Responses of foliar phosphorus fractions to soil age are diverse along a 2 Myr dune chronosequence

Plants respond to soil phosphorus (P) availability by adjusting leaf P among inorganic P (Pi) and organic P fractions (nucleic acids, phospholipids, small metabolites and a residual fraction). We tested whether phylogenetically divergent plants in a biodiversity hotspot similarly adjust leaf P alloc...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 223; no. 3; pp. 1621 - 1633
Main Authors Yan, Li, Zhang, Xinhou, Han, Zhongming, Pang, Jiayin, Lambers, Hans, Finnegan, Patrick M.
Format Journal Article
LanguageEnglish
Published England Wiley 01.08.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plants respond to soil phosphorus (P) availability by adjusting leaf P among inorganic P (Pi) and organic P fractions (nucleic acids, phospholipids, small metabolites and a residual fraction). We tested whether phylogenetically divergent plants in a biodiversity hotspot similarly adjust leaf P allocation in response to P limitation by sampling along a 2 Myr chronosequence in southwestern Australia where nitrogen (N) limitation transitions to P limitation with increasing soil age. Total P and N, and P allocated to five chemical fractions were determined for photosynthetic organs from Melaleuca systena (Myrtaceae), Acacia rostellifera (Fabaceae) and Hakea prostrata (Proteaceae). Soil characteristics were also determined. Acacia rostellifera maintained phyllode total P and N concentrations at c. 0.5 and 16 mg g−1 DW, respectively, with a constant P-allocation pattern along the chronosequence. H. prostrata leaves allocated less P to Pi, phospholipids and nucleic acids with increasing soil age, while leaf N concentration was constant. M. systena had the greatest variation in allocating leaf P, whereas leaf N concentration decreased 20% along the chronosequence. Variation in P-allocation patterns was only partially conserved among species along the chronosequence. Such variation could have an impact on species distribution and contribute to species richness in P-limited environments.
AbstractList Plants respond to soil phosphorus (P) availability by adjusting leaf P among inorganic P (Pi) and organic P fractions (nucleic acids, phospholipids, small metabolites and a residual fraction). We tested whether phylogenetically divergent plants in a biodiversity hotspot similarly adjust leaf P allocation in response to P limitation by sampling along a 2 Myr chronosequence in southwestern Australia where nitrogen (N) limitation transitions to P limitation with increasing soil age. Total P and N, and P allocated to five chemical fractions were determined for photosynthetic organs from Melaleuca systena (Myrtaceae), Acacia rostellifera (Fabaceae) and Hakea prostrata (Proteaceae). Soil characteristics were also determined. Acacia rostellifera maintained phyllode total P and N concentrations at c. 0.5 and 16 mg g−1 DW, respectively, with a constant P-allocation pattern along the chronosequence. H. prostrata leaves allocated less P to Pi, phospholipids and nucleic acids with increasing soil age, while leaf N concentration was constant. M. systena had the greatest variation in allocating leaf P, whereas leaf N concentration decreased 20% along the chronosequence. Variation in P-allocation patterns was only partially conserved among species along the chronosequence. Such variation could have an impact on species distribution and contribute to species richness in P-limited environments.
Plants respond to soil phosphorus (P) availability by adjusting leaf P among inorganic P (Pi) and organic P fractions (nucleic acids, phospholipids, small metabolites and a residual fraction). We tested whether phylogenetically divergent plants in a biodiversity hotspot similarly adjust leaf P allocation in response to P limitation by sampling along a 2 Myr chronosequence in southwestern Australia where nitrogen (N) limitation transitions to P limitation with increasing soil age. Total P and N, and P allocated to five chemical fractions were determined for photosynthetic organs from Melaleuca systena (Myrtaceae), Acacia rostellifera (Fabaceae) and Hakea prostrata (Proteaceae). Soil characteristics were also determined. Acacia rostellifera maintained phyllode total P and N concentrations at c . 0.5 and 16 mg g −1 DW, respectively, with a constant P‐allocation pattern along the chronosequence. H. prostrata leaves allocated less P to Pi, phospholipids and nucleic acids with increasing soil age, while leaf N concentration was constant. M. systena had the greatest variation in allocating leaf P, whereas leaf N concentration decreased 20% along the chronosequence. Variation in P‐allocation patterns was only partially conserved among species along the chronosequence. Such variation could have an impact on species distribution and contribute to species richness in P‐limited environments.
Plants respond to soil phosphorus (P) availability by adjusting leaf P among inorganic P (Pi) and organic P fractions (nucleic acids, phospholipids, small metabolites and a residual fraction). We tested whether phylogenetically divergent plants in a biodiversity hotspot similarly adjust leaf P allocation in response to P limitation by sampling along a 2 Myr chronosequence in southwestern Australia where nitrogen (N) limitation transitions to P limitation with increasing soil age.Total P and N, and P allocated to five chemical fractions were determined for photosynthetic organs from Melaleuca systena (Myrtaceae), Acacia rostellifera (Fabaceae) and Hakea prostrata (Proteaceae). Soil characteristics were also determined.Acacia rostellifera maintained phyllode total P and N concentrations at c. 0.5 and 16 mg g−1 DW, respectively, with a constant P‐allocation pattern along the chronosequence. H. prostrata leaves allocated less P to Pi, phospholipids and nucleic acids with increasing soil age, while leaf N concentration was constant. M. systena had the greatest variation in allocating leaf P, whereas leaf N concentration decreased 20% along the chronosequence.Variation in P‐allocation patterns was only partially conserved among species along the chronosequence. Such variation could have an impact on species distribution and contribute to species richness in P‐limited environments.
Plants respond to soil phosphorus (P) availability by adjusting leaf P among inorganic P (Pi) and organic P fractions (nucleic acids, phospholipids, small metabolites and a residual fraction). We tested whether phylogenetically divergent plants in a biodiversity hotspot similarly adjust leaf P allocation in response to P limitation by sampling along a 2 Myr chronosequence in southwestern Australia where nitrogen (N) limitation transitions to P limitation with increasing soil age. Total P and N, and P allocated to five chemical fractions were determined for photosynthetic organs from Melaleuca systena (Myrtaceae), Acacia rostellifera (Fabaceae) and Hakea prostrata (Proteaceae). Soil characteristics were also determined. Acacia rostellifera maintained phyllode total P and N concentrations at c. 0.5 and 16 mg g DW, respectively, with a constant P-allocation pattern along the chronosequence. H. prostrata leaves allocated less P to Pi, phospholipids and nucleic acids with increasing soil age, while leaf N concentration was constant. M. systena had the greatest variation in allocating leaf P, whereas leaf N concentration decreased 20% along the chronosequence. Variation in P-allocation patterns was only partially conserved among species along the chronosequence. Such variation could have an impact on species distribution and contribute to species richness in P-limited environments.
Plants respond to soil phosphorus (P) availability by adjusting leaf P among inorganic P (Pi) and organic P fractions (nucleic acids, phospholipids, small metabolites and a residual fraction). We tested whether phylogenetically divergent plants in a biodiversity hotspot similarly adjust leaf P allocation in response to P limitation by sampling along a 2 Myr chronosequence in southwestern Australia where nitrogen (N) limitation transitions to P limitation with increasing soil age. Total P and N, and P allocated to five chemical fractions were determined for photosynthetic organs from Melaleuca systena (Myrtaceae), Acacia rostellifera (Fabaceae) and Hakea prostrata (Proteaceae). Soil characteristics were also determined. Acacia rostellifera maintained phyllode total P and N concentrations at c. 0.5 and 16 mg g-1 DW, respectively, with a constant P-allocation pattern along the chronosequence. H. prostrata leaves allocated less P to Pi, phospholipids and nucleic acids with increasing soil age, while leaf N concentration was constant. M. systena had the greatest variation in allocating leaf P, whereas leaf N concentration decreased 20% along the chronosequence. Variation in P-allocation patterns was only partially conserved among species along the chronosequence. Such variation could have an impact on species distribution and contribute to species richness in P-limited environments.Plants respond to soil phosphorus (P) availability by adjusting leaf P among inorganic P (Pi) and organic P fractions (nucleic acids, phospholipids, small metabolites and a residual fraction). We tested whether phylogenetically divergent plants in a biodiversity hotspot similarly adjust leaf P allocation in response to P limitation by sampling along a 2 Myr chronosequence in southwestern Australia where nitrogen (N) limitation transitions to P limitation with increasing soil age. Total P and N, and P allocated to five chemical fractions were determined for photosynthetic organs from Melaleuca systena (Myrtaceae), Acacia rostellifera (Fabaceae) and Hakea prostrata (Proteaceae). Soil characteristics were also determined. Acacia rostellifera maintained phyllode total P and N concentrations at c. 0.5 and 16 mg g-1 DW, respectively, with a constant P-allocation pattern along the chronosequence. H. prostrata leaves allocated less P to Pi, phospholipids and nucleic acids with increasing soil age, while leaf N concentration was constant. M. systena had the greatest variation in allocating leaf P, whereas leaf N concentration decreased 20% along the chronosequence. Variation in P-allocation patterns was only partially conserved among species along the chronosequence. Such variation could have an impact on species distribution and contribute to species richness in P-limited environments.
Plants respond to soil phosphorus (P) availability by adjusting leaf P among inorganic P (Pi) and organic P fractions (nucleic acids, phospholipids, small metabolites and a residual fraction). We tested whether phylogenetically divergent plants in a biodiversity hotspot similarly adjust leaf P allocation in response to P limitation by sampling along a 2 Myr chronosequence in southwestern Australia where nitrogen (N) limitation transitions to P limitation with increasing soil age. Total P and N, and P allocated to five chemical fractions were determined for photosynthetic organs from Melaleuca systena (Myrtaceae), Acacia rostellifera (Fabaceae) and Hakea prostrata (Proteaceae). Soil characteristics were also determined. Acacia rostellifera maintained phyllode total P and N concentrations at c. 0.5 and 16 mg g⁻¹ DW, respectively, with a constant P‐allocation pattern along the chronosequence. H. prostrata leaves allocated less P to Pi, phospholipids and nucleic acids with increasing soil age, while leaf N concentration was constant. M. systena had the greatest variation in allocating leaf P, whereas leaf N concentration decreased 20% along the chronosequence. Variation in P‐allocation patterns was only partially conserved among species along the chronosequence. Such variation could have an impact on species distribution and contribute to species richness in P‐limited environments.
Summary Plants respond to soil phosphorus (P) availability by adjusting leaf P among inorganic P (Pi) and organic P fractions (nucleic acids, phospholipids, small metabolites and a residual fraction). We tested whether phylogenetically divergent plants in a biodiversity hotspot similarly adjust leaf P allocation in response to P limitation by sampling along a 2 Myr chronosequence in southwestern Australia where nitrogen (N) limitation transitions to P limitation with increasing soil age. Total P and N, and P allocated to five chemical fractions were determined for photosynthetic organs from Melaleuca systena (Myrtaceae), Acacia rostellifera (Fabaceae) and Hakea prostrata (Proteaceae). Soil characteristics were also determined. Acacia rostellifera maintained phyllode total P and N concentrations at c. 0.5 and 16 mg g−1 DW, respectively, with a constant P‐allocation pattern along the chronosequence. H. prostrata leaves allocated less P to Pi, phospholipids and nucleic acids with increasing soil age, while leaf N concentration was constant. M. systena had the greatest variation in allocating leaf P, whereas leaf N concentration decreased 20% along the chronosequence. Variation in P‐allocation patterns was only partially conserved among species along the chronosequence. Such variation could have an impact on species distribution and contribute to species richness in P‐limited environments.
Author Lambers, Hans
Zhang, Xinhou
Pang, Jiayin
Yan, Li
Finnegan, Patrick M.
Han, Zhongming
Author_xml – sequence: 1
  givenname: Li
  surname: Yan
  fullname: Yan, Li
– sequence: 2
  givenname: Xinhou
  surname: Zhang
  fullname: Zhang, Xinhou
– sequence: 3
  givenname: Zhongming
  surname: Han
  fullname: Han, Zhongming
– sequence: 4
  givenname: Jiayin
  surname: Pang
  fullname: Pang, Jiayin
– sequence: 5
  givenname: Hans
  surname: Lambers
  fullname: Lambers, Hans
– sequence: 6
  givenname: Patrick M.
  surname: Finnegan
  fullname: Finnegan, Patrick M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31077589$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEYhYNU7LZ64Q9QAt7oxbT5mCSTSynWCvUDUfAuZDNvullmk2kyY9l_b-ruelEUAyG5eM55Oe85QUcxRUDoOSVntJ7zOK7OqNCUPEIL2krddJSrI7QghHWNbOWPY3RSypoQooVkT9Axp0Qp0ekFWn6FMqZYoODksU9DsBmPq1TqzXPBPls3hQrgKeGSwoDtDWCbAffhJ-RS_0OKN9hihj9uM-7nCNitcoqpwO0M0cFT9NjbocCz_XuKvl---3Zx1Vx_fv_h4u114wTRpFHW953oqGs77WRrPe1BLqGjSlJPnZDSgWJaC-WdtMzLTpGWydYRLlxfE5-i1zvfMac6uUxmE4qDYbAR0lwM40RQwVXb_h9lnGomudQVffUAXac5xxqkUkIJzphUlXq5p-blBnoz5rCxeWsOi67A-Q5wOZWSwRsXJnu_2SnbMBhKzH2VplZpfldZFW8eKA6mf2P37ndhgO2_QfPpy9VB8WKnWJcp5T-KmkVoQQj_BRkPtUI
CitedBy_id crossref_primary_10_1007_s11104_021_05195_2
crossref_primary_10_1093_aob_mcab138
crossref_primary_10_1093_aob_mcab013
crossref_primary_10_1111_gcb_16501
crossref_primary_10_1016_j_ecolind_2019_105949
crossref_primary_10_1016_j_scitotenv_2024_169924
crossref_primary_10_1186_s13059_024_03348_x
crossref_primary_10_1111_nph_70010
crossref_primary_10_3390_f15122255
crossref_primary_10_1111_ppl_13555
crossref_primary_10_3390_plants12040751
crossref_primary_10_1016_j_geoderma_2021_115546
crossref_primary_10_3390_plants14010004
crossref_primary_10_1016_j_soilbio_2024_109385
crossref_primary_10_1007_s00344_022_10836_6
crossref_primary_10_1111_nph_17770
crossref_primary_10_1111_nph_19513
crossref_primary_10_1111_tpj_16057
crossref_primary_10_1093_jxb_erae427
crossref_primary_10_1016_j_chemosphere_2020_128438
crossref_primary_10_1111_nph_18588
crossref_primary_10_1146_annurev_arplant_102720_125738
crossref_primary_10_1016_j_fecs_2024_100265
crossref_primary_10_1007_s11104_023_06097_1
crossref_primary_10_1016_j_foreco_2023_121129
crossref_primary_10_1007_s40626_020_00180_z
crossref_primary_10_1007_s42729_023_01435_9
crossref_primary_10_1111_nph_20015
crossref_primary_10_1007_s11104_022_05464_8
crossref_primary_10_1093_jxb_erac117
crossref_primary_10_3389_ffgc_2020_00083
crossref_primary_10_1093_jpe_rtae064
crossref_primary_10_1111_ppl_14105
crossref_primary_10_1111_pce_14895
crossref_primary_10_1016_j_jhazmat_2025_137997
crossref_primary_10_1038_s41467_022_32545_0
crossref_primary_10_1016_j_scitotenv_2023_166395
crossref_primary_10_3390_horticulturae9050536
crossref_primary_10_1093_jpe_rtae060
crossref_primary_10_3389_fpls_2022_833869
crossref_primary_10_1093_jxb_erac519
crossref_primary_10_1016_j_fecs_2024_100241
crossref_primary_10_1007_s11104_024_06710_x
crossref_primary_10_1080_10643389_2022_2120317
crossref_primary_10_1093_aob_mcab145
crossref_primary_10_1007_s11104_022_05477_3
crossref_primary_10_1007_s11104_023_06001_x
crossref_primary_10_1007_s11104_024_06774_9
crossref_primary_10_1007_s11104_023_06275_1
crossref_primary_10_1111_pce_15038
crossref_primary_10_1002_jpln_202300280
crossref_primary_10_1007_s11104_024_06898_y
crossref_primary_10_1007_s11104_023_06156_7
crossref_primary_10_1007_s11104_023_06075_7
crossref_primary_10_1016_j_cpb_2024_100323
crossref_primary_10_1016_j_scitotenv_2022_157456
crossref_primary_10_1016_j_cj_2024_12_022
crossref_primary_10_1016_j_plaphy_2024_108467
crossref_primary_10_1111_1365_2435_14721
Cites_doi 10.1016/j.phytochem.2013.09.026
10.1007/s00442-017-3938-9
10.1111/j.1469-8137.2008.02513.x
10.1071/BT15134
10.1111/1365-2745.13158
10.1111/j.1469-8137.2012.04285.x
10.1111/pce.13124
10.1007/s11104-008-9877-9
10.1017/S0014479716000351
10.1111/j.1399-3054.1982.tb00264.x
10.1111/nph.14474
10.1111/ppl.12704
10.1111/nph.14640
10.1111/ejss.12507
10.1080/09064710.2015.1080854
10.1002/9781118958841.ch11
10.1111/pce.12240
10.1093/aob/mcq027
10.1007/s11104-017-3427-2
10.1146/annurev.ecolsys.35.112202.130201
10.1093/aob/mcs299
10.1023/A:1006218310248
10.1111/j.1461-0248.2009.01310.x
10.1111/j.1469-8137.2012.04190.x
10.1016/j.microc.2003.10.007
10.1038/nplants.2015.109
10.1038/35002501
10.1105/tpc.105.038943
10.1111/j.1365-3040.2004.01204.x
10.1002/ece3.2000
10.1111/pce.12853
10.1104/pp.114.248930
10.1111/j.1365-3040.2007.01733.x
10.1002/ece3.861
10.1111/nph.15043
10.1111/1365-2435.13252
10.1111/j.1469-8137.2004.01192.x
10.1007/s11104-004-2725-7
10.1016/j.tplants.2018.10.004
10.1111/1365-2745.12546
10.1111/1365-2745.12196
10.2134/agronmonogr9.2.2ed.c24
10.1080/00103629909370368
10.1093/jxb/erh111
10.1016/j.tree.2007.10.008
10.1078/1433-8319-00068
10.1093/jxb/eru348
10.3389/fpls.2017.01662
10.1111/j.1365-2745.2012.01962.x
10.1104/pp.111.174318
10.1111/j.1399-3054.2005.00527.x
ContentType Journal Article
Copyright 2019 The Authors © 2019 New Phytologist Trust
2019 The Authors. New Phytologist © 2019 New Phytologist Trust
2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
Copyright © 2019 New Phytologist Trust
Copyright_xml – notice: 2019 The Authors © 2019 New Phytologist Trust
– notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust
– notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
– notice: Copyright © 2019 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.15910
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1633
ExternalDocumentID 31077589
10_1111_nph_15910
NPH15910
26759500
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GrantInformation_xml – fundername: Study Abroad Program for Excellent PhD Students of Guangxi Zhuang Autonomous Region
– fundername: Australian Research Council
  funderid: DP140100148
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5090-7afd8581c489c64af1de6be81761f1c566ce729957fc6a2f68704264c035cd813
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:21:44 EDT 2025
Thu Jul 10 23:29:38 EDT 2025
Fri Jul 25 11:49:30 EDT 2025
Thu Apr 03 07:02:02 EDT 2025
Thu Apr 24 23:13:03 EDT 2025
Tue Jul 01 02:28:32 EDT 2025
Wed Jan 22 16:41:01 EST 2025
Thu Jul 03 22:07:05 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords soil phosphorus gradient
phosphate
Australian native species
leaf phosphorus fractions
nucleic acid
phospholipid
phosphorus allocation
Language English
License 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5090-7afd8581c489c64af1de6be81761f1c566ce729957fc6a2f68704264c035cd813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5021-1138
0000-0003-4895-2070
0000-0002-2971-3923
0000-0002-4118-2272
0000-0002-8127-645X
0000-0003-3937-2509
OpenAccessLink https://nph.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.15910
PMID 31077589
PQID 2257532267
PQPubID 2026848
PageCount 13
ParticipantIDs proquest_miscellaneous_2305153744
proquest_miscellaneous_2231926369
proquest_journals_2257532267
pubmed_primary_31077589
crossref_citationtrail_10_1111_nph_15910
crossref_primary_10_1111_nph_15910
wiley_primary_10_1111_nph_15910_NPH15910
jstor_primary_26759500
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2019
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2018; 163
2017; 8
2004; 164
2013; 3
2005a; 274
2010; 105
1982; 54
1999; 45
2018; 41
2016; 104
2007; 30
2015b; 1
2016; 39
2011; 156
2014; 65
2004; 76
2009; 12
2018; 218
2000; 403
2019; 24
2004; 35
2013; 96
2009; 320
2013; 111
2008; 23
1982
2005b; 124
2014; 166
2015a; 48
2012; 100
2018; 424
2019; 33
2006; 18
2004
1999; 2
2004b; 27
2016; 16
2017; 215
2018; 69
2012; 195
2016; 6
2017; 53
2012; 196
2004a; 55
2019
2016; 64
2014; 37
1999; 30
2017; 185
2014
2008; 179
1966
2014; 102
2016; 66
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Mucina L (e_1_2_7_36_1) 2014
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
Lambers H (e_1_2_7_30_1) 2014
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Moir J (e_1_2_7_35_1) 2016; 16
e_1_2_7_51_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
Walinga I (e_1_2_7_56_1) 2004
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_38_1
Ames B (e_1_2_7_4_1) 1966
References_xml – volume: 55
  start-page: 1033
  year: 2004a
  end-page: 1044
  article-title: Tissue and cellular phosphorus storage during development of phosphorus toxicity in (Proteaceae)
  publication-title: Journal of Experimental Botany
– volume: 30
  start-page: 2231
  year: 1999
  end-page: 2244
  article-title: Evaluation of anion exchange membranes to estimate bioavailable phosphorus in native grasslands of semi‐arid northwestern Australia
  publication-title: Communications in Soil Science and Plant Analysis
– volume: 2
  start-page: 149
  year: 1999
  end-page: 162
  article-title: Nitrogen fixation and growth of non‐crop legume species in diverse environments
  publication-title: Perspectives in Plant Ecology, Evolution and Systematics
– volume: 66
  start-page: 127
  year: 2016
  end-page: 132
  article-title: Grain legumes differ in nitrogen accumulation and remobilisation during seed filling
  publication-title: Acta Agriculturae Scandinavica Section B: Soil and Plant Science
– volume: 195
  start-page: 306
  year: 2012
  end-page: 320
  article-title: Opportunities for improving phosphorus‐use efficiency in crop plants
  publication-title: New Phytologist
– volume: 185
  start-page: 171
  year: 2017
  end-page: 180
  article-title: Phosphorus and nitrogen resorption from different chemical fractions in senescing leaves of tropical tree species on Mount Kinabalu, Borneo
  publication-title: Oecologia
– volume: 23
  start-page: 95
  year: 2008
  end-page: 103
  article-title: Plant nutrient‐acquisition strategies change with soil age
  publication-title: Trends in Ecology and Evolution
– volume: 3
  start-page: 4872
  year: 2013
  end-page: 4880
  article-title: Relationship between photosynthetic phosphorus‐use efficiency and foliar phosphorus fractions in tropical tree species
  publication-title: Ecology and Evolution
– volume: 196
  start-page: 1098
  year: 2012
  end-page: 1108
  article-title: Proteaceae from severely phosphorus‐impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus‐use‐efficiency
  publication-title: New Phytologist
– volume: 164
  start-page: 243
  year: 2004
  end-page: 266
  article-title: N : P ratios in terrestrial plants: variation and functional significance
  publication-title: New Phytologist
– volume: 35
  start-page: 623
  year: 2004
  end-page: 650
  article-title: The Southwest Australian Floristic Region: evolution and conservation of a global hot spot of biodiversity
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 69
  start-page: 69
  year: 2018
  end-page: 85
  article-title: A climosequence of chronosequences in southwestern Australia
  publication-title: European Journal of Soil Science
– start-page: 115
  year: 1966
  end-page: 118
– volume: 218
  start-page: 959
  year: 2018
  end-page: 973
  article-title: Eudicots from severely phosphorus‐impoverished environments preferentially allocate phosphorus to their mesophyll
  publication-title: New Phytologist
– volume: 163
  start-page: 323
  year: 2018
  end-page: 343
  article-title: Phosphorus‐ and nitrogen‐acquisition strategies in two species (Fabaceae) along retrogressive soil chronosequences in south‐western Australia
  publication-title: Physiologia Plantarum
– volume: 403
  start-page: 853
  year: 2000
  end-page: 858
  article-title: Biodiversity hotspots for conservation priorities
  publication-title: Nature
– volume: 215
  start-page: 40
  year: 2017
  end-page: 56
  article-title: Biogeography of nodulated legumes and their nitrogen‐fixing symbionts
  publication-title: New Phytologist
– start-page: 7
  year: 2004
  end-page: 9
– volume: 18
  start-page: 412
  year: 2006
  end-page: 421
  article-title: Regulation of phosphate homeostasis by microRNA in
  publication-title: Plant Cell
– volume: 166
  start-page: 1891
  year: 2014
  end-page: 1911
  article-title: Lipid biosynthesis and protein concentration respond uniquely to phosphate supply during leaf development in highly phosphorus‐efficient
  publication-title: Plant Physiology
– volume: 24
  start-page: 69
  year: 2019
  end-page: 82
  article-title: How does evolution in phosphorus‐impoverished landscapes impact plant nitrogen and sulfur assimilation?
  publication-title: Trends in Plant Science
– volume: 105
  start-page: 1081
  year: 2010
  end-page: 1102
  article-title: Comparative physiology of elemental distributions in plants
  publication-title: Annals of Botany
– volume: 12
  start-page: 765
  year: 2009
  end-page: 771
  article-title: N : P stoichiometry and protein : RNA ratios in vascular plants: an evaluation of the growth‐rate hypothesis
  publication-title: Ecology Letters
– volume: 16
  start-page: 438
  year: 2016
  end-page: 460
  article-title: Phosphorus response and optimum pH ranges of twelve pasture legumes grown in an acid upland New Zealand soil under glasshouse conditions
  publication-title: Journal of Soil Science and Plant Nutrition
– volume: 274
  start-page: 101
  year: 2005a
  end-page: 125
  article-title: Cluster roots: a curiosity in context
  publication-title: Plant and Soil
– volume: 53
  start-page: 308
  year: 2017
  end-page: 319
  article-title: Phosphorus‐mobilization strategy based on carboxylate exudation in lupins ( , Fabaceae): a mechanism facilitating the growth and phosphorus acquisition of neighbouring plants under phosphorus‐limited conditions
  publication-title: Experimental Agriculture
– volume: 76
  start-page: 23
  year: 2004
  end-page: 29
  article-title: Determination of major and trace elements in biological materials by microwave induced plasma optical emission spectrometry (MIP‐OES) following tetramethylammonium hydroxide (TMAH) solubilization
  publication-title: Microchemical Journal
– volume: 41
  start-page: 605
  year: 2018
  end-page: 619
  article-title: Proteaceae from phosphorus‐impoverished habitats preferentially allocate phosphorus to photosynthetic cells: an adaptation improving phosphorus‐use efficiency
  publication-title: Plant, Cell & Environment
– volume: 48
  start-page: 289
  year: 2015a
  end-page: 336
– year: 2019
  article-title: Trait convergence in photosynthetic nutrient‐use efficiency along a 2‐million year dune chronosequence in a global biodiversity hotspot
  publication-title: Journal of Ecology
– volume: 39
  start-page: 2754
  year: 2016
  end-page: 2761
  article-title: Tight control of nitrate acquisition in a plant species that evolved in an extremely phosphorus‐impoverished environment
  publication-title: Plant, Cell & Environment
– volume: 111
  start-page: 445
  year: 2013
  end-page: 454
  article-title: Downregulation of net phosphorus‐uptake capacity is inversely related to leaf phosphorus‐resorption proficiency in four species from a phosphorus‐impoverished environment
  publication-title: Annals of Botany
– start-page: 403
  year: 1982
  end-page: 430
– volume: 320
  start-page: 37
  year: 2009
  end-page: 77
  article-title: Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis
  publication-title: Plant and Soil
– volume: 45
  start-page: 303
  year: 1999
  end-page: 341
  article-title: Application of the ecosystem mimic concept to the species‐rich Banksia woodlands of Western Australia
  publication-title: Agroforestry Systems
– volume: 30
  start-page: 1557
  year: 2007
  end-page: 1565
  article-title: (Proteaceae) from severely phosphorus‐impoverished soils exhibit extreme efficiency in the use and re‐mobilization of phosphorus
  publication-title: Plant, Cell & Environment
– volume: 54
  start-page: 309
  year: 1982
  end-page: 317
  article-title: Mild phosphorus stress in barley and a related low‐phosphorus‐adapted barleygrass: phosphorus fractions and phosphate absorption in relation to growth
  publication-title: Physiologia Plantarum
– volume: 8
  start-page: 1662
  year: 2017
  end-page: 1671
  article-title: Legume shrubs are more nitrogen‐homeostatic than non‐legume shrubs
  publication-title: Frontiers in Plant Science
– volume: 104
  start-page: 792
  year: 2016
  end-page: 805
  article-title: Increasing plant species diversity and extreme species turnover accompany declining soil fertility along a long‐term chronosequence in a biodiversity hotspot
  publication-title: Journal of Ecology
– volume: 179
  start-page: 829
  year: 2008
  end-page: 836
  article-title: Nutrient concentration ratios and co‐limitation in South African grasslands
  publication-title: New Phytologist
– volume: 100
  start-page: 631
  year: 2012
  end-page: 642
  article-title: Experimental assessment of nutrient limitation along a 2‐million‐year dune chronosequence in the south‐western Australia biodiversity hotspot
  publication-title: Journal of Ecology
– start-page: 101
  year: 2014
  end-page: 127
– volume: 64
  start-page: 77
  year: 2016
  end-page: 88
  article-title: , the world's most sclerophyllous genus, arose in southwestern Australian heathland and diversified throughout Australia over the past 12 million years
  publication-title: Australian Journal of Botany
– volume: 215
  start-page: 1068
  year: 2017
  end-page: 1079
  article-title: Tight control of sulfur assimilation: an adaptive mechanism for a plant from a severely phosphorus‐impoverished habitat
  publication-title: New Phytologist
– volume: 6
  start-page: 2368
  year: 2016
  end-page: 2377
  article-title: Shifts in symbiotic associations in plants capable of forming multiple root symbioses across a long‐term soil chronosequence
  publication-title: Ecology and Evolution
– volume: 33
  start-page: 503
  year: 2019
  end-page: 513
  article-title: Foliar phosphorus fractions reveal how tropical plants maintain photosynthetic rates despite low soil phosphorus availability
  publication-title: Functional Ecology
– start-page: 35
  year: 2014
  end-page: 79
– volume: 65
  start-page: 6097
  year: 2014
  end-page: 6106
  article-title: Senescence‐inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in (Proteaceae) and (Brassicaceae)
  publication-title: Journal of Experimental Botany
– volume: 27
  start-page: 991
  year: 2004b
  end-page: 1004
  article-title: A root trait accounting for the extreme phosphorus sensitivity of (Proteaceae)
  publication-title: Plant, Cell & Environment
– volume: 156
  start-page: 1058
  year: 2011
  end-page: 1066
  article-title: Phosphorus nutrition of Proteaceae in severely phosphorus‐impoverished soils: are there lessons to be learned for future crops?
  publication-title: Plant Physiology
– volume: 124
  start-page: 441
  year: 2005b
  end-page: 450
  article-title: Manganese accumulation in leaves of (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply
  publication-title: Physiologia Plantarum
– volume: 102
  start-page: 396
  year: 2014
  end-page: 410
  article-title: Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient‐acquisition strategies along a 2‐million‐year dune chronosequence
  publication-title: Journal of Ecology
– volume: 96
  start-page: 81
  year: 2013
  end-page: 91
  article-title: Differential changes in galactolipid and phospholipid species in soybean leaves and roots under nitrogen deficiency and after nodulation
  publication-title: Phytochemistry
– volume: 424
  start-page: 11
  year: 2018
  end-page: 33
  article-title: How belowground interactions contribute to the coexistence of mycorrhizal and non‐mycorrhizal species in severely phosphorus‐impoverished hyperdiverse ecosystems
  publication-title: Plant and Soil
– volume: 1
  start-page: 1
  year: 2015b
  end-page: 9
  article-title: Phosphorus nutrition in Proteaceae and beyond
  publication-title: Nature Plants
– volume: 37
  start-page: 1276
  year: 2014
  end-page: 1298
  article-title: Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus‐use efficiency of Proteaceae species
  publication-title: Plant, Cell & Environment
– ident: e_1_2_7_38_1
  doi: 10.1016/j.phytochem.2013.09.026
– ident: e_1_2_7_53_1
  doi: 10.1007/s00442-017-3938-9
– ident: e_1_2_7_11_1
  doi: 10.1111/j.1469-8137.2008.02513.x
– start-page: 101
  volume-title: Plant life on the sandplains in southwest Australia, a global biodiversity hotspot
  year: 2014
  ident: e_1_2_7_30_1
– ident: e_1_2_7_31_1
  doi: 10.1071/BT15134
– ident: e_1_2_7_15_1
  doi: 10.1111/1365-2745.13158
– ident: e_1_2_7_28_1
  doi: 10.1111/j.1469-8137.2012.04285.x
– ident: e_1_2_7_18_1
  doi: 10.1111/pce.13124
– ident: e_1_2_7_6_1
  doi: 10.1007/s11104-008-9877-9
– ident: e_1_2_7_13_1
  doi: 10.1017/S0014479716000351
– start-page: 7
  volume-title: Plant analysis manual
  year: 2004
  ident: e_1_2_7_56_1
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1399-3054.1982.tb00264.x
– ident: e_1_2_7_51_1
  doi: 10.1111/nph.14474
– start-page: 115
  volume-title: Methods in enzymology
  year: 1966
  ident: e_1_2_7_4_1
– ident: e_1_2_7_2_1
  doi: 10.1111/ppl.12704
– ident: e_1_2_7_44_1
  doi: 10.1111/nph.14640
– ident: e_1_2_7_54_1
  doi: 10.1111/ejss.12507
– ident: e_1_2_7_40_1
  doi: 10.1080/09064710.2015.1080854
– ident: e_1_2_7_25_1
  doi: 10.1002/9781118958841.ch11
– ident: e_1_2_7_52_1
  doi: 10.1111/pce.12240
– ident: e_1_2_7_10_1
  doi: 10.1093/aob/mcq027
– ident: e_1_2_7_24_1
  doi: 10.1007/s11104-017-3427-2
– ident: e_1_2_7_21_1
  doi: 10.1146/annurev.ecolsys.35.112202.130201
– ident: e_1_2_7_7_1
  doi: 10.1093/aob/mcs299
– ident: e_1_2_7_41_1
  doi: 10.1023/A:1006218310248
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1461-0248.2009.01310.x
– ident: e_1_2_7_55_1
  doi: 10.1111/j.1469-8137.2012.04190.x
– ident: e_1_2_7_32_1
  doi: 10.1016/j.microc.2003.10.007
– volume: 16
  start-page: 438
  year: 2016
  ident: e_1_2_7_35_1
  article-title: Phosphorus response and optimum pH ranges of twelve pasture legumes grown in an acid upland New Zealand soil under glasshouse conditions
  publication-title: Journal of Soil Science and Plant Nutrition
– ident: e_1_2_7_26_1
  doi: 10.1038/nplants.2015.109
– ident: e_1_2_7_37_1
  doi: 10.1038/35002501
– ident: e_1_2_7_9_1
  doi: 10.1105/tpc.105.038943
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1365-3040.2004.01204.x
– ident: e_1_2_7_3_1
  doi: 10.1002/ece3.2000
– ident: e_1_2_7_43_1
  doi: 10.1111/pce.12853
– ident: e_1_2_7_22_1
  doi: 10.1104/pp.114.248930
– ident: e_1_2_7_12_1
  doi: 10.1111/j.1365-3040.2007.01733.x
– ident: e_1_2_7_20_1
  doi: 10.1002/ece3.861
– ident: e_1_2_7_14_1
  doi: 10.1111/nph.15043
– ident: e_1_2_7_34_1
  doi: 10.1111/1365-2435.13252
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1469-8137.2004.01192.x
– ident: e_1_2_7_45_1
  doi: 10.1007/s11104-004-2725-7
– ident: e_1_2_7_42_1
  doi: 10.1016/j.tplants.2018.10.004
– start-page: 35
  volume-title: Plant life on the sandplains in southwest Australia, a global biodiversity hotspot
  year: 2014
  ident: e_1_2_7_36_1
– ident: e_1_2_7_57_1
  doi: 10.1111/1365-2745.12546
– ident: e_1_2_7_19_1
  doi: 10.1111/1365-2745.12196
– ident: e_1_2_7_39_1
  doi: 10.2134/agronmonogr9.2.2ed.c24
– ident: e_1_2_7_5_1
  doi: 10.1080/00103629909370368
– ident: e_1_2_7_47_1
  doi: 10.1093/jxb/erh111
– ident: e_1_2_7_29_1
  doi: 10.1016/j.tree.2007.10.008
– ident: e_1_2_7_50_1
  doi: 10.1078/1433-8319-00068
– ident: e_1_2_7_48_1
  doi: 10.1093/jxb/eru348
– ident: e_1_2_7_16_1
  doi: 10.3389/fpls.2017.01662
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1365-2745.2012.01962.x
– ident: e_1_2_7_27_1
  doi: 10.1104/pp.111.174318
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1399-3054.2005.00527.x
SSID ssj0009562
Score 2.5450528
Snippet Plants respond to soil phosphorus (P) availability by adjusting leaf P among inorganic P (Pi) and organic P fractions (nucleic acids, phospholipids, small...
Summary Plants respond to soil phosphorus (P) availability by adjusting leaf P among inorganic P (Pi) and organic P fractions (nucleic acids, phospholipids,...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1621
SubjectTerms Acacia
Age
age of soil
Australia
Australian native species
Biodiversity
Biodiversity hot spots
Body organs
chronosequences
Hakea
Hydrogen-Ion Concentration
inorganic phosphorus
leaf phosphorus fractions
Leaves
Melaleuca
Metabolites
Nitrogen
Nitrogen - metabolism
nitrogen content
nucleic acid
Nucleic acids
Organic chemistry
Organs
phosphate
phospholipid
Phospholipids
Phosphorus
Phosphorus - metabolism
phosphorus allocation
Photosynthesis
Phylogeny
phytogeography
Plant Leaves - metabolism
Plants
Plants (botany)
Soil
Soil characteristics
soil phosphorus gradient
Soils
Species richness
Systena
Time Factors
Variation
Title Responses of foliar phosphorus fractions to soil age are diverse along a 2 Myr dune chronosequence
URI https://www.jstor.org/stable/26759500
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15910
https://www.ncbi.nlm.nih.gov/pubmed/31077589
https://www.proquest.com/docview/2257532267
https://www.proquest.com/docview/2231926369
https://www.proquest.com/docview/2305153744
Volume 223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYh9JBLX2nabdKihB5y8bKyZT3oqQ0JSyAhhAb2UDCyLDWhi7XY60P6a_Jb-ss6kmyTlLSUHgwCj0CvGX1jz3yD0AddGSppyROeWZPQXNFESOZraBjOdF7KlPjk5LNzNr-ip4t8sYE-DrkwkR9i_ODmNSPYa6_gqmzvKXm9up7CXRzSq3yslgdEl-k9wl2WDgzMjLJFzyrko3jGng_uohiO-BjQfIhbw8Vz8gx9HYYc402-T7t1OdU_fmNz_M85PUdPe0CKP8UT9AJtmPolevLZAWi83Ub6MsbQmhY7i61b3qgGr65dC0_Ttdg2MTGixWuHW3ezxGCfsGoMrkLAB7SXrv6GFU5_3p3dNrjqaoO1Z-R1QxT3K3R1cvzlaJ70dRkSDfBilnBlK5ELoqmQmlFlSWVYaQThjFiiASBqA5hd5txqplLLwCZ44KVnmaciINkO2qxdbd4grEtirUw5F0pQKawSZCaNNlXGVaY1naDDYYcK3ZOW-9oZy2JwXmDJirBkE3Qwiq4iU8djQjthm0eJFBwmmc_gxd6w70WvxW0Btg68OQCofIL2x9egf_6niqqN67wMGLGUZUz-RSbzlXQyTmE-r-OZGgcA8JqDzwa9D8PJ-PPYi_OLeWi8_XfRXbQFCE_GiMU9tLluOvMOUNS6fB_U5Rc7-Rd5
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqggSX8ixsKWAQh16yWieOH1IvgKgW6K5Q1Up7QZHj2LRiFa-SzaH9Nf0t_LKO4yRqUUGIQyRLHkt-zfgbZ_wNQu90YaikOY94Yk1EU0UjIZnPoWE402kuY-IfJ8_mbHpCvyzSxQba79_CBH6I4cLNa0Zrr72C-wvpa1perk7HcBj791V3fEbv1qE6iq9R7rK452BmlC06XiEfxzM0vXEahYDE26DmTeTaHj0HD9D3vtMh4uTnuFnnY33xG5_j_47qIdrqMCl-HzbRI7Rhysfo7gcHuPH8CdJHIYzW1NhZbN3yTFV4depq-KqmxrYKbyNqvHa4dmdLDCYKq8rgoo35gPLSlT-wwvGvy9l5hYumNFh7Ul7XB3I_RScHn44_TqMuNUOkAWFMIq5sIVJBNBVSM6osKQzLjSCcEUs0YERtALbLlFvNVGwZmAWPvfQk8WwEJNlGm6UrzXOEdU6slTHnQgkqhVWCTKTRpki4SrSmI7TXL1GmO95ynz5jmfX-C0xZ1k7ZCL0dRFeBrOM2oe12nQeJGHwmmU6gYrdf-KxT5DoDcwcOHWBUPkJvhmpQQf9fRZXGNV4G7FjMEib_IpP4ZDoJpzCeZ2FTDR0AhM3BbYPWe-3W-HPfs_m3aVvY-XfR1-je9Hh2mB1-nn99ge4D4JMhgHEXba6rxrwEULXOX7W6cwWekRuU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqghAX3i0LBQzi0EtWceL4IU5AWS2PrqqKSntAihzHphWreJVsDuXX8Fv4ZYzjJGpRQYhDJEsZS37MjD8nM98g9FKXhkpa8Iin1kQ0UzQSkvkaGoYznRUyIT45-XDB5if0wzJbbqFXQy5M4IcYP7h5y-j8tTfwdWkvGHm1Pp3CWezTq65RFguv0gfHyQXGXZYMFMyMsmVPK-TDeMaulw6jEI94FdK8DFy7k2d2G30ZxhwCTr5N200x1d9_o3P8z0ndQbd6RIpfBxW6i7ZMdQ9df-MANZ7fR_o4BNGaBjuLrVudqRqvT10DT9022NYhM6LBG4cbd7bC4KCwqg0uu4gPaK9c9RUrnPz8cXhe47KtDNaektcNYdwP0Mns3ee386gvzBBpwBdxxJUtRSaIpkJqRpUlpWGFEYQzYokGhKgNgHaZcauZSiwDp-CRl45Tz0VA0h20XbnKPERYF8RamXAulKBSWCVILI02ZcpVqjWdoP1hh3Lds5b74hmrfLi9wJLl3ZJN0ItRdB2oOq4S2um2eZRI4MYksxhe7A37nvdm3OTg7OA6BwiVT9Dz8TUYoP-roirjWi8DXixhKZN_kUl9KZ2UU5jPbtCpcQCArzlc2qD3fqcZfx57vjiad41H_y76DN04Opjln94vPj5GNwHtyRC9uIe2N3VrngCi2hRPO8v5BVaTGkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Responses+of+foliar+phosphorus+fractions+to+soil+age+are+diverse+along+a+2+Myr+dune+chronosequence&rft.jtitle=The+New+phytologist&rft.au=Yan%2C+Li&rft.au=Zhang%2C+Xinhou&rft.au=Han%2C+Zhongming&rft.au=Pang%2C+Jiayin&rft.date=2019-08-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft.volume=223&rft.issue=3&rft.spage=1621&rft_id=info:doi/10.1111%2Fnph.15910&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon