 T cells enhance SARS‐CoV‐2 immune responses upon infection and vaccination publication-title: Science – volume: 370 start-page: 89 year: 2020 end-page: 94 article-title: Selective and cross‐reactive SARS‐CoV‐2 T cell epitopes in unexposed humans publication-title: Science – volume: 171 start-page: 29 year: 2021 end-page: 47 article-title: In silico T cell epitope identification for SARS‐CoV‐2: progress and perspectives publication-title: Adv Drug Deliv Rev – volume: 27 year: 2020 article-title: A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS‐CoV‐2 publication-title: Cell Host Microbe – volume: 190 year: 2022 article-title: Yeast‐expressed recombinant SARS‐CoV‐2 receptor binding domain RBD203‐N1 as a COVID‐19 protein vaccine candidate publication-title: Protein Expr Purif – volume: 70 start-page: 1291 year: 2021 end-page: 1293 article-title: Interim estimates of COVID‐19 vaccine effectiveness against COVID‐19‐associated emergency department or urgent care clinic encounters and hospitalizations among adults during SARS‐CoV‐2 B.1.617.2 (Delta) variant predominance – nine states, June‐August 2021 publication-title: MMWR Morb Mortal Wkly Rep – volume: 12 year: 2017 article-title: Comparative analysis of activation induced marker (AIM) assays for sensitive identification of antigen‐specific CD4 T cells publication-title: PLoS One – volume: 219 start-page: 568 year: 2018 end-page: 577 article-title: Detection of a broad range of Low‐level major histocompatibility complex class II–restricted, Hepatitis Delta virus (HDV)–specific T‐cell responses regardless of clinical status publication-title: J Infect Dis – volume: 12 start-page: 6405 year: 2021 article-title: Within‐host evolution of SARS‐CoV‐2 in an immunosuppressed COVID‐19 patient as a source of immune escape variants publication-title: Nat Commun – volume: 43 start-page: 16 year: 2021 end-page: 53 article-title: STIKO‐Empfehlung zur COVID‐19‐Auffrischimpfung mit einem mRNA‐Impfstoff für Personen ≥ 70 Jahre und bestimmte Indikationsgruppen sowie Empfehlung zur Optimierung der Grundimmunisierung mit einem mRNA‐Impfstoff nach vorausgegangener Impfung mit der COVID‐19 Vaccine Janssen und die dazugehörige wissenschaftliche Begründung publication-title: Epid Bull – volume: 372 start-page: 1336 year: 2021 end-page: 1341 article-title: Clonal analysis of immunodominance and cross‐reactivity of the CD4 T cell response to SARS‐CoV‐2 publication-title: Science – volume: 587 start-page: 270 year: 2020 end-page: 274 article-title: SARS‐CoV‐2‐reactive T cells in healthy donors and patients with COVID‐19 publication-title: Nature – volume: 17 year: 2021 article-title: Cross‐reactive and mono‐reactive SARS‐CoV‐2 CD4+ T cells in prepandemic and COVID‐19 convalescent individuals publication-title: PLoS Pathog – volume: 592 start-page: 277 year: 2021 end-page: 282 article-title: SARS‐CoV‐2 evolution during treatment of chronic infection publication-title: Nature – volume: 105 start-page: 1170 year: 2005 end-page: 1178 article-title: The magnitude and breadth of hepatitis C virus–specific CD8 T cells depend on absolute CD4 T‐cell count in individuals coinfected with HIV‐1 publication-title: Blood – volume: 28 start-page: 496 year: 2022 end-page: 503 article-title: Three exposures to the spike protein of SARS‐CoV‐2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern publication-title: Nat Med – volume: 83A start-page: 692 year: 2013 end-page: 701 article-title: Flow‐cytometric analysis of rare antigen‐specific T cells publication-title: Cytometry A – volume: 1 year: 2020 article-title: Robust T cell response toward spike, membrane, and nucleocapsid SARS‐CoV‐2 proteins is not associated with recovery in critical COVID‐19 patients publication-title: Cell Rep Med – volume: 38 year: 2022 article-title: Maintenance of broad neutralizing antibodies and memory B cells 1 year post‐infection is predicted by SARS‐CoV‐2‐specific CD4+ T cell responses publication-title: Cell Rep – volume: 183 year: 2020 article-title: Imbalance of regulatory and cytotoxic SARS‐CoV‐2‐reactive CD4 T cells in COVID‐19 publication-title: Cell – volume: 78 start-page: 88 year: 2017 end-page: 94 article-title: Association between HLA genes and dust mite sensitivity in a Brazilian population publication-title: Hum Immunol – volume: 39 start-page: 2110 year: 2021 end-page: 2116 article-title: Assessment of SARS‐CoV‐2 specific CD4(+) and CD8 (+) T cell responses using MHC class I and II tetramers publication-title: Vaccine – volume: 181 year: 2020 article-title: Structure, function, and antigenicity of the SARS‐CoV‐2 spike glycoprotein publication-title: Cell – volume: 208 start-page: 429 year: 2022 end-page: 443 article-title: Persistence of T cell and antibody responses to SARS‐CoV‐2 up to 9 months after symptom onset publication-title: J Immunol – volume: 40 start-page: 14 year: 2022 end-page: 30 article-title: Designing a multi‐epitope vaccine against SARS‐CoV‐2: an immunoinformatics approach publication-title: J Biomol Struct Dyn – volume: 385 start-page: 562 year: 2021 end-page: 566 article-title: SARS‐CoV‐2 variants in patients with immunosuppression publication-title: N Engl J Med – volume: 5 year: 2020 article-title: High levels of SARS‐CoV‐2‐specific T cells with restricted functionality in severe courses of COVID‐19 publication-title: JCI Insight – volume: 73 start-page: e4020 year: 2021 end-page: e4024 article-title: Sustained response after Remdesivir and convalescent plasma therapy in a B‐cell‐depleted patient with protracted coronavirus disease 2019 (COVID‐19) publication-title: Clin Infect Dis – volume: 20 start-page: e192 year: 2020 end-page: e197 article-title: A minimal common outcome measure set for COVID‐19 clinical research publication-title: Lancet Infect Dis – volume: 225 start-page: 1141 year: 2021 end-page: 1150 article-title: Comparative immunogenicity and effectiveness of mRNA‐1273, BNT162b2, and Ad26.COV2.S COVID‐19 vaccines publication-title: J Infect Dis – volume: 10 start-page: 319 year: 2022 end-page: 329 article-title: SARS‐CoV‐2 vaccination response in patients with autoimmune hepatitis and autoimmune cholestatic liver disease publication-title: United European Gastroenterol J – volume: 128 year: 2020 article-title: Clinical evaluation of a SARS‐CoV‐2 RT‐PCR assay on a fully automated system for rapid on‐demand testing in the hospital setting publication-title: J Clin Virol – volume: 6 start-page: 50 year: 2018 article-title: Activation‐induced markers detect vaccine‐specific CD4 T cell responses not measured by assays conventionally used in clinical trials publication-title: Vaccine – year: 2022 article-title: Ablation of CD8 T‐cell recognition of an immunodominant epitope in SARS‐CoV‐2 omicron publication-title: Research Square – volume: 17 year: 2021 article-title: Broadly directed SARS‐CoV‐2‐specific CD4 T cell response includes frequently detected peptide specificities within the membrane and nucleoprotein in patients with acute and resolved COVID‐19 publication-title: PLoS Pathog – volume: 10 start-page: 3037 year: 2020 article-title: Detection of EXP1‐specific CD4+ T cell responses directed against a broad range of epitopes including two promiscuous MHC class II binders during acute plasmodium falciparum malaria publication-title: Front Immunol – volume: 28 start-page: 472 year: 2022 end-page: 476 article-title: Ancestral SARS‐CoV‐2‐specific T cells cross‐recognize the omicron variant publication-title: Nat Med – volume: 40 start-page: 1162 year: 2022 end-page: 1169 article-title: A recombinant SARS‐CoV‐2 receptor‐binding domain expressed in an engineered fungal strain of Thermothelomyces heterothallica induces a functional immune response in mice publication-title: Vaccine – volume: 96 year: 2022 article-title: Longitudinal assessment of SARS‐CoV‐2‐specific T cell cytokine‐producing responses for 1 year reveals persistence of multicytokine proliferative responses, with greater immunity associated with disease severity publication-title: J Virol – volume: 20 year: 2022 article-title: SARS‐CoV2‐specific humoral and T‐cell immune response after second vaccination in liver cirrhosis and transplant patients publication-title: Clin Gastroenterol Hepatol – volume: 182 year: 2020 article-title: A SARS‐CoV‐2 infection model in mice demonstrates protection by neutralizing antibodies publication-title: Cell – volume: 34 year: 2021 article-title: Early induction of functional SARS‐CoV‐2‐specific T cells associates with rapid viral clearance and mild disease in COVID‐19 patients publication-title: Cell Rep – volume: 369 start-page: 956 year: 2020 end-page: 963 article-title: Isolation of potent SARS‐CoV‐2 neutralizing antibodies and protection from disease in a small animal model publication-title: Science – volume: 198 start-page: 157.156 year: 2017 article-title: Optimization of a multi‐parametric activation‐induced marker (AIM) assay for identifying antigen‐specific CD4 and CD8 T‐cells publication-title: J Immunol – volume: 7 year: 2022 article-title: In‐depth analysis of SARS‐CoV‐2‐specific T cells reveals diverse differentiation hierarchies in vaccinated individuals publication-title: JCI Insight – ident: e_1_2_8_44_1 doi: 10.1056/NEJMc2206576 – ident: e_1_2_8_49_1 doi: 10.1371/journal.pcbi.1000048 – ident: e_1_2_8_2_1 doi: 10.1038/s41586-020-2588-y – ident: e_1_2_8_19_1 doi: 10.1093/oxfimm/iqab006 – ident: e_1_2_8_75_1 doi: 10.3389/fimmu.2021.637654 – ident: e_1_2_8_78_1 doi: 10.1038/s41598-021-92521-4 – ident: e_1_2_8_33_1 doi: 10.1016/j.chom.2020.03.002 – ident: e_1_2_8_85_1 doi: 10.1172/jci.insight.156559 – ident: e_1_2_8_51_1 doi: 10.1016/j.xcrm.2021.100204 – ident: e_1_2_8_10_1 doi: 10.15585/mmwr.mm7037e3 – ident: e_1_2_8_11_1 doi: 10.1016/j.cell.2020.02.058 – ident: e_1_2_8_45_1 doi: 10.1056/NEJMc2206900 – ident: e_1_2_8_64_1 doi: 10.1093/cid/ciaa1637 – ident: e_1_2_8_58_1 doi: 10.1002/ueg2.12218 – ident: e_1_2_8_73_1 doi: 10.1016/j.pep.2021.106003 – ident: e_1_2_8_55_1 doi: 10.1016/j.cell.2020.05.015 – ident: e_1_2_8_14_1 doi: 10.1038/s41586-020-2012-7 – ident: e_1_2_8_16_1 doi: 10.1038/s41577-021-00578-z – ident: e_1_2_8_54_1 doi: 10.1038/s41586-021-03841-4 – ident: e_1_2_8_71_1 doi: 10.1126/science.abg8985 – volume: 43 start-page: 16 year: 2021 ident: e_1_2_8_37_1 article-title: STIKO‐Empfehlung zur COVID‐19‐Auffrischimpfung mit einem mRNA‐Impfstoff für Personen ≥ 70 Jahre und bestimmte Indikationsgruppen sowie Empfehlung zur Optimierung der Grundimmunisierung mit einem mRNA‐Impfstoff nach vorausgegangener Impfung mit der COVID‐19 Vaccine Janssen und die dazugehörige wissenschaftliche Begründung publication-title: Epid Bull – ident: e_1_2_8_77_1 doi: 10.1038/s41586-020-2598-9 – ident: e_1_2_8_79_1 doi: 10.1126/science.abd3871 – ident: e_1_2_8_22_1 doi: 10.1016/j.cell.2020.06.011 – ident: e_1_2_8_29_1 doi: 10.1038/s41467-021-27649-y – ident: e_1_2_8_43_1 doi: 10.3389/fimmu.2019.03037 – ident: e_1_2_8_70_1 doi: 10.1016/S2665-9913(21)00325-8 – ident: e_1_2_8_66_1 doi: 10.1056/NEJMc2031364 – volume: 198 start-page: 157.156 year: 2017 ident: e_1_2_8_83_1 article-title: Optimization of a multi‐parametric activation‐induced marker (AIM) assay for identifying antigen‐specific CD4+ and CD8+ T‐cells publication-title: J Immunol doi: 10.4049/jimmunol.198.Supp.157.6 – ident: e_1_2_8_8_1 doi: 10.15585/mmwr.mm7037e1 – ident: e_1_2_8_24_1 doi: 10.1016/j.ebiom.2022.103904 – ident: e_1_2_8_56_1 doi: 10.1016/j.xcrm.2020.100092 – ident: e_1_2_8_81_1 doi: 10.1172/JCI143120 – ident: e_1_2_8_82_1 doi: 10.1002/cyto.a.22317 – ident: e_1_2_8_7_1 doi: 10.1183/13993003.00547-2020 – ident: e_1_2_8_17_1 doi: 10.1172/jci.insight.142167 – ident: e_1_2_8_20_1 doi: 10.1016/j.cell.2020.10.001 – ident: e_1_2_8_25_1 doi: 10.1016/j.cmi.2022.02.028 – ident: e_1_2_8_41_1 doi: 10.4049/jimmunol.175.6.3603 – ident: e_1_2_8_93_1 doi: 10.21203/rs.3.rs‐1289622/v1 – ident: e_1_2_8_90_1 doi: 10.1038/s41591-022-01715-4 – ident: e_1_2_8_95_1 doi: 10.1016/j.cgh.2021.09.003 – ident: e_1_2_8_18_1 doi: 10.1016/j.celrep.2021.108728 – ident: e_1_2_8_84_1 doi: 10.1371/journal.pone.0186998 – ident: e_1_2_8_87_1 doi: 10.1126/sciimmunol.abo1303 – ident: e_1_2_8_53_1 doi: 10.1016/j.vaccine.2021.03.008 – ident: e_1_2_8_96_1 doi: 10.1016/j.humimm.2016.10.014 – ident: e_1_2_8_40_1 doi: 10.1182/blood-2004-06-2336 – ident: e_1_2_8_63_1 doi: 10.4049/jimmunol.2100727 – volume: 48 start-page: D783 year: 2020 ident: e_1_2_8_38_1 article-title: Allele frequency net database (AFND) 2020 update: gold‐standard data classification, open access genotype data and new query tools publication-title: Nucleic Acids Res – volume: 18 start-page: Unit 18.3 year: 2013 ident: e_1_2_8_47_1 article-title: Measurement of MHC/peptide interactions by gel filtration or monoclonal antibody capture publication-title: Curr Protoc Immunol – ident: e_1_2_8_30_1 doi: 10.1056/NEJMoa2116414 – ident: e_1_2_8_15_1 doi: 10.1016/j.virol.2017.12.015 – ident: e_1_2_8_9_1 doi: 10.15585/mmwr.mm7037e2 – ident: e_1_2_8_13_1 doi: 10.1016/j.cell.2020.02.052 – ident: e_1_2_8_89_1 doi: 10.1093/infdis/jiac178 – ident: e_1_2_8_34_1 doi: 10.1016/j.jcv.2020.104390 – ident: e_1_2_8_4_1 doi: 10.1016/j.ajpath.2020.08.009 – ident: e_1_2_8_42_1 doi: 10.1093/infdis/jiy549 – ident: e_1_2_8_46_1 doi: 10.1101/2022.03.04.483032 – ident: e_1_2_8_21_1 doi: 10.1126/science.abc7520 – ident: e_1_2_8_67_1 doi: 10.1038/s41586-021-03291-y – ident: e_1_2_8_88_1 doi: 10.1016/j.cell.2022.01.015 – volume: 10 start-page: 338 year: 2022 ident: e_1_2_8_26_1 article-title: Comparison of neutralizing antibody responses at 6 months post vaccination with BNT162b2 and AZD1222 publication-title: Biomedicine – ident: e_1_2_8_12_1 doi: 10.1038/s41401-020-0485-4 – ident: e_1_2_8_32_1 doi: 10.1016/j.addr.2021.01.007 – ident: e_1_2_8_3_1 doi: 10.1016/j.chom.2020.04.009 – ident: e_1_2_8_68_1 doi: 10.1038/s41467-021-26602-3 – ident: e_1_2_8_28_1 doi: 10.1016/j.cell.2021.12.033 – ident: e_1_2_8_76_1 doi: 10.1126/science.abh1823 – ident: e_1_2_8_80_1 doi: 10.1016/j.immuni.2020.11.016 – ident: e_1_2_8_50_1 doi: 10.1186/1471-2105-11-568 – ident: e_1_2_8_86_1 doi: 10.1038/nri2274 – ident: e_1_2_8_6_1 doi: 10.1111/all.14657 – ident: e_1_2_8_23_1 doi: 10.1038/s41591-021-01377-8 – ident: e_1_2_8_69_1 doi: 10.1056/NEJMsb2104756 – ident: e_1_2_8_35_1 doi: 10.1016/S1473-3099(20)30483-7 – ident: e_1_2_8_60_1 doi: 10.1038/s41421-022-00373-7 – ident: e_1_2_8_61_1 doi: 10.1093/infdis/jiab593 – ident: e_1_2_8_65_1 doi: 10.3390/v14061265 – ident: e_1_2_8_5_1 doi: 10.1038/s41577-020-0308-3 – ident: e_1_2_8_27_1 doi: 10.1038/s41591-021-01527-y – ident: e_1_2_8_57_1 doi: 10.1038/nprot.2006.1 – ident: e_1_2_8_39_1 doi: 10.1128/JVI.76.12.6104-6113.2002 – ident: e_1_2_8_62_1 doi: 10.1128/jvi.00509-22 – ident: e_1_2_8_48_1 doi: 10.4049/jimmunol.160.7.3363 – ident: e_1_2_8_72_1 doi: 10.1016/j.celrep.2022.110345 – ident: e_1_2_8_36_1 doi: 10.1371/journal.ppat.1009842 – ident: e_1_2_8_94_1 doi: 10.1126/science.8023162 – ident: e_1_2_8_59_1 doi: 10.3390/vaccines6030050 – ident: e_1_2_8_74_1 doi: 10.1016/j.vaccine.2022.01.007 – ident: e_1_2_8_52_1 doi: 10.1371/journal.ppat.1010203 – ident: e_1_2_8_91_1 doi: 10.1038/s41591-022-01700-x – ident: e_1_2_8_31_1 doi: 10.1080/07391102.2020.1792347 – ident: e_1_2_8_92_1 doi: 10.1016/j.isci.2021.103353 |
SSID | ssj0001340516 |
Score | 2.236553 |
Snippet | Objectives
Potential differences in the breadth, distribution and magnitude of CD4+ T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein between... Potential differences in the breadth, distribution and magnitude of CD4 T-cell responses directed against the SARS-CoV-2 spike glycoprotein between vaccinees,... ObjectivesPotential differences in the breadth, distribution and magnitude of CD4+ T‐cell responses directed against the SARS‐CoV‐2 spike glycoprotein between... Potential differences in the breadth, distribution and magnitude of CD4+ T-cell responses directed against the SARS-CoV-2 spike glycoprotein between vaccinees,... Individual CD4 + and CD8 + T‐cell responses directed against a total of 253 overlapping 15‐mer spike‐specific peptides were mapped in a cohort of COVID‐19... Abstract Objectives Potential differences in the breadth, distribution and magnitude of CD4+ T‐cell responses directed against the SARS‐CoV‐2 spike... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1410 |
SubjectTerms | Antibodies B.1.1.529 CD4 antigen CD4+ T cells Coronaviruses COVID-19 COVID-19 vaccines Cytokines Drb1 protein Enzyme-linked immunosorbent assay Glycoproteins Histocompatibility antigen HLA Infections Interferon Lymphocytes MHC class II Original Patients Peptides SARS‐CoV‐2 Severe acute respiratory syndrome coronavirus 2 Spike glycoprotein spike protein Vaccination vaccines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4lEgUJBb9YCEQuMkduJju6VqKxUuW9Sb5adYgbKrpuXcW6_8Rn4JM4432hVFXHqL_IrjGXs-OzOfCdkVTHMeNM-FrXVeh7bIDViJvIGlMASjXcswUPjsszg-r08v-MXKVV_oEzbQAw8Dt1cEvCVLIs8dUpkIwxprHRegOLqq28jzCTZvZTMVT1cqACJMLKmEinIPVo_yIzo1rhmgyNN_F7j820dyFbtG43P0hDxOqJHuD719Sh747hl5eJb-iz8nt-iu8fvmF-ydkypRndhG6DzQ2Rh1RfvF7LunC_RlcR5qYKQlegvRyWH9gU4hBY_y6eXgOut7qEt_aouvoUiEscD4yR5ad3Ty5evJIVRgkiZ21n6TnB99mk6O83TFQm4BKRS5biMic4ATmLDGOQPmPVQaadlL5qUNWhjAaLaxRd1YLWrTVkY6kLBgQbPqBdno5p1_RWjLpa08ctEIVwOq1Nw3rRWhtdwW0HRG3i_HXdnEP47XYPxQA3NyqVBECkWUkZ2x6GIg3bir0AEKbyyAPNkxAbRHJe1R_9OejGwtRa_S5O1V2QCukhL2lhnZHrNh2qEAdOfn17EMgiNeiIy8HDRl7AnGOjcSazdrOrTW1fWcbvYtUnvLSlSAuGGsorb9--vVZHpS4sPr-xiGN-RRiWEd8Whpi2xcXV77twC2rsy7OK_-AMhRKRI priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIhLxZtAQQZxQEKhcR52ckKwpWqRCpct2pvlZ1mBknTTcubGld_IL2HG8aasKNyixM5rxjNfJjPfEPKcM1VVXlUpN6VKS19nqQYvkQowhd5rZWuGhcJHH_jBcfl-US1iwG2IaZVrmxgMte0Mxsh3cwHOrmkA8L_uT1PsGoV_V2MLjavkGlKXYUqXWIiLGEsBcITxNaFQlu-CDclfYWrjhhsKbP2XQcy_MyX_RLDBBe3fJNsRO9I3o7BvkSuuvU2uH8W_43fID0za-PX9J3xBR4WiKnKO0M7T5VR7RYd--cXRHjNarIMZWG-JOUN0tle-pHPYgwF9uhoTaN0Ac-k3ZfAyFOkweqyiHODsls4-fjrcgwmsoZGjdbhLjvffzWcHaWy0kBrAC1mq6oDLLKAFxo22VoOT94VCcvacucZ4xTUgNSNMVgqjeKnrQjcW5MyZV6y4R7barnUPCK2rxhQOGWm4LQFbqsqJ2nBfm8pkcOqEvFi_d2kiCzk2w_gqR_7kXKKIJIooIc-mof1IvXHZoLcovGkAsmWHHd3qRMbFJzOPndYa5EpEOhyumTDGVhyMjyrKukjIzlr0Mi7hQV4oXEKeTodh8aEAVOu68zAGIVKV8YTcHzVluhOseBYNzhYbOrRxq5tH2uXnQPDdFLwA3A3vKmjbv59ezuaHOW48_P8TPCI3cizbCKGjHbJ1tjp3jwFMneknYcX8BhsKIrM priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKkRAXxJtAiwzigIRCk_iRRJzKlqpFKnDYot4sP-mqKLvatJy5ceU38kuYcbwpK4rELUpm8hqP_cWZ7zMhL2SphQha5NJynfPQFLmBUSKvoSsMwWjXlEgUPvogD475-xNxskHerLgwgz7EOOGGmRH7a0xwbfqdS9FQ6A6q11ileI1cR2otCudX_NPlBAsDLBKXPq0Kgexp2ayUhYpqZ_ReG4-ibP9VWPPvksk_oWwci_Zvk1sJRNLdIep3yIbv7pIbR-k3-T3yA6s3fn3_CZ_SqWVRncRH6DzQ2UjCov1idubpAktbnAcPJF5i8RCd7PFXdAp7cGafLodKWt-DL_2mLV6Goi7GAumUPZzd0cnHz4d74FC2NIm19vfJ8f676eQgTysu5BaAQ5HrJgI0B7ChlNY4Z2C0D0yjSntV-tYGLQ1ANlvbgtdWS24aZloHAZdl0CV7QDa7eecfEdqI1jKP0jTScQCZWvi6sTI0VtgCTp2Rl6v3rmySI8dVMb6qQUi5UhgihSHKyPPRdDFocFxl9BaDNxqgbHbcMV9-USkLVRFwybUWRRNRF0easrbWCQm9kGa8YRnZWoVepVzuVVUDzGpb-NTMyLPxMGQhBkB3fn4RbRAriUJm5OHQUsY7Qepz3aJ3vdaG1m51_Ug3O41K3y2TDAA4vKvY2v799GoyPaxw4_H_mz4hNyvkcsT5pC2yeb688NuAsM7N05hJvwE9hiRm priority: 102 providerName: Wiley-Blackwell |
Title | High‐resolution analysis of individual spike peptide‐specific CD4+ T‐cell responses in vaccine recipients and COVID‐19 patients |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcti2.1410 https://www.ncbi.nlm.nih.gov/pubmed/35957961 https://www.proquest.com/docview/2707499261 https://www.proquest.com/docview/2702181506 https://pubmed.ncbi.nlm.nih.gov/PMC9363231 https://doaj.org/article/0f54419279204946b17ccd56963a3483 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IVW9IN4EysogDkgoJc7DTg4I0W2rFmlLhXbR3iLHcWBFlV02LYIbR478Rn4JM44TdcVy4RJFiZ1kPTOez96ZbwCeCa6SpFKJL3Ss_LhKA79AL-FLnAqrqlBlyilReHQmTibx22ky3YCuxqYbwGbt0o7qSU2WF_vfvnx_jQb_yhGIvsSJIdyneMVN2EaHJMk-Rw7l262WCFEJFx2v0PUeu7BDmakyE3zFMVn-_nWg8-_YyeuY1jql45tww6FJ9qYV_y3YMPVt2Bm5_8vvwE8K4_j94xeuqZ2KMeVYSNi8YrM-G4s1i9lnwxYU41Ia7EEZmBRFxIaHMXvBxniJ9vjZso2pNQ12Zl-VpvcwYshYUGJlg48v2fDdh9ND7MAz5mhbm7swOT4aD098V3vB1wghAl-lFqqVCCC40EVZFuj3q0gRX3vITaYrJQoEb1rqIJZaibhIoyIrUfSCV4pH92CrntfmAbA0yXRkiKRGlDHCTZUYmWpRpTrRAT7ag-fdwOfaEZNTfYyLvKVUDnMSV07i8uBp33TRsnGsa3RA0usbEIG2vTBffsydPeZBRcXXMqJPJIYcUXCpdZkInI9UFKeRB3ud7PNOKfNQIuDKMlx0evCkv432SAJQtZlf2TaEmpJAeHC_VZX-SzpV80CuKNHKp67eqWefLOd3FokIoTiOlVW3f__6fDg-Denk4X-_5BHshpTkYTea9mDrcnllHiP0uiwGsBnG53iUUzmA7YOjs_P3A7uNMbAm9wfcljYh |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEP8EChgEEhIKTeLESQ4I0d1Wu7S7ILRFvQXHdmAFSsKmBXHjxpUn4aF4EmbyV1YUbr2tEjsbZ8Yzn-2ZbwAeCFcGQSYDWyhf2n4WOXaKXsIO0RRmWSp15FKi8HQmxvv-i4PgYA1-drkwFFbZ2cTaUOtC0R75pheis4tjBPzPyk82VY2i09WuhEajFrvm6xdcslVPJyOU70PP29meD8d2W1XAVugcHVtGNQjR6BpdoVKtU_RoGZfERO65JlaZFCnCEhUqxw-VFH4a8TTWOCjhZtLl-NwzsO5zXMoMYH1re_bq9fGuDkcA5IqOwsjxNtFqeU8omHLF8dX1AU4CtX_HZv6JmWunt3MRLrRolT1v1OsSrJn8MpydtufxV-A7hYn8-vYD1-ytCjPZspywImOLPtuLVeXig2ElxdBogz0ow5OilNhw5D9mc7xCRwhs2YTsmgr7ss9S0d8wIuAoKW-zwqdrNnz5ZjLCDm7MWlbY6irsn4oQrsEgL3JzA1gUxIob4sAR2kc0KwMTRkpkkQqUg4-24FH33RPV8p5T-Y2PScPY7CUkooREZMH9vmnZkH2c1GiLhNc3IH7u-kKxfJe00z1xMqrtFhM7IxHwiNQNldKBQHMnuR9xCzY60Set0aiSYxW34F5_G6c7CUDmpjiq2xAoCxxhwfVGU_o3oRzrMKbe4YoOrbzq6p188b6mFI-54Ij08VvV2vbv0SfD-cSjHzf_P4K7cG48n-4le5PZ7i0471HSSL1xtQGDw-WRuY1Q7jC9084fBm9Pe8r-BocsYCo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkSouiH9SChgEEhJKN3-2kwNCsMuqS2nhsEV7M45j0xUoWTYtiBs3rjwPj8OTMJM4KSsKt95Wie2NMzOeL_bMN4Q84KFizCrmc50oP7Fp4OfgJXwBS6G1uSrSEBOF9_b5zkHycsZma-RnlwuDYZXdmtgs1EWlcY98EAlwdlkGgH9gXVjEm9H46eKTjxWk8KS1K6fRqsiu-foFPt_qJ5MRyPphFI1fTIc7vqsw4GtwlIGv0gaQFOAmQ67zosjBu9lYISt5FJpMW8VzgCha6CARWvEkT-M8K2CCPLQqjGHcc-S8iFmINiZm4mR_JwYoFPKOzCiIBrB-RdsYVrniAptKAafB27-jNP9Ez437G18iFx1upc9aRbtM1kx5hWzsuZP5q-Q7Boz8-vYDvt6dMlPl-E5oZem8z_ui9WL-wdAFRtMUBnpgrifGK9HhKHlMp3AFDxPosg3eNTX0pZ-Vxr-hSMWxwAzOGkYv6PD128kIOoQZdfyw9TVycCYiuE7Wy6o0NwlNWaZjg2w4vEgA1ypmRKq5TTXTAQztkUfde5faMaBjIY6PsuVujiSKSKKIPHK_b7poaT9Oa_Qchdc3QKbu5kK1fC-d4cvAYpW3DHkakYqH56HQumAcFj4VJ2nska1O9NItH7U8UXaP3Otvg-GjAFRpquOmDcIzFnCP3Gg1pX8SzLYWGfYWKzq08qird8r5YUMunsU8BswP76rRtn_PXg6nkwh_bP5_BnfJBhiqfDXZ371FLkSYPdLsYG2R9aPlsbkNmO4ov9MYDyXvztpafwPJHGL6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90resolution+analysis+of+individual+spike+peptide%E2%80%90specific+CD4+%2B+T%E2%80%90cell+responses+in+vaccine+recipients+and+COVID%E2%80%9019+patients&rft.jtitle=Clinical+%26+translational+immunology&rft.au=Karsten%2C+Hendrik&rft.au=Cords%2C+Leon&rft.au=Westphal%2C+Tim&rft.au=Knapp%2C+Maximilian&rft.date=2022&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2050-0068&rft.volume=11&rft.issue=8&rft_id=info:doi/10.1002%2Fcti2.1410&rft_id=info%3Apmid%2F35957961&rft.externalDocID=PMC9363231 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-0068&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-0068&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-0068&client=summon |