Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures

Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device structures in the two-dimensional limit. The past few years has pushed this frontier to include magnetism. These advances have brought forth a...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 19; no. 12; pp. 1276 - 1289
Main Authors Huang, Bevin, McGuire, Michael A., May, Andrew F., Xiao, Di, Jarillo-Herrero, Pablo, Xu, Xiaodong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2020
Nature Publishing Group
Springer Nature - Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device structures in the two-dimensional limit. The past few years has pushed this frontier to include magnetism. These advances have brought forth a new assortment of layered materials that intrinsically possess a wide variety of magnetic properties and are instrumental in integrating exchange and spin–orbit interactions into van der Waals heterostructures. This Review Article summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications. This Review summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications.
AbstractList Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device structures in the two-dimensional limit. The past few years has pushed this frontier to include magnetism. These advances have brought forth a new assortment of layered materials that intrinsically possess a wide variety of magnetic properties and are instrumental in integrating exchange and spin–orbit interactions into van der Waals heterostructures. This Review Article summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications.
Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device structures in the two-dimensional limit. The past few years has pushed this frontier to include magnetism. These advances have brought forth a new assortment of layered materials that intrinsically possess a wide variety of magnetic properties and are instrumental in integrating exchange and spin–orbit interactions into van der Waals heterostructures. This Review Article summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications. This Review summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications.
Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device structures in the two-dimensional limit. The past few years has pushed this frontier to include magnetism. These advances have brought forth a new assortment of layered materials that intrinsically possess a wide variety of magnetic properties and are instrumental in integrating exchange and spin–orbit interactions into van der Waals heterostructures. This Review Article summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications.This Review summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications.
Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device structures in the two-dimensional limit. The past few years has pushed this frontier to include magnetism. These advances have brought forth a new assortment of layered materials that intrinsically possess a wide variety of magnetic properties and are instrumental in integrating exchange and spin-orbit interactions into van der Waals heterostructures. This Review Article summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications.Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device structures in the two-dimensional limit. The past few years has pushed this frontier to include magnetism. These advances have brought forth a new assortment of layered materials that intrinsically possess a wide variety of magnetic properties and are instrumental in integrating exchange and spin-orbit interactions into van der Waals heterostructures. This Review Article summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications.
Author Huang, Bevin
Xiao, Di
Jarillo-Herrero, Pablo
May, Andrew F.
McGuire, Michael A.
Xu, Xiaodong
Author_xml – sequence: 1
  givenname: Bevin
  orcidid: 0000-0002-8301-4058
  surname: Huang
  fullname: Huang, Bevin
  email: huangbev@uw.edu
  organization: Department of Physics, University of Washington
– sequence: 2
  givenname: Michael A.
  surname: McGuire
  fullname: McGuire, Michael A.
  organization: Materials Science and Technology Division, Oak Ridge National Laboratory
– sequence: 3
  givenname: Andrew F.
  orcidid: 0000-0003-0777-8539
  surname: May
  fullname: May, Andrew F.
  organization: Materials Science and Technology Division, Oak Ridge National Laboratory
– sequence: 4
  givenname: Di
  orcidid: 0000-0003-0165-6848
  surname: Xiao
  fullname: Xiao, Di
  organization: Department of Physics, Carnegie Mellon University
– sequence: 5
  givenname: Pablo
  orcidid: 0000-0001-8217-8213
  surname: Jarillo-Herrero
  fullname: Jarillo-Herrero, Pablo
  organization: Department of Physics, Massachusetts Institute of Technology
– sequence: 6
  givenname: Xiaodong
  orcidid: 0000-0003-0348-2095
  surname: Xu
  fullname: Xu, Xiaodong
  email: xuxd@uw.edu
  organization: Department of Physics, University of Washington, Department of Materials Science and Engineering, University of Washington
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32948831$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1760123$$D View this record in Osti.gov
BookMark eNp9kUtrFTEYhoNU7EV_gBsZdONmNLeZZJZS6gUK3bTgLuRkvpyTMpMckwzaf-93mKNCwa4SyPPku7zn5CSmCIS8ZvQDo0J_LJJ1vWgppy1VA2v1M3LGpOpb2ff05HhnjPNTcl7KPaWcdV3_gpwKPkitBTsj369myFuItdnvIKYZom1sHJt9Tr_CHOpDA96Dq6UJsak_UzsGZEpI0U7NbLcR8Okg7KBCTqXmxdUlQ3lJnns7FXh1PC_I3eer28uv7fXNl2-Xn65b11FdW2_poEZKPXgBdBTW907LjfRMa-f1YAfoZUet0Hpkm85bIYXQtrPoMC-ZuCBv13-xdjDFhQpu51KM2LRhqqeMC4TerxCO9WOBUs0cioNpshHSUgyXUgo1CKEQffcIvU9LxmkPlJKDVlJypN4cqWUzw2j2Ocw2P5g_i0WArYDDpZQM_i_CqDmEZ9bwDIZnDuEZjY565OA0tuKua7ZhetLkq1mwStxC_tf0_6Xf0VetWg
CitedBy_id crossref_primary_10_1002_eem2_12184
crossref_primary_10_1007_s11664_021_09097_y
crossref_primary_10_1039_D2NR02777A
crossref_primary_10_1002_adma_202301854
crossref_primary_10_1038_s41598_021_00544_8
crossref_primary_10_1088_1367_2630_ad26b9
crossref_primary_10_1021_acs_nanolett_4c01542
crossref_primary_10_1002_adma_202200236
crossref_primary_10_1038_s41467_025_56919_2
crossref_primary_10_1103_PhysRevMaterials_5_054004
crossref_primary_10_1186_s40580_022_00348_0
crossref_primary_10_1002_smll_202400463
crossref_primary_10_1021_acs_chemrev_4c00631
crossref_primary_10_1038_s41524_022_00802_x
crossref_primary_10_1002_smtd_202200885
crossref_primary_10_1021_acsnano_2c09762
crossref_primary_10_1103_PhysRevLett_132_236302
crossref_primary_10_1021_acsami_3c11467
crossref_primary_10_1103_PhysRevB_111_125416
crossref_primary_10_1063_5_0078814
crossref_primary_10_1039_D2TA05056K
crossref_primary_10_1088_0256_307X_38_9_096101
crossref_primary_10_1021_acsnano_2c04995
crossref_primary_10_1021_acs_chemrev_2c00220
crossref_primary_10_1103_PhysRevLett_127_217203
crossref_primary_10_1021_acsnano_4c08185
crossref_primary_10_1016_j_mtnano_2023_100408
crossref_primary_10_1002_advs_202402875
crossref_primary_10_1002_aelm_202200650
crossref_primary_10_1557_s43577_024_00754_1
crossref_primary_10_1002_advs_202207617
crossref_primary_10_1142_S0217984923501993
crossref_primary_10_1515_nanoph_2022_0246
crossref_primary_10_1016_j_nantod_2023_101794
crossref_primary_10_1063_5_0145401
crossref_primary_10_1063_5_0070762
crossref_primary_10_1021_acsnano_4c14733
crossref_primary_10_1038_s41563_025_02129_6
crossref_primary_10_1038_s43246_024_00477_5
crossref_primary_10_1021_acsami_2c05464
crossref_primary_10_1016_j_apsusc_2022_153781
crossref_primary_10_1021_acsnano_4c16450
crossref_primary_10_1103_PhysRevB_109_064416
crossref_primary_10_1016_j_chphma_2025_02_002
crossref_primary_10_1103_PhysRevB_108_085435
crossref_primary_10_1021_acsami_0c21532
crossref_primary_10_1088_2515_7639_ad5ec1
crossref_primary_10_1126_science_adg0014
crossref_primary_10_1002_adma_202413438
crossref_primary_10_1002_admi_202201649
crossref_primary_10_1016_j_jallcom_2022_164830
crossref_primary_10_1002_adma_202303945
crossref_primary_10_1038_s41598_023_49004_5
crossref_primary_10_1039_D4CC00068D
crossref_primary_10_1103_PhysRevB_110_144439
crossref_primary_10_1021_acs_chemmater_4c02671
crossref_primary_10_1103_PhysRevB_110_054430
crossref_primary_10_1038_s41467_022_32290_4
crossref_primary_10_1063_5_0048885
crossref_primary_10_1002_advs_202105483
crossref_primary_10_1002_adfm_202401304
crossref_primary_10_1103_PhysRevB_107_134415
crossref_primary_10_1103_PhysRevMaterials_8_074007
crossref_primary_10_3389_fphy_2022_1068605
crossref_primary_10_1021_acs_nanolett_2c01361
crossref_primary_10_1021_acsnano_2c01151
crossref_primary_10_1021_acsnano_2c04664
crossref_primary_10_1063_5_0214167
crossref_primary_10_1063_5_0144653
crossref_primary_10_1002_smll_202308439
crossref_primary_10_1073_pnas_2208968120
crossref_primary_10_1103_PhysRevB_109_144403
crossref_primary_10_1021_acsnano_4c14774
crossref_primary_10_1039_D1NJ03803F
crossref_primary_10_1103_PhysRevB_108_174440
crossref_primary_10_1002_adom_202201396
crossref_primary_10_1063_5_0060817
crossref_primary_10_1126_science_abd5146
crossref_primary_10_1038_s41586_022_05024_1
crossref_primary_10_1021_jacs_1c08906
crossref_primary_10_1039_D3NR06550B
crossref_primary_10_1021_acs_nanolett_1c03123
crossref_primary_10_1088_1674_1056_ac6eed
crossref_primary_10_1038_s41467_023_37603_9
crossref_primary_10_1038_s41563_021_01184_z
crossref_primary_10_1021_acs_nanolett_2c02369
crossref_primary_10_1038_s42254_021_00403_5
crossref_primary_10_1103_PhysRevB_111_075419
crossref_primary_10_1039_D1TC01322J
crossref_primary_10_1021_acs_nanolett_4c04184
crossref_primary_10_1002_advs_202200186
crossref_primary_10_3390_ma15134478
crossref_primary_10_1021_acsaelm_2c00419
crossref_primary_10_1021_acs_jpcc_4c06156
crossref_primary_10_1002_advs_202206842
crossref_primary_10_1021_acs_nanolett_3c02906
crossref_primary_10_1103_PhysRevB_103_134437
crossref_primary_10_1039_D3NH00009E
crossref_primary_10_1007_s11432_024_3986_8
crossref_primary_10_1126_science_abj7478
crossref_primary_10_1063_5_0130037
crossref_primary_10_1007_s11467_021_1073_x
crossref_primary_10_1038_s41586_024_07858_3
crossref_primary_10_1103_PhysRevB_110_104406
crossref_primary_10_1016_j_cpc_2024_109356
crossref_primary_10_1002_adma_202109759
crossref_primary_10_1103_PhysRevB_104_L121403
crossref_primary_10_1021_acs_nanolett_2c01944
crossref_primary_10_1021_acs_nanolett_3c03431
crossref_primary_10_1021_acs_nanolett_2c04533
crossref_primary_10_1021_acs_jpcc_2c04474
crossref_primary_10_1038_s41567_023_02087_3
crossref_primary_10_1021_acs_jpcc_3c00769
crossref_primary_10_1093_bulcsj_uoaf010
crossref_primary_10_1016_j_jmmm_2025_172886
crossref_primary_10_1021_acsaelm_2c00407
crossref_primary_10_1103_PhysRevLett_133_146605
crossref_primary_10_1103_PhysRevB_105_L041402
crossref_primary_10_1103_PhysRevB_111_064304
crossref_primary_10_1038_s41467_024_47294_5
crossref_primary_10_1103_PhysRevB_110_094435
crossref_primary_10_1038_s41467_021_26973_7
crossref_primary_10_1103_PhysRevB_108_014436
crossref_primary_10_1002_adfm_202303847
crossref_primary_10_1021_acsnano_2c06912
crossref_primary_10_1088_1674_1056_ac1e0f
crossref_primary_10_1021_acs_nanolett_2c00401
crossref_primary_10_1063_5_0143593
crossref_primary_10_1021_acs_chemrev_1c00735
crossref_primary_10_1103_PhysRevB_109_035419
crossref_primary_10_1103_PhysRevB_107_214437
crossref_primary_10_1038_s41467_023_40723_x
crossref_primary_10_1038_s41467_023_39529_8
crossref_primary_10_1002_adma_202006850
crossref_primary_10_1021_acs_jpcc_0c09812
crossref_primary_10_1021_acsnano_1c03312
crossref_primary_10_1038_s41467_021_25068_7
crossref_primary_10_1103_PhysRevB_106_024422
crossref_primary_10_1103_PhysRevMaterials_7_044406
crossref_primary_10_1038_s42254_021_00380_9
crossref_primary_10_1038_s41467_021_23882_7
crossref_primary_10_1039_D4TC00003J
crossref_primary_10_1038_s41377_024_01630_y
crossref_primary_10_1002_adma_202401534
crossref_primary_10_1038_s41578_021_00304_0
crossref_primary_10_1021_acs_nanolett_1c02940
crossref_primary_10_1021_acs_nanolett_1c00520
crossref_primary_10_1002_adma_202211388
crossref_primary_10_1038_s41565_025_01872_w
crossref_primary_10_1021_acs_chemmater_1c02670
crossref_primary_10_1021_acsnano_3c10609
crossref_primary_10_1002_adma_202308871
crossref_primary_10_1039_D2TC00564F
crossref_primary_10_1063_5_0107065
crossref_primary_10_1038_s41565_021_00885_5
crossref_primary_10_1038_s41586_023_06279_y
crossref_primary_10_1002_admi_202100515
crossref_primary_10_1038_s41467_021_27741_3
crossref_primary_10_1063_5_0230385
crossref_primary_10_1002_adom_202301488
crossref_primary_10_1093_nsr_nwad151
crossref_primary_10_1088_1674_1056_ac5a41
crossref_primary_10_1038_s41535_022_00428_8
crossref_primary_10_1063_5_0150937
crossref_primary_10_1038_s41699_024_00468_7
crossref_primary_10_1063_5_0223854
crossref_primary_10_1016_j_apsusc_2024_160706
crossref_primary_10_1021_acsami_1c13623
crossref_primary_10_1103_PhysRevLett_134_116702
crossref_primary_10_1103_PhysRevB_106_075432
crossref_primary_10_1016_j_jallcom_2022_168375
crossref_primary_10_1021_acs_chemmater_3c01096
crossref_primary_10_1021_acsnano_4c00853
crossref_primary_10_1103_PhysRevB_110_045425
crossref_primary_10_1002_adfm_202009758
crossref_primary_10_1021_acsnano_1c09150
crossref_primary_10_1103_PhysRevB_108_115311
crossref_primary_10_1007_s11467_023_1286_2
crossref_primary_10_1093_nsr_nwac173
crossref_primary_10_3390_membranes13010006
crossref_primary_10_1016_j_scib_2022_12_009
crossref_primary_10_1021_acsmaterialslett_3c01090
crossref_primary_10_1038_s41467_024_48809_w
crossref_primary_10_1103_PhysRevMaterials_6_085201
crossref_primary_10_1080_14686996_2022_2030652
crossref_primary_10_1002_adma_202302568
crossref_primary_10_1103_PhysRevMaterials_6_014008
crossref_primary_10_1063_5_0101429
crossref_primary_10_1103_PhysRevB_108_L100406
crossref_primary_10_1007_s12274_022_4694_7
crossref_primary_10_1103_PhysRevB_107_205412
crossref_primary_10_1103_PhysRevB_106_085117
crossref_primary_10_1149_1945_7111_ac7006
crossref_primary_10_1039_D3TA00555K
crossref_primary_10_1038_s41563_024_01880_6
crossref_primary_10_1021_acs_nanolett_1c03027
crossref_primary_10_1021_acsnano_2c04017
crossref_primary_10_7498_aps_70_20202204
crossref_primary_10_1103_PhysRevX_14_041065
crossref_primary_10_1016_j_nanoms_2024_05_003
crossref_primary_10_1103_PhysRevB_105_184514
crossref_primary_10_1002_apxr_202300036
crossref_primary_10_1021_acsphyschemau_4c00010
crossref_primary_10_1002_adma_202102427
crossref_primary_10_1088_1361_648X_acbb49
crossref_primary_10_1063_5_0211057
crossref_primary_10_1088_2053_1583_ad3ceb
crossref_primary_10_1038_s41467_023_39123_y
crossref_primary_10_1002_aelm_202200483
crossref_primary_10_1063_5_0223945
crossref_primary_10_1038_s41567_023_02061_z
crossref_primary_10_1038_s41563_023_01494_4
crossref_primary_10_1021_acs_jpclett_2c00091
crossref_primary_10_1021_acs_jpclett_1c00165
crossref_primary_10_1002_adma_202305739
crossref_primary_10_1002_smtd_202100567
crossref_primary_10_1002_adma_202201880
crossref_primary_10_1103_PhysRevB_108_134425
crossref_primary_10_1002_adfm_202113255
crossref_primary_10_1109_TMAG_2024_3418188
crossref_primary_10_1038_s41467_024_45623_2
crossref_primary_10_1088_1674_1056_ac2808
crossref_primary_10_1016_j_mtcomm_2024_108891
crossref_primary_10_1016_j_grets_2024_100111
crossref_primary_10_1063_5_0169249
crossref_primary_10_1103_PhysRevMaterials_7_045201
crossref_primary_10_1103_PhysRevB_111_115118
crossref_primary_10_1016_j_nanoms_2021_05_002
crossref_primary_10_1021_acsnano_4c12520
crossref_primary_10_1039_D0MH01480J
crossref_primary_10_1007_s10765_021_02947_1
crossref_primary_10_1103_PhysRevMaterials_8_044407
crossref_primary_10_1038_s41535_022_00495_x
crossref_primary_10_1002_adma_202209365
crossref_primary_10_1021_acsnano_4c04343
crossref_primary_10_1063_5_0042683
crossref_primary_10_1088_1361_648X_ac0b1f
crossref_primary_10_1021_acsnano_2c09452
crossref_primary_10_1103_PhysRevB_109_014426
crossref_primary_10_1126_sciadv_abl7707
crossref_primary_10_1038_s41563_022_01320_3
crossref_primary_10_1103_PhysRevMaterials_7_124408
crossref_primary_10_1103_PhysRevMaterials_8_014007
crossref_primary_10_1088_1674_1056_ac0043
crossref_primary_10_1021_jacs_4c13391
crossref_primary_10_1038_s41598_025_86218_1
crossref_primary_10_1002_smll_202402189
crossref_primary_10_1021_acs_nanolett_4c01765
crossref_primary_10_1002_adma_202201064
crossref_primary_10_1021_acsnano_3c10218
crossref_primary_10_1021_acsami_2c18028
crossref_primary_10_1103_PhysRevB_104_L161113
crossref_primary_10_1039_D2NA00835A
crossref_primary_10_1002_adfm_202409085
crossref_primary_10_1016_j_mtelec_2023_100070
crossref_primary_10_1002_advs_202407625
crossref_primary_10_1016_j_apsusc_2023_159057
crossref_primary_10_1021_acs_jpcc_2c08648
crossref_primary_10_1103_PhysRevMaterials_6_094404
crossref_primary_10_1103_PhysRevB_110_155139
crossref_primary_10_1103_PhysRevMaterials_9_034002
crossref_primary_10_1360_nso_20230002
crossref_primary_10_1002_adma_202208930
crossref_primary_10_1016_j_physe_2022_115319
crossref_primary_10_1103_PhysRevB_108_144429
crossref_primary_10_1002_adfm_202112750
crossref_primary_10_1088_1742_6596_2350_1_012007
crossref_primary_10_1021_acsanm_3c02569
crossref_primary_10_1126_sciadv_adj8819
crossref_primary_10_1016_j_mtelec_2023_100068
crossref_primary_10_3390_magnetochemistry8080089
crossref_primary_10_1002_adma_202305763
crossref_primary_10_1038_s41467_024_52754_z
crossref_primary_10_1088_2053_1583_ad59b4
Cites_doi 10.1146/annurev-physchem-040513-103659
10.1038/s41467-019-11966-4
10.1038/s41567-017-0006-7
10.1103/PhysRevLett.120.057405
10.1038/s41563-019-0573-3
10.1021/acs.nanolett.9b01317
10.1103/PhysRevB.99.041402
10.1103/PhysRevB.99.144401
10.1038/s41586-019-0975-z
10.1038/nature22060
10.1038/s41586-019-1840-9
10.1002/adma.201602852
10.1021/acsnano.8b09660
10.1088/0022-3719/16/2/017
10.1021/acs.nanolett.8b00683
10.1103/PhysRevMaterials.1.014001
10.1126/science.aav4450
10.1126/science.aac9439
10.1038/nature08917
10.1126/science.aav6926
10.1063/1.1657665
10.1093/nsr/nwaa089
10.1038/nature12385
10.1016/0167-2738(86)90055-X
10.1126/science.aax8156
10.1126/sciadv.1603113
10.1103/PhysRevB.101.064416
10.1038/s41565-018-0186-z
10.1016/0022-3697(59)90061-7
10.1021/acs.nanolett.9b01287
10.1103/PhysRev.100.564
10.1021/acs.nanolett.8b05121
10.1038/natrevmats.2017.88
10.1088/2053-1583/ab27d5
10.1039/C5TC02840J
10.1063/1.325027
10.1021/nl502075n
10.1103/PhysRevB.98.134414
10.1021/acs.nanolett.8b01105
10.1146/annurev-matsci-070813-113447
10.1126/science.aav1937
10.1103/PhysRevB.93.014411
10.1103/PhysRevLett.122.107202
10.1021/acs.nanolett.8b03315
10.1002/adma.201906021
10.1038/s41586-019-1445-3
10.1088/2053-1583/3/2/025035
10.1038/nnano.2014.26
10.1038/srep14714
10.1126/sciadv.aax9989
10.1088/2053-1583/ab4c64
10.1038/nnano.2014.25
10.1063/1.1725428
10.1103/PhysRevLett.105.136805
10.1038/s41563-019-0506-1
10.1016/0038-1098(76)90187-3
10.1038/s41563-019-0505-2
10.1103/PhysRevB.91.235425
10.1039/C8CP07067A
10.1038/s41565-018-0063-9
10.1103/RevModPhys.89.025006
10.1021/acs.jpcc.9b08868
10.1038/nature26160
10.1103/PhysRevB.76.134402
10.1021/acs.jpclett.9b00758
10.1103/PhysRevB.46.5425
10.1021/acs.nanolett.8b01764
10.1088/0034-4885/71/5/056501
10.1088/0953-8984/7/1/008
10.1103/RevModPhys.87.855
10.1038/s41928-019-0302-6
10.1103/RevModPhys.84.1383
10.1021/acsnano.8b06101
10.1038/s41563-018-0149-7
10.1016/0022-4596(76)90184-5
10.1002/adma.201808074
10.1063/1.2185944
10.1103/PhysRev.137.A163
10.1126/sciadv.aaw8904
10.1063/1.2943282
10.1002/adma.201901185
10.1016/0304-8853(84)90355-X
10.1126/science.aak9717
10.1103/PhysRevB.72.094406
10.1002/adma.201506171
10.1002/adma.201801325
10.1038/s41567-019-0651-0
10.1039/c3cp55146f
10.1103/PhysRevLett.109.107204
10.1038/natrevmats.2017.33
10.1103/PhysRevB.88.115140
10.1073/pnas.1902100116
10.1103/PhysRev.178.497
10.1021/acs.nanolett.6b03052
10.1038/nphys3201
10.1021/acs.nanolett.9b01043
10.1103/PhysRevB.92.224408
10.1021/acs.nanolett.8b01649
10.1126/science.aar4851
10.1143/JPSJ.15.1664
10.1021/nn204667z
10.1103/PhysRevLett.123.047204
10.1038/s41586-018-0626-9
10.7566/JPSJ.82.124711
10.1038/s41565-019-0598-4
10.1126/science.1102896
10.1021/jacs.8b13584
10.1002/ejic.200501020
10.1021/cm504242t
10.1038/s41586-018-0631-z
10.1088/2053-1583/aa75ed
10.1021/acs.nanolett.9b00553
10.1143/JPSJ.46.184
10.1038/s41586-019-0976-y
10.1103/RevModPhys.81.1495
10.1021/acs.jpcc.9b04281
10.1038/nature22391
10.1021/acs.nanolett.8b03321
10.1103/PhysRev.131.1929
10.1088/2053-1583/4/1/011005
10.1021/acs.nanolett.8b01131
10.1038/s41586-019-0957-1
10.1103/PhysRevMaterials.3.064202
10.1088/0034-4885/80/1/016502
10.1126/science.aaw3780
10.1038/s41586-019-0986-9
10.1038/s41565-019-0438-6
10.1209/0295-5075/114/47001
10.1002/pssa.2210720116
10.1016/j.jmmm.2007.04.035
ContentType Journal Article
Copyright Springer Nature Limited 2020
Springer Nature Limited 2020.
Copyright_xml – notice: Springer Nature Limited 2020
– notice: Springer Nature Limited 2020.
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
OIOZB
OTOTI
DOI 10.1038/s41563-020-0791-8
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Health & Medical Collection (Alumni)
Medical Database
Science Database (subscription)
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 1289
ExternalDocumentID 1760123
32948831
10_1038_s41563_020_0791_8
Genre Journal Article
Review
GrantInformation_xml – fundername: DOE | SC | Basic Energy Sciences (BES)
  grantid: DE-SC0018171; DE-SC0012509; DE-SC0018935; DE-SC0018171; DE-SC0012509
  funderid: https://doi.org/10.13039/100006151
– fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
  grantid: FA9550-19-1-0390; FA9550-19-1-0390; FA9550-19-1-0390
  funderid: https://doi.org/10.13039/100000181
– fundername: Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
  grantid: GBMF4541
  funderid: https://doi.org/10.13039/100000936
– fundername: National Science Foundation (NSF)
  grantid: DMR-1231319
  funderid: https://doi.org/10.13039/100000001
– fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
  grantid: FA9550-19-1-0390
– fundername: Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
  grantid: GBMF4541
– fundername: DOE | SC | Basic Energy Sciences (BES)
  grantid: DE-SC0012509
– fundername: DOE | SC | Basic Energy Sciences (BES)
  grantid: DE-SC0018935
– fundername: National Science Foundation (NSF)
  grantid: DMR-1231319
– fundername: DOE | SC | Basic Energy Sciences (BES)
  grantid: DE-SC0018171
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NPM
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OIOZB
OTOTI
ID FETCH-LOGICAL-c508t-fa097d00fef3e0d3af6c84b4f188cf89a9e6450a388d1b5fa34338a5ad001f413
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Thu May 18 22:35:08 EDT 2023
Fri Jul 11 08:39:56 EDT 2025
Sat Aug 23 14:04:46 EDT 2025
Wed Feb 19 02:30:13 EST 2025
Thu Apr 24 23:01:37 EDT 2025
Tue Jul 01 02:14:01 EDT 2025
Fri Feb 21 02:40:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-fa097d00fef3e0d3af6c84b4f188cf89a9e6450a388d1b5fa34338a5ad001f413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
AC05-00OR22725
ORCID 0000-0003-0348-2095
0000-0002-8301-4058
0000-0003-0165-6848
0000-0003-0777-8539
0000-0001-8217-8213
0000000303482095
0000000301656848
0000000283014058
0000000182178213
0000000317629406
0000000307778539
OpenAccessLink https://www.osti.gov/servlets/purl/1760123
PMID 32948831
PQID 2474987442
PQPubID 27576
PageCount 14
ParticipantIDs osti_scitechconnect_1760123
proquest_miscellaneous_2444379337
proquest_journals_2474987442
pubmed_primary_32948831
crossref_primary_10_1038_s41563_020_0791_8
crossref_citationtrail_10_1038_s41563_020_0791_8
springer_journals_10_1038_s41563_020_0791_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature materials
PublicationTitleAbbrev Nat. Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Springer Nature - Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Springer Nature - Nature Publishing Group
References O’Hara (CR53) 2018; 18
Cai (CR121) 2013; 88
Klein (CR31) 2019; 15
Ma (CR81) 2012; 6
Lines (CR16) 1969; 40
Jin (CR10) 2019; 567
Kan, Adhikari, Sun (CR82) 2014; 16
Bené (CR103) 1969; 178
Hellman (CR125) 2017; 89
Gibertini, Koperski, Morpurgo, Novoselov (CR24) 2019; 14
Bonilla (CR52) 2018; 13
Kuhlow (CR102) 1982; 72
Seyler (CR111) 2018; 14
Carteaux, Brunet, Ouvrard, Andre (CR61) 1995; 7
Geim, Grigorieva (CR3) 2013; 499
Alexeev (CR12) 2019; 567
Balents (CR91) 2010; 464
Casola, Van Der Sar, Yacoby (CR137) 2018; 3
Alghamdi (CR34) 2019; 19
Son (CR90) 2019; 99
McCreary (CR51) 2020; 101
Deng (CR59) 2020; 367
Yan (CR55) 2019; 3
Burch, Mandrus, Park (CR23) 2018; 563
Sharpe (CR130) 2019; 365
Vaz, Bland, Lauhoff (CR18) 2008; 71
Otrokov (CR38) 2019; 576
Weber, Trout, McComb, Goldberger (CR75) 2019; 19
Shcherbakov (CR132) 2018; 18
Wiesendanger (CR134) 2009; 81
Wang, Fan, Zhu, Wu (CR96) 2016; 114
Tong, Liu, Xiao, Yao (CR129) 2018; 18
Duvjir (CR80) 2018; 18
Savary, Balents (CR22) 2017; 80
Tian (CR89) 2019; 141
Ostwal, Shen, Appenzeller (CR35) 2020; 32
Huang (CR13) 2017; 546
Scalapino (CR20) 2012; 84
Yu (CR128) 2019; 14
Cai (CR29) 2019; 19
Velický (CR70) 2018; 12
Wang (CR63) 2018; 13
Wildes (CR47) 2015; 92
Norden (CR32) 2019; 10
Desai (CR69) 2016; 28
Lohmann (CR126) 2019; 19
McGuire, Dixit, Cooper, Sales (CR93) 2015; 27
Schirhagl, Chang, Loretz, Degen (CR135) 2014; 65
Wong (CR86) 2019; 31
Baugher, Churchill, Yang, Jarillo-Herrero (CR5) 2014; 9
Liu (CR74) 2017; 1
Onari, Arai (CR78) 1979; 46
Li (CR27) 2019; 18
Wu (CR57) 2019; 5
Aivazian (CR123) 2015; 11
Ubrig (CR116) 2020; 7
Tsubokawa (CR99) 1960; 15
McGuire (CR95) 2017; 1
Susner, Chyasnavichyus, McGuire, Ganesh, Maksymovych (CR44) 2017; 29
Song (CR106) 2018; 360
Abramchuk (CR104) 2018; 30
Novoselov (CR1) 2004; 306
CR60
Gong (CR14) 2017; 546
Sun (CR110) 2019; 572
Sivadas, Okamoto, Xu, Fennie, Xiao (CR117) 2018; 18
Goodenough (CR115) 1955; 100
Lançon, Ewings, Guidi, Formisano, Wildes (CR49) 2018; 98
Tan (CR67) 2018; 9
Kong (CR88) 2019; 31
Huang (CR133) 2020; 15
Rule, McIntyre, Kennedy, Hicks (CR46) 2007; 76
Chen (CR64) 2013; 82
Jernberg, Bjarman, Wäppling (CR45) 1984; 46
Yi (CR65) 2016; 4
Dai (CR21) 2015; 87
May, Calder, Cantoni, Cao, McGuire (CR68) 2016; 93
Zhong (CR36) 2017; 3
Chen (CR56) 2019; 10
Lado, Fernández-Rossier (CR85) 2017; 4
Cao (CR8) 2018; 556
Jiang (CR114) 2019; 99
Narath (CR100) 1963; 131
Otrokov (CR58) 2019; 122
Tian, Gray, Ji, Cava, Burch (CR62) 2016; 3
Cheng (CR7) 2014; 14
Kim (CR30) 2019; 116
Deng (CR72) 2018; 563
Brec (CR40) 1986; 22
Zhang (CR112) 2019; 19
Fumega (CR83) 2019; 123
Degen (CR136) 2008; 92
Sivadas, Daniels, Swendsen, Okamoto, Xiao (CR28) 2015; 91
Kim (CR42) 2019; 6
Song (CR26) 2019; 18
Kanamori (CR97) 1959; 10
Gong, Zhang (CR25) 2019; 363
Ross (CR6) 2014; 9
Fei (CR73) 2018; 17
MacNeill (CR118) 2019; 123
Thiel (CR109) 2019; 364
Huang (CR124) 2012; 109
Hansen (CR98) 1959; 30
De Jongh (CR15) 1978; 49
Wang (CR127) 2019; 5
Tran (CR11) 2019; 567
Kim (CR41) 2019; 10
Chen (CR108) 2017; 357
Chen (CR119) 2019; 366
Bayard, Sienko (CR77) 1976; 19
Morosin, Narath (CR94) 1964; 40
Deiseroth, Aleksandrov, Reiner, Kienle, Kremer (CR66) 2006; 2006
May (CR54) 2019; 13
Stier (CR122) 2018; 120
Magda (CR71) 2015; 5
Hellwig, Berger, Kortright, Fullerton (CR107) 2007; 319
Jagla (CR113) 2005; 72
Zhang, Qu, Zhu, Lam (CR92) 2015; 3
Sun, Tan, Liu, Gao, Zhang (CR43) 2019; 10
Pollard, McCann, Ward (CR79) 1983; 16
Seyler (CR9) 2019; 567
Lee (CR50) 2016; 16
Joy, Vasudevan (CR48) 1992; 46
Mak, Lee, Hone, Shan, Heinz (CR2) 2010; 105
van Bruggen, Haas (CR76) 1976; 20
Bhattacharya, May (CR19) 2014; 44
Kim (CR33) 2019; 2
Seyler (CR37) 2018; 18
Wu, Li, Cao, Louie (CR105) 2019; 10
Coelho (CR84) 2019; 123
Wu, Yu, Yuan (CR131) 2019; 21
Narath, Davis (CR101) 1965; 137
Manzeli, Ovchinnikov, Pasquier, Yazyev, Kis (CR120) 2017; 2
Novoselov, Mishchenko, Carvalho, Castro Neto (CR4) 2016; 353
Feng (CR87) 2018; 18
Liu (CR39) 2020; 19
Cortie (CR17) 2019; 2019
KC Rule (791_CR46) 2007; 76
Y Tian (791_CR62) 2016; 3
Z Wang (791_CR63) 2018; 13
J Feng (791_CR87) 2018; 18
W Chen (791_CR119) 2019; 366
S Son (791_CR90) 2019; 99
V Carteaux (791_CR61) 1995; 7
AO Fumega (791_CR83) 2019; 123
MM Otrokov (791_CR58) 2019; 122
KS Novoselov (791_CR4) 2016; 353
D MacNeill (791_CR118) 2019; 123
DJ O’Hara (791_CR53) 2018; 18
AF May (791_CR54) 2019; 13
D Lançon (791_CR49) 2018; 98
H Wang (791_CR96) 2016; 114
C Gong (791_CR14) 2017; 546
JS Ross (791_CR6) 2014; 9
CAF Vaz (791_CR18) 2008; 71
HH Kim (791_CR30) 2019; 116
SY Huang (791_CR124) 2012; 109
X Wang (791_CR127) 2019; 5
BWH Baugher (791_CR5) 2014; 9
MA McGuire (791_CR93) 2015; 27
MA McGuire (791_CR95) 2017; 1
Z Zhang (791_CR112) 2019; 19
M Kim (791_CR33) 2019; 2
P Jernberg (791_CR45) 1984; 46
JU Lee (791_CR50) 2016; 16
ME Lines (791_CR16) 1969; 40
M Kan (791_CR82) 2014; 16
N Sivadas (791_CR28) 2015; 91
WB Zhang (791_CR92) 2015; 3
DR Klein (791_CR31) 2019; 15
I Tsubokawa (791_CR99) 1960; 15
K Kim (791_CR41) 2019; 10
JQ Yan (791_CR55) 2019; 3
D Shcherbakov (791_CR132) 2018; 18
X Cai (791_CR29) 2019; 19
Z Sun (791_CR110) 2019; 572
N Sivadas (791_CR117) 2018; 18
EA Jagla (791_CR113) 2005; 72
V Ostwal (791_CR35) 2020; 32
P Jiang (791_CR114) 2019; 99
PA Joy (791_CR48) 1992; 46
R Cheng (791_CR7) 2014; 14
RW Bené (791_CR103) 1969; 178
G Duvjir (791_CR80) 2018; 18
C Gong (791_CR25) 2019; 363
T Song (791_CR106) 2018; 360
Z Fei (791_CR73) 2018; 17
A Narath (791_CR100) 1963; 131
A Narath (791_CR101) 1965; 137
KS Burch (791_CR23) 2018; 563
Z Wu (791_CR131) 2019; 21
WN Hansen (791_CR98) 1959; 30
YJ Sun (791_CR43) 2019; 10
Y Deng (791_CR72) 2018; 563
T Norden (791_CR32) 2019; 10
K Tran (791_CR11) 2019; 567
GZ Magda (791_CR71) 2015; 5
L Thiel (791_CR109) 2019; 364
T Cai (791_CR121) 2013; 88
C Jin (791_CR10) 2019; 567
P Dai (791_CR21) 2015; 87
B Kuhlow (791_CR102) 1982; 72
M Abramchuk (791_CR104) 2018; 30
R Brec (791_CR40) 1986; 22
AL Sharpe (791_CR130) 2019; 365
D Weber (791_CR75) 2019; 19
S Tian (791_CR89) 2019; 141
O Hellwig (791_CR107) 2007; 319
B Chen (791_CR64) 2013; 82
791_CR60
EM Alexeev (791_CR12) 2019; 567
Y Cao (791_CR8) 2018; 556
K Kim (791_CR42) 2019; 6
R Wiesendanger (791_CR134) 2009; 81
J Yi (791_CR65) 2016; 4
M Velický (791_CR70) 2018; 12
MA Susner (791_CR44) 2017; 29
AV Stier (791_CR122) 2018; 120
J Wu (791_CR57) 2019; 5
J Kanamori (791_CR97) 1959; 10
AK Geim (791_CR3) 2013; 499
L Savary (791_CR22) 2017; 80
N Ubrig (791_CR116) 2020; 7
KF Mak (791_CR2) 2010; 105
T Li (791_CR27) 2019; 18
KL Seyler (791_CR37) 2018; 18
C Tan (791_CR67) 2018; 9
G Aivazian (791_CR123) 2015; 11
Y Deng (791_CR59) 2020; 367
B Morosin (791_CR94) 1964; 40
CL Degen (791_CR136) 2008; 92
A Bhattacharya (791_CR19) 2014; 44
L Balents (791_CR91) 2010; 464
SB Desai (791_CR69) 2016; 28
HJ Deiseroth (791_CR66) 2006; 2006
JL Lado (791_CR85) 2017; 4
B Huang (791_CR133) 2020; 15
S Onari (791_CR78) 1979; 46
F Hellman (791_CR125) 2017; 89
DJ Scalapino (791_CR20) 2012; 84
X Yu (791_CR128) 2019; 14
DL Cortie (791_CR17) 2019; 2019
M Lohmann (791_CR126) 2019; 19
MM Otrokov (791_CR38) 2019; 576
CF van Bruggen (791_CR76) 1976; 20
PKJ Wong (791_CR86) 2019; 31
D Zhong (791_CR36) 2017; 3
AF May (791_CR68) 2016; 93
S Manzeli (791_CR120) 2017; 2
KL Seyler (791_CR9) 2019; 567
RJ Pollard (791_CR79) 1983; 16
AR Wildes (791_CR47) 2015; 92
KS Novoselov (791_CR1) 2004; 306
R Schirhagl (791_CR135) 2014; 65
M Bonilla (791_CR52) 2018; 13
B Huang (791_CR13) 2017; 546
B Chen (791_CR108) 2017; 357
C Liu (791_CR39) 2020; 19
F Casola (791_CR137) 2018; 3
S Liu (791_CR74) 2017; 1
JB Goodenough (791_CR115) 1955; 100
M Wu (791_CR105) 2019; 10
P Coelho (791_CR84) 2019; 123
LJ De Jongh (791_CR15) 1978; 49
B Chen (791_CR56) 2019; 10
M Gibertini (791_CR24) 2019; 14
T Song (791_CR26) 2019; 18
M Bayard (791_CR77) 1976; 19
Q Tong (791_CR129) 2018; 18
Y Ma (791_CR81) 2012; 6
T Kong (791_CR88) 2019; 31
KL Seyler (791_CR111) 2018; 14
M Alghamdi (791_CR34) 2019; 19
A McCreary (791_CR51) 2020; 101
References_xml – volume: 18
  start-page: 5432
  year: 2018
  end-page: 5438
  ident: CR80
  article-title: Emergence of a metal-insulator transition and high-temperature charge-density waves in VSe at the monolayer limit
  publication-title: Nano Lett.
– volume: 5
  start-page: eaaw8904
  year: 2019
  ident: CR127
  article-title: Current-driven magnetization switching in a van der Waals ferromagnet Fe GeTe
  publication-title: Sci. Adv.
– volume: 364
  start-page: 973
  year: 2019
  end-page: 976
  ident: CR109
  article-title: Probing magnetism in 2D materials at the nanoscale with single spin microscopy
  publication-title: Science
– volume: 16
  start-page: 7433
  year: 2016
  end-page: 7438
  ident: CR50
  article-title: Ising-type magnetic ordering in atomically thin FePS
  publication-title: Nano Lett.
– volume: 123
  start-page: 27802
  year: 2019
  end-page: 27810
  ident: CR83
  article-title: Absence of ferromagnetism in VSe caused by its charge density wave phase
  publication-title: J. Phys. Chem. C
– volume: 19
  start-page: 3138
  year: 2019
  end-page: 3142
  ident: CR112
  article-title: Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr
  publication-title: Nano Lett.
– volume: 13
  start-page: 4436
  year: 2019
  end-page: 4442
  ident: CR54
  article-title: Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe GeTe
  publication-title: ACS Nano
– volume: 576
  start-page: 416
  year: 2019
  end-page: 422
  ident: CR38
  article-title: Prediction and observation of an antiferromagnetic topological insulator
  publication-title: Nature
– volume: 357
  start-page: 191
  year: 2017
  end-page: 194
  ident: CR108
  article-title: All-oxide-based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal
  publication-title: Science
– volume: 92
  start-page: 224408
  year: 2015
  ident: CR47
  article-title: Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 6
  year: 2019
  end-page: 10
  ident: CR128
  article-title: Large magnetocaloric effect in van der Waals crystal CrBr
  publication-title: Front. Phys.
– volume: 19
  start-page: 522
  year: 2020
  end-page: 527
  ident: CR39
  article-title: Quantum phase transition from axion insulator to Chern insulator in MnBi Te
  publication-title: Nat. Mater.
– volume: 76
  start-page: 134402
  year: 2007
  ident: CR46
  article-title: Single-crystal and powder neutron diffraction experiments on FePS : search for the magnetic structure
  publication-title: Phys. Rev. B
– volume: 82
  start-page: 124711
  year: 2013
  ident: CR64
  article-title: Magnetic properties of layered itinerant electron ferromagnet Fe GeTe
  publication-title: J. Phys. Soc. Japan
– volume: 7
  start-page: 015007
  year: 2020
  ident: CR116
  article-title: Low-temperature monoclinic layer stacking in atomically thin CrI crystals
  publication-title: 2D Mater.
– volume: 92
  start-page: 243111
  year: 2008
  ident: CR136
  article-title: Scanning magnetic field microscope with a diamond single-spin sensor
  publication-title: Appl. Phys. Lett.
– volume: 40
  start-page: 1958
  year: 1964
  end-page: 1967
  ident: CR94
  article-title: X-ray diffraction and nuclear quadrupole resonance studies of chromium trichloride
  publication-title: J. Chem. Phys.
– volume: 44
  start-page: 65
  year: 2014
  end-page: 90
  ident: CR19
  article-title: Magnetic oxide heterostructures
  publication-title: Annu. Rev. Mater. Res.
– volume: 367
  start-page: 895
  year: 2020
  end-page: 900
  ident: CR59
  article-title: Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi Te
  publication-title: Science
– volume: 21
  start-page: 7750
  year: 2019
  end-page: 7755
  ident: CR131
  article-title: Strain-tunable magnetic and electronic properties of monolayer CrI
  publication-title: Phys. Chem. Chem. Phys.
– volume: 3
  start-page: 025035
  year: 2016
  ident: CR62
  article-title: Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal
  publication-title: 2D Mater.
– volume: 1
  year: 2017
  ident: CR74
  article-title: Wafer-scale two-dimensional ferromagnetic Fe GeTe thin films were grown by molecular beam epitaxy
  publication-title: npj 2D Mater. Appl.
– volume: 19
  start-page: 5031
  year: 2019
  end-page: 5035
  ident: CR75
  article-title: Decomposition-induced room-temperature magnetism of the Na-intercalated layered ferromagnet Fe GeTe
  publication-title: Nano Lett.
– volume: 72
  start-page: 094406
  year: 2005
  ident: CR113
  article-title: Hysteresis loops of magnetic thin films with perpendicular anisotropy
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 17088
  year: 2018
  ident: CR137
  article-title: Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond
  publication-title: Nat. Rev. Mater.
– volume: 19
  start-page: 325
  year: 1976
  end-page: 329
  ident: CR77
  article-title: Anomalous electrical and magnetic properties of vanadium diselenide
  publication-title: J. Solid State Chem.
– volume: 81
  start-page: 1495
  year: 2009
  end-page: 1550
  ident: CR134
  article-title: Spin mapping at the nanoscale and atomic scale
  publication-title: Rev. Mod. Phys.
– volume: 546
  start-page: 265
  year: 2017
  end-page: 269
  ident: CR14
  article-title: Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
  publication-title: Nature
– volume: 2006
  start-page: 1561
  year: 2006
  end-page: 1567
  ident: CR66
  article-title: Fe GeTe and Ni GeTe - two new layered transition-metal compounds: Crystal structures, HRTEM investigations, and magnetic and electrical properties
  publication-title: Eur. J. Inorg. Chem.
– volume: 572
  start-page: 497
  year: 2019
  end-page: 501
  ident: CR110
  article-title: Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI
  publication-title: Nature
– volume: 10
  start-page: 3087
  year: 2019
  end-page: 3093
  ident: CR43
  article-title: Probing the magnetic ordering of antiferromagnetic MnPS by Raman spectroscopy
  publication-title: J. Phys. Chem. Lett.
– volume: 365
  start-page: 605
  year: 2019
  end-page: 608
  ident: CR130
  article-title: Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene
  publication-title: Science
– volume: 18
  start-page: 7194
  year: 2018
  end-page: 7199
  ident: CR129
  article-title: Skyrmions in the moiré of van der Waals 2D magnets
  publication-title: Nano Lett.
– volume: 93
  start-page: 014411
  year: 2016
  ident: CR68
  article-title: Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe GeTe
  publication-title: Phys. Rev. B
– volume: 137
  start-page: A163
  year: 1965
  end-page: A178
  ident: CR101
  article-title: Spin-wave analysis of the sublattice magnetization behavior of antiferromagnetic and ferromagnetic CrCl
  publication-title: Phys. Rev.
– ident: CR60
– volume: 3
  start-page: 12457
  year: 2015
  end-page: 12468
  ident: CR92
  article-title: Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides
  publication-title: J. Mater. Chem. C
– volume: 464
  start-page: 199
  year: 2010
  end-page: 208
  ident: CR91
  article-title: Spin liquids in frustrated magnets
  publication-title: Nature
– volume: 120
  start-page: 057406
  year: 2018
  ident: CR122
  article-title: Magnetooptics of exciton rydberg states in a monolayer semiconductor
  publication-title: Phys. Rev. Lett.
– volume: 15
  start-page: 212
  year: 2020
  end-page: 216
  ident: CR133
  article-title: Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI
  publication-title: Nat. Nanotechnol.
– volume: 15
  start-page: 1664
  year: 1960
  end-page: 1668
  ident: CR99
  article-title: On the magnetic properties of a CrBr single crystal
  publication-title: J. Phys. Soc. Japan
– volume: 14
  start-page: 408
  year: 2019
  end-page: 419
  ident: CR24
  article-title: Magnetic 2D materials and heterostructures
  publication-title: Nat. Nanotechnol.
– volume: 109
  start-page: 107204
  year: 2012
  ident: CR124
  article-title: Transport magnetic proximity effects in platinum
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 457
  year: 2019
  end-page: 463
  ident: CR33
  article-title: Hall micromagnetometry of individual two-dimensional ferromagnets
  publication-title: Nat. Electron.
– volume: 363
  start-page: eaav4450
  year: 2019
  ident: CR25
  article-title: Two-dimensional magnetic crystals and emergent heterostructure devices
  publication-title: Science
– volume: 18
  start-page: 4214
  year: 2018
  end-page: 4219
  ident: CR132
  article-title: Raman spectroscopy, photocatalytic degradation, and stabilization of atomically thin chromium tri-iodide
  publication-title: Nano Lett.
– volume: 98
  start-page: 134414
  year: 2018
  ident: CR49
  article-title: Magnetic exchange parameters and anisotropy of the quasi-two-dimensional antiferromagnet NiPS
  publication-title: Phys. Rev. B
– volume: 46
  start-page: 5425
  year: 1992
  end-page: 5433
  ident: CR48
  article-title: Magnetism in the layered transition-metal thiophosphates MPS (M=Mn, Fe, and Ni)
  publication-title: Phys. Rev. B
– volume: 32
  start-page: 1906021
  year: 2020
  ident: CR35
  article-title: Efficient spin-orbit torque switching of the semiconducting van der Waals ferromagnet Cr Ge Te
  publication-title: Adv. Mater.
– volume: 28
  start-page: 4053
  year: 2016
  end-page: 4058
  ident: CR69
  article-title: Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers
  publication-title: Adv. Mater.
– volume: 20
  start-page: 251
  year: 1976
  end-page: 254
  ident: CR76
  article-title: Magnetic susceptibility and electrical properties of VSe single crystals
  publication-title: Solid State Commun.
– volume: 18
  start-page: 3125
  year: 2018
  end-page: 3131
  ident: CR53
  article-title: Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit
  publication-title: Nano Lett.
– volume: 4
  start-page: 011005
  year: 2016
  ident: CR65
  article-title: Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe GeTe
  publication-title: 2D Mater.
– volume: 89
  start-page: 025006
  year: 2017
  ident: CR125
  article-title: Interface-induced phenomena in magnetism
  publication-title: Rev. Mod. Phys.
– volume: 178
  start-page: 497
  year: 1969
  end-page: 513
  ident: CR103
  article-title: Electron-paramagnetic-resonance study of Cr ions and exchange-coupled Cr ion pairs in the BiI structure
  publication-title: Phys. Rev.
– volume: 31
  start-page: 1808074
  year: 2019
  ident: CR88
  article-title: VI - a new layered ferromagnetic semiconductor
  publication-title: Adv. Mater.
– volume: 84
  start-page: 1383
  year: 2012
  end-page: 1417
  ident: CR20
  article-title: A common thread: the pairing interaction for unconventional superconductors
  publication-title: Rev. Mod. Phys.
– volume: 17
  start-page: 778
  year: 2018
  end-page: 782
  ident: CR73
  article-title: Two-dimensional itinerant ferromagnetism in atomically thin Fe GeTe
  publication-title: Nat. Mater.
– volume: 31
  start-page: 1901185
  year: 2019
  ident: CR86
  article-title: Evidence of spin frustration in a vanadium diselenide monolayer magnet
  publication-title: Adv. Mater.
– volume: 10
  year: 2019
  ident: CR105
  article-title: Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators
  publication-title: Nat. Commun.
– volume: 6
  start-page: 041001
  year: 2019
  ident: CR42
  article-title: Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS probed by Raman spectroscopy
  publication-title: 2D Mater.
– volume: 87
  start-page: 855
  year: 2015
  end-page: 896
  ident: CR21
  article-title: Antiferromagnetic order and spin dynamics in iron-based superconductors
  publication-title: Rev. Mod. Phys.
– volume: 15
  start-page: 1255
  year: 2019
  end-page: 1260
  ident: CR31
  article-title: Enhancement of interlayer exchange in an ultrathin two-dimensional magnet
  publication-title: Nat. Phys.
– volume: 141
  start-page: 5326
  year: 2019
  end-page: 5333
  ident: CR89
  article-title: Ferromagnetic van der Waals Crystal VI
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: e1603113
  year: 2017
  ident: CR36
  article-title: Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
  publication-title: Sci. Adv.
– volume: 100
  start-page: 564
  year: 1955
  end-page: 573
  ident: CR115
  article-title: Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO
  publication-title: Phys. Rev.
– volume: 499
  start-page: 419
  year: 2013
  end-page: 425
  ident: CR3
  article-title: Van der Waals heterostructures
  publication-title: Nature
– volume: 131
  start-page: 1929
  year: 1963
  end-page: 1942
  ident: CR100
  article-title: Low-temperature sublattice magnetization of antiferromagnetic CrCl
  publication-title: Phys. Rev.
– volume: 18
  start-page: 7658
  year: 2018
  end-page: 7664
  ident: CR117
  article-title: Stacking-dependent magnetism in bilayer CrI
  publication-title: Nano Lett.
– volume: 30
  start-page: 1801325
  year: 2018
  ident: CR104
  article-title: Controlling magnetic and optical properties of the van der Waals crystal CrCl Br via mixed halide chemistry
  publication-title: Adv. Mater.
– volume: 9
  start-page: 262
  year: 2014
  end-page: 267
  ident: CR5
  article-title: Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide
  publication-title: Nat. Nanotechnol.
– volume: 5
  year: 2015
  ident: CR71
  article-title: Exfoliation of large-area transition metal chalcogenide single layers
  publication-title: Sci. Rep.
– volume: 10
  start-page: 87
  year: 1959
  end-page: 98
  ident: CR97
  article-title: Superexchange interaction and symmetry properties of electron orbitals
  publication-title: J. Phys. Chem. Solids
– volume: 10
  year: 2019
  ident: CR41
  article-title: Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1602852
  year: 2017
  ident: CR44
  article-title: Metal thio- and selenophosphates as multifunctional van der Waals layered materials
  publication-title: Adv. Mater.
– volume: 123
  start-page: 047204
  year: 2019
  ident: CR118
  article-title: Gigahertz frequency antiferromagnetic resonance and strong magnon-magnon coupling in the layered crystal CrCl
  publication-title: Phys. Rev. Lett.
– volume: 116
  start-page: 11131
  year: 2019
  end-page: 11136
  ident: CR30
  article-title: Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 2019
  start-page: 1901414
  year: 2019
  ident: CR17
  article-title: Two-dimensional magnets: forgotten history and recent progress towards spintronic applications
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 4493
  year: 2018
  end-page: 4499
  ident: CR87
  article-title: Electronic structure and enhanced charge-density wave order of monolayer VSe
  publication-title: Nano Lett.
– volume: 563
  start-page: 94
  year: 2018
  end-page: 99
  ident: CR72
  article-title: Gate-tunable room-temperature ferromagnetism in two-dimensional Fe GeTe
  publication-title: Nature
– volume: 6
  start-page: 1695
  year: 2012
  end-page: 1701
  ident: CR81
  article-title: Evidence of the existence of magnetism in pristine VX monolayers (X = S, Se) and their strain-induced tunable magnetic properties
  publication-title: ACS Nano
– volume: 99
  start-page: 144401
  year: 2019
  ident: CR114
  article-title: Stacking tunable interlayer magnetism in bilayer CrI
  publication-title: Phys. Rev. B
– volume: 72
  start-page: 161
  year: 1982
  end-page: 168
  ident: CR102
  article-title: Magnetic ordering in CrCl at the phase transition
  publication-title: Phys. Status Solidi
– volume: 2
  start-page: 17033
  year: 2017
  ident: CR120
  article-title: 2D transition metal dichalcogenides
  publication-title: Nat. Rev. Mater.
– volume: 114
  start-page: 47001
  year: 2016
  ident: CR96
  article-title: Doping enhanced ferromagnetism and induced half-metallicity in CrI monolayer
  publication-title: Europhys. Lett.
– volume: 22
  start-page: 3
  year: 1986
  end-page: 30
  ident: CR40
  article-title: Review on structural and chemical properties of transition metal phosphorous trisulfides MPS
  publication-title: Solid State Ion.
– volume: 18
  start-page: 1303
  year: 2019
  end-page: 1308
  ident: CR27
  article-title: Pressure-controlled interlayer magnetism in atomically thin CrI
  publication-title: Nat. Mater.
– volume: 16
  start-page: 345
  year: 1983
  end-page: 353
  ident: CR79
  article-title: Magnetic structures of α-MnS and MnSe from Fe Mossbauer spectroscopy
  publication-title: J. Phys. C Solid State Phys.
– volume: 567
  start-page: 81
  year: 2019
  end-page: 86
  ident: CR12
  article-title: Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures
  publication-title: Nature
– volume: 18
  start-page: 1298
  year: 2019
  end-page: 1302
  ident: CR26
  article-title: Switching 2D magnetic states via pressure tuning of layer stacking
  publication-title: Nat. Mater.
– volume: 567
  start-page: 76
  year: 2019
  end-page: 80
  ident: CR10
  article-title: Observation of moiré excitons in WSe /WS heterostructure superlattices
  publication-title: Nature
– volume: 49
  start-page: 1305
  year: 1978
  end-page: 1310
  ident: CR15
  article-title: Experiments on simple magnetic model systems
  publication-title: J. Appl. Phys.
– volume: 71
  start-page: 056501
  year: 2008
  ident: CR18
  article-title: Magnetism in ultrathin film structures
  publication-title: Reports Prog. Phys.
– volume: 546
  start-page: 270
  year: 2017
  end-page: 273
  ident: CR13
  article-title: Layer-dependent ferromagnetism in a van der Waals Crystal down to the monolayer limit
  publication-title: Nature
– volume: 46
  start-page: 178
  year: 1984
  end-page: 190
  ident: CR45
  article-title: FePS : a first-order phase transition in a ‘2D’ Ising antiferromagnet
  publication-title: J. Magn. Magn. Mater.
– volume: 319
  start-page: 13
  year: 2007
  end-page: 55
  ident: CR107
  article-title: Domain structure and magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films
  publication-title: J. Magn. Magn. Mater.
– volume: 40
  start-page: 1352
  year: 1969
  end-page: 1358
  ident: CR16
  article-title: Magnetism in two dimensions
  publication-title: J. Appl. Phys.
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  ident: CR1
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
– volume: 4
  start-page: 035002
  year: 2017
  ident: CR85
  article-title: On the origin of magnetic anisotropy in two dimensional CrI
  publication-title: 2D Mater.
– volume: 556
  start-page: 43
  year: 2018
  end-page: 50
  ident: CR8
  article-title: Unconventional superconductivity in magic-angle graphene superlattices
  publication-title: Nature
– volume: 13
  start-page: 289
  year: 2018
  end-page: 293
  ident: CR52
  article-title: Strong room-temperature ferromagnetism in VSe monolayers on van der Waals substrates
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 10463
  year: 2018
  end-page: 10472
  ident: CR70
  article-title: Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers
  publication-title: ACS Nano
– volume: 105
  start-page: 136805
  year: 2010
  ident: CR2
  article-title: Atomically thin MoS : a new direct-gap semiconductor
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 69
  year: 1995
  end-page: 87
  ident: CR61
  article-title: Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr Ge Te
  publication-title: J. Phys. Condens. Matter
– volume: 10
  year: 2019
  ident: CR32
  article-title: Giant valley splitting in monolayer WS by magnetic proximity effect
  publication-title: Nat. Commun.
– volume: 5
  start-page: eaax9989
  year: 2019
  ident: CR57
  article-title: Natural van der Waals heterostructures with tunable magnetic and topological states
  publication-title: Sci. Adv.
– volume: 567
  start-page: 71
  year: 2019
  end-page: 75
  ident: CR11
  article-title: Evidence for moiré excitons in van der Waals heterostructures
  publication-title: Nature
– volume: 30
  start-page: 304S
  year: 1959
  end-page: 305S
  ident: CR98
  article-title: Some magnetic properties of the chromium (III) halides at 4.2°K
  publication-title: J. Appl. Phys.
– volume: 91
  start-page: 235425
  year: 2015
  ident: CR28
  article-title: Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 148
  year: 2015
  end-page: 152
  ident: CR123
  article-title: Magnetic control of valley pseudospin in monolayer WSe
  publication-title: Nat. Phys.
– volume: 563
  start-page: 47
  year: 2018
  end-page: 52
  ident: CR23
  article-title: Magnetism in two-dimensional van der Waals materials
  publication-title: Nature
– volume: 46
  start-page: 184
  year: 1979
  end-page: 188
  ident: CR78
  article-title: Infrared lattice vibrations and dielectric dispersion in antiferromagnetic semiconductor MnSe
  publication-title: J. Phys. Soc. Japan
– volume: 366
  start-page: 983
  year: 2019
  end-page: 987
  ident: CR119
  article-title: Direct observation of van der Waals stacking-dependent interlayer magnetism
  publication-title: Science
– volume: 19
  start-page: 3993
  year: 2019
  end-page: 3998
  ident: CR29
  article-title: Atomically thin CrCl : an in-plane layered antiferromagnetic insulator
  publication-title: Nano Lett.
– volume: 9
  start-page: 268
  year: 2014
  end-page: 272
  ident: CR6
  article-title: Electrically tunable excitonic light-emitting diodes based on monolayer WSe p-n junctions
  publication-title: Nat. Nanotechnol.
– volume: 80
  start-page: 016502
  year: 2017
  ident: CR22
  article-title: Quantum spin liquids: a review
  publication-title: Reports Prog. Phys.
– volume: 101
  start-page: 064416
  year: 2020
  ident: CR51
  article-title: Quasi-two-dimensional magnon identification in antiferromagnetic FePS via magneto-Raman spectroscopy
  publication-title: Phys. Rev. B
– volume: 360
  start-page: 1214
  year: 2018
  end-page: 1218
  ident: CR106
  article-title: Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
  publication-title: Science
– volume: 19
  start-page: 4400
  year: 2019
  end-page: 4405
  ident: CR34
  article-title: Highly efficient spin-orbit torque and switching of layered ferromagnet Fe GeTe
  publication-title: Nano Lett.
– volume: 9
  year: 2018
  ident: CR67
  article-title: Hard magnetic properties in nanoflake van der Waals Fe GeTe
  publication-title: Nat. Commun.
– volume: 14
  start-page: 277
  year: 2018
  end-page: 281
  ident: CR111
  article-title: Ligand-field helical luminescence in a 2D ferromagnetic insulator
  publication-title: Nat. Phys.
– volume: 10
  year: 2019
  ident: CR56
  article-title: Intrinsic magnetic topological insulator phases in the Sb doped MnBi Te bulks and thin flakes
  publication-title: Nat. Commun.
– volume: 122
  start-page: 107202
  year: 2019
  ident: CR58
  article-title: Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi Te films
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 2397
  year: 2019
  end-page: 2403
  ident: CR126
  article-title: Probing magnetism in insulating Cr Ge Te by induced anomalous hall effect in Pt
  publication-title: Nano Lett.
– volume: 123
  start-page: 14089
  year: 2019
  end-page: 14096
  ident: CR84
  article-title: Charge density wave state suppresses ferromagnetic ordering in VSe monolayers
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 064202
  year: 2019
  ident: CR55
  article-title: Crystal growth and magnetic structure of MnBi Te
  publication-title: Phys. Rev. Mater.
– volume: 13
  start-page: 554
  year: 2018
  end-page: 559
  ident: CR63
  article-title: Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor
  publication-title: Nat. Nanotechnol.
– volume: 14
  start-page: 5590
  year: 2014
  end-page: 5597
  ident: CR7
  article-title: Electroluminescence and photocurrent generation from atomically sharp WSe /MoS heterojunction p-n diodes
  publication-title: Nano Lett.
– volume: 88
  start-page: 115140
  year: 2013
  ident: CR121
  article-title: Magnetic control of the valley degree of freedom of massive Dirac fermions with application to transition metal dichalcogenides
  publication-title: Phys. Rev. B
– volume: 99
  start-page: 041402
  year: 2019
  ident: CR90
  article-title: Bulk properties of the van der Waals hard ferromagnet VI
  publication-title: Phys. Rev. B
– volume: 353
  start-page: aac9439
  year: 2016
  ident: CR4
  article-title: 2D materials and van der Waals heterostructures
  publication-title: Science
– volume: 18
  start-page: 3823
  year: 2018
  end-page: 3828
  ident: CR37
  article-title: Valley manipulation by optically tuning the magnetic proximity effect in WSe /CrI heterostructures
  publication-title: Nano Lett.
– volume: 567
  start-page: 66
  year: 2019
  end-page: 70
  ident: CR9
  article-title: Signatures of moiré-trapped valley excitons in MoSe /WSe heterobilayers
  publication-title: Nature
– volume: 27
  start-page: 612
  year: 2015
  end-page: 620
  ident: CR93
  article-title: Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI
  publication-title: Chem. Mater.
– volume: 16
  start-page: 4990
  year: 2014
  end-page: 4994
  ident: CR82
  article-title: Ferromagnetism in MnX (X = S, Se) monolayers
  publication-title: Phys. Chem. Chem. Phys.
– volume: 65
  start-page: 83
  year: 2014
  end-page: 105
  ident: CR135
  article-title: Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology
  publication-title: Annu. Rev. Phys. Chem.
– volume: 1
  start-page: 014001
  year: 2017
  ident: CR95
  article-title: Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl crystals
  publication-title: Phys. Rev. Mater.
– volume: 65
  start-page: 83
  year: 2014
  ident: 791_CR135
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-040513-103659
– volume: 10
  year: 2019
  ident: 791_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11966-4
– volume: 14
  start-page: 277
  year: 2018
  ident: 791_CR111
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-017-0006-7
– volume: 120
  start-page: 057406
  year: 2018
  ident: 791_CR122
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.057405
– volume: 19
  start-page: 522
  year: 2020
  ident: 791_CR39
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0573-3
– volume: 19
  start-page: 3993
  year: 2019
  ident: 791_CR29
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01317
– volume: 99
  start-page: 041402
  year: 2019
  ident: 791_CR90
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.041402
– volume: 99
  start-page: 144401
  year: 2019
  ident: 791_CR114
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.144401
– volume: 567
  start-page: 71
  year: 2019
  ident: 791_CR11
  publication-title: Nature
  doi: 10.1038/s41586-019-0975-z
– volume: 546
  start-page: 265
  year: 2017
  ident: 791_CR14
  publication-title: Nature
  doi: 10.1038/nature22060
– volume: 576
  start-page: 416
  year: 2019
  ident: 791_CR38
  publication-title: Nature
  doi: 10.1038/s41586-019-1840-9
– volume: 29
  start-page: 1602852
  year: 2017
  ident: 791_CR44
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602852
– volume: 13
  start-page: 4436
  year: 2019
  ident: 791_CR54
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09660
– volume: 16
  start-page: 345
  year: 1983
  ident: 791_CR79
  publication-title: J. Phys. C Solid State Phys.
  doi: 10.1088/0022-3719/16/2/017
– volume: 18
  start-page: 3125
  year: 2018
  ident: 791_CR53
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00683
– volume: 1
  start-page: 014001
  year: 2017
  ident: 791_CR95
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.1.014001
– volume: 363
  start-page: eaav4450
  year: 2019
  ident: 791_CR25
  publication-title: Science
  doi: 10.1126/science.aav4450
– volume: 353
  start-page: aac9439
  year: 2016
  ident: 791_CR4
  publication-title: Science
  doi: 10.1126/science.aac9439
– volume: 464
  start-page: 199
  year: 2010
  ident: 791_CR91
  publication-title: Nature
  doi: 10.1038/nature08917
– volume: 364
  start-page: 973
  year: 2019
  ident: 791_CR109
  publication-title: Science
  doi: 10.1126/science.aav6926
– volume: 40
  start-page: 1352
  year: 1969
  ident: 791_CR16
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1657665
– ident: 791_CR60
  doi: 10.1093/nsr/nwaa089
– volume: 9
  year: 2018
  ident: 791_CR67
  publication-title: Nat. Commun.
– volume: 499
  start-page: 419
  year: 2013
  ident: 791_CR3
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 22
  start-page: 3
  year: 1986
  ident: 791_CR40
  publication-title: Solid State Ion.
  doi: 10.1016/0167-2738(86)90055-X
– volume: 367
  start-page: 895
  year: 2020
  ident: 791_CR59
  publication-title: Science
  doi: 10.1126/science.aax8156
– volume: 3
  start-page: e1603113
  year: 2017
  ident: 791_CR36
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603113
– volume: 101
  start-page: 064416
  year: 2020
  ident: 791_CR51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.064416
– volume: 13
  start-page: 554
  year: 2018
  ident: 791_CR63
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0186-z
– volume: 10
  start-page: 87
  year: 1959
  ident: 791_CR97
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(59)90061-7
– volume: 19
  start-page: 5031
  year: 2019
  ident: 791_CR75
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01287
– volume: 100
  start-page: 564
  year: 1955
  ident: 791_CR115
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.100.564
– volume: 19
  start-page: 2397
  year: 2019
  ident: 791_CR126
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b05121
– volume: 3
  start-page: 17088
  year: 2018
  ident: 791_CR137
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.88
– volume: 6
  start-page: 041001
  year: 2019
  ident: 791_CR42
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/ab27d5
– volume: 3
  start-page: 12457
  year: 2015
  ident: 791_CR92
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC02840J
– volume: 49
  start-page: 1305
  year: 1978
  ident: 791_CR15
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.325027
– volume: 10
  year: 2019
  ident: 791_CR105
  publication-title: Nat. Commun.
– volume: 14
  start-page: 5590
  year: 2014
  ident: 791_CR7
  publication-title: Nano Lett.
  doi: 10.1021/nl502075n
– volume: 98
  start-page: 134414
  year: 2018
  ident: 791_CR49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.134414
– volume: 18
  start-page: 3823
  year: 2018
  ident: 791_CR37
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01105
– volume: 44
  start-page: 65
  year: 2014
  ident: 791_CR19
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070813-113447
– volume: 366
  start-page: 983
  year: 2019
  ident: 791_CR119
  publication-title: Science
  doi: 10.1126/science.aav1937
– volume: 93
  start-page: 014411
  year: 2016
  ident: 791_CR68
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.014411
– volume: 122
  start-page: 107202
  year: 2019
  ident: 791_CR58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.107202
– volume: 18
  start-page: 7194
  year: 2018
  ident: 791_CR129
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03315
– volume: 32
  start-page: 1906021
  year: 2020
  ident: 791_CR35
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906021
– volume: 572
  start-page: 497
  year: 2019
  ident: 791_CR110
  publication-title: Nature
  doi: 10.1038/s41586-019-1445-3
– volume: 3
  start-page: 025035
  year: 2016
  ident: 791_CR62
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/3/2/025035
– volume: 9
  start-page: 268
  year: 2014
  ident: 791_CR6
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.26
– volume: 5
  year: 2015
  ident: 791_CR71
  publication-title: Sci. Rep.
  doi: 10.1038/srep14714
– volume: 5
  start-page: eaax9989
  year: 2019
  ident: 791_CR57
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax9989
– volume: 7
  start-page: 015007
  year: 2020
  ident: 791_CR116
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/ab4c64
– volume: 9
  start-page: 262
  year: 2014
  ident: 791_CR5
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.25
– volume: 40
  start-page: 1958
  year: 1964
  ident: 791_CR94
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1725428
– volume: 105
  start-page: 136805
  year: 2010
  ident: 791_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 18
  start-page: 1303
  year: 2019
  ident: 791_CR27
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0506-1
– volume: 20
  start-page: 251
  year: 1976
  ident: 791_CR76
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(76)90187-3
– volume: 18
  start-page: 1298
  year: 2019
  ident: 791_CR26
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0505-2
– volume: 91
  start-page: 235425
  year: 2015
  ident: 791_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.235425
– volume: 21
  start-page: 7750
  year: 2019
  ident: 791_CR131
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP07067A
– volume: 13
  start-page: 289
  year: 2018
  ident: 791_CR52
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0063-9
– volume: 89
  start-page: 025006
  year: 2017
  ident: 791_CR125
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.89.025006
– volume: 123
  start-page: 27802
  year: 2019
  ident: 791_CR83
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b08868
– volume: 556
  start-page: 43
  year: 2018
  ident: 791_CR8
  publication-title: Nature
  doi: 10.1038/nature26160
– volume: 76
  start-page: 134402
  year: 2007
  ident: 791_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.134402
– volume: 10
  start-page: 3087
  year: 2019
  ident: 791_CR43
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b00758
– volume: 46
  start-page: 5425
  year: 1992
  ident: 791_CR48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.5425
– volume: 18
  start-page: 5432
  year: 2018
  ident: 791_CR80
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01764
– volume: 71
  start-page: 056501
  year: 2008
  ident: 791_CR18
  publication-title: Reports Prog. Phys.
  doi: 10.1088/0034-4885/71/5/056501
– volume: 7
  start-page: 69
  year: 1995
  ident: 791_CR61
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/7/1/008
– volume: 87
  start-page: 855
  year: 2015
  ident: 791_CR21
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.87.855
– volume: 2
  start-page: 457
  year: 2019
  ident: 791_CR33
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0302-6
– volume: 84
  start-page: 1383
  year: 2012
  ident: 791_CR20
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.84.1383
– volume: 12
  start-page: 10463
  year: 2018
  ident: 791_CR70
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06101
– volume: 17
  start-page: 778
  year: 2018
  ident: 791_CR73
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0149-7
– volume: 19
  start-page: 325
  year: 1976
  ident: 791_CR77
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(76)90184-5
– volume: 31
  start-page: 1808074
  year: 2019
  ident: 791_CR88
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808074
– volume: 30
  start-page: 304S
  year: 1959
  ident: 791_CR98
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2185944
– volume: 2019
  start-page: 1901414
  year: 2019
  ident: 791_CR17
  publication-title: Adv. Funct. Mater.
– volume: 137
  start-page: A163
  year: 1965
  ident: 791_CR101
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.137.A163
– volume: 5
  start-page: eaaw8904
  year: 2019
  ident: 791_CR127
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw8904
– volume: 92
  start-page: 243111
  year: 2008
  ident: 791_CR136
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2943282
– volume: 31
  start-page: 1901185
  year: 2019
  ident: 791_CR86
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901185
– volume: 46
  start-page: 178
  year: 1984
  ident: 791_CR45
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/0304-8853(84)90355-X
– volume: 357
  start-page: 191
  year: 2017
  ident: 791_CR108
  publication-title: Science
  doi: 10.1126/science.aak9717
– volume: 72
  start-page: 094406
  year: 2005
  ident: 791_CR113
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.094406
– volume: 28
  start-page: 4053
  year: 2016
  ident: 791_CR69
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506171
– volume: 30
  start-page: 1801325
  year: 2018
  ident: 791_CR104
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801325
– volume: 15
  start-page: 1255
  year: 2019
  ident: 791_CR31
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0651-0
– volume: 16
  start-page: 4990
  year: 2014
  ident: 791_CR82
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp55146f
– volume: 109
  start-page: 107204
  year: 2012
  ident: 791_CR124
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.107204
– volume: 2
  start-page: 17033
  year: 2017
  ident: 791_CR120
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.33
– volume: 88
  start-page: 115140
  year: 2013
  ident: 791_CR121
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.115140
– volume: 116
  start-page: 11131
  year: 2019
  ident: 791_CR30
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1902100116
– volume: 178
  start-page: 497
  year: 1969
  ident: 791_CR103
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.178.497
– volume: 16
  start-page: 7433
  year: 2016
  ident: 791_CR50
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03052
– volume: 11
  start-page: 148
  year: 2015
  ident: 791_CR123
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3201
– volume: 19
  start-page: 4400
  year: 2019
  ident: 791_CR34
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01043
– volume: 92
  start-page: 224408
  year: 2015
  ident: 791_CR47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.224408
– volume: 18
  start-page: 4493
  year: 2018
  ident: 791_CR87
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01649
– volume: 360
  start-page: 1214
  year: 2018
  ident: 791_CR106
  publication-title: Science
  doi: 10.1126/science.aar4851
– volume: 15
  start-page: 1664
  year: 1960
  ident: 791_CR99
  publication-title: J. Phys. Soc. Japan
  doi: 10.1143/JPSJ.15.1664
– volume: 6
  start-page: 1695
  year: 2012
  ident: 791_CR81
  publication-title: ACS Nano
  doi: 10.1021/nn204667z
– volume: 123
  start-page: 047204
  year: 2019
  ident: 791_CR118
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.047204
– volume: 563
  start-page: 94
  year: 2018
  ident: 791_CR72
  publication-title: Nature
  doi: 10.1038/s41586-018-0626-9
– volume: 82
  start-page: 124711
  year: 2013
  ident: 791_CR64
  publication-title: J. Phys. Soc. Japan
  doi: 10.7566/JPSJ.82.124711
– volume: 15
  start-page: 212
  year: 2020
  ident: 791_CR133
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0598-4
– volume: 306
  start-page: 666
  year: 2004
  ident: 791_CR1
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 141
  start-page: 5326
  year: 2019
  ident: 791_CR89
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13584
– volume: 2006
  start-page: 1561
  year: 2006
  ident: 791_CR66
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.200501020
– volume: 27
  start-page: 612
  year: 2015
  ident: 791_CR93
  publication-title: Chem. Mater.
  doi: 10.1021/cm504242t
– volume: 1
  year: 2017
  ident: 791_CR74
  publication-title: npj 2D Mater. Appl.
– volume: 563
  start-page: 47
  year: 2018
  ident: 791_CR23
  publication-title: Nature
  doi: 10.1038/s41586-018-0631-z
– volume: 4
  start-page: 035002
  year: 2017
  ident: 791_CR85
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa75ed
– volume: 19
  start-page: 3138
  year: 2019
  ident: 791_CR112
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b00553
– volume: 46
  start-page: 184
  year: 1979
  ident: 791_CR78
  publication-title: J. Phys. Soc. Japan
  doi: 10.1143/JPSJ.46.184
– volume: 567
  start-page: 76
  year: 2019
  ident: 791_CR10
  publication-title: Nature
  doi: 10.1038/s41586-019-0976-y
– volume: 81
  start-page: 1495
  year: 2009
  ident: 791_CR134
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.1495
– volume: 123
  start-page: 14089
  year: 2019
  ident: 791_CR84
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b04281
– volume: 546
  start-page: 270
  year: 2017
  ident: 791_CR13
  publication-title: Nature
  doi: 10.1038/nature22391
– volume: 18
  start-page: 7658
  year: 2018
  ident: 791_CR117
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03321
– volume: 131
  start-page: 1929
  year: 1963
  ident: 791_CR100
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.131.1929
– volume: 14
  start-page: 6
  year: 2019
  ident: 791_CR128
  publication-title: Front. Phys.
– volume: 10
  year: 2019
  ident: 791_CR56
  publication-title: Nat. Commun.
– volume: 4
  start-page: 011005
  year: 2016
  ident: 791_CR65
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/4/1/011005
– volume: 18
  start-page: 4214
  year: 2018
  ident: 791_CR132
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01131
– volume: 567
  start-page: 66
  year: 2019
  ident: 791_CR9
  publication-title: Nature
  doi: 10.1038/s41586-019-0957-1
– volume: 3
  start-page: 064202
  year: 2019
  ident: 791_CR55
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.064202
– volume: 80
  start-page: 016502
  year: 2017
  ident: 791_CR22
  publication-title: Reports Prog. Phys.
  doi: 10.1088/0034-4885/80/1/016502
– volume: 365
  start-page: 605
  year: 2019
  ident: 791_CR130
  publication-title: Science
  doi: 10.1126/science.aaw3780
– volume: 10
  year: 2019
  ident: 791_CR41
  publication-title: Nat. Commun.
– volume: 567
  start-page: 81
  year: 2019
  ident: 791_CR12
  publication-title: Nature
  doi: 10.1038/s41586-019-0986-9
– volume: 14
  start-page: 408
  year: 2019
  ident: 791_CR24
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0438-6
– volume: 114
  start-page: 47001
  year: 2016
  ident: 791_CR96
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/114/47001
– volume: 72
  start-page: 161
  year: 1982
  ident: 791_CR102
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssa.2210720116
– volume: 319
  start-page: 13
  year: 2007
  ident: 791_CR107
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2007.04.035
SSID ssj0021556
Score 2.6946385
SecondaryResourceType review_article
Snippet Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device...
SourceID osti
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1276
SubjectTerms 140/125
140/133
142/126
639/766/119/1001
639/766/119/2792/4128
639/766/119/2793
639/766/119/2794
639/766/119/997
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Coupling
Heterostructures
Interlayers
Layered materials
Magnetic properties
Magnetism
Magnets
MATERIALS SCIENCE
Nanotechnology
Optical and Electronic Materials
Review Article
Tuning
Title Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures
URI https://link.springer.com/article/10.1038/s41563-020-0791-8
https://www.ncbi.nlm.nih.gov/pubmed/32948831
https://www.proquest.com/docview/2474987442
https://www.proquest.com/docview/2444379337
https://www.osti.gov/servlets/purl/1760123
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gIHVN6hDxmJE8iqEzuJc6q61S4VEiuEqLQ3y_GDIkFStKkQ_56ZPHZBQC_JwXbkzPgx4_n8DcArVReFcFVNfNoSH2XJrSevtRCW4na-0HQ5-f2quLhU79b5ejxw24ywymlN7Bdq3zo6Iz_JVKkq4mrPTq-_c8oaRdHVMYXGXdgj6jIa1eV653DhXjncLioLjnZFNkU1pT7ZkONCEUzBRVmlXP-xL81anF__sjn_ipf229ByHx6M9iM7GxT-EO6E5hHc_41V8DGsF8OVyo4RfosYFiyzjWeEWKHrTD_ZCOJgXxrW_Wi5J4b_gZ2DfbOfm4BF1OCKoDLtwDB7g275E7hcLj6dX_AxgQJ3aHd1PFpRlV6IGKIMwksbC6dVrWKqtYu6slUoVC6s1NqndR6tVOix2hy1JdKI29tTmDVtE54DE75yFm29qghKhUgQqpCHEo3BWmjvYgJiEp9xI7s4Jbn4avoot9RmkLhBiRuSuNEJvN42uR6oNW6rfEA6MWgXELmtIxSQ60xKkJ5MJnA4qcqMc3BjdiMmgZfbYpw9FBKxTWhvqI4iQkYpywSeDSre9gV_Flc3mSbwZtL57uP_7eiL27tyAPcyGnQ9IOYQZqjCcIRmTVcf92MXn3r59hj2zpbz-Qrf88Xqw8dfLWD2cQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5QAcEM-StoCR4AKK6sRO4hwqhKDLlj5OrbQ34_gBSJCUbqqqf4rf2Jk8tiCgt15yyEvOzNieyXzzDcBLWeU5t2VFfNoCD0URG0dRa84N5e1crqg4ef8gnx3JT_NsvgK_xloYglWOa2K3ULvG0j_yzVQWsiSu9vTt8c-YukZRdnVsodGbxa4_P8OQbbG18wH1-ypNp9uH72fx0FUgtuiMtHEwvCwc58EH4bkTJuRWyUqGRCkbVGlKn8uMG6GUS6osGCExjDMZfgJPAq75-N4bcBNPlhTsqenHZYCHe3NfzVTkMfox6ZhFFWpzQYESZUx5zIsyidUf--Ckwfn8Lx_3r_xst-1N78HdwV9l73oDuw8rvn4Ad35jMXwI8-2-hLNlhBcjRgfDTO0YIWSofOqcDaAR9q1m7VkTO-oo0LOBsB_mS-3xEj3wlaA5Tc9oe3riF4_g6FpE-xgmdVP7J8C4K61B37LMvZQ-EGTLZ75A57PiytkQAR_Fp-3AZk5NNb7rLqsulO4lrlHimiSuVQSvl48c91QeV928TjrR6IcQma4l1JFtdUIQolREsDGqSg9zfqEvLTSCF8vLOFspBWNq35zSPZIIIIUoIljtVbwcC34srqYiieDNqPPLl_93oGtXD-U53Jod7u_pvZ2D3XW4nZIBdmCcDZigOv1TdKna6llnxww-X_fEuQBwai_i
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbKVkJwQLwJLTBIcAFFO8lMkskBIaC7aimsKkSlvU0n86CVIClsqqp_jV-HvUm2IKC3XvaShya2x2OvP38GeCarPOe2rIhPW-BPUcTGUdaac0N1O5crak7-OMu39-X7eTZfg59DLwzBKgefuHTUrrH0H_k4lYUsias9HYceFrG3NX19_D2mCVJUaR3GaXQmsuvPTjF9W7za2UJdP0_T6eTzu-24nzAQWwxM2jgYXhaO8-CD8NwJE3KrZCVDopQNqjSlz2XGjVDKJVUWjJCY0pkMP4cnAf0_vvcKrBeUFY1g_e1ktvdple7hSd31NhV5jFFNOtRUhRovKG2i-imPeVEmsfrjVBw1uLv_FfH-Va1dHoLTm3Cjj17Zm87cbsGar2_D9d84De_AfNI1dLaM0GPE72CYqR0jvAw1U52xHkLCjmrWnjaxo_kCHTcI-2a-1B4v0QOHBNRpOn7bkx9-cRf2L0W492BUN7V_AIy70hqMNMvcS-kDAbh85gsMRSuunA0R8EF82vbc5jRi46te1tiF0p3ENUpck8S1iuDF6pHjjtjjops3SCcaoxKi1rWEQbKtTghQlIoINgdV6d4DLPS5vUbwdHUZ9y4VZEztmxO6RxIdpBBFBPc7Fa_Wgh-LvlUkEbwcdH7-8v8u9OHFS3kCV3HT6A87s90NuJaS_S2ROZswQm36RxhftdXj3pAZHFz23vkFxC41dA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergent+phenomena+and+proximity+effects+in+two-dimensional+magnets+and+heterostructures&rft.jtitle=Nature+materials&rft.au=Huang%2C+Bevin&rft.au=McGuire%2C+Michael+A.&rft.au=May%2C+Andrew+F.&rft.au=Xiao%2C+Di&rft.date=2020-12-01&rft.pub=Springer+Nature+-+Nature+Publishing+Group&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=19&rft.issue=12&rft_id=info:doi/10.1038%2Fs41563-020-0791-8&rft.externalDocID=1760123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon