Low-temperature culture enhances production of flavivirus virus-like particles in mammalian cells

Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids...

Full description

Saved in:
Bibliographic Details
Published inApplied microbiology and biotechnology Vol. 108; no. 1; p. 242
Main Authors Fan, Yi-Chin, Chen, Jo-Mei, Chen, Yi-Ying, Hsu, Wei-Li, Chang, Gwong-Jen, Chiou, Shyan-Song
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids and cell culture conditions. While attempting to express genotype III (GIII) Japanese encephalitis virus (JEV) VLPs containing the G104H mutation in the envelope (E) protein, we failed to generate VLPs in COS-1 cells. However, VLPs production was restored by cultivating plasmid-transfected cells at a lower temperature, specifically 28 °C. Furthermore, we observed that the enhancement in JEV VLPs production was independent of amino acid mutations in the E protein. The optimal condition for JEV VLPs production in plasmid-transfected COS-1 cells consisted of an initial culture at 37 °C for 6 h, followed by a shift to 28 °C (37/28 °C) for cultivation. Under 37/28 °C cultivation conditions, flavivirus VLPs production significantly increased in various mammalian cell lines regardless of whether its expression was transiently transfected or clonally selected cells. Remarkably, clonally selected cell lines expressing flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. Binding affinity analyses using monoclonal antibodies revealed similar binding patterns for VLPs of genotype I (GI) JEV, GIII JEV, West Nile virus (WNV), and dengue virus serotype 2 (DENV-2) produced under both 37 °C or 37/28 °C cultivation conditions. In summary, our study demonstrated that the production of flavivirus VLPs can be significantly improved under 37/28 °C cultivation conditions without affecting the conformational structure of the E protein. Keypoints • Low-temperature culture (37/28 °C) enhances production of flavivirus VLPs. • Flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. • 37/28 °C cultivation did not alter the structure of flavivirus VLPs.
AbstractList Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids and cell culture conditions. While attempting to express genotype III (GIII) Japanese encephalitis virus (JEV) VLPs containing the G104H mutation in the envelope (E) protein, we failed to generate VLPs in COS-1 cells. However, VLPs production was restored by cultivating plasmid-transfected cells at a lower temperature, specifically 28 °C. Furthermore, we observed that the enhancement in JEV VLPs production was independent of amino acid mutations in the E protein. The optimal condition for JEV VLPs production in plasmid-transfected COS-1 cells consisted of an initial culture at 37 °C for 6 h, followed by a shift to 28 °C (37/28 °C) for cultivation. Under 37/28 °C cultivation conditions, flavivirus VLPs production significantly increased in various mammalian cell lines regardless of whether its expression was transiently transfected or clonally selected cells. Remarkably, clonally selected cell lines expressing flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. Binding affinity analyses using monoclonal antibodies revealed similar binding patterns for VLPs of genotype I (GI) JEV, GIII JEV, West Nile virus (WNV), and dengue virus serotype 2 (DENV-2) produced under both 37 °C or 37/28 °C cultivation conditions. In summary, our study demonstrated that the production of flavivirus VLPs can be significantly improved under 37/28 °C cultivation conditions without affecting the conformational structure of the E protein. KEYPOINTS: • Low-temperature culture (37/28 °C) enhances production of flavivirus VLPs. • Flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. • 37/28 °C cultivation did not alter the structure of flavivirus VLPs.
Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids and cell culture conditions. While attempting to express genotype III (GIII) Japanese encephalitis virus (JEV) VLPs containing the G104H mutation in the envelope (E) protein, we failed to generate VLPs in COS-1 cells. However, VLPs production was restored by cultivating plasmid-transfected cells at a lower temperature, specifically 28 °C. Furthermore, we observed that the enhancement in JEV VLPs production was independent of amino acid mutations in the E protein. The optimal condition for JEV VLPs production in plasmid-transfected COS-1 cells consisted of an initial culture at 37 °C for 6 h, followed by a shift to 28 °C (37/28 °C) for cultivation. Under 37/28 °C cultivation conditions, flavivirus VLPs production significantly increased in various mammalian cell lines regardless of whether its expression was transiently transfected or clonally selected cells. Remarkably, clonally selected cell lines expressing flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. Binding affinity analyses using monoclonal antibodies revealed similar binding patterns for VLPs of genotype I (GI) JEV, GIII JEV, West Nile virus (WNV), and dengue virus serotype 2 (DENV-2) produced under both 37 °C or 37/28 °C cultivation conditions. In summary, our study demonstrated that the production of flavivirus VLPs can be significantly improved under 37/28 °C cultivation conditions without affecting the conformational structure of the E protein. Keypoints • Low-temperature culture (37/28 °C) enhances production of flavivirus VLPs. • Flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. • 37/28 °C cultivation did not alter the structure of flavivirus VLPs.
Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids and cell culture conditions. While attempting to express genotype III (GIII) Japanese encephalitis virus (JEV) VLPs containing the G104H mutation in the envelope (E) protein, we failed to generate VLPs in COS-1 cells. However, VLPs production was restored by cultivating plasmid-transfected cells at a lower temperature, specifically 28 °C. Furthermore, we observed that the enhancement in JEV VLPs production was independent of amino acid mutations in the E protein. The optimal condition for JEV VLPs production in plasmid-transfected COS-1 cells consisted of an initial culture at 37 °C for 6 h, followed by a shift to 28 °C (37/28 °C) for cultivation. Under 37/28 °C cultivation conditions, flavivirus VLPs production significantly increased in various mammalian cell lines regardless of whether its expression was transiently transfected or clonally selected cells. Remarkably, clonally selected cell lines expressing flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. Binding affinity analyses using monoclonal antibodies revealed similar binding patterns for VLPs of genotype I (GI) JEV, GIII JEV, West Nile virus (WNV), and dengue virus serotype 2 (DENV-2) produced under both 37 °C or 37/28 °C cultivation conditions. In summary, our study demonstrated that the production of flavivirus VLPs can be significantly improved under 37/28 °C cultivation conditions without affecting the conformational structure of the E protein. KEYPOINTS: • Low-temperature culture (37/28 °C) enhances production of flavivirus VLPs. • Flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. • 37/28 °C cultivation did not alter the structure of flavivirus VLPs.Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids and cell culture conditions. While attempting to express genotype III (GIII) Japanese encephalitis virus (JEV) VLPs containing the G104H mutation in the envelope (E) protein, we failed to generate VLPs in COS-1 cells. However, VLPs production was restored by cultivating plasmid-transfected cells at a lower temperature, specifically 28 °C. Furthermore, we observed that the enhancement in JEV VLPs production was independent of amino acid mutations in the E protein. The optimal condition for JEV VLPs production in plasmid-transfected COS-1 cells consisted of an initial culture at 37 °C for 6 h, followed by a shift to 28 °C (37/28 °C) for cultivation. Under 37/28 °C cultivation conditions, flavivirus VLPs production significantly increased in various mammalian cell lines regardless of whether its expression was transiently transfected or clonally selected cells. Remarkably, clonally selected cell lines expressing flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. Binding affinity analyses using monoclonal antibodies revealed similar binding patterns for VLPs of genotype I (GI) JEV, GIII JEV, West Nile virus (WNV), and dengue virus serotype 2 (DENV-2) produced under both 37 °C or 37/28 °C cultivation conditions. In summary, our study demonstrated that the production of flavivirus VLPs can be significantly improved under 37/28 °C cultivation conditions without affecting the conformational structure of the E protein. KEYPOINTS: • Low-temperature culture (37/28 °C) enhances production of flavivirus VLPs. • Flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. • 37/28 °C cultivation did not alter the structure of flavivirus VLPs.
Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids and cell culture conditions. While attempting to express genotype III (GIII) Japanese encephalitis virus (JEV) VLPs containing the G104H mutation in the envelope (E) protein, we failed to generate VLPs in COS-1 cells. However, VLPs production was restored by cultivating plasmid-transfected cells at a lower temperature, specifically 28 °C. Furthermore, we observed that the enhancement in JEV VLPs production was independent of amino acid mutations in the E protein. The optimal condition for JEV VLPs production in plasmid-transfected COS-1 cells consisted of an initial culture at 37 °C for 6 h, followed by a shift to 28 °C (37/28 °C) for cultivation. Under 37/28 °C cultivation conditions, flavivirus VLPs production significantly increased in various mammalian cell lines regardless of whether its expression was transiently transfected or clonally selected cells. Remarkably, clonally selected cell lines expressing flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. Binding affinity analyses using monoclonal antibodies revealed similar binding patterns for VLPs of genotype I (GI) JEV, GIII JEV, West Nile virus (WNV), and dengue virus serotype 2 (DENV-2) produced under both 37 °C or 37/28 °C cultivation conditions. In summary, our study demonstrated that the production of flavivirus VLPs can be significantly improved under 37/28 °C cultivation conditions without affecting the conformational structure of the E protein. KEYPOINTS: • Low-temperature culture (37/28 °C) enhances production of flavivirus VLPs. • Flavivirus VLPs consistently achieved yields exceeding 1 μg/ml. • 37/28 °C cultivation did not alter the structure of flavivirus VLPs.
ArticleNumber 242
Author Chen, Jo-Mei
Chiou, Shyan-Song
Chang, Gwong-Jen
Hsu, Wei-Li
Fan, Yi-Chin
Chen, Yi-Ying
Author_xml – sequence: 1
  givenname: Yi-Chin
  surname: Fan
  fullname: Fan, Yi-Chin
  organization: Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University
– sequence: 2
  givenname: Jo-Mei
  surname: Chen
  fullname: Chen, Jo-Mei
  organization: Graduate Institute of Microbiology and Public Health, National Chung Hsing University
– sequence: 3
  givenname: Yi-Ying
  surname: Chen
  fullname: Chen, Yi-Ying
  organization: Graduate Institute of Microbiology and Public Health, National Chung Hsing University
– sequence: 4
  givenname: Wei-Li
  surname: Hsu
  fullname: Hsu, Wei-Li
  organization: Graduate Institute of Microbiology and Public Health, National Chung Hsing University
– sequence: 5
  givenname: Gwong-Jen
  surname: Chang
  fullname: Chang, Gwong-Jen
  organization: Arboviral Diseases Branch, Centers for Disease Control and Prevention
– sequence: 6
  givenname: Shyan-Song
  orcidid: 0000-0003-2499-4807
  surname: Chiou
  fullname: Chiou, Shyan-Song
  email: sschiou@dragon.nchu.edu.tw
  organization: Graduate Institute of Microbiology and Public Health, National Chung Hsing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38416210$$D View this record in MEDLINE/PubMed
BookMark eNqFkjtvFDEUhS0URDaBP0CBRqKhMVy_xp4KoYgEpJVooLY8Hk_i4LEXe2bR_nu8uwmPFKHxLfydo_s4Z-gkpugQekngLQGQ7woAFQwD5ZgwaDnePUErwhnF0BJ-glZApMBSdOoUnZVyC0Coattn6JQpTlpKYIXMOv3Es5s2Lpt5ya6xSzhUF29MtK40m5yGxc4-xSaNzRjM1m99XkpzeHHw312zMXn2NlTax2Yy02SCN7GxLoTyHD0dTSjuxV09R98uP369-ITXX64-X3xYYytAzXiUvRoY467jvaDKGdcCV4PqQFDZjbZv7WikEXQYjBNyIK0bKDMGSC9EJwd2jt4ffTdLP7nBujhnE_Qm-8nknU7G639_or_R12mrCXRAQarq8ObOIacfiyuznnzZz2CiS0vRjAjWAqur-y9KO0Y7DlxCRV8_QG_TkmNdxYGSwEGJSr36u_vfbd9fqgLqCNicSslu1NbPZn-WOowPdQq9D4U-hkLXUOhDKPSuSukD6b37oyJ2FJUKx2uX_7T9iOoXzlHL8w
CitedBy_id crossref_primary_10_71150_jm_2410018
crossref_primary_10_1007_s00253_025_13436_y
crossref_primary_10_1016_j_jviromet_2024_115007
Cites_doi 10.1128/JVI.74.9.4244-4252.2000
10.1128/JVI.69.4.2471-2479.1995
10.1128/JVI.01809-14
10.1007/s00253-012-4371-y
10.1073/pnas.1011036107
10.1016/j.virol.2004.12.036
10.1016/j.tibtech.2013.09.002
10.1038/nrmicro2460nrmicro2460
10.1128/JVI.78.24.13975-13986.2004
10.1016/j.virol.2006.10.033
10.1007/s00253-022-11825-1
10.1128/JVI.75.5.2204-2212.2001
10.1016/j.vaccine.2018.10.072
10.1016/j.antiviral.2016.03.010
10.1099/vir.0.82640-0
10.1016/j.vaccine.2021.10.049
10.1128/JCM.01143-07
10.1073/pnas.1304300110
10.1038/s41598-020-61103-1
10.1016/S0166-0934(01)00346-9
10.1128/JVI.77.16.8745-8755.2003
10.1128/JVI.01181-17
10.1007/s00253-012-3958-7
10.1080/22221751.2020.1797540
10.1128/JCM.43.7.3227-3236.2005
10.1128/CVI.00004-08
10.1038/s41598-018-25596-1
10.1038/d41573-021-00004-y
10.1146/annurev.mi.44.100190.003245
10.1371/journal.pntd.0004167
10.1073/pnas.0603488103
10.1086/313737
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Springer Nature B.V. Dec 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Springer Nature B.V. Dec 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
8FD
C1K
FR3
K9.
M7N
P64
7X8
7S9
L.6
5PM
DOI 10.1007/s00253-024-13064-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Technology Research Database

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1432-0614
EndPage 242
ExternalDocumentID PMC10902078
38416210
10_1007_s00253_024_13064_y
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 109-2314-B-002-163-MY3
  funderid: http://dx.doi.org/10.13039/501100004663
– fundername: Ministry of Education
  grantid: NTU-112L9004
  funderid: http://dx.doi.org/10.13039/100010002
– fundername: National Science and Technology Council
  grantid: NSTC 112-2314-B-002-199
  funderid: http://dx.doi.org/10.13039/100020595
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 109-2314-B-002-163-MY3
– fundername: National Science and Technology Council
  grantid: NSTC 112-2314-B-002-199
– fundername: Ministry of Education
  grantid: NTU-112L9004
GroupedDBID ---
-Y2
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
203
23M
28-
29~
2J2
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6J9
6NX
78A
7WY
7X7
88E
88I
8AO
8CJ
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AAHBH
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANXM
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABBBX
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABEEZ
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACUHS
ACULB
ACZOJ
ADBBV
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHYZX
AI.
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BVXVI
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBD
EBLON
EBO
EBS
EDH
EDO
EIOEI
EJD
EMB
EMK
EMOBN
EN4
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IHR
IJ-
IKXTQ
INH
INR
ISR
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0C
M1P
M2P
M4Y
M7P
MA-
ML0
MM.
N2Q
NB0
NDZJH
NHB
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
PF0
PHGZM
PHGZT
PMFND
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBY
SCLPG
SCM
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z8Z
ZMTXR
ZOVNA
ZXP
ZY4
~02
~8M
~EX
~KM
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
8FD
C1K
FR3
GROUPED_DOAJ
K9.
M7N
P64
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c508t-f7b8d334e94b528eae6048d8905279fcb6cfa7a52ddae57d16ed23aa01b5597d3
IEDL.DBID C24
ISSN 0175-7598
1432-0614
IngestDate Thu Aug 21 18:35:10 EDT 2025
Thu Jul 10 23:41:23 EDT 2025
Fri Jul 11 02:04:52 EDT 2025
Wed Aug 13 07:58:05 EDT 2025
Mon Jul 21 05:52:43 EDT 2025
Sun Jul 06 05:06:49 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Thu May 29 04:39:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Flavivirus
Virus-like particles
Mammalian cells
Cultivation condition
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-f7b8d334e94b528eae6048d8905279fcb6cfa7a52ddae57d16ed23aa01b5597d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2499-4807
OpenAccessLink https://link.springer.com/10.1007/s00253-024-13064-y
PMID 38416210
PQID 2932704085
PQPubID 54065
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10902078
proquest_miscellaneous_3153603416
proquest_miscellaneous_2932940470
proquest_journals_2932704085
pubmed_primary_38416210
crossref_citationtrail_10_1007_s00253_024_13064_y
crossref_primary_10_1007_s00253_024_13064_y
springer_journals_10_1007_s00253_024_13064_y
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Applied microbiology and biotechnology
PublicationTitleAbbrev Appl Microbiol Biotechnol
PublicationTitleAlternate Appl Microbiol Biotechnol
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References T Wilton (13064_CR29) 2014; 88
A Urakami (13064_CR27) 2017; 91
AR Hunt (13064_CR16) 2001; 97
B Kaufmann (13064_CR17) 2006; 103
DS Asnis (13064_CR1) 2000; 30
SC Weaver (13064_CR28) 2016; 130
WA Duffus (13064_CR10) 1995; 69
WD Crill (13064_CR7) 2007; 88
TJ Chambers (13064_CR3) 1990; 44
DN Mali (13064_CR21) 2022; 106
Q Zhao (13064_CR32) 2013; 31
JA Roberson (13064_CR23) 2007; 45
H Yamaji (13064_CR30) 2013; 97
S Crunkhorn (13064_CR8) 2021; 20
B Kaufmann (13064_CR18) 2010; 107
WD Crill (13064_CR6) 2004; 78
H Garg (13064_CR13) 2020; 10
DA Holmes (13064_CR15) 2005; 43
DE Purdy (13064_CR22) 2005; 333
E Cuevas-Juarez (13064_CR9) 2021; 39
GJ Chang (13064_CR4) 2000; 74
MG Guzman (13064_CR14) 2010; 8
YC Fan (13064_CR11) 2015; 9
E Konishi (13064_CR20) 2001; 75
SS Chiou (13064_CR5) 2008; 15
W Shang (13064_CR24) 2012; 94
X Zhang (13064_CR31) 2013; 110
H Boigard (13064_CR2) 2018; 36
YC Fan (13064_CR12) 2018; 8
A Kojima (13064_CR19) 2003; 77
WY Tsai (13064_CR26) 2020; 9
NB Trainor (13064_CR25) 2007; 360
References_xml – volume: 74
  start-page: 4244
  issue: 9
  year: 2000
  ident: 13064_CR4
  publication-title: J Virol
  doi: 10.1128/JVI.74.9.4244-4252.2000
– volume: 69
  start-page: 2471
  issue: 4
  year: 1995
  ident: 13064_CR10
  publication-title: J Virol
  doi: 10.1128/JVI.69.4.2471-2479.1995
– volume: 88
  start-page: 11955
  issue: 20
  year: 2014
  ident: 13064_CR29
  publication-title: J Virol
  doi: 10.1128/JVI.01809-14
– volume: 97
  start-page: 1071
  issue: 3
  year: 2013
  ident: 13064_CR30
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-4371-y
– volume: 107
  start-page: 18950
  issue: 44
  year: 2010
  ident: 13064_CR18
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1011036107
– volume: 333
  start-page: 239
  issue: 2
  year: 2005
  ident: 13064_CR22
  publication-title: Virology
  doi: 10.1016/j.virol.2004.12.036
– volume: 31
  start-page: 654
  issue: 11
  year: 2013
  ident: 13064_CR32
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2013.09.002
– volume: 8
  start-page: S7
  issue: 12 Suppl
  year: 2010
  ident: 13064_CR14
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2460nrmicro2460
– volume: 78
  start-page: 13975
  issue: 24
  year: 2004
  ident: 13064_CR6
  publication-title: J Virol
  doi: 10.1128/JVI.78.24.13975-13986.2004
– volume: 360
  start-page: 398
  issue: 2
  year: 2007
  ident: 13064_CR25
  publication-title: Virology
  doi: 10.1016/j.virol.2006.10.033
– volume: 106
  start-page: 1945
  issue: 5–6
  year: 2022
  ident: 13064_CR21
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-022-11825-1
– volume: 75
  start-page: 2204
  issue: 5
  year: 2001
  ident: 13064_CR20
  publication-title: J Virol
  doi: 10.1128/JVI.75.5.2204-2212.2001
– volume: 36
  start-page: 7728
  issue: 50
  year: 2018
  ident: 13064_CR2
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2018.10.072
– volume: 130
  start-page: 69
  year: 2016
  ident: 13064_CR28
  publication-title: Antiviral Res
  doi: 10.1016/j.antiviral.2016.03.010
– volume: 88
  start-page: 1169
  issue: Pt 4
  year: 2007
  ident: 13064_CR7
  publication-title: J Gen Virol
  doi: 10.1099/vir.0.82640-0
– volume: 39
  start-page: 6990
  issue: 48
  year: 2021
  ident: 13064_CR9
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2021.10.049
– volume: 45
  start-page: 3167
  issue: 10
  year: 2007
  ident: 13064_CR23
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01143-07
– volume: 110
  start-page: 6795
  issue: 17
  year: 2013
  ident: 13064_CR31
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1304300110
– volume: 10
  start-page: 4017
  issue: 1
  year: 2020
  ident: 13064_CR13
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-61103-1
– volume: 97
  start-page: 133
  issue: 1–2
  year: 2001
  ident: 13064_CR16
  publication-title: J Virol Methods
  doi: 10.1016/S0166-0934(01)00346-9
– volume: 77
  start-page: 8745
  issue: 16
  year: 2003
  ident: 13064_CR19
  publication-title: J Virol
  doi: 10.1128/JVI.77.16.8745-8755.2003
– volume: 91
  start-page: e01181
  issue: 23
  year: 2017
  ident: 13064_CR27
  publication-title: J Virol
  doi: 10.1128/JVI.01181-17
– volume: 94
  start-page: 39
  issue: 1
  year: 2012
  ident: 13064_CR24
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-3958-7
– volume: 9
  start-page: 1722
  issue: 1
  year: 2020
  ident: 13064_CR26
  publication-title: Emerg Microbes Infect
  doi: 10.1080/22221751.2020.1797540
– volume: 43
  start-page: 3227
  issue: 7
  year: 2005
  ident: 13064_CR15
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.43.7.3227-3236.2005
– volume: 15
  start-page: 825
  issue: 5
  year: 2008
  ident: 13064_CR5
  publication-title: Clin Vaccine Immunol
  doi: 10.1128/CVI.00004-08
– volume: 8
  start-page: 7481
  issue: 1
  year: 2018
  ident: 13064_CR12
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-25596-1
– volume: 20
  start-page: 100
  issue: 2
  year: 2021
  ident: 13064_CR8
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/d41573-021-00004-y
– volume: 44
  start-page: 649
  year: 1990
  ident: 13064_CR3
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.mi.44.100190.003245
– volume: 9
  start-page: e0004167
  issue: 10
  year: 2015
  ident: 13064_CR11
  publication-title: PLoS Negl Trop Dis
  doi: 10.1371/journal.pntd.0004167
– volume: 103
  start-page: 12400
  issue: 33
  year: 2006
  ident: 13064_CR17
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0603488103
– volume: 30
  start-page: 413
  issue: 3
  year: 2000
  ident: 13064_CR1
  publication-title: Clin Infect Dis
  doi: 10.1086/313737
SSID ssj0012866
Score 2.4807756
Snippet Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications,...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 242
SubjectTerms Amino acids
Animals
Binding
Biomedical and Life Sciences
Biotechnological Products and Process Engineering
Biotechnology
Cell culture
Cell lines
Chlorocebus aethiops
Cold Temperature
COS Cells
Cultivation
Dengue fever
Dengue virus
diagnostic techniques
Encephalitis
Encephalitis Virus, Japanese - genetics
Encephalitis, Japanese
Env protein
Flavivirus
Flavivirus - genetics
genotype
Genotypes
Japanese encephalitis virus
Life Sciences
Low temperature
Mammalian cells
Mammals
Microbial Genetics and Genomics
Microbiology
Monoclonal antibodies
Mutation
Optimization
Plasmids
Protein structure
Proteins
Temperature
Vector-borne diseases
Virus-like particles
Viruses
West Nile virus
Title Low-temperature culture enhances production of flavivirus virus-like particles in mammalian cells
URI https://link.springer.com/article/10.1007/s00253-024-13064-y
https://www.ncbi.nlm.nih.gov/pubmed/38416210
https://www.proquest.com/docview/2932704085
https://www.proquest.com/docview/2932940470
https://www.proquest.com/docview/3153603416
https://pubmed.ncbi.nlm.nih.gov/PMC10902078
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BJiR4mGDAlm1URuINLMVJnI_HbqxMgHii0niK7NjRorVptbRD_e9353xAGUPixXnwOUp8d7473_lngHfGap0JZbhf2oRHgUadU1ZwtCWxsFaRWaNqi2_xxTT6fCkvu0NhTV_t3qck3Uo9HHYj80w5x4gLcpv55jHsSordKUVLZxy63EGQthlKNIw8kVnaHZX5-zu2zdE9H_N-qeQf-VJnhibPYa_zH9m4ZfgLeGTrfXjS3ii52Ydnv-ELvgT1dfGTE_hUh5zMWpwNy2x9Rdxu2LIFfEXmsEXJypm6rW6rm3XDXMtn1bVly754jlU1m6v53G2NMNryb17BdHL-_eyCd3cq8AJdsRUvE52aMIxsFmkZpFbZGHXYpJkvgyQrCx0XpUqUDIxRViZGxNYEoVK-0BR7mPA17NSL2h4CK2QaCqOMCEUZaRxWpLhcSHQAZKIx7vRA9FObFx3gON17McsHqGTHjhzZkTt25BsP3g9jli3cxj-pT3qO5Z3qNTn6L0HiE3CbB2-HblQamhZV28W6pckiP0r8h2lCtAWxj0Y-9uCgFYLhk0JK1mKw7EG6JR4DAYF2b_fU1ZUD73aFsOiXefChl6Rf3_7wrx79H_kxPA2clFPdzQnsrG7W9g16Tys9gt3x6cfTCT0__fhyPnLKQ218NnI7EthOg_EdrC8Y7A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VrRBwQFAoBAoYCU5gKXbixDlwWAHVdrv0Qiv1FpzYUSN2s6tmt9X-H34oY-cDllIkDr3k4nHkeGY8z5nxM8AbbbIsYUpTvzAxDXmGPqcMoxhLImaMsmHNVlscRaOTcHwqTrfgR3cWxlW7dylJt1L3h91seLY5x5AyC5vpui2lPDTrS9yo1R8OPqFW33K-__n444i2dwnQHCHIkhZxJnUQhCYJM8GlUSZC29Uy8QWPkyLPorxQsRJca2VErFlkNA-U8llmMbcO8L23YFuKSIoBbA-H46_jPlvBZZMTxVBMY5HI9nDO30e9GQCvoNqrxZl_ZGhd4Nt_APdbxEqGjYk9hC1T7cDt5g7L9Q7c-43R8BGoyfySWrqrlquZNMwehpjqzNpXTRYNxSyaA5kXpJiqi_KiPF_VxD3ptPxuyKIr1yNlRWZqNnM_Y4hNMtSP4eRGZn4XBtW8Mk-B5EIGTCvNAlaEGXbLJS5QAiGHiDPc6XrAuqlN85bi3N60MU17cmanjhTVkTp1pGsP3vV9Fg3Bxz-l9zqNpa2z1ykiJh77lirOg9d9M7qpnRZVmfmqkUlCP4z962UCjD6Rj7Ai8uBJYwT9kAKbHsbtuQdywzx6AUsTvtlSlWeOLtyV3iIS9OB9Z0m_xn79pz77P_FXcGd0_GWSTg6ODp_DXe4s3lb97MFgeb4yLxC7LbOXresQ-HbT3voTL19Suw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAcEJRXoICR4ARWY-fh5MChoqxaWlUcWKm3YMeOGrGbXTW7rfZf8RMZ20lgKUXi0EsuGUeOZybzOTPzGeCNNkrlTGoaVkbQmCv0OWkYxViSMmOkDWu22uI43R_Hn0-Skw340ffCuGr3PiXpexosS1Oz2JnramdofLOh2uYfY8oshKarrqzy0KwucNPWfjjYQw2_5Xz06evHfdqdK0BLhCMLWgmV6SiKTR6rhGdGmhTtWGd5mHCRV6VKy0oKmXCtpUmEZqnRPJIyZMribx3hc2_Azdh2H6MHjfnukLfgmc-OYlCmIsmzrk3n73NeD4WX8O3lMs0_crUuBI7uw70Ou5Jdb2wPYMM0W3DLn2a52oK7v3EbPgR5NLuglviqY20mnuPDENOcWktrydyTzaJhkFlFqok8r8_rs2VL3JVO6u-GzPvCPVI3ZCqnU_dbhth0Q_sIxtey7o9hs5k15imQMskipqVmEatihcPKDD9VCYKPRCjc8wbA-qUtyo7s3J65MSkGmmanjgLVUTh1FKsA3g1j5p7q45_S273Gis7t2wKxExehJY0L4PVwGx3WLotszGzpZfI4jEV4tUyEcSgNEWCkATzxRjBMKbKJYtyoB5CtmccgYAnD1-809akjDndFuIgJA3jfW9KvuV_9qs_-T_wV3P6yNyqODo4Pn8Md7gzelv9sw-bibGleIIhbqJfObwh8u25H_Qmj9lWi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-temperature+culture+enhances+production+of+flavivirus+virus-like+particles+in+mammalian+cells&rft.jtitle=Applied+microbiology+and+biotechnology&rft.date=2024-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0175-7598&rft.eissn=1432-0614&rft.volume=108&rft.issue=1&rft.spage=242&rft_id=info:doi/10.1007%2Fs00253-024-13064-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0175-7598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0175-7598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0175-7598&client=summon