Low-temperature culture enhances production of flavivirus virus-like particles in mammalian cells
Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids...
Saved in:
Published in | Applied microbiology and biotechnology Vol. 108; no. 1; p. 242 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids and cell culture conditions. While attempting to express genotype III (GIII) Japanese encephalitis virus (JEV) VLPs containing the G104H mutation in the envelope (E) protein, we failed to generate VLPs in COS-1 cells. However, VLPs production was restored by cultivating plasmid-transfected cells at a lower temperature, specifically 28 °C. Furthermore, we observed that the enhancement in JEV VLPs production was independent of amino acid mutations in the E protein. The optimal condition for JEV VLPs production in plasmid-transfected COS-1 cells consisted of an initial culture at 37 °C for 6 h, followed by a shift to 28 °C (37/28 °C) for cultivation. Under 37/28 °C cultivation conditions, flavivirus VLPs production significantly increased in various mammalian cell lines regardless of whether its expression was transiently transfected or clonally selected cells. Remarkably, clonally selected cell lines expressing flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. Binding affinity analyses using monoclonal antibodies revealed similar binding patterns for VLPs of genotype I (GI) JEV, GIII JEV, West Nile virus (WNV), and dengue virus serotype 2 (DENV-2) produced under both 37 °C or 37/28 °C cultivation conditions. In summary, our study demonstrated that the production of flavivirus VLPs can be significantly improved under 37/28 °C cultivation conditions without affecting the conformational structure of the E protein.
Keypoints
•
Low-temperature culture (37/28 °C) enhances production of flavivirus VLPs.
•
Flavivirus VLPs consistently achieved yields exceeding 1 μg/ml.
•
37/28 °C cultivation did not alter the structure of flavivirus VLPs. |
---|---|
AbstractList | Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids and cell culture conditions. While attempting to express genotype III (GIII) Japanese encephalitis virus (JEV) VLPs containing the G104H mutation in the envelope (E) protein, we failed to generate VLPs in COS-1 cells. However, VLPs production was restored by cultivating plasmid-transfected cells at a lower temperature, specifically 28 °C. Furthermore, we observed that the enhancement in JEV VLPs production was independent of amino acid mutations in the E protein. The optimal condition for JEV VLPs production in plasmid-transfected COS-1 cells consisted of an initial culture at 37 °C for 6 h, followed by a shift to 28 °C (37/28 °C) for cultivation. Under 37/28 °C cultivation conditions, flavivirus VLPs production significantly increased in various mammalian cell lines regardless of whether its expression was transiently transfected or clonally selected cells. Remarkably, clonally selected cell lines expressing flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. Binding affinity analyses using monoclonal antibodies revealed similar binding patterns for VLPs of genotype I (GI) JEV, GIII JEV, West Nile virus (WNV), and dengue virus serotype 2 (DENV-2) produced under both 37 °C or 37/28 °C cultivation conditions. In summary, our study demonstrated that the production of flavivirus VLPs can be significantly improved under 37/28 °C cultivation conditions without affecting the conformational structure of the E protein. KEYPOINTS: • Low-temperature culture (37/28 °C) enhances production of flavivirus VLPs. • Flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. • 37/28 °C cultivation did not alter the structure of flavivirus VLPs. Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids and cell culture conditions. While attempting to express genotype III (GIII) Japanese encephalitis virus (JEV) VLPs containing the G104H mutation in the envelope (E) protein, we failed to generate VLPs in COS-1 cells. However, VLPs production was restored by cultivating plasmid-transfected cells at a lower temperature, specifically 28 °C. Furthermore, we observed that the enhancement in JEV VLPs production was independent of amino acid mutations in the E protein. The optimal condition for JEV VLPs production in plasmid-transfected COS-1 cells consisted of an initial culture at 37 °C for 6 h, followed by a shift to 28 °C (37/28 °C) for cultivation. Under 37/28 °C cultivation conditions, flavivirus VLPs production significantly increased in various mammalian cell lines regardless of whether its expression was transiently transfected or clonally selected cells. Remarkably, clonally selected cell lines expressing flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. Binding affinity analyses using monoclonal antibodies revealed similar binding patterns for VLPs of genotype I (GI) JEV, GIII JEV, West Nile virus (WNV), and dengue virus serotype 2 (DENV-2) produced under both 37 °C or 37/28 °C cultivation conditions. In summary, our study demonstrated that the production of flavivirus VLPs can be significantly improved under 37/28 °C cultivation conditions without affecting the conformational structure of the E protein. Keypoints • Low-temperature culture (37/28 °C) enhances production of flavivirus VLPs. • Flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. • 37/28 °C cultivation did not alter the structure of flavivirus VLPs. Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids and cell culture conditions. While attempting to express genotype III (GIII) Japanese encephalitis virus (JEV) VLPs containing the G104H mutation in the envelope (E) protein, we failed to generate VLPs in COS-1 cells. However, VLPs production was restored by cultivating plasmid-transfected cells at a lower temperature, specifically 28 °C. Furthermore, we observed that the enhancement in JEV VLPs production was independent of amino acid mutations in the E protein. The optimal condition for JEV VLPs production in plasmid-transfected COS-1 cells consisted of an initial culture at 37 °C for 6 h, followed by a shift to 28 °C (37/28 °C) for cultivation. Under 37/28 °C cultivation conditions, flavivirus VLPs production significantly increased in various mammalian cell lines regardless of whether its expression was transiently transfected or clonally selected cells. Remarkably, clonally selected cell lines expressing flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. Binding affinity analyses using monoclonal antibodies revealed similar binding patterns for VLPs of genotype I (GI) JEV, GIII JEV, West Nile virus (WNV), and dengue virus serotype 2 (DENV-2) produced under both 37 °C or 37/28 °C cultivation conditions. In summary, our study demonstrated that the production of flavivirus VLPs can be significantly improved under 37/28 °C cultivation conditions without affecting the conformational structure of the E protein. KEYPOINTS: • Low-temperature culture (37/28 °C) enhances production of flavivirus VLPs. • Flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. • 37/28 °C cultivation did not alter the structure of flavivirus VLPs.Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids and cell culture conditions. While attempting to express genotype III (GIII) Japanese encephalitis virus (JEV) VLPs containing the G104H mutation in the envelope (E) protein, we failed to generate VLPs in COS-1 cells. However, VLPs production was restored by cultivating plasmid-transfected cells at a lower temperature, specifically 28 °C. Furthermore, we observed that the enhancement in JEV VLPs production was independent of amino acid mutations in the E protein. The optimal condition for JEV VLPs production in plasmid-transfected COS-1 cells consisted of an initial culture at 37 °C for 6 h, followed by a shift to 28 °C (37/28 °C) for cultivation. Under 37/28 °C cultivation conditions, flavivirus VLPs production significantly increased in various mammalian cell lines regardless of whether its expression was transiently transfected or clonally selected cells. Remarkably, clonally selected cell lines expressing flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. Binding affinity analyses using monoclonal antibodies revealed similar binding patterns for VLPs of genotype I (GI) JEV, GIII JEV, West Nile virus (WNV), and dengue virus serotype 2 (DENV-2) produced under both 37 °C or 37/28 °C cultivation conditions. In summary, our study demonstrated that the production of flavivirus VLPs can be significantly improved under 37/28 °C cultivation conditions without affecting the conformational structure of the E protein. KEYPOINTS: • Low-temperature culture (37/28 °C) enhances production of flavivirus VLPs. • Flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. • 37/28 °C cultivation did not alter the structure of flavivirus VLPs. Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids and cell culture conditions. While attempting to express genotype III (GIII) Japanese encephalitis virus (JEV) VLPs containing the G104H mutation in the envelope (E) protein, we failed to generate VLPs in COS-1 cells. However, VLPs production was restored by cultivating plasmid-transfected cells at a lower temperature, specifically 28 °C. Furthermore, we observed that the enhancement in JEV VLPs production was independent of amino acid mutations in the E protein. The optimal condition for JEV VLPs production in plasmid-transfected COS-1 cells consisted of an initial culture at 37 °C for 6 h, followed by a shift to 28 °C (37/28 °C) for cultivation. Under 37/28 °C cultivation conditions, flavivirus VLPs production significantly increased in various mammalian cell lines regardless of whether its expression was transiently transfected or clonally selected cells. Remarkably, clonally selected cell lines expressing flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. Binding affinity analyses using monoclonal antibodies revealed similar binding patterns for VLPs of genotype I (GI) JEV, GIII JEV, West Nile virus (WNV), and dengue virus serotype 2 (DENV-2) produced under both 37 °C or 37/28 °C cultivation conditions. In summary, our study demonstrated that the production of flavivirus VLPs can be significantly improved under 37/28 °C cultivation conditions without affecting the conformational structure of the E protein. KEYPOINTS: • Low-temperature culture (37/28 °C) enhances production of flavivirus VLPs. • Flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. • 37/28 °C cultivation did not alter the structure of flavivirus VLPs. |
ArticleNumber | 242 |
Author | Chen, Jo-Mei Chiou, Shyan-Song Chang, Gwong-Jen Hsu, Wei-Li Fan, Yi-Chin Chen, Yi-Ying |
Author_xml | – sequence: 1 givenname: Yi-Chin surname: Fan fullname: Fan, Yi-Chin organization: Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University – sequence: 2 givenname: Jo-Mei surname: Chen fullname: Chen, Jo-Mei organization: Graduate Institute of Microbiology and Public Health, National Chung Hsing University – sequence: 3 givenname: Yi-Ying surname: Chen fullname: Chen, Yi-Ying organization: Graduate Institute of Microbiology and Public Health, National Chung Hsing University – sequence: 4 givenname: Wei-Li surname: Hsu fullname: Hsu, Wei-Li organization: Graduate Institute of Microbiology and Public Health, National Chung Hsing University – sequence: 5 givenname: Gwong-Jen surname: Chang fullname: Chang, Gwong-Jen organization: Arboviral Diseases Branch, Centers for Disease Control and Prevention – sequence: 6 givenname: Shyan-Song orcidid: 0000-0003-2499-4807 surname: Chiou fullname: Chiou, Shyan-Song email: sschiou@dragon.nchu.edu.tw organization: Graduate Institute of Microbiology and Public Health, National Chung Hsing University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38416210$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkjtvFDEUhS0URDaBP0CBRqKhMVy_xp4KoYgEpJVooLY8Hk_i4LEXe2bR_nu8uwmPFKHxLfydo_s4Z-gkpugQekngLQGQ7woAFQwD5ZgwaDnePUErwhnF0BJ-glZApMBSdOoUnZVyC0Coattn6JQpTlpKYIXMOv3Es5s2Lpt5ya6xSzhUF29MtK40m5yGxc4-xSaNzRjM1m99XkpzeHHw312zMXn2NlTax2Yy02SCN7GxLoTyHD0dTSjuxV09R98uP369-ITXX64-X3xYYytAzXiUvRoY467jvaDKGdcCV4PqQFDZjbZv7WikEXQYjBNyIK0bKDMGSC9EJwd2jt4ffTdLP7nBujhnE_Qm-8nknU7G639_or_R12mrCXRAQarq8ObOIacfiyuznnzZz2CiS0vRjAjWAqur-y9KO0Y7DlxCRV8_QG_TkmNdxYGSwEGJSr36u_vfbd9fqgLqCNicSslu1NbPZn-WOowPdQq9D4U-hkLXUOhDKPSuSukD6b37oyJ2FJUKx2uX_7T9iOoXzlHL8w |
CitedBy_id | crossref_primary_10_71150_jm_2410018 crossref_primary_10_1007_s00253_025_13436_y crossref_primary_10_1016_j_jviromet_2024_115007 |
Cites_doi | 10.1128/JVI.74.9.4244-4252.2000 10.1128/JVI.69.4.2471-2479.1995 10.1128/JVI.01809-14 10.1007/s00253-012-4371-y 10.1073/pnas.1011036107 10.1016/j.virol.2004.12.036 10.1016/j.tibtech.2013.09.002 10.1038/nrmicro2460nrmicro2460 10.1128/JVI.78.24.13975-13986.2004 10.1016/j.virol.2006.10.033 10.1007/s00253-022-11825-1 10.1128/JVI.75.5.2204-2212.2001 10.1016/j.vaccine.2018.10.072 10.1016/j.antiviral.2016.03.010 10.1099/vir.0.82640-0 10.1016/j.vaccine.2021.10.049 10.1128/JCM.01143-07 10.1073/pnas.1304300110 10.1038/s41598-020-61103-1 10.1016/S0166-0934(01)00346-9 10.1128/JVI.77.16.8745-8755.2003 10.1128/JVI.01181-17 10.1007/s00253-012-3958-7 10.1080/22221751.2020.1797540 10.1128/JCM.43.7.3227-3236.2005 10.1128/CVI.00004-08 10.1038/s41598-018-25596-1 10.1038/d41573-021-00004-y 10.1146/annurev.mi.44.100190.003245 10.1371/journal.pntd.0004167 10.1073/pnas.0603488103 10.1086/313737 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). Copyright Springer Nature B.V. Dec 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Springer Nature B.V. Dec 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T7 8FD C1K FR3 K9. M7N P64 7X8 7S9 L.6 5PM |
DOI | 10.1007/s00253-024-13064-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Technology Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1432-0614 |
EndPage | 242 |
ExternalDocumentID | PMC10902078 38416210 10_1007_s00253_024_13064_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 109-2314-B-002-163-MY3 funderid: http://dx.doi.org/10.13039/501100004663 – fundername: Ministry of Education grantid: NTU-112L9004 funderid: http://dx.doi.org/10.13039/100010002 – fundername: National Science and Technology Council grantid: NSTC 112-2314-B-002-199 funderid: http://dx.doi.org/10.13039/100020595 – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 109-2314-B-002-163-MY3 – fundername: National Science and Technology Council grantid: NSTC 112-2314-B-002-199 – fundername: Ministry of Education grantid: NTU-112L9004 |
GroupedDBID | --- -Y2 .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 203 23M 28- 29~ 2J2 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6J9 6NX 78A 7WY 7X7 88E 88I 8AO 8CJ 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AAHBH AAHNG AAIAL AAJKR AAJSJ AAKKN AANXM AANZL AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABBBX ABBXA ABDBE ABDBF ABDZT ABECU ABEEZ ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACACY ACBXY ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACUHS ACULB ACZOJ ADBBV ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHYZX AI. AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BVXVI C24 C6C CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBO EBS EDH EDO EIOEI EJD EMB EMK EMOBN EN4 EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IHR IJ- IKXTQ INH INR ISR ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW KPH LAS LK8 LLZTM M0C M1P M2P M4Y M7P MA- ML0 MM. N2Q NB0 NDZJH NHB NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P PF0 PHGZM PHGZT PMFND PQBIZ PQBZA PQQKQ PROAC PSQYO PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBY SCLPG SCM SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z8Z ZMTXR ZOVNA ZXP ZY4 ~02 ~8M ~EX ~KM AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION CGR CUY CVF ECM EIF NPM 7QL 7T7 8FD C1K FR3 GROUPED_DOAJ K9. M7N P64 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c508t-f7b8d334e94b528eae6048d8905279fcb6cfa7a52ddae57d16ed23aa01b5597d3 |
IEDL.DBID | C24 |
ISSN | 0175-7598 1432-0614 |
IngestDate | Thu Aug 21 18:35:10 EDT 2025 Thu Jul 10 23:41:23 EDT 2025 Fri Jul 11 02:04:52 EDT 2025 Wed Aug 13 07:58:05 EDT 2025 Mon Jul 21 05:52:43 EDT 2025 Sun Jul 06 05:06:49 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Thu May 29 04:39:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Flavivirus Virus-like particles Mammalian cells Cultivation condition |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-f7b8d334e94b528eae6048d8905279fcb6cfa7a52ddae57d16ed23aa01b5597d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2499-4807 |
OpenAccessLink | https://link.springer.com/10.1007/s00253-024-13064-y |
PMID | 38416210 |
PQID | 2932704085 |
PQPubID | 54065 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10902078 proquest_miscellaneous_3153603416 proquest_miscellaneous_2932940470 proquest_journals_2932704085 pubmed_primary_38416210 crossref_citationtrail_10_1007_s00253_024_13064_y crossref_primary_10_1007_s00253_024_13064_y springer_journals_10_1007_s00253_024_13064_y |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Applied microbiology and biotechnology |
PublicationTitleAbbrev | Appl Microbiol Biotechnol |
PublicationTitleAlternate | Appl Microbiol Biotechnol |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | T Wilton (13064_CR29) 2014; 88 A Urakami (13064_CR27) 2017; 91 AR Hunt (13064_CR16) 2001; 97 B Kaufmann (13064_CR17) 2006; 103 DS Asnis (13064_CR1) 2000; 30 SC Weaver (13064_CR28) 2016; 130 WA Duffus (13064_CR10) 1995; 69 WD Crill (13064_CR7) 2007; 88 TJ Chambers (13064_CR3) 1990; 44 DN Mali (13064_CR21) 2022; 106 Q Zhao (13064_CR32) 2013; 31 JA Roberson (13064_CR23) 2007; 45 H Yamaji (13064_CR30) 2013; 97 S Crunkhorn (13064_CR8) 2021; 20 B Kaufmann (13064_CR18) 2010; 107 WD Crill (13064_CR6) 2004; 78 H Garg (13064_CR13) 2020; 10 DA Holmes (13064_CR15) 2005; 43 DE Purdy (13064_CR22) 2005; 333 E Cuevas-Juarez (13064_CR9) 2021; 39 GJ Chang (13064_CR4) 2000; 74 MG Guzman (13064_CR14) 2010; 8 YC Fan (13064_CR11) 2015; 9 E Konishi (13064_CR20) 2001; 75 SS Chiou (13064_CR5) 2008; 15 W Shang (13064_CR24) 2012; 94 X Zhang (13064_CR31) 2013; 110 H Boigard (13064_CR2) 2018; 36 YC Fan (13064_CR12) 2018; 8 A Kojima (13064_CR19) 2003; 77 WY Tsai (13064_CR26) 2020; 9 NB Trainor (13064_CR25) 2007; 360 |
References_xml | – volume: 74 start-page: 4244 issue: 9 year: 2000 ident: 13064_CR4 publication-title: J Virol doi: 10.1128/JVI.74.9.4244-4252.2000 – volume: 69 start-page: 2471 issue: 4 year: 1995 ident: 13064_CR10 publication-title: J Virol doi: 10.1128/JVI.69.4.2471-2479.1995 – volume: 88 start-page: 11955 issue: 20 year: 2014 ident: 13064_CR29 publication-title: J Virol doi: 10.1128/JVI.01809-14 – volume: 97 start-page: 1071 issue: 3 year: 2013 ident: 13064_CR30 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4371-y – volume: 107 start-page: 18950 issue: 44 year: 2010 ident: 13064_CR18 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1011036107 – volume: 333 start-page: 239 issue: 2 year: 2005 ident: 13064_CR22 publication-title: Virology doi: 10.1016/j.virol.2004.12.036 – volume: 31 start-page: 654 issue: 11 year: 2013 ident: 13064_CR32 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2013.09.002 – volume: 8 start-page: S7 issue: 12 Suppl year: 2010 ident: 13064_CR14 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2460nrmicro2460 – volume: 78 start-page: 13975 issue: 24 year: 2004 ident: 13064_CR6 publication-title: J Virol doi: 10.1128/JVI.78.24.13975-13986.2004 – volume: 360 start-page: 398 issue: 2 year: 2007 ident: 13064_CR25 publication-title: Virology doi: 10.1016/j.virol.2006.10.033 – volume: 106 start-page: 1945 issue: 5–6 year: 2022 ident: 13064_CR21 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-022-11825-1 – volume: 75 start-page: 2204 issue: 5 year: 2001 ident: 13064_CR20 publication-title: J Virol doi: 10.1128/JVI.75.5.2204-2212.2001 – volume: 36 start-page: 7728 issue: 50 year: 2018 ident: 13064_CR2 publication-title: Vaccine doi: 10.1016/j.vaccine.2018.10.072 – volume: 130 start-page: 69 year: 2016 ident: 13064_CR28 publication-title: Antiviral Res doi: 10.1016/j.antiviral.2016.03.010 – volume: 88 start-page: 1169 issue: Pt 4 year: 2007 ident: 13064_CR7 publication-title: J Gen Virol doi: 10.1099/vir.0.82640-0 – volume: 39 start-page: 6990 issue: 48 year: 2021 ident: 13064_CR9 publication-title: Vaccine doi: 10.1016/j.vaccine.2021.10.049 – volume: 45 start-page: 3167 issue: 10 year: 2007 ident: 13064_CR23 publication-title: J Clin Microbiol doi: 10.1128/JCM.01143-07 – volume: 110 start-page: 6795 issue: 17 year: 2013 ident: 13064_CR31 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1304300110 – volume: 10 start-page: 4017 issue: 1 year: 2020 ident: 13064_CR13 publication-title: Sci Rep doi: 10.1038/s41598-020-61103-1 – volume: 97 start-page: 133 issue: 1–2 year: 2001 ident: 13064_CR16 publication-title: J Virol Methods doi: 10.1016/S0166-0934(01)00346-9 – volume: 77 start-page: 8745 issue: 16 year: 2003 ident: 13064_CR19 publication-title: J Virol doi: 10.1128/JVI.77.16.8745-8755.2003 – volume: 91 start-page: e01181 issue: 23 year: 2017 ident: 13064_CR27 publication-title: J Virol doi: 10.1128/JVI.01181-17 – volume: 94 start-page: 39 issue: 1 year: 2012 ident: 13064_CR24 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-3958-7 – volume: 9 start-page: 1722 issue: 1 year: 2020 ident: 13064_CR26 publication-title: Emerg Microbes Infect doi: 10.1080/22221751.2020.1797540 – volume: 43 start-page: 3227 issue: 7 year: 2005 ident: 13064_CR15 publication-title: J Clin Microbiol doi: 10.1128/JCM.43.7.3227-3236.2005 – volume: 15 start-page: 825 issue: 5 year: 2008 ident: 13064_CR5 publication-title: Clin Vaccine Immunol doi: 10.1128/CVI.00004-08 – volume: 8 start-page: 7481 issue: 1 year: 2018 ident: 13064_CR12 publication-title: Sci Rep doi: 10.1038/s41598-018-25596-1 – volume: 20 start-page: 100 issue: 2 year: 2021 ident: 13064_CR8 publication-title: Nat Rev Drug Discov doi: 10.1038/d41573-021-00004-y – volume: 44 start-page: 649 year: 1990 ident: 13064_CR3 publication-title: Annu Rev Microbiol doi: 10.1146/annurev.mi.44.100190.003245 – volume: 9 start-page: e0004167 issue: 10 year: 2015 ident: 13064_CR11 publication-title: PLoS Negl Trop Dis doi: 10.1371/journal.pntd.0004167 – volume: 103 start-page: 12400 issue: 33 year: 2006 ident: 13064_CR17 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0603488103 – volume: 30 start-page: 413 issue: 3 year: 2000 ident: 13064_CR1 publication-title: Clin Infect Dis doi: 10.1086/313737 |
SSID | ssj0012866 |
Score | 2.4807756 |
Snippet | Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications,... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 242 |
SubjectTerms | Amino acids Animals Binding Biomedical and Life Sciences Biotechnological Products and Process Engineering Biotechnology Cell culture Cell lines Chlorocebus aethiops Cold Temperature COS Cells Cultivation Dengue fever Dengue virus diagnostic techniques Encephalitis Encephalitis Virus, Japanese - genetics Encephalitis, Japanese Env protein Flavivirus Flavivirus - genetics genotype Genotypes Japanese encephalitis virus Life Sciences Low temperature Mammalian cells Mammals Microbial Genetics and Genomics Microbiology Monoclonal antibodies Mutation Optimization Plasmids Protein structure Proteins Temperature Vector-borne diseases Virus-like particles Viruses West Nile virus |
Title | Low-temperature culture enhances production of flavivirus virus-like particles in mammalian cells |
URI | https://link.springer.com/article/10.1007/s00253-024-13064-y https://www.ncbi.nlm.nih.gov/pubmed/38416210 https://www.proquest.com/docview/2932704085 https://www.proquest.com/docview/2932940470 https://www.proquest.com/docview/3153603416 https://pubmed.ncbi.nlm.nih.gov/PMC10902078 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BJiR4mGDAlm1URuINLMVJnI_HbqxMgHii0niK7NjRorVptbRD_e9353xAGUPixXnwOUp8d7473_lngHfGap0JZbhf2oRHgUadU1ZwtCWxsFaRWaNqi2_xxTT6fCkvu0NhTV_t3qck3Uo9HHYj80w5x4gLcpv55jHsSordKUVLZxy63EGQthlKNIw8kVnaHZX5-zu2zdE9H_N-qeQf-VJnhibPYa_zH9m4ZfgLeGTrfXjS3ii52Ydnv-ELvgT1dfGTE_hUh5zMWpwNy2x9Rdxu2LIFfEXmsEXJypm6rW6rm3XDXMtn1bVly754jlU1m6v53G2NMNryb17BdHL-_eyCd3cq8AJdsRUvE52aMIxsFmkZpFbZGHXYpJkvgyQrCx0XpUqUDIxRViZGxNYEoVK-0BR7mPA17NSL2h4CK2QaCqOMCEUZaRxWpLhcSHQAZKIx7vRA9FObFx3gON17McsHqGTHjhzZkTt25BsP3g9jli3cxj-pT3qO5Z3qNTn6L0HiE3CbB2-HblQamhZV28W6pckiP0r8h2lCtAWxj0Y-9uCgFYLhk0JK1mKw7EG6JR4DAYF2b_fU1ZUD73aFsOiXefChl6Rf3_7wrx79H_kxPA2clFPdzQnsrG7W9g16Tys9gt3x6cfTCT0__fhyPnLKQ218NnI7EthOg_EdrC8Y7A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrRBwQFAoBAoYCU5gKXbixDlwWAHVdrv0Qiv1FpzYUSN2s6tmt9X-H34oY-cDllIkDr3k4nHkeGY8z5nxM8AbbbIsYUpTvzAxDXmGPqcMoxhLImaMsmHNVlscRaOTcHwqTrfgR3cWxlW7dylJt1L3h91seLY5x5AyC5vpui2lPDTrS9yo1R8OPqFW33K-__n444i2dwnQHCHIkhZxJnUQhCYJM8GlUSZC29Uy8QWPkyLPorxQsRJca2VErFlkNA-U8llmMbcO8L23YFuKSIoBbA-H46_jPlvBZZMTxVBMY5HI9nDO30e9GQCvoNqrxZl_ZGhd4Nt_APdbxEqGjYk9hC1T7cDt5g7L9Q7c-43R8BGoyfySWrqrlquZNMwehpjqzNpXTRYNxSyaA5kXpJiqi_KiPF_VxD3ptPxuyKIr1yNlRWZqNnM_Y4hNMtSP4eRGZn4XBtW8Mk-B5EIGTCvNAlaEGXbLJS5QAiGHiDPc6XrAuqlN85bi3N60MU17cmanjhTVkTp1pGsP3vV9Fg3Bxz-l9zqNpa2z1ykiJh77lirOg9d9M7qpnRZVmfmqkUlCP4z962UCjD6Rj7Ai8uBJYwT9kAKbHsbtuQdywzx6AUsTvtlSlWeOLtyV3iIS9OB9Z0m_xn79pz77P_FXcGd0_GWSTg6ODp_DXe4s3lb97MFgeb4yLxC7LbOXresQ-HbT3voTL19Suw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAcEJRXoICR4ARWY-fh5MChoqxaWlUcWKm3YMeOGrGbXTW7rfZf8RMZ20lgKUXi0EsuGUeOZybzOTPzGeCNNkrlTGoaVkbQmCv0OWkYxViSMmOkDWu22uI43R_Hn0-Skw340ffCuGr3PiXpexosS1Oz2JnramdofLOh2uYfY8oshKarrqzy0KwucNPWfjjYQw2_5Xz06evHfdqdK0BLhCMLWgmV6SiKTR6rhGdGmhTtWGd5mHCRV6VKy0oKmXCtpUmEZqnRPJIyZMribx3hc2_Azdh2H6MHjfnukLfgmc-OYlCmIsmzrk3n73NeD4WX8O3lMs0_crUuBI7uw70Ou5Jdb2wPYMM0W3DLn2a52oK7v3EbPgR5NLuglviqY20mnuPDENOcWktrydyTzaJhkFlFqok8r8_rs2VL3JVO6u-GzPvCPVI3ZCqnU_dbhth0Q_sIxtey7o9hs5k15imQMskipqVmEatihcPKDD9VCYKPRCjc8wbA-qUtyo7s3J65MSkGmmanjgLVUTh1FKsA3g1j5p7q45_S273Gis7t2wKxExehJY0L4PVwGx3WLotszGzpZfI4jEV4tUyEcSgNEWCkATzxRjBMKbKJYtyoB5CtmccgYAnD1-809akjDndFuIgJA3jfW9KvuV_9qs_-T_wV3P6yNyqODo4Pn8Md7gzelv9sw-bibGleIIhbqJfObwh8u25H_Qmj9lWi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-temperature+culture+enhances+production+of+flavivirus+virus-like+particles+in+mammalian+cells&rft.jtitle=Applied+microbiology+and+biotechnology&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0175-7598&rft.eissn=1432-0614&rft.volume=108&rft.issue=1&rft.spage=242&rft_id=info:doi/10.1007%2Fs00253-024-13064-y&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0175-7598&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0175-7598&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0175-7598&client=summon |