Nonadiabatic dynamics: The SHARC approach

We review the Surface Hopping including ARbitrary Couplings (SHARC) approach for excited‐state nonadiabatic dynamics simulations. As a generalization of the popular surface hopping method, SHARC allows simulating the full‐dimensional dynamics of molecules including any type of coupling terms beyond...

Full description

Saved in:
Bibliographic Details
Published inWiley interdisciplinary reviews. Computational molecular science Vol. 8; no. 6; pp. e1370 - n/a
Main Authors Mai, Sebastian, Marquetand, Philipp, González, Leticia
Format Journal Article
LanguageEnglish
Published Hoboken, USA Wiley Periodicals, Inc 01.11.2018
Subjects
Online AccessGet full text
ISSN1759-0876
1759-0884
DOI10.1002/wcms.1370

Cover

Loading…
Abstract We review the Surface Hopping including ARbitrary Couplings (SHARC) approach for excited‐state nonadiabatic dynamics simulations. As a generalization of the popular surface hopping method, SHARC allows simulating the full‐dimensional dynamics of molecules including any type of coupling terms beyond nonadiabatic couplings. Examples of these arbitrary couplings include spin–orbit couplings or dipole moment–laser field couplings, such that SHARC can describe ultrafast internal conversion, intersystem crossing, and radiative processes. The key step of the SHARC approach consists of a diagonalization of the Hamiltonian including these couplings, such that the nuclear dynamics is carried out on potential energy surfaces including the effects of the couplings—this is critical in any applications considering, for example, transition metal complexes or strong laser fields. We also give an overview over the new SHARC2.0 dynamics software package, released under the GNU General Public License, which implements the SHARC approach and several analysis tools. The review closes with a brief survey of applications where SHARC was employed to study the nonadiabatic dynamics of a wide range of molecular systems. This article is categorized under: Theoretical and Physical Chemistry > Reaction Dynamics and Kinetics Software > Simulation Methods Software > Quantum Chemistry We review the current status of the SHARC (Surface Hopping including ARbitrary Couplings) approach for nonadiabatic dynamics simulations.
AbstractList We review the Surface Hopping including ARbitrary Couplings (SHARC) approach for excited‐state nonadiabatic dynamics simulations. As a generalization of the popular surface hopping method, SHARC allows simulating the full‐dimensional dynamics of molecules including any type of coupling terms beyond nonadiabatic couplings. Examples of these arbitrary couplings include spin–orbit couplings or dipole moment–laser field couplings, such that SHARC can describe ultrafast internal conversion, intersystem crossing, and radiative processes. The key step of the SHARC approach consists of a diagonalization of the Hamiltonian including these couplings, such that the nuclear dynamics is carried out on potential energy surfaces including the effects of the couplings—this is critical in any applications considering, for example, transition metal complexes or strong laser fields. We also give an overview over the new SHARC2.0 dynamics software package, released under the GNU General Public License, which implements the SHARC approach and several analysis tools. The review closes with a brief survey of applications where SHARC was employed to study the nonadiabatic dynamics of a wide range of molecular systems. This article is categorized under: Theoretical and Physical Chemistry > Reaction Dynamics and Kinetics Software > Simulation Methods Software > Quantum Chemistry We review the current status of the SHARC (Surface Hopping including ARbitrary Couplings) approach for nonadiabatic dynamics simulations.
We review the Surface Hopping including ARbitrary Couplings (SHARC) approach for excited-state nonadiabatic dynamics simulations. As a generalization of the popular surface hopping method, SHARC allows simulating the full-dimensional dynamics of molecules including any type of coupling terms beyond nonadiabatic couplings. Examples of these arbitrary couplings include spin-orbit couplings or dipole moment-laser field couplings, such that SHARC can describe ultrafast internal conversion, intersystem crossing, and radiative processes. The key step of the SHARC approach consists of a diagonalization of the Hamiltonian including these couplings, such that the nuclear dynamics is carried out on potential energy surfaces including the effects of the couplings-this is critical in any applications considering, for example, transition metal complexes or strong laser fields. We also give an overview over the new SHARC2.0 dynamics software package, released under the GNU General Public License, which implements the SHARC approach and several analysis tools. The review closes with a brief survey of applications where SHARC was employed to study the nonadiabatic dynamics of a wide range of molecular systems. This article is categorized under: Theoretical and Physical Chemistry > Reaction Dynamics and KineticsSoftware > Simulation MethodsSoftware > Quantum Chemistry.
Author Mai, Sebastian
Marquetand, Philipp
González, Leticia
Author_xml – sequence: 1
  givenname: Sebastian
  orcidid: 0000-0001-5327-8880
  surname: Mai
  fullname: Mai, Sebastian
  organization: University of Vienna
– sequence: 2
  givenname: Philipp
  orcidid: 0000-0002-8711-1533
  surname: Marquetand
  fullname: Marquetand, Philipp
  organization: University of Vienna
– sequence: 3
  givenname: Leticia
  orcidid: 0000-0001-5112-794X
  surname: González
  fullname: González, Leticia
  email: leticia.gonzalez@univie.ac.at
  organization: University of Vienna
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30450129$$D View this record in MEDLINE/PubMed
BookMark eNo9kEtLw0AUhQep2Fq78A9Iti7S3juPZMZdCdUKVcFWXA7zKo00DxKl5N_bUO3Z3APncDl812RQVmUg5BZhigB0dnBFO0WWwgUZYSpUDFLywdmnyZBM2vYLjuIKKcMrMmTABSBVI3L_WpXG58aa79xFvitNkbv2IdrsQrRezt-zyNR1Uxm3uyGXW7Nvw-TvjsnH42KTLePV29NzNl_FToCCWAZprITEY6o4TZjwVFAB3FvLfeJTQ3lAp7ZGMe5sCMCpVMKhCoE6lnA2Jnenv_WPLYLXdZMXpun0_-ZjYXYqHPJ96M45gu556J6H7nnoz-xl3Rv2CzcsUdM
CitedBy_id crossref_primary_10_1021_acs_jpclett_3c00664
crossref_primary_10_1039_D0CP01353F
crossref_primary_10_1021_acs_accounts_1c00485
crossref_primary_10_1021_acs_jctc_2c00297
crossref_primary_10_1039_D0CP01450H
crossref_primary_10_1021_acs_jpclett_4c03225
crossref_primary_10_1063_5_0047760
crossref_primary_10_1021_acs_jctc_9b00525
crossref_primary_10_1016_j_saa_2024_124096
crossref_primary_10_1021_acs_jpca_4c03948
crossref_primary_10_1021_acs_jctc_4c01684
crossref_primary_10_1021_acs_jpcb_9b04027
crossref_primary_10_1021_acs_chemrev_2c00329
crossref_primary_10_1063_5_0013873
crossref_primary_10_1063_5_0044807
crossref_primary_10_1063_5_0250153
crossref_primary_10_1021_acs_jctc_1c01184
crossref_primary_10_1021_acs_jpclett_2c00207
crossref_primary_10_1038_s41467_021_25045_0
crossref_primary_10_1021_acs_jctc_1c01048
crossref_primary_10_1063_5_0139734
crossref_primary_10_1063_5_0061934
crossref_primary_10_1063_1_5047002
crossref_primary_10_1021_acs_jpca_3c01669
crossref_primary_10_1021_acs_jctc_3c00813
crossref_primary_10_1103_PhysRevLett_132_126903
crossref_primary_10_1021_jacs_4c00548
crossref_primary_10_3390_molecules28104222
crossref_primary_10_1021_acs_jctc_2c00988
crossref_primary_10_1063_1_5144267
crossref_primary_10_1063_5_0159247
crossref_primary_10_1021_acs_jctc_4c01331
crossref_primary_10_1021_acs_jctc_9b00532
crossref_primary_10_1021_acs_jctc_9b00898
crossref_primary_10_1021_acs_inorgchem_0c00553
crossref_primary_10_1088_2632_2153_abfe3f
crossref_primary_10_1021_acs_jctc_4c00008
crossref_primary_10_1063_5_0215036
crossref_primary_10_1016_j_jphotochem_2023_115353
crossref_primary_10_1063_5_0021915
crossref_primary_10_1021_acs_jpclett_3c03014
crossref_primary_10_1021_jacs_4c12634
crossref_primary_10_1063_5_0167412
crossref_primary_10_1021_acs_jpca_2c03783
crossref_primary_10_1063_1_5129335
crossref_primary_10_1021_acs_jctc_3c00805
crossref_primary_10_1103_PhysRevA_106_013111
crossref_primary_10_1126_sciadv_aax6625
crossref_primary_10_1021_acs_jpclett_4c02475
crossref_primary_10_1063_1_5079426
crossref_primary_10_1063_1_5116816
crossref_primary_10_1021_acs_jpcb_4c05600
crossref_primary_10_1021_acs_jpclett_5c00065
crossref_primary_10_1002_jcc_26711
crossref_primary_10_1039_D4CC03943B
crossref_primary_10_1038_s42005_023_01420_9
crossref_primary_10_1088_1361_6455_abd06d
crossref_primary_10_1021_acs_jctc_1c01080
crossref_primary_10_1016_j_cplett_2020_137506
crossref_primary_10_1021_acs_jpca_1c10195
crossref_primary_10_1021_acsomega_3c01226
crossref_primary_10_1021_acs_jpca_9b00940
crossref_primary_10_1021_acs_jctc_2c01173
crossref_primary_10_1063_5_0204911
crossref_primary_10_1021_acsnano_2c08579
crossref_primary_10_1021_acs_jpca_3c02899
crossref_primary_10_1021_jacs_1c10153
crossref_primary_10_1038_s41557_023_01420_w
crossref_primary_10_1007_s41061_021_00361_7
crossref_primary_10_1016_j_comptc_2019_01_011
crossref_primary_10_1103_PhysRevResearch_6_043010
crossref_primary_10_1021_acs_inorgchem_0c03163
crossref_primary_10_1038_s41467_021_21855_4
crossref_primary_10_1088_1674_1056_ad0cc9
crossref_primary_10_1088_2632_2153_ab9c3e
crossref_primary_10_1021_acs_jctc_2c00888
crossref_primary_10_1021_acsearthspacechem_4c00242
crossref_primary_10_1021_acs_chemrev_9b00496
crossref_primary_10_1002_cptc_202400418
crossref_primary_10_1002_wcms_1435
crossref_primary_10_1021_jacsau_2c00250
crossref_primary_10_1021_acs_jctc_4c00343
crossref_primary_10_1021_acsearthspacechem_4c00365
crossref_primary_10_1063_5_0037878
crossref_primary_10_1038_s41467_022_32170_x
crossref_primary_10_1246_bcsj_20210069
crossref_primary_10_1063_5_0054014
crossref_primary_10_1063_5_0222557
crossref_primary_10_1021_acs_jctc_9b00208
crossref_primary_10_1021_acs_jpclett_0c01439
crossref_primary_10_1021_acs_jctc_4c01125
crossref_primary_10_1021_acs_jctc_4c00157
crossref_primary_10_1021_acs_chemrev_9b00447
crossref_primary_10_1002_ange_202111493
crossref_primary_10_1021_acs_chemrev_0c00749
crossref_primary_10_1063_1_5137823
crossref_primary_10_1016_j_comptc_2019_02_009
crossref_primary_10_1088_2632_2153_ab88d0
crossref_primary_10_1021_acs_jctc_4c00959
crossref_primary_10_1007_s00214_023_03007_7
crossref_primary_10_1063_5_0026177
crossref_primary_10_1021_acs_jctc_2c01113
crossref_primary_10_1063_4_0000183
crossref_primary_10_1039_D4CP02474E
crossref_primary_10_1002_nadc_20214118868
crossref_primary_10_1021_acs_chemmater_3c02667
crossref_primary_10_1111_php_13560
crossref_primary_10_1021_acs_jpcb_4c06924
crossref_primary_10_1021_acs_jctc_2c00948
crossref_primary_10_1007_s41061_022_00366_w
crossref_primary_10_1021_acs_jctc_3c00182
crossref_primary_10_1002_jcc_27018
crossref_primary_10_1002_chem_202000507
crossref_primary_10_1021_acs_inorgchem_1c01838
crossref_primary_10_1021_acs_jctc_4c00169
crossref_primary_10_1038_s41563_024_01812_4
crossref_primary_10_1002_jcc_26045
crossref_primary_10_1021_acs_jctc_4c00842
crossref_primary_10_1063_5_0071376
crossref_primary_10_1021_acs_jpca_4c03481
crossref_primary_10_1002_anie_202111493
crossref_primary_10_1002_chem_202302178
crossref_primary_10_1021_acs_jpclett_3c00686
crossref_primary_10_1063_5_0036726
crossref_primary_10_1021_acs_jctc_2c01129
crossref_primary_10_1021_acs_jpclett_1c04143
crossref_primary_10_1021_acs_jpca_3c01414
crossref_primary_10_1093_bulcsj_uoae047
crossref_primary_10_1039_D3CP03730D
crossref_primary_10_1021_acs_jpclett_1c02640
crossref_primary_10_1016_j_molliq_2023_121551
crossref_primary_10_1021_acs_jpclett_3c02628
crossref_primary_10_1038_s41467_022_28997_z
crossref_primary_10_1021_acs_jpclett_4c00535
crossref_primary_10_1021_acs_jctc_4c00012
crossref_primary_10_1021_acs_jpca_0c03525
crossref_primary_10_1021_acs_jctc_0c00409
crossref_primary_10_1021_acs_jctc_8b00492
crossref_primary_10_1063_5_0202251
crossref_primary_10_1021_acs_jpca_4c04346
crossref_primary_10_1016_j_chphi_2023_100301
crossref_primary_10_1021_acs_accounts_2c00288
crossref_primary_10_1021_acs_jpca_1c06332
crossref_primary_10_1063_5_0137137
crossref_primary_10_1103_PhysRevResearch_3_023244
crossref_primary_10_1021_acs_jctc_9b00919
crossref_primary_10_1029_2022GL097953
crossref_primary_10_1021_acs_jpclett_3c03029
crossref_primary_10_1063_1_5045484
crossref_primary_10_1063_5_0045572
crossref_primary_10_1021_acs_jpclett_4c01751
crossref_primary_10_1002_jcc_27271
crossref_primary_10_1021_acs_jctc_2c00968
crossref_primary_10_1021_acs_jctc_3c01130
crossref_primary_10_1021_acs_jpclett_9b03462
crossref_primary_10_1021_acs_jpca_3c04121
crossref_primary_10_1021_acs_jctc_2c01262
crossref_primary_10_1021_jacs_2c04505
crossref_primary_10_1021_acs_jctc_2c01260
crossref_primary_10_1021_acs_jpclett_3c02187
crossref_primary_10_1088_2632_2153_ad8f13
crossref_primary_10_1021_acs_jpca_4c02219
crossref_primary_10_1063_1_5126440
crossref_primary_10_1016_j_comptc_2019_03_012
crossref_primary_10_1063_5_0113079
crossref_primary_10_1063_5_0148180
crossref_primary_10_1063_5_0004635
crossref_primary_10_1063_5_0089436
crossref_primary_10_1021_acs_jpclett_4c01688
crossref_primary_10_1021_acs_jpca_4c04639
crossref_primary_10_1021_acs_jctc_0c00825
crossref_primary_10_1063_5_0208575
crossref_primary_10_1021_acs_jpca_9b05214
crossref_primary_10_1038_s41467_021_26193_z
crossref_primary_10_1039_C8CP03273D
crossref_primary_10_1039_D2CP03702E
crossref_primary_10_1016_j_jphotochem_2020_112753
crossref_primary_10_1063_5_0037684
crossref_primary_10_1063_5_0039743
crossref_primary_10_1021_acs_jpca_4c07472
crossref_primary_10_1021_acs_jctc_3c00419
crossref_primary_10_1021_acs_jpca_3c04415
crossref_primary_10_1063_1_5113815
crossref_primary_10_3389_fchem_2022_859750
crossref_primary_10_1021_acs_jpca_2c04205
crossref_primary_10_1063_5_0179599
crossref_primary_10_1021_acs_jctc_4c01061
crossref_primary_10_1063_5_0198333
crossref_primary_10_1063_5_0203695
crossref_primary_10_1021_jacs_1c01506
crossref_primary_10_1038_s41557_022_00950_z
crossref_primary_10_1021_acs_jpca_3c01036
crossref_primary_10_1063_1_5048049
crossref_primary_10_1063_5_0252505
crossref_primary_10_1021_acs_jpclett_0c02193
crossref_primary_10_1002_cphc_202200039
crossref_primary_10_1021_acs_jpca_4c06834
crossref_primary_10_1063_5_0100339
crossref_primary_10_1063_5_0089415
crossref_primary_10_1039_D4SC01019A
crossref_primary_10_1063_5_0045402
crossref_primary_10_1007_s00214_020_2555_6
crossref_primary_10_1021_acs_jctc_4c01263
crossref_primary_10_1002_jcc_27521
crossref_primary_10_1002_ange_201916381
crossref_primary_10_1021_acs_jctc_4c00855
crossref_primary_10_1088_2632_2153_ad4a04
crossref_primary_10_1002_chem_202303191
crossref_primary_10_1063_5_0203667
crossref_primary_10_3390_molecules29081752
crossref_primary_10_1021_acs_jctc_1c01103
crossref_primary_10_1021_acs_jpca_1c09484
crossref_primary_10_1146_annurev_physchem_090419_104031
crossref_primary_10_1002_wcms_1715
crossref_primary_10_1021_acs_jpca_2c08025
crossref_primary_10_1007_s43630_023_00431_3
crossref_primary_10_1021_acs_jpclett_0c00320
crossref_primary_10_1021_acs_jpclett_4c01437
crossref_primary_10_1021_acs_jctc_9b00950
crossref_primary_10_1063_1_5143228
crossref_primary_10_1063_5_0067660
crossref_primary_10_1002_jcc_26783
crossref_primary_10_1021_acs_jpclett_9b03020
crossref_primary_10_1103_PhysRevA_98_053416
crossref_primary_10_1002_anie_201916381
crossref_primary_10_1021_acs_jctc_4c00068
crossref_primary_10_1021_acs_jctc_0c01249
crossref_primary_10_1021_acs_jpclett_9b01522
crossref_primary_10_1063_5_0204769
crossref_primary_10_1021_acs_jpclett_3c03578
crossref_primary_10_1021_acs_jpclett_0c00074
crossref_primary_10_1021_acs_jpclett_3c00748
crossref_primary_10_1002_qua_27078
crossref_primary_10_1021_acs_jctc_3c00583
crossref_primary_10_1021_acs_jpca_3c05280
crossref_primary_10_1021_acs_jpca_9b06103
crossref_primary_10_1021_jacs_3c13046
crossref_primary_10_1021_acsabm_2c00202
crossref_primary_10_1038_s41557_023_01230_0
crossref_primary_10_1021_acs_jctc_4c01642
crossref_primary_10_1021_acs_jctc_9b00282
crossref_primary_10_1039_C8CP05662E
crossref_primary_10_3390_molecules28041668
crossref_primary_10_1021_acs_jpclett_9b02747
crossref_primary_10_1021_acs_jctc_8b01049
crossref_primary_10_1021_acs_jctc_3c00908
crossref_primary_10_1021_acs_jpca_3c02333
crossref_primary_10_1021_acs_jpca_3c05841
crossref_primary_10_1021_acs_jctc_1c00674
crossref_primary_10_1016_j_chemosphere_2021_130831
crossref_primary_10_1021_acs_jpca_4c02422
crossref_primary_10_1021_acs_jctc_1c00318
crossref_primary_10_1021_acs_jctc_9b00859
crossref_primary_10_1002_wcms_1619
crossref_primary_10_1126_sciadv_adp9175
crossref_primary_10_1063_4_0000102
crossref_primary_10_1039_D2CP06009D
crossref_primary_10_1002_wcms_1731
crossref_primary_10_1002_jcc_27533
crossref_primary_10_1002_cptc_202400078
crossref_primary_10_1021_acs_jctc_2c01088
crossref_primary_10_1021_acs_jpcc_2c08676
crossref_primary_10_1039_C9CP03147B
crossref_primary_10_1002_cphc_202400216
crossref_primary_10_1021_acs_jpca_2c04671
crossref_primary_10_1021_acs_jctc_1c00346
crossref_primary_10_1063_5_0241573
crossref_primary_10_1016_j_molstruc_2021_131863
crossref_primary_10_1016_j_simpa_2023_100604
crossref_primary_10_1016_j_jphotochem_2022_113869
crossref_primary_10_1021_acs_jpclett_4c02312
crossref_primary_10_1038_s42004_022_00796_z
crossref_primary_10_1063_1674_0068_cjcp2006088
crossref_primary_10_1063_5_0202095
crossref_primary_10_1021_acs_jctc_9b00067
crossref_primary_10_1021_acs_jpclett_0c00527
crossref_primary_10_1016_j_comptc_2022_113634
crossref_primary_10_1021_acs_jctc_0c00248
crossref_primary_10_1021_acs_jctc_2c00204
crossref_primary_10_1021_acs_jpca_3c03546
crossref_primary_10_1002_ange_201915656
crossref_primary_10_1021_acs_jpclett_3c03304
crossref_primary_10_1002_cmtd_202200060
crossref_primary_10_1088_1361_648X_ab5246
crossref_primary_10_1002_jcc_70021
crossref_primary_10_1038_s41557_019_0291_0
crossref_primary_10_1016_j_comptc_2018_07_010
crossref_primary_10_1021_acs_jpca_4c08431
crossref_primary_10_1021_acs_jctc_1c00109
crossref_primary_10_1021_acs_jctc_0c00112
crossref_primary_10_1002_anie_201915656
crossref_primary_10_1021_acs_jctc_4c00424
crossref_primary_10_1021_acs_jctc_8b00763
crossref_primary_10_1016_j_jphotochem_2022_114024
ContentType Journal Article
Copyright 2018 The Authors. published by Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 The Authors. published by Wiley Periodicals, Inc.
DBID 24P
NPM
DOI 10.1002/wcms.1370
DatabaseName Wiley Online Library Open Access
PubMed
DatabaseTitle PubMed
DatabaseTitleList
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-0884
EndPage n/a
ExternalDocumentID 30450129
WCMS1370
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Austrian Science Fund (FWF)
  funderid: I2883 (DeNeTheor)
GroupedDBID 05W
0R~
1OC
1VH
24P
31~
33P
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-A
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
ROL
SUPJJ
WBKPD
WHWMO
WIH
WIK
WOHZO
WVDHM
WXSBR
WYJ
ZZTAW
~S-
AEYWJ
AGHNM
AGQPQ
AGYGG
NPM
ID FETCH-LOGICAL-c5090-8e8ab806d17942635d252504dbb4d6d7a24e1c9fa934cbee042895c19ee2c3643
IEDL.DBID 24P
ISSN 1759-0876
IngestDate Mon Jul 21 05:21:48 EDT 2025
Wed Jan 22 16:34:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Ab initio molecular dynamics
surface hopping
excited states
nonadiabatic dynamics
SHARC
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5090-8e8ab806d17942635d252504dbb4d6d7a24e1c9fa934cbee042895c19ee2c3643
ORCID 0000-0001-5112-794X
0000-0002-8711-1533
0000-0001-5327-8880
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1370
PMID 30450129
PageCount 23
ParticipantIDs pubmed_primary_30450129
wiley_primary_10_1002_wcms_1370_WCMS1370
PublicationCentury 2000
PublicationDate November/December 2018
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November/December 2018
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
PublicationTitle Wiley interdisciplinary reviews. Computational molecular science
PublicationTitleAlternate Wiley Interdiscip Rev Comput Mol Sci
PublicationYear 2018
Publisher Wiley Periodicals, Inc
Publisher_xml – name: Wiley Periodicals, Inc
SSID ssj0000491231
Score 2.628358
SecondaryResourceType review_article
Snippet We review the Surface Hopping including ARbitrary Couplings (SHARC) approach for excited‐state nonadiabatic dynamics simulations. As a generalization of the...
We review the Surface Hopping including ARbitrary Couplings (SHARC) approach for excited-state nonadiabatic dynamics simulations. As a generalization of the...
SourceID pubmed
wiley
SourceType Index Database
Publisher
StartPage e1370
SubjectTerms Ab initio molecular dynamics
excited states
nonadiabatic dynamics
SHARC
surface hopping
Title Nonadiabatic dynamics: The SHARC approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1370
https://www.ncbi.nlm.nih.gov/pubmed/30450129
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMdPVRlgQbwpL2VggME0cezEgamKqCqkVhWlolvkVzZaRIr4-vicJnRkiSLFGezT-f4-634HcFs6TSEMTwgVWhFkTBFRSk4UM9gTJVGlp_OPJ8lozl4WfNGBp6YWpuZDtAk39Ay_X6ODS1X1_6ChP_qjeoji1J3Xd7C0FsH5lE3bBIuTvm5X9geulGcE0WsNWSik_fbvrcizrU59eBkewP5GFwaD2pCH0LHLI9jNm3Zsx3A_WXmOgELEamDqRvLVY-DsHMxGg9c8aPDgJzAfPr_lI7Lpc0C0C9chEVZIJcLEoHMgHMZQvGxkRrkVS0wqKbORzkqZxUwra_GYk3EdZdZSHTtJcQrd5WppzyHIhC25ELHTERHjMpWWGsbSJIxLHSpqenBWz7b4rGEWBd6UYjKqB3d--u2HmmdMC1ypAleqeM_HM3y5-P_QS9hzCkPUxXtX0F1_fdtrF8XX6sZbyz0n0_EvB8GV8A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMdPVRnKgnhTnhkYYDBNHCdxEEsVUQVoK0Rb0S2KH9lIES3i6-OLm9CRLVKSwXc63__O8u8ArgujKbgKQkK5FAQZU4QXeUAEUzgTJRRFRecfjcN0xp7nwbwFD_VdGMuHaBpuGBnVfo0Bjg3p3h819Ed-LO88PzIF-xYLaYRhSdlr02Ex2tdsy1XFFQUxQfZajRZyaa_5eyP1bMrTKr8MdmFnLQydvvXkHrR0uQ-dpJ7HdgC340UFEhDIWHWUnSS_vHeMo51J2n9LnJoPfgizweM0Scl60AGRJl-7hGueC-6GCqMD6TCK4mkjU8KYLFRRTpn2ZFzksc-k0BrrnDiQXqw1lb7RFEfQLhelPgEn5roIOPeNkPBYkEe5poqxKHT9QrqCqi4c29Vmn5ZmkeFRKXajunBTLb95YYHGNENLZWip7D0ZTfDh9P-fXkEnnY6G2fBp_HIG20ZucHuT7xzaq69vfWFS-kpcVp77BbLmmFA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMdPVZGABfGmPDMwwGCaOE7iwIQCVXm0qigV3aL4tdFWtIivj89pQke2SEkG3-l8__PJvwO4NFZTcBXFhHIpCDKmCDdFRARTOBMlFsbR-Xv9uDtiz-No3IC76i5MyYeoD9wwMtx-jQE-U6b9Bw39kZ_zmyBMbL2-5pp9iHVmg_qAxUpfuyu7giuJUoLotYos5NN2_fdK5llVpy69dLZha6kLvfvSkTvQ0JNd2MiqcWx7cN2fOo6AQMSqp8pB8vNbz_rZG3bv3zKvwoPvw6jz-J51yXLOAZE2XfuEa14I7scKgwPhMIpis5EpYS0Wq6SgTAcyNUUaMim0xjInjWSQak1laCXFATQn04k-Ai_l2kSch1ZHBCwqkkJTxVgS-6GRvqCqBYflavNZCbPIsVOKh1EtuHLLr1-UPGOao6VytFT-kfWG-HD8_08vYH3w0Mlfn_ovJ7BpxQYv7_GdQnPx9a3PbEJfiHPnuF8knpeC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonadiabatic+dynamics%3A+The+SHARC+approach&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Mai%2C+Sebastian&rft.au=Marquetand%2C+Philipp&rft.au=Gonz%C3%A1lez%2C+Leticia&rft.date=2018-11-01&rft.pub=Wiley+Periodicals%2C+Inc&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=8&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwcms.1370&rft.externalDBID=10.1002%252Fwcms.1370&rft.externalDocID=WCMS1370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon