Nonadiabatic dynamics: The SHARC approach
We review the Surface Hopping including ARbitrary Couplings (SHARC) approach for excited‐state nonadiabatic dynamics simulations. As a generalization of the popular surface hopping method, SHARC allows simulating the full‐dimensional dynamics of molecules including any type of coupling terms beyond...
Saved in:
Published in | Wiley interdisciplinary reviews. Computational molecular science Vol. 8; no. 6; pp. e1370 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
Wiley Periodicals, Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1759-0876 1759-0884 |
DOI | 10.1002/wcms.1370 |
Cover
Loading…
Abstract | We review the Surface Hopping including ARbitrary Couplings (SHARC) approach for excited‐state nonadiabatic dynamics simulations. As a generalization of the popular surface hopping method, SHARC allows simulating the full‐dimensional dynamics of molecules including any type of coupling terms beyond nonadiabatic couplings. Examples of these arbitrary couplings include spin–orbit couplings or dipole moment–laser field couplings, such that SHARC can describe ultrafast internal conversion, intersystem crossing, and radiative processes. The key step of the SHARC approach consists of a diagonalization of the Hamiltonian including these couplings, such that the nuclear dynamics is carried out on potential energy surfaces including the effects of the couplings—this is critical in any applications considering, for example, transition metal complexes or strong laser fields. We also give an overview over the new SHARC2.0 dynamics software package, released under the GNU General Public License, which implements the SHARC approach and several analysis tools. The review closes with a brief survey of applications where SHARC was employed to study the nonadiabatic dynamics of a wide range of molecular systems.
This article is categorized under:
Theoretical and Physical Chemistry > Reaction Dynamics and Kinetics
Software > Simulation Methods
Software > Quantum Chemistry
We review the current status of the SHARC (Surface Hopping including ARbitrary Couplings) approach for nonadiabatic dynamics simulations. |
---|---|
AbstractList | We review the Surface Hopping including ARbitrary Couplings (SHARC) approach for excited‐state nonadiabatic dynamics simulations. As a generalization of the popular surface hopping method, SHARC allows simulating the full‐dimensional dynamics of molecules including any type of coupling terms beyond nonadiabatic couplings. Examples of these arbitrary couplings include spin–orbit couplings or dipole moment–laser field couplings, such that SHARC can describe ultrafast internal conversion, intersystem crossing, and radiative processes. The key step of the SHARC approach consists of a diagonalization of the Hamiltonian including these couplings, such that the nuclear dynamics is carried out on potential energy surfaces including the effects of the couplings—this is critical in any applications considering, for example, transition metal complexes or strong laser fields. We also give an overview over the new SHARC2.0 dynamics software package, released under the GNU General Public License, which implements the SHARC approach and several analysis tools. The review closes with a brief survey of applications where SHARC was employed to study the nonadiabatic dynamics of a wide range of molecular systems.
This article is categorized under:
Theoretical and Physical Chemistry > Reaction Dynamics and Kinetics
Software > Simulation Methods
Software > Quantum Chemistry
We review the current status of the SHARC (Surface Hopping including ARbitrary Couplings) approach for nonadiabatic dynamics simulations. We review the Surface Hopping including ARbitrary Couplings (SHARC) approach for excited-state nonadiabatic dynamics simulations. As a generalization of the popular surface hopping method, SHARC allows simulating the full-dimensional dynamics of molecules including any type of coupling terms beyond nonadiabatic couplings. Examples of these arbitrary couplings include spin-orbit couplings or dipole moment-laser field couplings, such that SHARC can describe ultrafast internal conversion, intersystem crossing, and radiative processes. The key step of the SHARC approach consists of a diagonalization of the Hamiltonian including these couplings, such that the nuclear dynamics is carried out on potential energy surfaces including the effects of the couplings-this is critical in any applications considering, for example, transition metal complexes or strong laser fields. We also give an overview over the new SHARC2.0 dynamics software package, released under the GNU General Public License, which implements the SHARC approach and several analysis tools. The review closes with a brief survey of applications where SHARC was employed to study the nonadiabatic dynamics of a wide range of molecular systems. This article is categorized under: Theoretical and Physical Chemistry > Reaction Dynamics and KineticsSoftware > Simulation MethodsSoftware > Quantum Chemistry. |
Author | Mai, Sebastian Marquetand, Philipp González, Leticia |
Author_xml | – sequence: 1 givenname: Sebastian orcidid: 0000-0001-5327-8880 surname: Mai fullname: Mai, Sebastian organization: University of Vienna – sequence: 2 givenname: Philipp orcidid: 0000-0002-8711-1533 surname: Marquetand fullname: Marquetand, Philipp organization: University of Vienna – sequence: 3 givenname: Leticia orcidid: 0000-0001-5112-794X surname: González fullname: González, Leticia email: leticia.gonzalez@univie.ac.at organization: University of Vienna |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30450129$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kEtLw0AUhQep2Fq78A9Iti7S3juPZMZdCdUKVcFWXA7zKo00DxKl5N_bUO3Z3APncDl812RQVmUg5BZhigB0dnBFO0WWwgUZYSpUDFLywdmnyZBM2vYLjuIKKcMrMmTABSBVI3L_WpXG58aa79xFvitNkbv2IdrsQrRezt-zyNR1Uxm3uyGXW7Nvw-TvjsnH42KTLePV29NzNl_FToCCWAZprITEY6o4TZjwVFAB3FvLfeJTQ3lAp7ZGMe5sCMCpVMKhCoE6lnA2Jnenv_WPLYLXdZMXpun0_-ZjYXYqHPJ96M45gu556J6H7nnoz-xl3Rv2CzcsUdM |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_3c00664 crossref_primary_10_1039_D0CP01353F crossref_primary_10_1021_acs_accounts_1c00485 crossref_primary_10_1021_acs_jctc_2c00297 crossref_primary_10_1039_D0CP01450H crossref_primary_10_1021_acs_jpclett_4c03225 crossref_primary_10_1063_5_0047760 crossref_primary_10_1021_acs_jctc_9b00525 crossref_primary_10_1016_j_saa_2024_124096 crossref_primary_10_1021_acs_jpca_4c03948 crossref_primary_10_1021_acs_jctc_4c01684 crossref_primary_10_1021_acs_jpcb_9b04027 crossref_primary_10_1021_acs_chemrev_2c00329 crossref_primary_10_1063_5_0013873 crossref_primary_10_1063_5_0044807 crossref_primary_10_1063_5_0250153 crossref_primary_10_1021_acs_jctc_1c01184 crossref_primary_10_1021_acs_jpclett_2c00207 crossref_primary_10_1038_s41467_021_25045_0 crossref_primary_10_1021_acs_jctc_1c01048 crossref_primary_10_1063_5_0139734 crossref_primary_10_1063_5_0061934 crossref_primary_10_1063_1_5047002 crossref_primary_10_1021_acs_jpca_3c01669 crossref_primary_10_1021_acs_jctc_3c00813 crossref_primary_10_1103_PhysRevLett_132_126903 crossref_primary_10_1021_jacs_4c00548 crossref_primary_10_3390_molecules28104222 crossref_primary_10_1021_acs_jctc_2c00988 crossref_primary_10_1063_1_5144267 crossref_primary_10_1063_5_0159247 crossref_primary_10_1021_acs_jctc_4c01331 crossref_primary_10_1021_acs_jctc_9b00532 crossref_primary_10_1021_acs_jctc_9b00898 crossref_primary_10_1021_acs_inorgchem_0c00553 crossref_primary_10_1088_2632_2153_abfe3f crossref_primary_10_1021_acs_jctc_4c00008 crossref_primary_10_1063_5_0215036 crossref_primary_10_1016_j_jphotochem_2023_115353 crossref_primary_10_1063_5_0021915 crossref_primary_10_1021_acs_jpclett_3c03014 crossref_primary_10_1021_jacs_4c12634 crossref_primary_10_1063_5_0167412 crossref_primary_10_1021_acs_jpca_2c03783 crossref_primary_10_1063_1_5129335 crossref_primary_10_1021_acs_jctc_3c00805 crossref_primary_10_1103_PhysRevA_106_013111 crossref_primary_10_1126_sciadv_aax6625 crossref_primary_10_1021_acs_jpclett_4c02475 crossref_primary_10_1063_1_5079426 crossref_primary_10_1063_1_5116816 crossref_primary_10_1021_acs_jpcb_4c05600 crossref_primary_10_1021_acs_jpclett_5c00065 crossref_primary_10_1002_jcc_26711 crossref_primary_10_1039_D4CC03943B crossref_primary_10_1038_s42005_023_01420_9 crossref_primary_10_1088_1361_6455_abd06d crossref_primary_10_1021_acs_jctc_1c01080 crossref_primary_10_1016_j_cplett_2020_137506 crossref_primary_10_1021_acs_jpca_1c10195 crossref_primary_10_1021_acsomega_3c01226 crossref_primary_10_1021_acs_jpca_9b00940 crossref_primary_10_1021_acs_jctc_2c01173 crossref_primary_10_1063_5_0204911 crossref_primary_10_1021_acsnano_2c08579 crossref_primary_10_1021_acs_jpca_3c02899 crossref_primary_10_1021_jacs_1c10153 crossref_primary_10_1038_s41557_023_01420_w crossref_primary_10_1007_s41061_021_00361_7 crossref_primary_10_1016_j_comptc_2019_01_011 crossref_primary_10_1103_PhysRevResearch_6_043010 crossref_primary_10_1021_acs_inorgchem_0c03163 crossref_primary_10_1038_s41467_021_21855_4 crossref_primary_10_1088_1674_1056_ad0cc9 crossref_primary_10_1088_2632_2153_ab9c3e crossref_primary_10_1021_acs_jctc_2c00888 crossref_primary_10_1021_acsearthspacechem_4c00242 crossref_primary_10_1021_acs_chemrev_9b00496 crossref_primary_10_1002_cptc_202400418 crossref_primary_10_1002_wcms_1435 crossref_primary_10_1021_jacsau_2c00250 crossref_primary_10_1021_acs_jctc_4c00343 crossref_primary_10_1021_acsearthspacechem_4c00365 crossref_primary_10_1063_5_0037878 crossref_primary_10_1038_s41467_022_32170_x crossref_primary_10_1246_bcsj_20210069 crossref_primary_10_1063_5_0054014 crossref_primary_10_1063_5_0222557 crossref_primary_10_1021_acs_jctc_9b00208 crossref_primary_10_1021_acs_jpclett_0c01439 crossref_primary_10_1021_acs_jctc_4c01125 crossref_primary_10_1021_acs_jctc_4c00157 crossref_primary_10_1021_acs_chemrev_9b00447 crossref_primary_10_1002_ange_202111493 crossref_primary_10_1021_acs_chemrev_0c00749 crossref_primary_10_1063_1_5137823 crossref_primary_10_1016_j_comptc_2019_02_009 crossref_primary_10_1088_2632_2153_ab88d0 crossref_primary_10_1021_acs_jctc_4c00959 crossref_primary_10_1007_s00214_023_03007_7 crossref_primary_10_1063_5_0026177 crossref_primary_10_1021_acs_jctc_2c01113 crossref_primary_10_1063_4_0000183 crossref_primary_10_1039_D4CP02474E crossref_primary_10_1002_nadc_20214118868 crossref_primary_10_1021_acs_chemmater_3c02667 crossref_primary_10_1111_php_13560 crossref_primary_10_1021_acs_jpcb_4c06924 crossref_primary_10_1021_acs_jctc_2c00948 crossref_primary_10_1007_s41061_022_00366_w crossref_primary_10_1021_acs_jctc_3c00182 crossref_primary_10_1002_jcc_27018 crossref_primary_10_1002_chem_202000507 crossref_primary_10_1021_acs_inorgchem_1c01838 crossref_primary_10_1021_acs_jctc_4c00169 crossref_primary_10_1038_s41563_024_01812_4 crossref_primary_10_1002_jcc_26045 crossref_primary_10_1021_acs_jctc_4c00842 crossref_primary_10_1063_5_0071376 crossref_primary_10_1021_acs_jpca_4c03481 crossref_primary_10_1002_anie_202111493 crossref_primary_10_1002_chem_202302178 crossref_primary_10_1021_acs_jpclett_3c00686 crossref_primary_10_1063_5_0036726 crossref_primary_10_1021_acs_jctc_2c01129 crossref_primary_10_1021_acs_jpclett_1c04143 crossref_primary_10_1021_acs_jpca_3c01414 crossref_primary_10_1093_bulcsj_uoae047 crossref_primary_10_1039_D3CP03730D crossref_primary_10_1021_acs_jpclett_1c02640 crossref_primary_10_1016_j_molliq_2023_121551 crossref_primary_10_1021_acs_jpclett_3c02628 crossref_primary_10_1038_s41467_022_28997_z crossref_primary_10_1021_acs_jpclett_4c00535 crossref_primary_10_1021_acs_jctc_4c00012 crossref_primary_10_1021_acs_jpca_0c03525 crossref_primary_10_1021_acs_jctc_0c00409 crossref_primary_10_1021_acs_jctc_8b00492 crossref_primary_10_1063_5_0202251 crossref_primary_10_1021_acs_jpca_4c04346 crossref_primary_10_1016_j_chphi_2023_100301 crossref_primary_10_1021_acs_accounts_2c00288 crossref_primary_10_1021_acs_jpca_1c06332 crossref_primary_10_1063_5_0137137 crossref_primary_10_1103_PhysRevResearch_3_023244 crossref_primary_10_1021_acs_jctc_9b00919 crossref_primary_10_1029_2022GL097953 crossref_primary_10_1021_acs_jpclett_3c03029 crossref_primary_10_1063_1_5045484 crossref_primary_10_1063_5_0045572 crossref_primary_10_1021_acs_jpclett_4c01751 crossref_primary_10_1002_jcc_27271 crossref_primary_10_1021_acs_jctc_2c00968 crossref_primary_10_1021_acs_jctc_3c01130 crossref_primary_10_1021_acs_jpclett_9b03462 crossref_primary_10_1021_acs_jpca_3c04121 crossref_primary_10_1021_acs_jctc_2c01262 crossref_primary_10_1021_jacs_2c04505 crossref_primary_10_1021_acs_jctc_2c01260 crossref_primary_10_1021_acs_jpclett_3c02187 crossref_primary_10_1088_2632_2153_ad8f13 crossref_primary_10_1021_acs_jpca_4c02219 crossref_primary_10_1063_1_5126440 crossref_primary_10_1016_j_comptc_2019_03_012 crossref_primary_10_1063_5_0113079 crossref_primary_10_1063_5_0148180 crossref_primary_10_1063_5_0004635 crossref_primary_10_1063_5_0089436 crossref_primary_10_1021_acs_jpclett_4c01688 crossref_primary_10_1021_acs_jpca_4c04639 crossref_primary_10_1021_acs_jctc_0c00825 crossref_primary_10_1063_5_0208575 crossref_primary_10_1021_acs_jpca_9b05214 crossref_primary_10_1038_s41467_021_26193_z crossref_primary_10_1039_C8CP03273D crossref_primary_10_1039_D2CP03702E crossref_primary_10_1016_j_jphotochem_2020_112753 crossref_primary_10_1063_5_0037684 crossref_primary_10_1063_5_0039743 crossref_primary_10_1021_acs_jpca_4c07472 crossref_primary_10_1021_acs_jctc_3c00419 crossref_primary_10_1021_acs_jpca_3c04415 crossref_primary_10_1063_1_5113815 crossref_primary_10_3389_fchem_2022_859750 crossref_primary_10_1021_acs_jpca_2c04205 crossref_primary_10_1063_5_0179599 crossref_primary_10_1021_acs_jctc_4c01061 crossref_primary_10_1063_5_0198333 crossref_primary_10_1063_5_0203695 crossref_primary_10_1021_jacs_1c01506 crossref_primary_10_1038_s41557_022_00950_z crossref_primary_10_1021_acs_jpca_3c01036 crossref_primary_10_1063_1_5048049 crossref_primary_10_1063_5_0252505 crossref_primary_10_1021_acs_jpclett_0c02193 crossref_primary_10_1002_cphc_202200039 crossref_primary_10_1021_acs_jpca_4c06834 crossref_primary_10_1063_5_0100339 crossref_primary_10_1063_5_0089415 crossref_primary_10_1039_D4SC01019A crossref_primary_10_1063_5_0045402 crossref_primary_10_1007_s00214_020_2555_6 crossref_primary_10_1021_acs_jctc_4c01263 crossref_primary_10_1002_jcc_27521 crossref_primary_10_1002_ange_201916381 crossref_primary_10_1021_acs_jctc_4c00855 crossref_primary_10_1088_2632_2153_ad4a04 crossref_primary_10_1002_chem_202303191 crossref_primary_10_1063_5_0203667 crossref_primary_10_3390_molecules29081752 crossref_primary_10_1021_acs_jctc_1c01103 crossref_primary_10_1021_acs_jpca_1c09484 crossref_primary_10_1146_annurev_physchem_090419_104031 crossref_primary_10_1002_wcms_1715 crossref_primary_10_1021_acs_jpca_2c08025 crossref_primary_10_1007_s43630_023_00431_3 crossref_primary_10_1021_acs_jpclett_0c00320 crossref_primary_10_1021_acs_jpclett_4c01437 crossref_primary_10_1021_acs_jctc_9b00950 crossref_primary_10_1063_1_5143228 crossref_primary_10_1063_5_0067660 crossref_primary_10_1002_jcc_26783 crossref_primary_10_1021_acs_jpclett_9b03020 crossref_primary_10_1103_PhysRevA_98_053416 crossref_primary_10_1002_anie_201916381 crossref_primary_10_1021_acs_jctc_4c00068 crossref_primary_10_1021_acs_jctc_0c01249 crossref_primary_10_1021_acs_jpclett_9b01522 crossref_primary_10_1063_5_0204769 crossref_primary_10_1021_acs_jpclett_3c03578 crossref_primary_10_1021_acs_jpclett_0c00074 crossref_primary_10_1021_acs_jpclett_3c00748 crossref_primary_10_1002_qua_27078 crossref_primary_10_1021_acs_jctc_3c00583 crossref_primary_10_1021_acs_jpca_3c05280 crossref_primary_10_1021_acs_jpca_9b06103 crossref_primary_10_1021_jacs_3c13046 crossref_primary_10_1021_acsabm_2c00202 crossref_primary_10_1038_s41557_023_01230_0 crossref_primary_10_1021_acs_jctc_4c01642 crossref_primary_10_1021_acs_jctc_9b00282 crossref_primary_10_1039_C8CP05662E crossref_primary_10_3390_molecules28041668 crossref_primary_10_1021_acs_jpclett_9b02747 crossref_primary_10_1021_acs_jctc_8b01049 crossref_primary_10_1021_acs_jctc_3c00908 crossref_primary_10_1021_acs_jpca_3c02333 crossref_primary_10_1021_acs_jpca_3c05841 crossref_primary_10_1021_acs_jctc_1c00674 crossref_primary_10_1016_j_chemosphere_2021_130831 crossref_primary_10_1021_acs_jpca_4c02422 crossref_primary_10_1021_acs_jctc_1c00318 crossref_primary_10_1021_acs_jctc_9b00859 crossref_primary_10_1002_wcms_1619 crossref_primary_10_1126_sciadv_adp9175 crossref_primary_10_1063_4_0000102 crossref_primary_10_1039_D2CP06009D crossref_primary_10_1002_wcms_1731 crossref_primary_10_1002_jcc_27533 crossref_primary_10_1002_cptc_202400078 crossref_primary_10_1021_acs_jctc_2c01088 crossref_primary_10_1021_acs_jpcc_2c08676 crossref_primary_10_1039_C9CP03147B crossref_primary_10_1002_cphc_202400216 crossref_primary_10_1021_acs_jpca_2c04671 crossref_primary_10_1021_acs_jctc_1c00346 crossref_primary_10_1063_5_0241573 crossref_primary_10_1016_j_molstruc_2021_131863 crossref_primary_10_1016_j_simpa_2023_100604 crossref_primary_10_1016_j_jphotochem_2022_113869 crossref_primary_10_1021_acs_jpclett_4c02312 crossref_primary_10_1038_s42004_022_00796_z crossref_primary_10_1063_1674_0068_cjcp2006088 crossref_primary_10_1063_5_0202095 crossref_primary_10_1021_acs_jctc_9b00067 crossref_primary_10_1021_acs_jpclett_0c00527 crossref_primary_10_1016_j_comptc_2022_113634 crossref_primary_10_1021_acs_jctc_0c00248 crossref_primary_10_1021_acs_jctc_2c00204 crossref_primary_10_1021_acs_jpca_3c03546 crossref_primary_10_1002_ange_201915656 crossref_primary_10_1021_acs_jpclett_3c03304 crossref_primary_10_1002_cmtd_202200060 crossref_primary_10_1088_1361_648X_ab5246 crossref_primary_10_1002_jcc_70021 crossref_primary_10_1038_s41557_019_0291_0 crossref_primary_10_1016_j_comptc_2018_07_010 crossref_primary_10_1021_acs_jpca_4c08431 crossref_primary_10_1021_acs_jctc_1c00109 crossref_primary_10_1021_acs_jctc_0c00112 crossref_primary_10_1002_anie_201915656 crossref_primary_10_1021_acs_jctc_4c00424 crossref_primary_10_1021_acs_jctc_8b00763 crossref_primary_10_1016_j_jphotochem_2022_114024 |
ContentType | Journal Article |
Copyright | 2018 The Authors. published by Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 The Authors. published by Wiley Periodicals, Inc. |
DBID | 24P NPM |
DOI | 10.1002/wcms.1370 |
DatabaseName | Wiley Online Library Open Access PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1759-0884 |
EndPage | n/a |
ExternalDocumentID | 30450129 WCMS1370 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Austrian Science Fund (FWF) funderid: I2883 (DeNeTheor) |
GroupedDBID | 05W 0R~ 1OC 1VH 24P 31~ 33P 8-0 8-1 A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-A DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W ROL SUPJJ WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR WYJ ZZTAW ~S- AEYWJ AGHNM AGQPQ AGYGG NPM |
ID | FETCH-LOGICAL-c5090-8e8ab806d17942635d252504dbb4d6d7a24e1c9fa934cbee042895c19ee2c3643 |
IEDL.DBID | 24P |
ISSN | 1759-0876 |
IngestDate | Mon Jul 21 05:21:48 EDT 2025 Wed Jan 22 16:34:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Ab initio molecular dynamics surface hopping excited states nonadiabatic dynamics SHARC |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5090-8e8ab806d17942635d252504dbb4d6d7a24e1c9fa934cbee042895c19ee2c3643 |
ORCID | 0000-0001-5112-794X 0000-0002-8711-1533 0000-0001-5327-8880 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1370 |
PMID | 30450129 |
PageCount | 23 |
ParticipantIDs | pubmed_primary_30450129 wiley_primary_10_1002_wcms_1370_WCMS1370 |
PublicationCentury | 2000 |
PublicationDate | November/December 2018 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November/December 2018 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States |
PublicationTitle | Wiley interdisciplinary reviews. Computational molecular science |
PublicationTitleAlternate | Wiley Interdiscip Rev Comput Mol Sci |
PublicationYear | 2018 |
Publisher | Wiley Periodicals, Inc |
Publisher_xml | – name: Wiley Periodicals, Inc |
SSID | ssj0000491231 |
Score | 2.628358 |
SecondaryResourceType | review_article |
Snippet | We review the Surface Hopping including ARbitrary Couplings (SHARC) approach for excited‐state nonadiabatic dynamics simulations. As a generalization of the... We review the Surface Hopping including ARbitrary Couplings (SHARC) approach for excited-state nonadiabatic dynamics simulations. As a generalization of the... |
SourceID | pubmed wiley |
SourceType | Index Database Publisher |
StartPage | e1370 |
SubjectTerms | Ab initio molecular dynamics excited states nonadiabatic dynamics SHARC surface hopping |
Title | Nonadiabatic dynamics: The SHARC approach |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1370 https://www.ncbi.nlm.nih.gov/pubmed/30450129 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMdPVRlgQbwpL2VggME0cezEgamKqCqkVhWlolvkVzZaRIr4-vicJnRkiSLFGezT-f4-634HcFs6TSEMTwgVWhFkTBFRSk4UM9gTJVGlp_OPJ8lozl4WfNGBp6YWpuZDtAk39Ay_X6ODS1X1_6ChP_qjeoji1J3Xd7C0FsH5lE3bBIuTvm5X9geulGcE0WsNWSik_fbvrcizrU59eBkewP5GFwaD2pCH0LHLI9jNm3Zsx3A_WXmOgELEamDqRvLVY-DsHMxGg9c8aPDgJzAfPr_lI7Lpc0C0C9chEVZIJcLEoHMgHMZQvGxkRrkVS0wqKbORzkqZxUwra_GYk3EdZdZSHTtJcQrd5WppzyHIhC25ELHTERHjMpWWGsbSJIxLHSpqenBWz7b4rGEWBd6UYjKqB3d--u2HmmdMC1ypAleqeM_HM3y5-P_QS9hzCkPUxXtX0F1_fdtrF8XX6sZbyz0n0_EvB8GV8A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMdPVRnKgnhTnhkYYDBNHCdxEEsVUQVoK0Rb0S2KH9lIES3i6-OLm9CRLVKSwXc63__O8u8ArgujKbgKQkK5FAQZU4QXeUAEUzgTJRRFRecfjcN0xp7nwbwFD_VdGMuHaBpuGBnVfo0Bjg3p3h819Ed-LO88PzIF-xYLaYRhSdlr02Ex2tdsy1XFFQUxQfZajRZyaa_5eyP1bMrTKr8MdmFnLQydvvXkHrR0uQ-dpJ7HdgC340UFEhDIWHWUnSS_vHeMo51J2n9LnJoPfgizweM0Scl60AGRJl-7hGueC-6GCqMD6TCK4mkjU8KYLFRRTpn2ZFzksc-k0BrrnDiQXqw1lb7RFEfQLhelPgEn5roIOPeNkPBYkEe5poqxKHT9QrqCqi4c29Vmn5ZmkeFRKXajunBTLb95YYHGNENLZWip7D0ZTfDh9P-fXkEnnY6G2fBp_HIG20ZucHuT7xzaq69vfWFS-kpcVp77BbLmmFA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMdPVZGABfGmPDMwwGCaOE7iwIQCVXm0qigV3aL4tdFWtIivj89pQke2SEkG3-l8__PJvwO4NFZTcBXFhHIpCDKmCDdFRARTOBMlFsbR-Xv9uDtiz-No3IC76i5MyYeoD9wwMtx-jQE-U6b9Bw39kZ_zmyBMbL2-5pp9iHVmg_qAxUpfuyu7giuJUoLotYos5NN2_fdK5llVpy69dLZha6kLvfvSkTvQ0JNd2MiqcWx7cN2fOo6AQMSqp8pB8vNbz_rZG3bv3zKvwoPvw6jz-J51yXLOAZE2XfuEa14I7scKgwPhMIpis5EpYS0Wq6SgTAcyNUUaMim0xjInjWSQak1laCXFATQn04k-Ai_l2kSch1ZHBCwqkkJTxVgS-6GRvqCqBYflavNZCbPIsVOKh1EtuHLLr1-UPGOao6VytFT-kfWG-HD8_08vYH3w0Mlfn_ovJ7BpxQYv7_GdQnPx9a3PbEJfiHPnuF8knpeC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonadiabatic+dynamics%3A+The+SHARC+approach&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Mai%2C+Sebastian&rft.au=Marquetand%2C+Philipp&rft.au=Gonz%C3%A1lez%2C+Leticia&rft.date=2018-11-01&rft.pub=Wiley+Periodicals%2C+Inc&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=8&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwcms.1370&rft.externalDBID=10.1002%252Fwcms.1370&rft.externalDocID=WCMS1370 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon |