Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures
Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device structures in the two-dimensional limit. The past few years has pushed this frontier to include magnetism. These advances have brought forth a...
Saved in:
Published in | Nature materials Vol. 19; no. 12; pp. 1276 - 1289 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2020
Nature Publishing Group Springer Nature - Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device structures in the two-dimensional limit. The past few years has pushed this frontier to include magnetism. These advances have brought forth a new assortment of layered materials that intrinsically possess a wide variety of magnetic properties and are instrumental in integrating exchange and spin–orbit interactions into van der Waals heterostructures. This Review Article summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications.
This Review summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications. |
---|---|
AbstractList | Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device structures in the two-dimensional limit. The past few years has pushed this frontier to include magnetism. These advances have brought forth a new assortment of layered materials that intrinsically possess a wide variety of magnetic properties and are instrumental in integrating exchange and spin–orbit interactions into van der Waals heterostructures. This Review Article summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications. Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device structures in the two-dimensional limit. The past few years has pushed this frontier to include magnetism. These advances have brought forth a new assortment of layered materials that intrinsically possess a wide variety of magnetic properties and are instrumental in integrating exchange and spin–orbit interactions into van der Waals heterostructures. This Review Article summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications. This Review summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications. Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device structures in the two-dimensional limit. The past few years has pushed this frontier to include magnetism. These advances have brought forth a new assortment of layered materials that intrinsically possess a wide variety of magnetic properties and are instrumental in integrating exchange and spin–orbit interactions into van der Waals heterostructures. This Review Article summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications.This Review summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications. Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device structures in the two-dimensional limit. The past few years has pushed this frontier to include magnetism. These advances have brought forth a new assortment of layered materials that intrinsically possess a wide variety of magnetic properties and are instrumental in integrating exchange and spin-orbit interactions into van der Waals heterostructures. This Review Article summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications.Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device structures in the two-dimensional limit. The past few years has pushed this frontier to include magnetism. These advances have brought forth a new assortment of layered materials that intrinsically possess a wide variety of magnetic properties and are instrumental in integrating exchange and spin-orbit interactions into van der Waals heterostructures. This Review Article summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications. |
Author | Huang, Bevin Xiao, Di Jarillo-Herrero, Pablo May, Andrew F. McGuire, Michael A. Xu, Xiaodong |
Author_xml | – sequence: 1 givenname: Bevin orcidid: 0000-0002-8301-4058 surname: Huang fullname: Huang, Bevin email: huangbev@uw.edu organization: Department of Physics, University of Washington – sequence: 2 givenname: Michael A. surname: McGuire fullname: McGuire, Michael A. organization: Materials Science and Technology Division, Oak Ridge National Laboratory – sequence: 3 givenname: Andrew F. orcidid: 0000-0003-0777-8539 surname: May fullname: May, Andrew F. organization: Materials Science and Technology Division, Oak Ridge National Laboratory – sequence: 4 givenname: Di orcidid: 0000-0003-0165-6848 surname: Xiao fullname: Xiao, Di organization: Department of Physics, Carnegie Mellon University – sequence: 5 givenname: Pablo orcidid: 0000-0001-8217-8213 surname: Jarillo-Herrero fullname: Jarillo-Herrero, Pablo organization: Department of Physics, Massachusetts Institute of Technology – sequence: 6 givenname: Xiaodong orcidid: 0000-0003-0348-2095 surname: Xu fullname: Xu, Xiaodong email: xuxd@uw.edu organization: Department of Physics, University of Washington, Department of Materials Science and Engineering, University of Washington |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32948831$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1760123$$D View this record in Osti.gov |
BookMark | eNp9kUtrFTEYhoNU7EV_gBsZdONmNLeZZJZS6gUK3bTgLuRkvpyTMpMckwzaf-93mKNCwa4SyPPku7zn5CSmCIS8ZvQDo0J_LJJ1vWgppy1VA2v1M3LGpOpb2ff05HhnjPNTcl7KPaWcdV3_gpwKPkitBTsj369myFuItdnvIKYZom1sHJt9Tr_CHOpDA96Dq6UJsak_UzsGZEpI0U7NbLcR8Okg7KBCTqXmxdUlQ3lJnns7FXh1PC_I3eer28uv7fXNl2-Xn65b11FdW2_poEZKPXgBdBTW907LjfRMa-f1YAfoZUet0Hpkm85bIYXQtrPoMC-ZuCBv13-xdjDFhQpu51KM2LRhqqeMC4TerxCO9WOBUs0cioNpshHSUgyXUgo1CKEQffcIvU9LxmkPlJKDVlJypN4cqWUzw2j2Ocw2P5g_i0WArYDDpZQM_i_CqDmEZ9bwDIZnDuEZjY565OA0tuKua7ZhetLkq1mwStxC_tf0_6Xf0VetWg |
CitedBy_id | crossref_primary_10_1002_eem2_12184 crossref_primary_10_1007_s11664_021_09097_y crossref_primary_10_1039_D2NR02777A crossref_primary_10_1002_adma_202301854 crossref_primary_10_1038_s41598_021_00544_8 crossref_primary_10_1088_1367_2630_ad26b9 crossref_primary_10_1021_acs_nanolett_4c01542 crossref_primary_10_1002_adma_202200236 crossref_primary_10_1038_s41467_025_56919_2 crossref_primary_10_1103_PhysRevMaterials_5_054004 crossref_primary_10_1186_s40580_022_00348_0 crossref_primary_10_1002_smll_202400463 crossref_primary_10_1021_acs_chemrev_4c00631 crossref_primary_10_1038_s41524_022_00802_x crossref_primary_10_1002_smtd_202200885 crossref_primary_10_1021_acsnano_2c09762 crossref_primary_10_1103_PhysRevLett_132_236302 crossref_primary_10_1021_acsami_3c11467 crossref_primary_10_1103_PhysRevB_111_125416 crossref_primary_10_1063_5_0078814 crossref_primary_10_1039_D2TA05056K crossref_primary_10_1088_0256_307X_38_9_096101 crossref_primary_10_1021_acsnano_2c04995 crossref_primary_10_1021_acs_chemrev_2c00220 crossref_primary_10_1103_PhysRevLett_127_217203 crossref_primary_10_1021_acsnano_4c08185 crossref_primary_10_1016_j_mtnano_2023_100408 crossref_primary_10_1002_advs_202402875 crossref_primary_10_1002_aelm_202200650 crossref_primary_10_1557_s43577_024_00754_1 crossref_primary_10_1002_advs_202207617 crossref_primary_10_1142_S0217984923501993 crossref_primary_10_1515_nanoph_2022_0246 crossref_primary_10_1016_j_nantod_2023_101794 crossref_primary_10_1063_5_0145401 crossref_primary_10_1063_5_0070762 crossref_primary_10_1021_acsnano_4c14733 crossref_primary_10_1038_s41563_025_02129_6 crossref_primary_10_1038_s43246_024_00477_5 crossref_primary_10_1021_acsami_2c05464 crossref_primary_10_1016_j_apsusc_2022_153781 crossref_primary_10_1021_acsnano_4c16450 crossref_primary_10_1103_PhysRevB_109_064416 crossref_primary_10_1016_j_chphma_2025_02_002 crossref_primary_10_1103_PhysRevB_108_085435 crossref_primary_10_1021_acsami_0c21532 crossref_primary_10_1088_2515_7639_ad5ec1 crossref_primary_10_1126_science_adg0014 crossref_primary_10_1002_adma_202413438 crossref_primary_10_1002_admi_202201649 crossref_primary_10_1016_j_jallcom_2022_164830 crossref_primary_10_1002_adma_202303945 crossref_primary_10_1038_s41598_023_49004_5 crossref_primary_10_1039_D4CC00068D crossref_primary_10_1103_PhysRevB_110_144439 crossref_primary_10_1021_acs_chemmater_4c02671 crossref_primary_10_1103_PhysRevB_110_054430 crossref_primary_10_1038_s41467_022_32290_4 crossref_primary_10_1063_5_0048885 crossref_primary_10_1002_advs_202105483 crossref_primary_10_1002_adfm_202401304 crossref_primary_10_1103_PhysRevB_107_134415 crossref_primary_10_1103_PhysRevMaterials_8_074007 crossref_primary_10_3389_fphy_2022_1068605 crossref_primary_10_1021_acs_nanolett_2c01361 crossref_primary_10_1021_acsnano_2c01151 crossref_primary_10_1021_acsnano_2c04664 crossref_primary_10_1063_5_0214167 crossref_primary_10_1063_5_0144653 crossref_primary_10_1002_smll_202308439 crossref_primary_10_1073_pnas_2208968120 crossref_primary_10_1103_PhysRevB_109_144403 crossref_primary_10_1021_acsnano_4c14774 crossref_primary_10_1039_D1NJ03803F crossref_primary_10_1103_PhysRevB_108_174440 crossref_primary_10_1002_adom_202201396 crossref_primary_10_1063_5_0060817 crossref_primary_10_1126_science_abd5146 crossref_primary_10_1038_s41586_022_05024_1 crossref_primary_10_1021_jacs_1c08906 crossref_primary_10_1039_D3NR06550B crossref_primary_10_1021_acs_nanolett_1c03123 crossref_primary_10_1088_1674_1056_ac6eed crossref_primary_10_1038_s41467_023_37603_9 crossref_primary_10_1038_s41563_021_01184_z crossref_primary_10_1021_acs_nanolett_2c02369 crossref_primary_10_1038_s42254_021_00403_5 crossref_primary_10_1103_PhysRevB_111_075419 crossref_primary_10_1039_D1TC01322J crossref_primary_10_1021_acs_nanolett_4c04184 crossref_primary_10_1002_advs_202200186 crossref_primary_10_3390_ma15134478 crossref_primary_10_1021_acsaelm_2c00419 crossref_primary_10_1021_acs_jpcc_4c06156 crossref_primary_10_1002_advs_202206842 crossref_primary_10_1021_acs_nanolett_3c02906 crossref_primary_10_1103_PhysRevB_103_134437 crossref_primary_10_1039_D3NH00009E crossref_primary_10_1007_s11432_024_3986_8 crossref_primary_10_1126_science_abj7478 crossref_primary_10_1063_5_0130037 crossref_primary_10_1007_s11467_021_1073_x crossref_primary_10_1038_s41586_024_07858_3 crossref_primary_10_1103_PhysRevB_110_104406 crossref_primary_10_1016_j_cpc_2024_109356 crossref_primary_10_1002_adma_202109759 crossref_primary_10_1103_PhysRevB_104_L121403 crossref_primary_10_1021_acs_nanolett_2c01944 crossref_primary_10_1021_acs_nanolett_3c03431 crossref_primary_10_1021_acs_nanolett_2c04533 crossref_primary_10_1021_acs_jpcc_2c04474 crossref_primary_10_1038_s41567_023_02087_3 crossref_primary_10_1021_acs_jpcc_3c00769 crossref_primary_10_1093_bulcsj_uoaf010 crossref_primary_10_1016_j_jmmm_2025_172886 crossref_primary_10_1021_acsaelm_2c00407 crossref_primary_10_1103_PhysRevLett_133_146605 crossref_primary_10_1103_PhysRevB_105_L041402 crossref_primary_10_1103_PhysRevB_111_064304 crossref_primary_10_1038_s41467_024_47294_5 crossref_primary_10_1103_PhysRevB_110_094435 crossref_primary_10_1038_s41467_021_26973_7 crossref_primary_10_1103_PhysRevB_108_014436 crossref_primary_10_1002_adfm_202303847 crossref_primary_10_1021_acsnano_2c06912 crossref_primary_10_1088_1674_1056_ac1e0f crossref_primary_10_1021_acs_nanolett_2c00401 crossref_primary_10_1063_5_0143593 crossref_primary_10_1021_acs_chemrev_1c00735 crossref_primary_10_1103_PhysRevB_109_035419 crossref_primary_10_1103_PhysRevB_107_214437 crossref_primary_10_1038_s41467_023_40723_x crossref_primary_10_1038_s41467_023_39529_8 crossref_primary_10_1002_adma_202006850 crossref_primary_10_1021_acs_jpcc_0c09812 crossref_primary_10_1021_acsnano_1c03312 crossref_primary_10_1038_s41467_021_25068_7 crossref_primary_10_1103_PhysRevB_106_024422 crossref_primary_10_1103_PhysRevMaterials_7_044406 crossref_primary_10_1038_s42254_021_00380_9 crossref_primary_10_1038_s41467_021_23882_7 crossref_primary_10_1039_D4TC00003J crossref_primary_10_1038_s41377_024_01630_y crossref_primary_10_1002_adma_202401534 crossref_primary_10_1038_s41578_021_00304_0 crossref_primary_10_1021_acs_nanolett_1c02940 crossref_primary_10_1021_acs_nanolett_1c00520 crossref_primary_10_1002_adma_202211388 crossref_primary_10_1038_s41565_025_01872_w crossref_primary_10_1021_acs_chemmater_1c02670 crossref_primary_10_1021_acsnano_3c10609 crossref_primary_10_1002_adma_202308871 crossref_primary_10_1039_D2TC00564F crossref_primary_10_1063_5_0107065 crossref_primary_10_1038_s41565_021_00885_5 crossref_primary_10_1038_s41586_023_06279_y crossref_primary_10_1002_admi_202100515 crossref_primary_10_1038_s41467_021_27741_3 crossref_primary_10_1063_5_0230385 crossref_primary_10_1002_adom_202301488 crossref_primary_10_1093_nsr_nwad151 crossref_primary_10_1088_1674_1056_ac5a41 crossref_primary_10_1038_s41535_022_00428_8 crossref_primary_10_1063_5_0150937 crossref_primary_10_1038_s41699_024_00468_7 crossref_primary_10_1063_5_0223854 crossref_primary_10_1016_j_apsusc_2024_160706 crossref_primary_10_1021_acsami_1c13623 crossref_primary_10_1103_PhysRevLett_134_116702 crossref_primary_10_1103_PhysRevB_106_075432 crossref_primary_10_1016_j_jallcom_2022_168375 crossref_primary_10_1021_acs_chemmater_3c01096 crossref_primary_10_1021_acsnano_4c00853 crossref_primary_10_1103_PhysRevB_110_045425 crossref_primary_10_1002_adfm_202009758 crossref_primary_10_1021_acsnano_1c09150 crossref_primary_10_1103_PhysRevB_108_115311 crossref_primary_10_1007_s11467_023_1286_2 crossref_primary_10_1093_nsr_nwac173 crossref_primary_10_3390_membranes13010006 crossref_primary_10_1016_j_scib_2022_12_009 crossref_primary_10_1021_acsmaterialslett_3c01090 crossref_primary_10_1038_s41467_024_48809_w crossref_primary_10_1103_PhysRevMaterials_6_085201 crossref_primary_10_1080_14686996_2022_2030652 crossref_primary_10_1002_adma_202302568 crossref_primary_10_1103_PhysRevMaterials_6_014008 crossref_primary_10_1063_5_0101429 crossref_primary_10_1103_PhysRevB_108_L100406 crossref_primary_10_1007_s12274_022_4694_7 crossref_primary_10_1103_PhysRevB_107_205412 crossref_primary_10_1103_PhysRevB_106_085117 crossref_primary_10_1149_1945_7111_ac7006 crossref_primary_10_1039_D3TA00555K crossref_primary_10_1038_s41563_024_01880_6 crossref_primary_10_1021_acs_nanolett_1c03027 crossref_primary_10_1021_acsnano_2c04017 crossref_primary_10_7498_aps_70_20202204 crossref_primary_10_1103_PhysRevX_14_041065 crossref_primary_10_1016_j_nanoms_2024_05_003 crossref_primary_10_1103_PhysRevB_105_184514 crossref_primary_10_1002_apxr_202300036 crossref_primary_10_1021_acsphyschemau_4c00010 crossref_primary_10_1002_adma_202102427 crossref_primary_10_1088_1361_648X_acbb49 crossref_primary_10_1063_5_0211057 crossref_primary_10_1088_2053_1583_ad3ceb crossref_primary_10_1038_s41467_023_39123_y crossref_primary_10_1002_aelm_202200483 crossref_primary_10_1063_5_0223945 crossref_primary_10_1038_s41567_023_02061_z crossref_primary_10_1038_s41563_023_01494_4 crossref_primary_10_1021_acs_jpclett_2c00091 crossref_primary_10_1021_acs_jpclett_1c00165 crossref_primary_10_1002_adma_202305739 crossref_primary_10_1002_smtd_202100567 crossref_primary_10_1002_adma_202201880 crossref_primary_10_1103_PhysRevB_108_134425 crossref_primary_10_1002_adfm_202113255 crossref_primary_10_1109_TMAG_2024_3418188 crossref_primary_10_1038_s41467_024_45623_2 crossref_primary_10_1088_1674_1056_ac2808 crossref_primary_10_1016_j_mtcomm_2024_108891 crossref_primary_10_1016_j_grets_2024_100111 crossref_primary_10_1063_5_0169249 crossref_primary_10_1103_PhysRevMaterials_7_045201 crossref_primary_10_1103_PhysRevB_111_115118 crossref_primary_10_1016_j_nanoms_2021_05_002 crossref_primary_10_1021_acsnano_4c12520 crossref_primary_10_1039_D0MH01480J crossref_primary_10_1007_s10765_021_02947_1 crossref_primary_10_1103_PhysRevMaterials_8_044407 crossref_primary_10_1038_s41535_022_00495_x crossref_primary_10_1002_adma_202209365 crossref_primary_10_1021_acsnano_4c04343 crossref_primary_10_1063_5_0042683 crossref_primary_10_1088_1361_648X_ac0b1f crossref_primary_10_1021_acsnano_2c09452 crossref_primary_10_1103_PhysRevB_109_014426 crossref_primary_10_1126_sciadv_abl7707 crossref_primary_10_1038_s41563_022_01320_3 crossref_primary_10_1103_PhysRevMaterials_7_124408 crossref_primary_10_1103_PhysRevMaterials_8_014007 crossref_primary_10_1088_1674_1056_ac0043 crossref_primary_10_1021_jacs_4c13391 crossref_primary_10_1038_s41598_025_86218_1 crossref_primary_10_1002_smll_202402189 crossref_primary_10_1021_acs_nanolett_4c01765 crossref_primary_10_1002_adma_202201064 crossref_primary_10_1021_acsnano_3c10218 crossref_primary_10_1021_acsami_2c18028 crossref_primary_10_1103_PhysRevB_104_L161113 crossref_primary_10_1039_D2NA00835A crossref_primary_10_1002_adfm_202409085 crossref_primary_10_1016_j_mtelec_2023_100070 crossref_primary_10_1002_advs_202407625 crossref_primary_10_1016_j_apsusc_2023_159057 crossref_primary_10_1021_acs_jpcc_2c08648 crossref_primary_10_1103_PhysRevMaterials_6_094404 crossref_primary_10_1103_PhysRevB_110_155139 crossref_primary_10_1103_PhysRevMaterials_9_034002 crossref_primary_10_1360_nso_20230002 crossref_primary_10_1002_adma_202208930 crossref_primary_10_1016_j_physe_2022_115319 crossref_primary_10_1103_PhysRevB_108_144429 crossref_primary_10_1002_adfm_202112750 crossref_primary_10_1088_1742_6596_2350_1_012007 crossref_primary_10_1021_acsanm_3c02569 crossref_primary_10_1126_sciadv_adj8819 crossref_primary_10_1016_j_mtelec_2023_100068 crossref_primary_10_3390_magnetochemistry8080089 crossref_primary_10_1002_adma_202305763 crossref_primary_10_1038_s41467_024_52754_z crossref_primary_10_1088_2053_1583_ad59b4 |
Cites_doi | 10.1146/annurev-physchem-040513-103659 10.1038/s41467-019-11966-4 10.1038/s41567-017-0006-7 10.1103/PhysRevLett.120.057405 10.1038/s41563-019-0573-3 10.1021/acs.nanolett.9b01317 10.1103/PhysRevB.99.041402 10.1103/PhysRevB.99.144401 10.1038/s41586-019-0975-z 10.1038/nature22060 10.1038/s41586-019-1840-9 10.1002/adma.201602852 10.1021/acsnano.8b09660 10.1088/0022-3719/16/2/017 10.1021/acs.nanolett.8b00683 10.1103/PhysRevMaterials.1.014001 10.1126/science.aav4450 10.1126/science.aac9439 10.1038/nature08917 10.1126/science.aav6926 10.1063/1.1657665 10.1093/nsr/nwaa089 10.1038/nature12385 10.1016/0167-2738(86)90055-X 10.1126/science.aax8156 10.1126/sciadv.1603113 10.1103/PhysRevB.101.064416 10.1038/s41565-018-0186-z 10.1016/0022-3697(59)90061-7 10.1021/acs.nanolett.9b01287 10.1103/PhysRev.100.564 10.1021/acs.nanolett.8b05121 10.1038/natrevmats.2017.88 10.1088/2053-1583/ab27d5 10.1039/C5TC02840J 10.1063/1.325027 10.1021/nl502075n 10.1103/PhysRevB.98.134414 10.1021/acs.nanolett.8b01105 10.1146/annurev-matsci-070813-113447 10.1126/science.aav1937 10.1103/PhysRevB.93.014411 10.1103/PhysRevLett.122.107202 10.1021/acs.nanolett.8b03315 10.1002/adma.201906021 10.1038/s41586-019-1445-3 10.1088/2053-1583/3/2/025035 10.1038/nnano.2014.26 10.1038/srep14714 10.1126/sciadv.aax9989 10.1088/2053-1583/ab4c64 10.1038/nnano.2014.25 10.1063/1.1725428 10.1103/PhysRevLett.105.136805 10.1038/s41563-019-0506-1 10.1016/0038-1098(76)90187-3 10.1038/s41563-019-0505-2 10.1103/PhysRevB.91.235425 10.1039/C8CP07067A 10.1038/s41565-018-0063-9 10.1103/RevModPhys.89.025006 10.1021/acs.jpcc.9b08868 10.1038/nature26160 10.1103/PhysRevB.76.134402 10.1021/acs.jpclett.9b00758 10.1103/PhysRevB.46.5425 10.1021/acs.nanolett.8b01764 10.1088/0034-4885/71/5/056501 10.1088/0953-8984/7/1/008 10.1103/RevModPhys.87.855 10.1038/s41928-019-0302-6 10.1103/RevModPhys.84.1383 10.1021/acsnano.8b06101 10.1038/s41563-018-0149-7 10.1016/0022-4596(76)90184-5 10.1002/adma.201808074 10.1063/1.2185944 10.1103/PhysRev.137.A163 10.1126/sciadv.aaw8904 10.1063/1.2943282 10.1002/adma.201901185 10.1016/0304-8853(84)90355-X 10.1126/science.aak9717 10.1103/PhysRevB.72.094406 10.1002/adma.201506171 10.1002/adma.201801325 10.1038/s41567-019-0651-0 10.1039/c3cp55146f 10.1103/PhysRevLett.109.107204 10.1038/natrevmats.2017.33 10.1103/PhysRevB.88.115140 10.1073/pnas.1902100116 10.1103/PhysRev.178.497 10.1021/acs.nanolett.6b03052 10.1038/nphys3201 10.1021/acs.nanolett.9b01043 10.1103/PhysRevB.92.224408 10.1021/acs.nanolett.8b01649 10.1126/science.aar4851 10.1143/JPSJ.15.1664 10.1021/nn204667z 10.1103/PhysRevLett.123.047204 10.1038/s41586-018-0626-9 10.7566/JPSJ.82.124711 10.1038/s41565-019-0598-4 10.1126/science.1102896 10.1021/jacs.8b13584 10.1002/ejic.200501020 10.1021/cm504242t 10.1038/s41586-018-0631-z 10.1088/2053-1583/aa75ed 10.1021/acs.nanolett.9b00553 10.1143/JPSJ.46.184 10.1038/s41586-019-0976-y 10.1103/RevModPhys.81.1495 10.1021/acs.jpcc.9b04281 10.1038/nature22391 10.1021/acs.nanolett.8b03321 10.1103/PhysRev.131.1929 10.1088/2053-1583/4/1/011005 10.1021/acs.nanolett.8b01131 10.1038/s41586-019-0957-1 10.1103/PhysRevMaterials.3.064202 10.1088/0034-4885/80/1/016502 10.1126/science.aaw3780 10.1038/s41586-019-0986-9 10.1038/s41565-019-0438-6 10.1209/0295-5075/114/47001 10.1002/pssa.2210720116 10.1016/j.jmmm.2007.04.035 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2020 Springer Nature Limited 2020. |
Copyright_xml | – notice: Springer Nature Limited 2020 – notice: Springer Nature Limited 2020. |
CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 OIOZB OTOTI |
DOI | 10.1038/s41563-020-0791-8 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Health & Medical Collection (Alumni) Medical Database Science Database (subscription) Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 1289 |
ExternalDocumentID | 1760123 32948831 10_1038_s41563_020_0791_8 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: DOE | SC | Basic Energy Sciences (BES) grantid: DE-SC0018171; DE-SC0012509; DE-SC0018935; DE-SC0018171; DE-SC0012509 funderid: https://doi.org/10.13039/100006151 – fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research) grantid: FA9550-19-1-0390; FA9550-19-1-0390; FA9550-19-1-0390 funderid: https://doi.org/10.13039/100000181 – fundername: Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation) grantid: GBMF4541 funderid: https://doi.org/10.13039/100000936 – fundername: National Science Foundation (NSF) grantid: DMR-1231319 funderid: https://doi.org/10.13039/100000001 – fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research) grantid: FA9550-19-1-0390 – fundername: Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation) grantid: GBMF4541 – fundername: DOE | SC | Basic Energy Sciences (BES) grantid: DE-SC0012509 – fundername: DOE | SC | Basic Energy Sciences (BES) grantid: DE-SC0018935 – fundername: National Science Foundation (NSF) grantid: DMR-1231319 – fundername: DOE | SC | Basic Energy Sciences (BES) grantid: DE-SC0018171 |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NPM 7SR 7XB 8BQ 8FD 8FK JG9 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV NYICJ OIOZB OTOTI |
ID | FETCH-LOGICAL-c508t-fa097d00fef3e0d3af6c84b4f188cf89a9e6450a388d1b5fa34338a5ad001f413 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Thu May 18 22:35:08 EDT 2023 Fri Jul 11 08:39:56 EDT 2025 Sat Aug 23 14:04:46 EDT 2025 Wed Feb 19 02:30:13 EST 2025 Thu Apr 24 23:01:37 EDT 2025 Tue Jul 01 02:14:01 EDT 2025 Fri Feb 21 02:40:26 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-fa097d00fef3e0d3af6c84b4f188cf89a9e6450a388d1b5fa34338a5ad001f413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) AC05-00OR22725 |
ORCID | 0000-0003-0348-2095 0000-0002-8301-4058 0000-0003-0165-6848 0000-0003-0777-8539 0000-0001-8217-8213 0000000303482095 0000000301656848 0000000283014058 0000000182178213 0000000317629406 0000000307778539 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1760123 |
PMID | 32948831 |
PQID | 2474987442 |
PQPubID | 27576 |
PageCount | 14 |
ParticipantIDs | osti_scitechconnect_1760123 proquest_miscellaneous_2444379337 proquest_journals_2474987442 pubmed_primary_32948831 crossref_primary_10_1038_s41563_020_0791_8 crossref_citationtrail_10_1038_s41563_020_0791_8 springer_journals_10_1038_s41563_020_0791_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nat. Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Springer Nature - Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Springer Nature - Nature Publishing Group |
References | O’Hara (CR53) 2018; 18 Cai (CR121) 2013; 88 Klein (CR31) 2019; 15 Ma (CR81) 2012; 6 Lines (CR16) 1969; 40 Jin (CR10) 2019; 567 Kan, Adhikari, Sun (CR82) 2014; 16 Bené (CR103) 1969; 178 Hellman (CR125) 2017; 89 Gibertini, Koperski, Morpurgo, Novoselov (CR24) 2019; 14 Bonilla (CR52) 2018; 13 Kuhlow (CR102) 1982; 72 Seyler (CR111) 2018; 14 Carteaux, Brunet, Ouvrard, Andre (CR61) 1995; 7 Geim, Grigorieva (CR3) 2013; 499 Alexeev (CR12) 2019; 567 Balents (CR91) 2010; 464 Casola, Van Der Sar, Yacoby (CR137) 2018; 3 Alghamdi (CR34) 2019; 19 Son (CR90) 2019; 99 McCreary (CR51) 2020; 101 Deng (CR59) 2020; 367 Yan (CR55) 2019; 3 Burch, Mandrus, Park (CR23) 2018; 563 Sharpe (CR130) 2019; 365 Vaz, Bland, Lauhoff (CR18) 2008; 71 Otrokov (CR38) 2019; 576 Weber, Trout, McComb, Goldberger (CR75) 2019; 19 Shcherbakov (CR132) 2018; 18 Wiesendanger (CR134) 2009; 81 Wang, Fan, Zhu, Wu (CR96) 2016; 114 Tong, Liu, Xiao, Yao (CR129) 2018; 18 Duvjir (CR80) 2018; 18 Savary, Balents (CR22) 2017; 80 Tian (CR89) 2019; 141 Ostwal, Shen, Appenzeller (CR35) 2020; 32 Huang (CR13) 2017; 546 Scalapino (CR20) 2012; 84 Yu (CR128) 2019; 14 Cai (CR29) 2019; 19 Velický (CR70) 2018; 12 Wang (CR63) 2018; 13 Wildes (CR47) 2015; 92 Norden (CR32) 2019; 10 Desai (CR69) 2016; 28 Lohmann (CR126) 2019; 19 McGuire, Dixit, Cooper, Sales (CR93) 2015; 27 Schirhagl, Chang, Loretz, Degen (CR135) 2014; 65 Wong (CR86) 2019; 31 Baugher, Churchill, Yang, Jarillo-Herrero (CR5) 2014; 9 Liu (CR74) 2017; 1 Onari, Arai (CR78) 1979; 46 Li (CR27) 2019; 18 Wu (CR57) 2019; 5 Aivazian (CR123) 2015; 11 Ubrig (CR116) 2020; 7 Tsubokawa (CR99) 1960; 15 McGuire (CR95) 2017; 1 Susner, Chyasnavichyus, McGuire, Ganesh, Maksymovych (CR44) 2017; 29 Song (CR106) 2018; 360 Abramchuk (CR104) 2018; 30 Novoselov (CR1) 2004; 306 CR60 Gong (CR14) 2017; 546 Sun (CR110) 2019; 572 Sivadas, Okamoto, Xu, Fennie, Xiao (CR117) 2018; 18 Goodenough (CR115) 1955; 100 Lançon, Ewings, Guidi, Formisano, Wildes (CR49) 2018; 98 Tan (CR67) 2018; 9 Kong (CR88) 2019; 31 Huang (CR133) 2020; 15 Rule, McIntyre, Kennedy, Hicks (CR46) 2007; 76 Chen (CR64) 2013; 82 Jernberg, Bjarman, Wäppling (CR45) 1984; 46 Yi (CR65) 2016; 4 Dai (CR21) 2015; 87 May, Calder, Cantoni, Cao, McGuire (CR68) 2016; 93 Zhong (CR36) 2017; 3 Chen (CR56) 2019; 10 Lado, Fernández-Rossier (CR85) 2017; 4 Cao (CR8) 2018; 556 Jiang (CR114) 2019; 99 Narath (CR100) 1963; 131 Otrokov (CR58) 2019; 122 Tian, Gray, Ji, Cava, Burch (CR62) 2016; 3 Cheng (CR7) 2014; 14 Kim (CR30) 2019; 116 Deng (CR72) 2018; 563 Brec (CR40) 1986; 22 Zhang (CR112) 2019; 19 Fumega (CR83) 2019; 123 Degen (CR136) 2008; 92 Sivadas, Daniels, Swendsen, Okamoto, Xiao (CR28) 2015; 91 Kim (CR42) 2019; 6 Song (CR26) 2019; 18 Kanamori (CR97) 1959; 10 Gong, Zhang (CR25) 2019; 363 Ross (CR6) 2014; 9 Fei (CR73) 2018; 17 MacNeill (CR118) 2019; 123 Thiel (CR109) 2019; 364 Huang (CR124) 2012; 109 Hansen (CR98) 1959; 30 De Jongh (CR15) 1978; 49 Wang (CR127) 2019; 5 Tran (CR11) 2019; 567 Kim (CR41) 2019; 10 Chen (CR108) 2017; 357 Chen (CR119) 2019; 366 Bayard, Sienko (CR77) 1976; 19 Morosin, Narath (CR94) 1964; 40 Deiseroth, Aleksandrov, Reiner, Kienle, Kremer (CR66) 2006; 2006 May (CR54) 2019; 13 Stier (CR122) 2018; 120 Magda (CR71) 2015; 5 Hellwig, Berger, Kortright, Fullerton (CR107) 2007; 319 Jagla (CR113) 2005; 72 Zhang, Qu, Zhu, Lam (CR92) 2015; 3 Sun, Tan, Liu, Gao, Zhang (CR43) 2019; 10 Pollard, McCann, Ward (CR79) 1983; 16 Seyler (CR9) 2019; 567 Lee (CR50) 2016; 16 Joy, Vasudevan (CR48) 1992; 46 Mak, Lee, Hone, Shan, Heinz (CR2) 2010; 105 van Bruggen, Haas (CR76) 1976; 20 Bhattacharya, May (CR19) 2014; 44 Kim (CR33) 2019; 2 Seyler (CR37) 2018; 18 Wu, Li, Cao, Louie (CR105) 2019; 10 Coelho (CR84) 2019; 123 Wu, Yu, Yuan (CR131) 2019; 21 Narath, Davis (CR101) 1965; 137 Manzeli, Ovchinnikov, Pasquier, Yazyev, Kis (CR120) 2017; 2 Novoselov, Mishchenko, Carvalho, Castro Neto (CR4) 2016; 353 Feng (CR87) 2018; 18 Liu (CR39) 2020; 19 Cortie (CR17) 2019; 2019 KC Rule (791_CR46) 2007; 76 Y Tian (791_CR62) 2016; 3 Z Wang (791_CR63) 2018; 13 J Feng (791_CR87) 2018; 18 W Chen (791_CR119) 2019; 366 S Son (791_CR90) 2019; 99 V Carteaux (791_CR61) 1995; 7 AO Fumega (791_CR83) 2019; 123 MM Otrokov (791_CR58) 2019; 122 KS Novoselov (791_CR4) 2016; 353 D MacNeill (791_CR118) 2019; 123 DJ O’Hara (791_CR53) 2018; 18 AF May (791_CR54) 2019; 13 D Lançon (791_CR49) 2018; 98 H Wang (791_CR96) 2016; 114 C Gong (791_CR14) 2017; 546 JS Ross (791_CR6) 2014; 9 CAF Vaz (791_CR18) 2008; 71 HH Kim (791_CR30) 2019; 116 SY Huang (791_CR124) 2012; 109 X Wang (791_CR127) 2019; 5 BWH Baugher (791_CR5) 2014; 9 MA McGuire (791_CR93) 2015; 27 MA McGuire (791_CR95) 2017; 1 Z Zhang (791_CR112) 2019; 19 M Kim (791_CR33) 2019; 2 P Jernberg (791_CR45) 1984; 46 JU Lee (791_CR50) 2016; 16 ME Lines (791_CR16) 1969; 40 M Kan (791_CR82) 2014; 16 N Sivadas (791_CR28) 2015; 91 WB Zhang (791_CR92) 2015; 3 DR Klein (791_CR31) 2019; 15 I Tsubokawa (791_CR99) 1960; 15 K Kim (791_CR41) 2019; 10 JQ Yan (791_CR55) 2019; 3 D Shcherbakov (791_CR132) 2018; 18 X Cai (791_CR29) 2019; 19 Z Sun (791_CR110) 2019; 572 N Sivadas (791_CR117) 2018; 18 EA Jagla (791_CR113) 2005; 72 V Ostwal (791_CR35) 2020; 32 P Jiang (791_CR114) 2019; 99 PA Joy (791_CR48) 1992; 46 R Cheng (791_CR7) 2014; 14 RW Bené (791_CR103) 1969; 178 G Duvjir (791_CR80) 2018; 18 C Gong (791_CR25) 2019; 363 T Song (791_CR106) 2018; 360 Z Fei (791_CR73) 2018; 17 A Narath (791_CR100) 1963; 131 A Narath (791_CR101) 1965; 137 KS Burch (791_CR23) 2018; 563 Z Wu (791_CR131) 2019; 21 WN Hansen (791_CR98) 1959; 30 YJ Sun (791_CR43) 2019; 10 Y Deng (791_CR72) 2018; 563 T Norden (791_CR32) 2019; 10 K Tran (791_CR11) 2019; 567 GZ Magda (791_CR71) 2015; 5 L Thiel (791_CR109) 2019; 364 T Cai (791_CR121) 2013; 88 C Jin (791_CR10) 2019; 567 P Dai (791_CR21) 2015; 87 B Kuhlow (791_CR102) 1982; 72 M Abramchuk (791_CR104) 2018; 30 R Brec (791_CR40) 1986; 22 AL Sharpe (791_CR130) 2019; 365 D Weber (791_CR75) 2019; 19 S Tian (791_CR89) 2019; 141 O Hellwig (791_CR107) 2007; 319 B Chen (791_CR64) 2013; 82 791_CR60 EM Alexeev (791_CR12) 2019; 567 Y Cao (791_CR8) 2018; 556 K Kim (791_CR42) 2019; 6 R Wiesendanger (791_CR134) 2009; 81 J Yi (791_CR65) 2016; 4 M Velický (791_CR70) 2018; 12 MA Susner (791_CR44) 2017; 29 AV Stier (791_CR122) 2018; 120 J Wu (791_CR57) 2019; 5 J Kanamori (791_CR97) 1959; 10 AK Geim (791_CR3) 2013; 499 L Savary (791_CR22) 2017; 80 N Ubrig (791_CR116) 2020; 7 KF Mak (791_CR2) 2010; 105 T Li (791_CR27) 2019; 18 KL Seyler (791_CR37) 2018; 18 C Tan (791_CR67) 2018; 9 G Aivazian (791_CR123) 2015; 11 Y Deng (791_CR59) 2020; 367 B Morosin (791_CR94) 1964; 40 CL Degen (791_CR136) 2008; 92 A Bhattacharya (791_CR19) 2014; 44 L Balents (791_CR91) 2010; 464 SB Desai (791_CR69) 2016; 28 HJ Deiseroth (791_CR66) 2006; 2006 JL Lado (791_CR85) 2017; 4 B Huang (791_CR133) 2020; 15 S Onari (791_CR78) 1979; 46 F Hellman (791_CR125) 2017; 89 DJ Scalapino (791_CR20) 2012; 84 X Yu (791_CR128) 2019; 14 DL Cortie (791_CR17) 2019; 2019 M Lohmann (791_CR126) 2019; 19 MM Otrokov (791_CR38) 2019; 576 CF van Bruggen (791_CR76) 1976; 20 PKJ Wong (791_CR86) 2019; 31 D Zhong (791_CR36) 2017; 3 AF May (791_CR68) 2016; 93 S Manzeli (791_CR120) 2017; 2 KL Seyler (791_CR9) 2019; 567 RJ Pollard (791_CR79) 1983; 16 AR Wildes (791_CR47) 2015; 92 KS Novoselov (791_CR1) 2004; 306 R Schirhagl (791_CR135) 2014; 65 M Bonilla (791_CR52) 2018; 13 B Huang (791_CR13) 2017; 546 B Chen (791_CR108) 2017; 357 C Liu (791_CR39) 2020; 19 F Casola (791_CR137) 2018; 3 S Liu (791_CR74) 2017; 1 JB Goodenough (791_CR115) 1955; 100 M Wu (791_CR105) 2019; 10 P Coelho (791_CR84) 2019; 123 LJ De Jongh (791_CR15) 1978; 49 B Chen (791_CR56) 2019; 10 M Gibertini (791_CR24) 2019; 14 T Song (791_CR26) 2019; 18 M Bayard (791_CR77) 1976; 19 Q Tong (791_CR129) 2018; 18 Y Ma (791_CR81) 2012; 6 T Kong (791_CR88) 2019; 31 KL Seyler (791_CR111) 2018; 14 M Alghamdi (791_CR34) 2019; 19 A McCreary (791_CR51) 2020; 101 |
References_xml | – volume: 18 start-page: 5432 year: 2018 end-page: 5438 ident: CR80 article-title: Emergence of a metal-insulator transition and high-temperature charge-density waves in VSe at the monolayer limit publication-title: Nano Lett. – volume: 5 start-page: eaaw8904 year: 2019 ident: CR127 article-title: Current-driven magnetization switching in a van der Waals ferromagnet Fe GeTe publication-title: Sci. Adv. – volume: 364 start-page: 973 year: 2019 end-page: 976 ident: CR109 article-title: Probing magnetism in 2D materials at the nanoscale with single spin microscopy publication-title: Science – volume: 16 start-page: 7433 year: 2016 end-page: 7438 ident: CR50 article-title: Ising-type magnetic ordering in atomically thin FePS publication-title: Nano Lett. – volume: 123 start-page: 27802 year: 2019 end-page: 27810 ident: CR83 article-title: Absence of ferromagnetism in VSe caused by its charge density wave phase publication-title: J. Phys. Chem. C – volume: 19 start-page: 3138 year: 2019 end-page: 3142 ident: CR112 article-title: Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr publication-title: Nano Lett. – volume: 13 start-page: 4436 year: 2019 end-page: 4442 ident: CR54 article-title: Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe GeTe publication-title: ACS Nano – volume: 576 start-page: 416 year: 2019 end-page: 422 ident: CR38 article-title: Prediction and observation of an antiferromagnetic topological insulator publication-title: Nature – volume: 357 start-page: 191 year: 2017 end-page: 194 ident: CR108 article-title: All-oxide-based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal publication-title: Science – volume: 92 start-page: 224408 year: 2015 ident: CR47 article-title: Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS publication-title: Phys. Rev. B – volume: 14 start-page: 6 year: 2019 end-page: 10 ident: CR128 article-title: Large magnetocaloric effect in van der Waals crystal CrBr publication-title: Front. Phys. – volume: 19 start-page: 522 year: 2020 end-page: 527 ident: CR39 article-title: Quantum phase transition from axion insulator to Chern insulator in MnBi Te publication-title: Nat. Mater. – volume: 76 start-page: 134402 year: 2007 ident: CR46 article-title: Single-crystal and powder neutron diffraction experiments on FePS : search for the magnetic structure publication-title: Phys. Rev. B – volume: 82 start-page: 124711 year: 2013 ident: CR64 article-title: Magnetic properties of layered itinerant electron ferromagnet Fe GeTe publication-title: J. Phys. Soc. Japan – volume: 7 start-page: 015007 year: 2020 ident: CR116 article-title: Low-temperature monoclinic layer stacking in atomically thin CrI crystals publication-title: 2D Mater. – volume: 92 start-page: 243111 year: 2008 ident: CR136 article-title: Scanning magnetic field microscope with a diamond single-spin sensor publication-title: Appl. Phys. Lett. – volume: 40 start-page: 1958 year: 1964 end-page: 1967 ident: CR94 article-title: X-ray diffraction and nuclear quadrupole resonance studies of chromium trichloride publication-title: J. Chem. Phys. – volume: 44 start-page: 65 year: 2014 end-page: 90 ident: CR19 article-title: Magnetic oxide heterostructures publication-title: Annu. Rev. Mater. Res. – volume: 367 start-page: 895 year: 2020 end-page: 900 ident: CR59 article-title: Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi Te publication-title: Science – volume: 21 start-page: 7750 year: 2019 end-page: 7755 ident: CR131 article-title: Strain-tunable magnetic and electronic properties of monolayer CrI publication-title: Phys. Chem. Chem. Phys. – volume: 3 start-page: 025035 year: 2016 ident: CR62 article-title: Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal publication-title: 2D Mater. – volume: 1 year: 2017 ident: CR74 article-title: Wafer-scale two-dimensional ferromagnetic Fe GeTe thin films were grown by molecular beam epitaxy publication-title: npj 2D Mater. Appl. – volume: 19 start-page: 5031 year: 2019 end-page: 5035 ident: CR75 article-title: Decomposition-induced room-temperature magnetism of the Na-intercalated layered ferromagnet Fe GeTe publication-title: Nano Lett. – volume: 72 start-page: 094406 year: 2005 ident: CR113 article-title: Hysteresis loops of magnetic thin films with perpendicular anisotropy publication-title: Phys. Rev. B – volume: 3 start-page: 17088 year: 2018 ident: CR137 article-title: Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond publication-title: Nat. Rev. Mater. – volume: 19 start-page: 325 year: 1976 end-page: 329 ident: CR77 article-title: Anomalous electrical and magnetic properties of vanadium diselenide publication-title: J. Solid State Chem. – volume: 81 start-page: 1495 year: 2009 end-page: 1550 ident: CR134 article-title: Spin mapping at the nanoscale and atomic scale publication-title: Rev. Mod. Phys. – volume: 546 start-page: 265 year: 2017 end-page: 269 ident: CR14 article-title: Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals publication-title: Nature – volume: 2006 start-page: 1561 year: 2006 end-page: 1567 ident: CR66 article-title: Fe GeTe and Ni GeTe - two new layered transition-metal compounds: Crystal structures, HRTEM investigations, and magnetic and electrical properties publication-title: Eur. J. Inorg. Chem. – volume: 572 start-page: 497 year: 2019 end-page: 501 ident: CR110 article-title: Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI publication-title: Nature – volume: 10 start-page: 3087 year: 2019 end-page: 3093 ident: CR43 article-title: Probing the magnetic ordering of antiferromagnetic MnPS by Raman spectroscopy publication-title: J. Phys. Chem. Lett. – volume: 365 start-page: 605 year: 2019 end-page: 608 ident: CR130 article-title: Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene publication-title: Science – volume: 18 start-page: 7194 year: 2018 end-page: 7199 ident: CR129 article-title: Skyrmions in the moiré of van der Waals 2D magnets publication-title: Nano Lett. – volume: 93 start-page: 014411 year: 2016 ident: CR68 article-title: Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe GeTe publication-title: Phys. Rev. B – volume: 137 start-page: A163 year: 1965 end-page: A178 ident: CR101 article-title: Spin-wave analysis of the sublattice magnetization behavior of antiferromagnetic and ferromagnetic CrCl publication-title: Phys. Rev. – ident: CR60 – volume: 3 start-page: 12457 year: 2015 end-page: 12468 ident: CR92 article-title: Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides publication-title: J. Mater. Chem. C – volume: 464 start-page: 199 year: 2010 end-page: 208 ident: CR91 article-title: Spin liquids in frustrated magnets publication-title: Nature – volume: 120 start-page: 057406 year: 2018 ident: CR122 article-title: Magnetooptics of exciton rydberg states in a monolayer semiconductor publication-title: Phys. Rev. Lett. – volume: 15 start-page: 212 year: 2020 end-page: 216 ident: CR133 article-title: Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI publication-title: Nat. Nanotechnol. – volume: 15 start-page: 1664 year: 1960 end-page: 1668 ident: CR99 article-title: On the magnetic properties of a CrBr single crystal publication-title: J. Phys. Soc. Japan – volume: 14 start-page: 408 year: 2019 end-page: 419 ident: CR24 article-title: Magnetic 2D materials and heterostructures publication-title: Nat. Nanotechnol. – volume: 109 start-page: 107204 year: 2012 ident: CR124 article-title: Transport magnetic proximity effects in platinum publication-title: Phys. Rev. Lett. – volume: 2 start-page: 457 year: 2019 end-page: 463 ident: CR33 article-title: Hall micromagnetometry of individual two-dimensional ferromagnets publication-title: Nat. Electron. – volume: 363 start-page: eaav4450 year: 2019 ident: CR25 article-title: Two-dimensional magnetic crystals and emergent heterostructure devices publication-title: Science – volume: 18 start-page: 4214 year: 2018 end-page: 4219 ident: CR132 article-title: Raman spectroscopy, photocatalytic degradation, and stabilization of atomically thin chromium tri-iodide publication-title: Nano Lett. – volume: 98 start-page: 134414 year: 2018 ident: CR49 article-title: Magnetic exchange parameters and anisotropy of the quasi-two-dimensional antiferromagnet NiPS publication-title: Phys. Rev. B – volume: 46 start-page: 5425 year: 1992 end-page: 5433 ident: CR48 article-title: Magnetism in the layered transition-metal thiophosphates MPS (M=Mn, Fe, and Ni) publication-title: Phys. Rev. B – volume: 32 start-page: 1906021 year: 2020 ident: CR35 article-title: Efficient spin-orbit torque switching of the semiconducting van der Waals ferromagnet Cr Ge Te publication-title: Adv. Mater. – volume: 28 start-page: 4053 year: 2016 end-page: 4058 ident: CR69 article-title: Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers publication-title: Adv. Mater. – volume: 20 start-page: 251 year: 1976 end-page: 254 ident: CR76 article-title: Magnetic susceptibility and electrical properties of VSe single crystals publication-title: Solid State Commun. – volume: 18 start-page: 3125 year: 2018 end-page: 3131 ident: CR53 article-title: Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit publication-title: Nano Lett. – volume: 4 start-page: 011005 year: 2016 ident: CR65 article-title: Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe GeTe publication-title: 2D Mater. – volume: 89 start-page: 025006 year: 2017 ident: CR125 article-title: Interface-induced phenomena in magnetism publication-title: Rev. Mod. Phys. – volume: 178 start-page: 497 year: 1969 end-page: 513 ident: CR103 article-title: Electron-paramagnetic-resonance study of Cr ions and exchange-coupled Cr ion pairs in the BiI structure publication-title: Phys. Rev. – volume: 31 start-page: 1808074 year: 2019 ident: CR88 article-title: VI - a new layered ferromagnetic semiconductor publication-title: Adv. Mater. – volume: 84 start-page: 1383 year: 2012 end-page: 1417 ident: CR20 article-title: A common thread: the pairing interaction for unconventional superconductors publication-title: Rev. Mod. Phys. – volume: 17 start-page: 778 year: 2018 end-page: 782 ident: CR73 article-title: Two-dimensional itinerant ferromagnetism in atomically thin Fe GeTe publication-title: Nat. Mater. – volume: 31 start-page: 1901185 year: 2019 ident: CR86 article-title: Evidence of spin frustration in a vanadium diselenide monolayer magnet publication-title: Adv. Mater. – volume: 10 year: 2019 ident: CR105 article-title: Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators publication-title: Nat. Commun. – volume: 6 start-page: 041001 year: 2019 ident: CR42 article-title: Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS probed by Raman spectroscopy publication-title: 2D Mater. – volume: 87 start-page: 855 year: 2015 end-page: 896 ident: CR21 article-title: Antiferromagnetic order and spin dynamics in iron-based superconductors publication-title: Rev. Mod. Phys. – volume: 15 start-page: 1255 year: 2019 end-page: 1260 ident: CR31 article-title: Enhancement of interlayer exchange in an ultrathin two-dimensional magnet publication-title: Nat. Phys. – volume: 141 start-page: 5326 year: 2019 end-page: 5333 ident: CR89 article-title: Ferromagnetic van der Waals Crystal VI publication-title: J. Am. Chem. Soc. – volume: 3 start-page: e1603113 year: 2017 ident: CR36 article-title: Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics publication-title: Sci. Adv. – volume: 100 start-page: 564 year: 1955 end-page: 573 ident: CR115 article-title: Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO publication-title: Phys. Rev. – volume: 499 start-page: 419 year: 2013 end-page: 425 ident: CR3 article-title: Van der Waals heterostructures publication-title: Nature – volume: 131 start-page: 1929 year: 1963 end-page: 1942 ident: CR100 article-title: Low-temperature sublattice magnetization of antiferromagnetic CrCl publication-title: Phys. Rev. – volume: 18 start-page: 7658 year: 2018 end-page: 7664 ident: CR117 article-title: Stacking-dependent magnetism in bilayer CrI publication-title: Nano Lett. – volume: 30 start-page: 1801325 year: 2018 ident: CR104 article-title: Controlling magnetic and optical properties of the van der Waals crystal CrCl Br via mixed halide chemistry publication-title: Adv. Mater. – volume: 9 start-page: 262 year: 2014 end-page: 267 ident: CR5 article-title: Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide publication-title: Nat. Nanotechnol. – volume: 5 year: 2015 ident: CR71 article-title: Exfoliation of large-area transition metal chalcogenide single layers publication-title: Sci. Rep. – volume: 10 start-page: 87 year: 1959 end-page: 98 ident: CR97 article-title: Superexchange interaction and symmetry properties of electron orbitals publication-title: J. Phys. Chem. Solids – volume: 10 year: 2019 ident: CR41 article-title: Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS publication-title: Nat. Commun. – volume: 29 start-page: 1602852 year: 2017 ident: CR44 article-title: Metal thio- and selenophosphates as multifunctional van der Waals layered materials publication-title: Adv. Mater. – volume: 123 start-page: 047204 year: 2019 ident: CR118 article-title: Gigahertz frequency antiferromagnetic resonance and strong magnon-magnon coupling in the layered crystal CrCl publication-title: Phys. Rev. Lett. – volume: 116 start-page: 11131 year: 2019 end-page: 11136 ident: CR30 article-title: Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides publication-title: Proc. Natl Acad. Sci. USA – volume: 2019 start-page: 1901414 year: 2019 ident: CR17 article-title: Two-dimensional magnets: forgotten history and recent progress towards spintronic applications publication-title: Adv. Funct. Mater. – volume: 18 start-page: 4493 year: 2018 end-page: 4499 ident: CR87 article-title: Electronic structure and enhanced charge-density wave order of monolayer VSe publication-title: Nano Lett. – volume: 563 start-page: 94 year: 2018 end-page: 99 ident: CR72 article-title: Gate-tunable room-temperature ferromagnetism in two-dimensional Fe GeTe publication-title: Nature – volume: 6 start-page: 1695 year: 2012 end-page: 1701 ident: CR81 article-title: Evidence of the existence of magnetism in pristine VX monolayers (X = S, Se) and their strain-induced tunable magnetic properties publication-title: ACS Nano – volume: 99 start-page: 144401 year: 2019 ident: CR114 article-title: Stacking tunable interlayer magnetism in bilayer CrI publication-title: Phys. Rev. B – volume: 72 start-page: 161 year: 1982 end-page: 168 ident: CR102 article-title: Magnetic ordering in CrCl at the phase transition publication-title: Phys. Status Solidi – volume: 2 start-page: 17033 year: 2017 ident: CR120 article-title: 2D transition metal dichalcogenides publication-title: Nat. Rev. Mater. – volume: 114 start-page: 47001 year: 2016 ident: CR96 article-title: Doping enhanced ferromagnetism and induced half-metallicity in CrI monolayer publication-title: Europhys. Lett. – volume: 22 start-page: 3 year: 1986 end-page: 30 ident: CR40 article-title: Review on structural and chemical properties of transition metal phosphorous trisulfides MPS publication-title: Solid State Ion. – volume: 18 start-page: 1303 year: 2019 end-page: 1308 ident: CR27 article-title: Pressure-controlled interlayer magnetism in atomically thin CrI publication-title: Nat. Mater. – volume: 16 start-page: 345 year: 1983 end-page: 353 ident: CR79 article-title: Magnetic structures of α-MnS and MnSe from Fe Mossbauer spectroscopy publication-title: J. Phys. C Solid State Phys. – volume: 567 start-page: 81 year: 2019 end-page: 86 ident: CR12 article-title: Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures publication-title: Nature – volume: 18 start-page: 1298 year: 2019 end-page: 1302 ident: CR26 article-title: Switching 2D magnetic states via pressure tuning of layer stacking publication-title: Nat. Mater. – volume: 567 start-page: 76 year: 2019 end-page: 80 ident: CR10 article-title: Observation of moiré excitons in WSe /WS heterostructure superlattices publication-title: Nature – volume: 49 start-page: 1305 year: 1978 end-page: 1310 ident: CR15 article-title: Experiments on simple magnetic model systems publication-title: J. Appl. Phys. – volume: 71 start-page: 056501 year: 2008 ident: CR18 article-title: Magnetism in ultrathin film structures publication-title: Reports Prog. Phys. – volume: 546 start-page: 270 year: 2017 end-page: 273 ident: CR13 article-title: Layer-dependent ferromagnetism in a van der Waals Crystal down to the monolayer limit publication-title: Nature – volume: 46 start-page: 178 year: 1984 end-page: 190 ident: CR45 article-title: FePS : a first-order phase transition in a ‘2D’ Ising antiferromagnet publication-title: J. Magn. Magn. Mater. – volume: 319 start-page: 13 year: 2007 end-page: 55 ident: CR107 article-title: Domain structure and magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films publication-title: J. Magn. Magn. Mater. – volume: 40 start-page: 1352 year: 1969 end-page: 1358 ident: CR16 article-title: Magnetism in two dimensions publication-title: J. Appl. Phys. – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: CR1 article-title: Electric field effect in atomically thin carbon films publication-title: Science – volume: 4 start-page: 035002 year: 2017 ident: CR85 article-title: On the origin of magnetic anisotropy in two dimensional CrI publication-title: 2D Mater. – volume: 556 start-page: 43 year: 2018 end-page: 50 ident: CR8 article-title: Unconventional superconductivity in magic-angle graphene superlattices publication-title: Nature – volume: 13 start-page: 289 year: 2018 end-page: 293 ident: CR52 article-title: Strong room-temperature ferromagnetism in VSe monolayers on van der Waals substrates publication-title: Nat. Nanotechnol. – volume: 12 start-page: 10463 year: 2018 end-page: 10472 ident: CR70 article-title: Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers publication-title: ACS Nano – volume: 105 start-page: 136805 year: 2010 ident: CR2 article-title: Atomically thin MoS : a new direct-gap semiconductor publication-title: Phys. Rev. Lett. – volume: 7 start-page: 69 year: 1995 end-page: 87 ident: CR61 article-title: Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr Ge Te publication-title: J. Phys. Condens. Matter – volume: 10 year: 2019 ident: CR32 article-title: Giant valley splitting in monolayer WS by magnetic proximity effect publication-title: Nat. Commun. – volume: 5 start-page: eaax9989 year: 2019 ident: CR57 article-title: Natural van der Waals heterostructures with tunable magnetic and topological states publication-title: Sci. Adv. – volume: 567 start-page: 71 year: 2019 end-page: 75 ident: CR11 article-title: Evidence for moiré excitons in van der Waals heterostructures publication-title: Nature – volume: 30 start-page: 304S year: 1959 end-page: 305S ident: CR98 article-title: Some magnetic properties of the chromium (III) halides at 4.2°K publication-title: J. Appl. Phys. – volume: 91 start-page: 235425 year: 2015 ident: CR28 article-title: Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers publication-title: Phys. Rev. B – volume: 11 start-page: 148 year: 2015 end-page: 152 ident: CR123 article-title: Magnetic control of valley pseudospin in monolayer WSe publication-title: Nat. Phys. – volume: 563 start-page: 47 year: 2018 end-page: 52 ident: CR23 article-title: Magnetism in two-dimensional van der Waals materials publication-title: Nature – volume: 46 start-page: 184 year: 1979 end-page: 188 ident: CR78 article-title: Infrared lattice vibrations and dielectric dispersion in antiferromagnetic semiconductor MnSe publication-title: J. Phys. Soc. Japan – volume: 366 start-page: 983 year: 2019 end-page: 987 ident: CR119 article-title: Direct observation of van der Waals stacking-dependent interlayer magnetism publication-title: Science – volume: 19 start-page: 3993 year: 2019 end-page: 3998 ident: CR29 article-title: Atomically thin CrCl : an in-plane layered antiferromagnetic insulator publication-title: Nano Lett. – volume: 9 start-page: 268 year: 2014 end-page: 272 ident: CR6 article-title: Electrically tunable excitonic light-emitting diodes based on monolayer WSe p-n junctions publication-title: Nat. Nanotechnol. – volume: 80 start-page: 016502 year: 2017 ident: CR22 article-title: Quantum spin liquids: a review publication-title: Reports Prog. Phys. – volume: 101 start-page: 064416 year: 2020 ident: CR51 article-title: Quasi-two-dimensional magnon identification in antiferromagnetic FePS via magneto-Raman spectroscopy publication-title: Phys. Rev. B – volume: 360 start-page: 1214 year: 2018 end-page: 1218 ident: CR106 article-title: Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures publication-title: Science – volume: 19 start-page: 4400 year: 2019 end-page: 4405 ident: CR34 article-title: Highly efficient spin-orbit torque and switching of layered ferromagnet Fe GeTe publication-title: Nano Lett. – volume: 9 year: 2018 ident: CR67 article-title: Hard magnetic properties in nanoflake van der Waals Fe GeTe publication-title: Nat. Commun. – volume: 14 start-page: 277 year: 2018 end-page: 281 ident: CR111 article-title: Ligand-field helical luminescence in a 2D ferromagnetic insulator publication-title: Nat. Phys. – volume: 10 year: 2019 ident: CR56 article-title: Intrinsic magnetic topological insulator phases in the Sb doped MnBi Te bulks and thin flakes publication-title: Nat. Commun. – volume: 122 start-page: 107202 year: 2019 ident: CR58 article-title: Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi Te films publication-title: Phys. Rev. Lett. – volume: 19 start-page: 2397 year: 2019 end-page: 2403 ident: CR126 article-title: Probing magnetism in insulating Cr Ge Te by induced anomalous hall effect in Pt publication-title: Nano Lett. – volume: 123 start-page: 14089 year: 2019 end-page: 14096 ident: CR84 article-title: Charge density wave state suppresses ferromagnetic ordering in VSe monolayers publication-title: J. Phys. Chem. C – volume: 3 start-page: 064202 year: 2019 ident: CR55 article-title: Crystal growth and magnetic structure of MnBi Te publication-title: Phys. Rev. Mater. – volume: 13 start-page: 554 year: 2018 end-page: 559 ident: CR63 article-title: Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor publication-title: Nat. Nanotechnol. – volume: 14 start-page: 5590 year: 2014 end-page: 5597 ident: CR7 article-title: Electroluminescence and photocurrent generation from atomically sharp WSe /MoS heterojunction p-n diodes publication-title: Nano Lett. – volume: 88 start-page: 115140 year: 2013 ident: CR121 article-title: Magnetic control of the valley degree of freedom of massive Dirac fermions with application to transition metal dichalcogenides publication-title: Phys. Rev. B – volume: 99 start-page: 041402 year: 2019 ident: CR90 article-title: Bulk properties of the van der Waals hard ferromagnet VI publication-title: Phys. Rev. B – volume: 353 start-page: aac9439 year: 2016 ident: CR4 article-title: 2D materials and van der Waals heterostructures publication-title: Science – volume: 18 start-page: 3823 year: 2018 end-page: 3828 ident: CR37 article-title: Valley manipulation by optically tuning the magnetic proximity effect in WSe /CrI heterostructures publication-title: Nano Lett. – volume: 567 start-page: 66 year: 2019 end-page: 70 ident: CR9 article-title: Signatures of moiré-trapped valley excitons in MoSe /WSe heterobilayers publication-title: Nature – volume: 27 start-page: 612 year: 2015 end-page: 620 ident: CR93 article-title: Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI publication-title: Chem. Mater. – volume: 16 start-page: 4990 year: 2014 end-page: 4994 ident: CR82 article-title: Ferromagnetism in MnX (X = S, Se) monolayers publication-title: Phys. Chem. Chem. Phys. – volume: 65 start-page: 83 year: 2014 end-page: 105 ident: CR135 article-title: Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology publication-title: Annu. Rev. Phys. Chem. – volume: 1 start-page: 014001 year: 2017 ident: CR95 article-title: Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl crystals publication-title: Phys. Rev. Mater. – volume: 65 start-page: 83 year: 2014 ident: 791_CR135 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-040513-103659 – volume: 10 year: 2019 ident: 791_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11966-4 – volume: 14 start-page: 277 year: 2018 ident: 791_CR111 publication-title: Nat. Phys. doi: 10.1038/s41567-017-0006-7 – volume: 120 start-page: 057406 year: 2018 ident: 791_CR122 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.057405 – volume: 19 start-page: 522 year: 2020 ident: 791_CR39 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0573-3 – volume: 19 start-page: 3993 year: 2019 ident: 791_CR29 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01317 – volume: 99 start-page: 041402 year: 2019 ident: 791_CR90 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.041402 – volume: 99 start-page: 144401 year: 2019 ident: 791_CR114 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.144401 – volume: 567 start-page: 71 year: 2019 ident: 791_CR11 publication-title: Nature doi: 10.1038/s41586-019-0975-z – volume: 546 start-page: 265 year: 2017 ident: 791_CR14 publication-title: Nature doi: 10.1038/nature22060 – volume: 576 start-page: 416 year: 2019 ident: 791_CR38 publication-title: Nature doi: 10.1038/s41586-019-1840-9 – volume: 29 start-page: 1602852 year: 2017 ident: 791_CR44 publication-title: Adv. Mater. doi: 10.1002/adma.201602852 – volume: 13 start-page: 4436 year: 2019 ident: 791_CR54 publication-title: ACS Nano doi: 10.1021/acsnano.8b09660 – volume: 16 start-page: 345 year: 1983 ident: 791_CR79 publication-title: J. Phys. C Solid State Phys. doi: 10.1088/0022-3719/16/2/017 – volume: 18 start-page: 3125 year: 2018 ident: 791_CR53 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00683 – volume: 1 start-page: 014001 year: 2017 ident: 791_CR95 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.014001 – volume: 363 start-page: eaav4450 year: 2019 ident: 791_CR25 publication-title: Science doi: 10.1126/science.aav4450 – volume: 353 start-page: aac9439 year: 2016 ident: 791_CR4 publication-title: Science doi: 10.1126/science.aac9439 – volume: 464 start-page: 199 year: 2010 ident: 791_CR91 publication-title: Nature doi: 10.1038/nature08917 – volume: 364 start-page: 973 year: 2019 ident: 791_CR109 publication-title: Science doi: 10.1126/science.aav6926 – volume: 40 start-page: 1352 year: 1969 ident: 791_CR16 publication-title: J. Appl. Phys. doi: 10.1063/1.1657665 – ident: 791_CR60 doi: 10.1093/nsr/nwaa089 – volume: 9 year: 2018 ident: 791_CR67 publication-title: Nat. Commun. – volume: 499 start-page: 419 year: 2013 ident: 791_CR3 publication-title: Nature doi: 10.1038/nature12385 – volume: 22 start-page: 3 year: 1986 ident: 791_CR40 publication-title: Solid State Ion. doi: 10.1016/0167-2738(86)90055-X – volume: 367 start-page: 895 year: 2020 ident: 791_CR59 publication-title: Science doi: 10.1126/science.aax8156 – volume: 3 start-page: e1603113 year: 2017 ident: 791_CR36 publication-title: Sci. Adv. doi: 10.1126/sciadv.1603113 – volume: 101 start-page: 064416 year: 2020 ident: 791_CR51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.064416 – volume: 13 start-page: 554 year: 2018 ident: 791_CR63 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0186-z – volume: 10 start-page: 87 year: 1959 ident: 791_CR97 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(59)90061-7 – volume: 19 start-page: 5031 year: 2019 ident: 791_CR75 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01287 – volume: 100 start-page: 564 year: 1955 ident: 791_CR115 publication-title: Phys. Rev. doi: 10.1103/PhysRev.100.564 – volume: 19 start-page: 2397 year: 2019 ident: 791_CR126 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b05121 – volume: 3 start-page: 17088 year: 2018 ident: 791_CR137 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.88 – volume: 6 start-page: 041001 year: 2019 ident: 791_CR42 publication-title: 2D Mater. doi: 10.1088/2053-1583/ab27d5 – volume: 3 start-page: 12457 year: 2015 ident: 791_CR92 publication-title: J. Mater. Chem. C doi: 10.1039/C5TC02840J – volume: 49 start-page: 1305 year: 1978 ident: 791_CR15 publication-title: J. Appl. Phys. doi: 10.1063/1.325027 – volume: 10 year: 2019 ident: 791_CR105 publication-title: Nat. Commun. – volume: 14 start-page: 5590 year: 2014 ident: 791_CR7 publication-title: Nano Lett. doi: 10.1021/nl502075n – volume: 98 start-page: 134414 year: 2018 ident: 791_CR49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.134414 – volume: 18 start-page: 3823 year: 2018 ident: 791_CR37 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01105 – volume: 44 start-page: 65 year: 2014 ident: 791_CR19 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070813-113447 – volume: 366 start-page: 983 year: 2019 ident: 791_CR119 publication-title: Science doi: 10.1126/science.aav1937 – volume: 93 start-page: 014411 year: 2016 ident: 791_CR68 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.014411 – volume: 122 start-page: 107202 year: 2019 ident: 791_CR58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.107202 – volume: 18 start-page: 7194 year: 2018 ident: 791_CR129 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03315 – volume: 32 start-page: 1906021 year: 2020 ident: 791_CR35 publication-title: Adv. Mater. doi: 10.1002/adma.201906021 – volume: 572 start-page: 497 year: 2019 ident: 791_CR110 publication-title: Nature doi: 10.1038/s41586-019-1445-3 – volume: 3 start-page: 025035 year: 2016 ident: 791_CR62 publication-title: 2D Mater. doi: 10.1088/2053-1583/3/2/025035 – volume: 9 start-page: 268 year: 2014 ident: 791_CR6 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.26 – volume: 5 year: 2015 ident: 791_CR71 publication-title: Sci. Rep. doi: 10.1038/srep14714 – volume: 5 start-page: eaax9989 year: 2019 ident: 791_CR57 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax9989 – volume: 7 start-page: 015007 year: 2020 ident: 791_CR116 publication-title: 2D Mater. doi: 10.1088/2053-1583/ab4c64 – volume: 9 start-page: 262 year: 2014 ident: 791_CR5 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.25 – volume: 40 start-page: 1958 year: 1964 ident: 791_CR94 publication-title: J. Chem. Phys. doi: 10.1063/1.1725428 – volume: 105 start-page: 136805 year: 2010 ident: 791_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 18 start-page: 1303 year: 2019 ident: 791_CR27 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0506-1 – volume: 20 start-page: 251 year: 1976 ident: 791_CR76 publication-title: Solid State Commun. doi: 10.1016/0038-1098(76)90187-3 – volume: 18 start-page: 1298 year: 2019 ident: 791_CR26 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0505-2 – volume: 91 start-page: 235425 year: 2015 ident: 791_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.235425 – volume: 21 start-page: 7750 year: 2019 ident: 791_CR131 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP07067A – volume: 13 start-page: 289 year: 2018 ident: 791_CR52 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0063-9 – volume: 89 start-page: 025006 year: 2017 ident: 791_CR125 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.89.025006 – volume: 123 start-page: 27802 year: 2019 ident: 791_CR83 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b08868 – volume: 556 start-page: 43 year: 2018 ident: 791_CR8 publication-title: Nature doi: 10.1038/nature26160 – volume: 76 start-page: 134402 year: 2007 ident: 791_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.134402 – volume: 10 start-page: 3087 year: 2019 ident: 791_CR43 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b00758 – volume: 46 start-page: 5425 year: 1992 ident: 791_CR48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.5425 – volume: 18 start-page: 5432 year: 2018 ident: 791_CR80 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01764 – volume: 71 start-page: 056501 year: 2008 ident: 791_CR18 publication-title: Reports Prog. Phys. doi: 10.1088/0034-4885/71/5/056501 – volume: 7 start-page: 69 year: 1995 ident: 791_CR61 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/7/1/008 – volume: 87 start-page: 855 year: 2015 ident: 791_CR21 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.855 – volume: 2 start-page: 457 year: 2019 ident: 791_CR33 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0302-6 – volume: 84 start-page: 1383 year: 2012 ident: 791_CR20 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.84.1383 – volume: 12 start-page: 10463 year: 2018 ident: 791_CR70 publication-title: ACS Nano doi: 10.1021/acsnano.8b06101 – volume: 17 start-page: 778 year: 2018 ident: 791_CR73 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0149-7 – volume: 19 start-page: 325 year: 1976 ident: 791_CR77 publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(76)90184-5 – volume: 31 start-page: 1808074 year: 2019 ident: 791_CR88 publication-title: Adv. Mater. doi: 10.1002/adma.201808074 – volume: 30 start-page: 304S year: 1959 ident: 791_CR98 publication-title: J. Appl. Phys. doi: 10.1063/1.2185944 – volume: 2019 start-page: 1901414 year: 2019 ident: 791_CR17 publication-title: Adv. Funct. Mater. – volume: 137 start-page: A163 year: 1965 ident: 791_CR101 publication-title: Phys. Rev. doi: 10.1103/PhysRev.137.A163 – volume: 5 start-page: eaaw8904 year: 2019 ident: 791_CR127 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw8904 – volume: 92 start-page: 243111 year: 2008 ident: 791_CR136 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2943282 – volume: 31 start-page: 1901185 year: 2019 ident: 791_CR86 publication-title: Adv. Mater. doi: 10.1002/adma.201901185 – volume: 46 start-page: 178 year: 1984 ident: 791_CR45 publication-title: J. Magn. Magn. Mater. doi: 10.1016/0304-8853(84)90355-X – volume: 357 start-page: 191 year: 2017 ident: 791_CR108 publication-title: Science doi: 10.1126/science.aak9717 – volume: 72 start-page: 094406 year: 2005 ident: 791_CR113 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.094406 – volume: 28 start-page: 4053 year: 2016 ident: 791_CR69 publication-title: Adv. Mater. doi: 10.1002/adma.201506171 – volume: 30 start-page: 1801325 year: 2018 ident: 791_CR104 publication-title: Adv. Mater. doi: 10.1002/adma.201801325 – volume: 15 start-page: 1255 year: 2019 ident: 791_CR31 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0651-0 – volume: 16 start-page: 4990 year: 2014 ident: 791_CR82 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp55146f – volume: 109 start-page: 107204 year: 2012 ident: 791_CR124 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.107204 – volume: 2 start-page: 17033 year: 2017 ident: 791_CR120 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.33 – volume: 88 start-page: 115140 year: 2013 ident: 791_CR121 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.115140 – volume: 116 start-page: 11131 year: 2019 ident: 791_CR30 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1902100116 – volume: 178 start-page: 497 year: 1969 ident: 791_CR103 publication-title: Phys. Rev. doi: 10.1103/PhysRev.178.497 – volume: 16 start-page: 7433 year: 2016 ident: 791_CR50 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03052 – volume: 11 start-page: 148 year: 2015 ident: 791_CR123 publication-title: Nat. Phys. doi: 10.1038/nphys3201 – volume: 19 start-page: 4400 year: 2019 ident: 791_CR34 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01043 – volume: 92 start-page: 224408 year: 2015 ident: 791_CR47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.224408 – volume: 18 start-page: 4493 year: 2018 ident: 791_CR87 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01649 – volume: 360 start-page: 1214 year: 2018 ident: 791_CR106 publication-title: Science doi: 10.1126/science.aar4851 – volume: 15 start-page: 1664 year: 1960 ident: 791_CR99 publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.15.1664 – volume: 6 start-page: 1695 year: 2012 ident: 791_CR81 publication-title: ACS Nano doi: 10.1021/nn204667z – volume: 123 start-page: 047204 year: 2019 ident: 791_CR118 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.047204 – volume: 563 start-page: 94 year: 2018 ident: 791_CR72 publication-title: Nature doi: 10.1038/s41586-018-0626-9 – volume: 82 start-page: 124711 year: 2013 ident: 791_CR64 publication-title: J. Phys. Soc. Japan doi: 10.7566/JPSJ.82.124711 – volume: 15 start-page: 212 year: 2020 ident: 791_CR133 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0598-4 – volume: 306 start-page: 666 year: 2004 ident: 791_CR1 publication-title: Science doi: 10.1126/science.1102896 – volume: 141 start-page: 5326 year: 2019 ident: 791_CR89 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13584 – volume: 2006 start-page: 1561 year: 2006 ident: 791_CR66 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200501020 – volume: 27 start-page: 612 year: 2015 ident: 791_CR93 publication-title: Chem. Mater. doi: 10.1021/cm504242t – volume: 1 year: 2017 ident: 791_CR74 publication-title: npj 2D Mater. Appl. – volume: 563 start-page: 47 year: 2018 ident: 791_CR23 publication-title: Nature doi: 10.1038/s41586-018-0631-z – volume: 4 start-page: 035002 year: 2017 ident: 791_CR85 publication-title: 2D Mater. doi: 10.1088/2053-1583/aa75ed – volume: 19 start-page: 3138 year: 2019 ident: 791_CR112 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b00553 – volume: 46 start-page: 184 year: 1979 ident: 791_CR78 publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.46.184 – volume: 567 start-page: 76 year: 2019 ident: 791_CR10 publication-title: Nature doi: 10.1038/s41586-019-0976-y – volume: 81 start-page: 1495 year: 2009 ident: 791_CR134 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.1495 – volume: 123 start-page: 14089 year: 2019 ident: 791_CR84 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b04281 – volume: 546 start-page: 270 year: 2017 ident: 791_CR13 publication-title: Nature doi: 10.1038/nature22391 – volume: 18 start-page: 7658 year: 2018 ident: 791_CR117 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03321 – volume: 131 start-page: 1929 year: 1963 ident: 791_CR100 publication-title: Phys. Rev. doi: 10.1103/PhysRev.131.1929 – volume: 14 start-page: 6 year: 2019 ident: 791_CR128 publication-title: Front. Phys. – volume: 10 year: 2019 ident: 791_CR56 publication-title: Nat. Commun. – volume: 4 start-page: 011005 year: 2016 ident: 791_CR65 publication-title: 2D Mater. doi: 10.1088/2053-1583/4/1/011005 – volume: 18 start-page: 4214 year: 2018 ident: 791_CR132 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01131 – volume: 567 start-page: 66 year: 2019 ident: 791_CR9 publication-title: Nature doi: 10.1038/s41586-019-0957-1 – volume: 3 start-page: 064202 year: 2019 ident: 791_CR55 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.3.064202 – volume: 80 start-page: 016502 year: 2017 ident: 791_CR22 publication-title: Reports Prog. Phys. doi: 10.1088/0034-4885/80/1/016502 – volume: 365 start-page: 605 year: 2019 ident: 791_CR130 publication-title: Science doi: 10.1126/science.aaw3780 – volume: 10 year: 2019 ident: 791_CR41 publication-title: Nat. Commun. – volume: 567 start-page: 81 year: 2019 ident: 791_CR12 publication-title: Nature doi: 10.1038/s41586-019-0986-9 – volume: 14 start-page: 408 year: 2019 ident: 791_CR24 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0438-6 – volume: 114 start-page: 47001 year: 2016 ident: 791_CR96 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/114/47001 – volume: 72 start-page: 161 year: 1982 ident: 791_CR102 publication-title: Phys. Status Solidi doi: 10.1002/pssa.2210720116 – volume: 319 start-page: 13 year: 2007 ident: 791_CR107 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2007.04.035 |
SSID | ssj0021556 |
Score | 2.6946385 |
SecondaryResourceType | review_article |
Snippet | Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device... |
SourceID | osti proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1276 |
SubjectTerms | 140/125 140/133 142/126 639/766/119/1001 639/766/119/2792/4128 639/766/119/2793 639/766/119/2794 639/766/119/997 Biomaterials Chemistry and Materials Science Condensed Matter Physics Coupling Heterostructures Interlayers Layered materials Magnetic properties Magnetism Magnets MATERIALS SCIENCE Nanotechnology Optical and Electronic Materials Review Article Tuning |
Title | Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures |
URI | https://link.springer.com/article/10.1038/s41563-020-0791-8 https://www.ncbi.nlm.nih.gov/pubmed/32948831 https://www.proquest.com/docview/2474987442 https://www.proquest.com/docview/2444379337 https://www.osti.gov/servlets/purl/1760123 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gIHVN6hDxmJE8iqEzuJc6q61S4VEiuEqLQ3y_GDIkFStKkQ_56ZPHZBQC_JwXbkzPgx4_n8DcArVReFcFVNfNoSH2XJrSevtRCW4na-0HQ5-f2quLhU79b5ejxw24ywymlN7Bdq3zo6Iz_JVKkq4mrPTq-_c8oaRdHVMYXGXdgj6jIa1eV653DhXjncLioLjnZFNkU1pT7ZkONCEUzBRVmlXP-xL81anF__sjn_ipf229ByHx6M9iM7GxT-EO6E5hHc_41V8DGsF8OVyo4RfosYFiyzjWeEWKHrTD_ZCOJgXxrW_Wi5J4b_gZ2DfbOfm4BF1OCKoDLtwDB7g275E7hcLj6dX_AxgQJ3aHd1PFpRlV6IGKIMwksbC6dVrWKqtYu6slUoVC6s1NqndR6tVOix2hy1JdKI29tTmDVtE54DE75yFm29qghKhUgQqpCHEo3BWmjvYgJiEp9xI7s4Jbn4avoot9RmkLhBiRuSuNEJvN42uR6oNW6rfEA6MWgXELmtIxSQ60xKkJ5MJnA4qcqMc3BjdiMmgZfbYpw9FBKxTWhvqI4iQkYpywSeDSre9gV_Flc3mSbwZtL57uP_7eiL27tyAPcyGnQ9IOYQZqjCcIRmTVcf92MXn3r59hj2zpbz-Qrf88Xqw8dfLWD2cQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5QAcEM-StoCR4AKK6sRO4hwqhKDLlj5OrbQ34_gBSJCUbqqqf4rf2Jk8tiCgt15yyEvOzNieyXzzDcBLWeU5t2VFfNoCD0URG0dRa84N5e1crqg4ef8gnx3JT_NsvgK_xloYglWOa2K3ULvG0j_yzVQWsiSu9vTt8c-YukZRdnVsodGbxa4_P8OQbbG18wH1-ypNp9uH72fx0FUgtuiMtHEwvCwc58EH4bkTJuRWyUqGRCkbVGlKn8uMG6GUS6osGCExjDMZfgJPAq75-N4bcBNPlhTsqenHZYCHe3NfzVTkMfox6ZhFFWpzQYESZUx5zIsyidUf--Ckwfn8Lx_3r_xst-1N78HdwV9l73oDuw8rvn4Ad35jMXwI8-2-hLNlhBcjRgfDTO0YIWSofOqcDaAR9q1m7VkTO-oo0LOBsB_mS-3xEj3wlaA5Tc9oe3riF4_g6FpE-xgmdVP7J8C4K61B37LMvZQ-EGTLZ75A57PiytkQAR_Fp-3AZk5NNb7rLqsulO4lrlHimiSuVQSvl48c91QeV928TjrR6IcQma4l1JFtdUIQolREsDGqSg9zfqEvLTSCF8vLOFspBWNq35zSPZIIIIUoIljtVbwcC34srqYiieDNqPPLl_93oGtXD-U53Jod7u_pvZ2D3XW4nZIBdmCcDZigOv1TdKna6llnxww-X_fEuQBwai_i |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbKVkJwQLwJLTBIcAFFO8lMkskBIaC7aimsKkSlvU0n86CVIClsqqp_jV-HvUm2IKC3XvaShya2x2OvP38GeCarPOe2rIhPW-BPUcTGUdaac0N1O5crak7-OMu39-X7eTZfg59DLwzBKgefuHTUrrH0H_k4lYUsias9HYceFrG3NX19_D2mCVJUaR3GaXQmsuvPTjF9W7za2UJdP0_T6eTzu-24nzAQWwxM2jgYXhaO8-CD8NwJE3KrZCVDopQNqjSlz2XGjVDKJVUWjJCY0pkMP4cnAf0_vvcKrBeUFY1g_e1ktvdple7hSd31NhV5jFFNOtRUhRovKG2i-imPeVEmsfrjVBw1uLv_FfH-Va1dHoLTm3Cjj17Zm87cbsGar2_D9d84De_AfNI1dLaM0GPE72CYqR0jvAw1U52xHkLCjmrWnjaxo_kCHTcI-2a-1B4v0QOHBNRpOn7bkx9-cRf2L0W492BUN7V_AIy70hqMNMvcS-kDAbh85gsMRSuunA0R8EF82vbc5jRi46te1tiF0p3ENUpck8S1iuDF6pHjjtjjops3SCcaoxKi1rWEQbKtTghQlIoINgdV6d4DLPS5vUbwdHUZ9y4VZEztmxO6RxIdpBBFBPc7Fa_Wgh-LvlUkEbwcdH7-8v8u9OHFS3kCV3HT6A87s90NuJaS_S2ROZswQm36RxhftdXj3pAZHFz23vkFxC41dA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergent+phenomena+and+proximity+effects+in+two-dimensional+magnets+and+heterostructures&rft.jtitle=Nature+materials&rft.au=Huang%2C+Bevin&rft.au=McGuire%2C+Michael+A.&rft.au=May%2C+Andrew+F.&rft.au=Xiao%2C+Di&rft.date=2020-12-01&rft.pub=Springer+Nature+-+Nature+Publishing+Group&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=19&rft.issue=12&rft_id=info:doi/10.1038%2Fs41563-020-0791-8&rft.externalDocID=1760123 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |