A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics
Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile...
Saved in:
Published in | Nature communications Vol. 6; no. 1; p. 8975 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.12.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m
−3
) in a regulated and managed manner. This self-charging unit can be universally applied as a standard ‘infinite-lifetime’ power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.
Triboelectric nanogenerators utilize triboelectrification for harvesting energy from ambient mechanical motions. Here, the authors report an integrated triboelectric nanogenerator system using only human biomechanical energy to generate mW-level DC electricity that is enough to continuously drive various commercial mobile electronics. |
---|---|
AbstractList | Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m
−3
) in a regulated and managed manner. This self-charging unit can be universally applied as a standard ‘infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.
Triboelectric nanogenerators utilize triboelectrification for harvesting energy from ambient mechanical motions. Here, the authors report an integrated triboelectric nanogenerator system using only human biomechanical energy to generate mW-level DC electricity that is enough to continuously drive various commercial mobile electronics. Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m(-3)) in a regulated and managed manner. This self-charging unit can be universally applied as a standard 'infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things. Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m −3 ) in a regulated and managed manner. This self-charging unit can be universally applied as a standard ‘infinite-lifetime’ power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things. Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m(-3)) in a regulated and managed manner. This self-charging unit can be universally applied as a standard 'infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things.Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be achieved by classical energy-harvesting technologies. Here we report a high-efficient self-charging power system for sustainable operation of mobile electronics exploiting exclusively human biomechanical energy, which consists of a high-output triboelectric nanogenerator, a power management circuit to convert the random a.c. energy to d.c. electricity at 60% efficiency, and an energy storage device. With palm tapping as the only energy source, this power unit provides a continuous d.c. electricity of 1.044 mW (7.34 W m(-3)) in a regulated and managed manner. This self-charging unit can be universally applied as a standard 'infinite-lifetime' power source for continuously driving numerous conventional electronics, such as thermometers, electrocardiograph system, pedometers, wearable watches, scientific calculators and wireless radio-frequency communication system, which indicates the immediate and broad applications in personal sensor systems and internet of things. |
ArticleNumber | 8975 |
Author | Yi, Fang Zhou, Yu Sheng Niu, Simiao Wang, Xiaofeng Wang, Zhong Lin |
Author_xml | – sequence: 1 givenname: Simiao orcidid: 0000-0003-1973-2204 surname: Niu fullname: Niu, Simiao organization: School of Materials Science and Engineering, Georgia Institute of Technology – sequence: 2 givenname: Xiaofeng surname: Wang fullname: Wang, Xiaofeng organization: School of Materials Science and Engineering, Georgia Institute of Technology, Department of Precision Instrument, Tsinghua University – sequence: 3 givenname: Fang surname: Yi fullname: Yi, Fang organization: School of Materials Science and Engineering, Georgia Institute of Technology – sequence: 4 givenname: Yu Sheng surname: Zhou fullname: Zhou, Yu Sheng organization: School of Materials Science and Engineering, Georgia Institute of Technology – sequence: 5 givenname: Zhong Lin surname: Wang fullname: Wang, Zhong Lin email: zhong.wang@mse.gatech.edu organization: School of Materials Science and Engineering, Georgia Institute of Technology, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26656252$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1rFTEUhoNUbK3d-AMk4EYso0km85GNUIpWoeCm-5BkTqYp-bgmMxfuvzf11nqtZpNwzvO-vCfnJTqKKQJCryn5QEk7fowmhVCEGLpn6IQRThs6sPbo4H2Mzkq5I_W0go6cv0DHrO-7nnXsBG0v8BrdFnJRHhfwtjG3Ks8uzrjsygIBT7m2I9Y7nFWcUsDapQCVis5UDUTI8w7blHFZy6JcVNoDThvIanEp4mRxSNrVGngwS05VV16h51b5AmcP9ym6-fL55vJrc_396tvlxXVjOjIujR24EhMH3XKgkyBMcTJOZDLAiOB9aznnvdWMk85qroUda8kOZBK9bfnUnqJPe9vNqgNUWVyy8nKTXVB5J5Ny8u9OdLdyTlvJ-5HRfqwG7x4McvqxQllkcMWA9ypCWoukQ0cIbVshKvr2CXqX1hzrdJXiw1i54d7wzWGixyi_N1KB93vA5FRKBvuIUCLvNy7_bLzC5Als3PLr2-s0zv9fcr6XlOobZ8gHMf-lfwLzS8FK |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2019_103883 crossref_primary_10_1016_j_nanoen_2017_10_060 crossref_primary_10_1016_j_nanoso_2023_100980 crossref_primary_10_1007_s12274_018_2018_8 crossref_primary_10_1063_1_4991666 crossref_primary_10_1155_2023_1282309 crossref_primary_10_1039_D3EE01035J crossref_primary_10_1016_j_cej_2025_161637 crossref_primary_10_1016_j_nanoen_2021_106534 crossref_primary_10_1002_adma_201705918 crossref_primary_10_1021_acsaelm_4c00534 crossref_primary_10_1016_j_nanoen_2021_106891 crossref_primary_10_1039_D4TC04321A crossref_primary_10_1088_2631_8695_ac8529 crossref_primary_10_1016_j_nanoen_2023_109004 crossref_primary_10_1007_s12274_016_1331_3 crossref_primary_10_1016_j_compeleceng_2018_05_021 crossref_primary_10_1016_j_nanoen_2023_109134 crossref_primary_10_3389_fmars_2022_1038035 crossref_primary_10_1063_1_5032307 crossref_primary_10_1007_s11706_021_0575_3 crossref_primary_10_1002_marc_201800103 crossref_primary_10_1038_s41467_018_06759_0 crossref_primary_10_1016_j_bios_2020_112569 crossref_primary_10_1016_j_nanoen_2021_106304 crossref_primary_10_1016_j_procs_2023_10_012 crossref_primary_10_1088_2632_959X_abf3d4 crossref_primary_10_1002_admt_201700014 crossref_primary_10_1088_1361_6439_abc96e crossref_primary_10_1016_j_nanoen_2024_109510 crossref_primary_10_1016_j_rser_2021_111230 crossref_primary_10_1016_j_rser_2021_111595 crossref_primary_10_3390_su14116944 crossref_primary_10_1557_s43577_021_00123_2 crossref_primary_10_3390_bios13010113 crossref_primary_10_1016_j_nanoen_2017_08_025 crossref_primary_10_1126_scirobotics_aat2516 crossref_primary_10_1002_adfm_202001720 crossref_primary_10_1016_j_nanoen_2024_109987 crossref_primary_10_1002_adfm_201807241 crossref_primary_10_1002_admt_201700240 crossref_primary_10_1002_aenm_202300051 crossref_primary_10_2298_FUEE2303411A crossref_primary_10_1007_s11431_018_9253_9 crossref_primary_10_1021_acsnano_7b05317 crossref_primary_10_1007_s40544_020_0390_3 crossref_primary_10_1007_s12274_023_5834_4 crossref_primary_10_1016_j_nanoen_2017_08_035 crossref_primary_10_1002_advs_201802230 crossref_primary_10_1007_s42242_024_00284_4 crossref_primary_10_1021_acsami_8b02133 crossref_primary_10_1088_1674_4926_42_10_101601 crossref_primary_10_1016_j_nanoen_2021_106884 crossref_primary_10_1016_j_nanoen_2017_09_010 crossref_primary_10_1016_j_mtphys_2022_100647 crossref_primary_10_1021_acsami_8b15597 crossref_primary_10_1002_ente_201800931 crossref_primary_10_1016_j_seta_2024_104148 crossref_primary_10_1016_j_nanoen_2021_106734 crossref_primary_10_3390_en15165807 crossref_primary_10_1016_j_nanoen_2017_01_059 crossref_primary_10_1038_s41467_017_00131_4 crossref_primary_10_1002_aenm_202304012 crossref_primary_10_1016_j_nanoen_2024_110308 crossref_primary_10_1016_j_nanoen_2021_105880 crossref_primary_10_1016_j_nanoen_2025_110825 crossref_primary_10_1109_JSSC_2019_2942370 crossref_primary_10_1016_j_nanoen_2018_12_025 crossref_primary_10_1016_j_nanoen_2023_108354 crossref_primary_10_1002_admt_201700229 crossref_primary_10_1016_j_apsusc_2018_02_227 crossref_primary_10_1002_adfm_201700049 crossref_primary_10_1109_TNANO_2018_2869934 crossref_primary_10_3390_nano13192630 crossref_primary_10_1021_acsaelm_2c01505 crossref_primary_10_1016_j_nanoen_2022_107091 crossref_primary_10_1016_j_xcrp_2020_100068 crossref_primary_10_1109_TNSE_2022_3154355 crossref_primary_10_1002_admt_201600233 crossref_primary_10_1063_1_4977208 crossref_primary_10_1002_aenm_202202469 crossref_primary_10_1039_C6RA17429A crossref_primary_10_1039_C6SC02562E crossref_primary_10_1016_j_enconman_2021_114489 crossref_primary_10_1016_j_nanoen_2020_105599 crossref_primary_10_1016_j_nanoen_2021_105777 crossref_primary_10_1088_2631_6331_ab376f crossref_primary_10_3390_nanoenergyadv1010005 crossref_primary_10_1016_j_nanoen_2017_11_062 crossref_primary_10_1016_j_apenergy_2023_122475 crossref_primary_10_1109_TCSI_2023_3261780 crossref_primary_10_1016_j_nanoen_2017_10_029 crossref_primary_10_1016_j_nanoen_2020_105112 crossref_primary_10_1021_acs_biomac_4c01709 crossref_primary_10_3233_JCM_191021 crossref_primary_10_3390_s23010137 crossref_primary_10_1093_nsr_nwac170 crossref_primary_10_1016_j_nanoen_2018_02_046 crossref_primary_10_1016_j_nanoen_2020_105588 crossref_primary_10_1002_admt_202200186 crossref_primary_10_1126_sciadv_1501624 crossref_primary_10_1039_D4EE00895B crossref_primary_10_1038_ncomms15310 crossref_primary_10_1021_acsami_1c04048 crossref_primary_10_1038_s41598_018_38121_1 crossref_primary_10_1016_j_joule_2022_06_001 crossref_primary_10_1021_acsnano_6b01569 crossref_primary_10_1016_j_nanoen_2018_02_039 crossref_primary_10_1038_s41467_019_09461_x crossref_primary_10_1016_j_nanoen_2022_108088 crossref_primary_10_1002_aenm_201600665 crossref_primary_10_1021_acsaelm_2c00758 crossref_primary_10_3390_s24123770 crossref_primary_10_1002_advs_202202815 crossref_primary_10_1007_s11814_022_1321_y crossref_primary_10_1016_j_nanoen_2016_07_016 crossref_primary_10_1016_j_nanoen_2020_105694 crossref_primary_10_1016_j_nanoen_2018_01_004 crossref_primary_10_1016_j_nanoen_2021_105873 crossref_primary_10_1039_D1EE02852A crossref_primary_10_1016_j_nanoen_2024_109363 crossref_primary_10_1016_j_nanoen_2017_11_028 crossref_primary_10_1016_j_nanoen_2017_11_027 crossref_primary_10_34133_2022_9809406 crossref_primary_10_1002_adfm_201904626 crossref_primary_10_1002_admt_202302236 crossref_primary_10_1002_smll_202403699 crossref_primary_10_1002_adma_201703456 crossref_primary_10_1016_j_bios_2020_112714 crossref_primary_10_1016_j_nanoen_2018_01_018 crossref_primary_10_1016_j_coco_2024_102141 crossref_primary_10_7498_aps_69_20200867 crossref_primary_10_1038_s41467_019_13166_6 crossref_primary_10_3390_en16135049 crossref_primary_10_1016_j_nanoen_2018_01_011 crossref_primary_10_1002_aenm_202001041 crossref_primary_10_1063_1_5080116 crossref_primary_10_1109_TCOMM_2020_3040397 crossref_primary_10_34133_2019_1091632 crossref_primary_10_1088_1361_6463_acff02 crossref_primary_10_3390_mi12030337 crossref_primary_10_1016_j_nanoen_2025_110767 crossref_primary_10_1039_C8EE00188J crossref_primary_10_1016_j_xcrp_2024_102048 crossref_primary_10_1002_eom2_12145 crossref_primary_10_1038_s41467_019_08817_7 crossref_primary_10_1002_adsu_202100034 crossref_primary_10_3390_catal11010142 crossref_primary_10_3390_chemosensors11050295 crossref_primary_10_1016_j_mattod_2017_10_006 crossref_primary_10_1109_JESTPE_2022_3158347 crossref_primary_10_1002_advs_201801883 crossref_primary_10_1016_j_dsp_2022_103570 crossref_primary_10_1007_s11431_023_2572_1 crossref_primary_10_1063_5_0085850 crossref_primary_10_1016_j_snb_2020_128923 crossref_primary_10_3390_mi12121462 crossref_primary_10_1016_j_ensm_2024_103791 crossref_primary_10_1039_C6TA09726J crossref_primary_10_1016_j_nanoen_2022_107889 crossref_primary_10_1002_app_45674 crossref_primary_10_1016_j_nanoen_2019_01_077 crossref_primary_10_1016_j_nanoen_2022_107885 crossref_primary_10_1016_j_nanoen_2025_110729 crossref_primary_10_1557_mrc_2019_64 crossref_primary_10_1557_mrc_2020_48 crossref_primary_10_1142_S0218127421500772 crossref_primary_10_1039_D0SC05145D crossref_primary_10_1021_acsami_6b07697 crossref_primary_10_1016_j_nanoen_2025_110746 crossref_primary_10_1007_s11664_024_11316_1 crossref_primary_10_1016_j_nanoen_2019_03_061 crossref_primary_10_1016_j_nanoen_2019_02_012 crossref_primary_10_1007_s00542_022_05356_y crossref_primary_10_1038_s41467_019_09851_1 crossref_primary_10_1016_j_apenergy_2021_118322 crossref_primary_10_1016_j_mtener_2024_101732 crossref_primary_10_1039_C8TA03870H crossref_primary_10_1002_aenm_201901881 crossref_primary_10_1007_s12034_019_1801_9 crossref_primary_10_1002_smll_201702817 crossref_primary_10_1109_JSEN_2019_2941180 crossref_primary_10_1002_aesr_202000045 crossref_primary_10_1002_adfm_201903580 crossref_primary_10_1093_nsr_nwae049 crossref_primary_10_1016_j_nanoen_2022_106976 crossref_primary_10_1002_adfm_201800610 crossref_primary_10_1016_j_nanoen_2017_08_045 crossref_primary_10_1021_acsnano_2c12606 crossref_primary_10_1021_acs_langmuir_1c02785 crossref_primary_10_1016_j_nanoen_2021_106570 crossref_primary_10_1038_nenergy_2016_138 crossref_primary_10_1002_adma_201801511 crossref_primary_10_1016_j_nanoen_2021_106576 crossref_primary_10_1016_j_nanoen_2016_12_024 crossref_primary_10_1016_j_nanoen_2019_01_058 crossref_primary_10_1039_C8NR04276D crossref_primary_10_3390_mi12040352 crossref_primary_10_1002_adma_201603527 crossref_primary_10_1016_j_nanoen_2017_12_021 crossref_primary_10_1002_admt_201700182 crossref_primary_10_1016_j_ymssp_2018_05_062 crossref_primary_10_1021_acsenergylett_2c01582 crossref_primary_10_1002_adfm_201806298 crossref_primary_10_1002_aenm_201903713 crossref_primary_10_1016_j_nanoen_2024_110383 crossref_primary_10_1002_adfm_202308353 crossref_primary_10_1007_s12274_018_1997_9 crossref_primary_10_1088_1361_665X_abee36 crossref_primary_10_1016_j_joule_2020_12_023 crossref_primary_10_1016_j_nanoen_2018_08_034 crossref_primary_10_1088_1674_4926_24080021 crossref_primary_10_1007_s12274_017_1916_5 crossref_primary_10_1088_1742_6596_1407_1_012016 crossref_primary_10_3390_s20102925 crossref_primary_10_1016_j_nanoen_2016_12_035 crossref_primary_10_1109_JPROC_2019_2929286 crossref_primary_10_1002_ijch_201900035 crossref_primary_10_1002_aenm_201900772 crossref_primary_10_1002_adfm_201704112 crossref_primary_10_1016_j_nanoen_2024_109264 crossref_primary_10_1002_aesr_202400412 crossref_primary_10_1039_D2EE02557D crossref_primary_10_1016_j_nanoen_2017_07_022 crossref_primary_10_3390_nanoenergyadv2040018 crossref_primary_10_1021_acsnano_6b06622 crossref_primary_10_1016_j_joule_2017_09_004 crossref_primary_10_1002_ente_202000114 crossref_primary_10_1021_acsaelm_0c00022 crossref_primary_10_1002_eom2_12059 crossref_primary_10_1016_j_isci_2022_103977 crossref_primary_10_1016_j_nanoen_2017_06_018 crossref_primary_10_1002_admt_202302183 crossref_primary_10_1016_j_nanoen_2019_103908 crossref_primary_10_1021_acsnano_8b07935 crossref_primary_10_1002_admt_202201670 crossref_primary_10_1002_adfm_202310777 crossref_primary_10_3389_fbioe_2022_889364 crossref_primary_10_1109_TPEL_2023_3337078 crossref_primary_10_1016_j_nanoen_2023_109079 crossref_primary_10_1016_j_bios_2022_114595 crossref_primary_10_1039_C7TA03574H crossref_primary_10_1016_j_enconman_2018_08_018 crossref_primary_10_3390_app11020519 crossref_primary_10_1002_aenm_201702649 crossref_primary_10_1016_j_apenergy_2024_124694 crossref_primary_10_1002_eom2_12049 crossref_primary_10_1002_ese3_497 crossref_primary_10_1038_s41578_022_00441_0 crossref_primary_10_1109_TCSI_2020_3025468 crossref_primary_10_1021_acsnano_6b06621 crossref_primary_10_1021_acsnano_6b04201 crossref_primary_10_1088_2631_7990_ace669 crossref_primary_10_56294_sctconf2024889 crossref_primary_10_1016_j_nanoen_2019_103913 crossref_primary_10_1002_aenm_202002782 crossref_primary_10_1021_acsnano_6b01170 crossref_primary_10_1002_wene_377 crossref_primary_10_3390_s23104912 crossref_primary_10_1021_acs_chemrev_3c00305 crossref_primary_10_1016_j_nanoen_2019_104294 crossref_primary_10_1039_C7NR04610C crossref_primary_10_1016_j_nxener_2024_100177 crossref_primary_10_1002_adfm_201905319 crossref_primary_10_1142_S1793292024300068 crossref_primary_10_1016_j_nanoen_2016_11_025 crossref_primary_10_1021_acsnano_7b02975 crossref_primary_10_1016_j_aiepr_2020_12_003 crossref_primary_10_1016_j_isci_2021_102502 crossref_primary_10_1016_j_nanoen_2024_110078 crossref_primary_10_1039_D0EE03911J crossref_primary_10_1016_j_scib_2020_10_002 crossref_primary_10_1088_2631_7990_ada858 crossref_primary_10_1007_s11664_020_07940_2 crossref_primary_10_1016_j_sna_2025_116364 crossref_primary_10_1016_j_nanoen_2020_104636 crossref_primary_10_1016_j_supmat_2024_100082 crossref_primary_10_1016_j_nanoen_2016_12_061 crossref_primary_10_1038_s41528_024_00363_7 crossref_primary_10_1016_j_compositesa_2022_106914 crossref_primary_10_1007_s40820_022_00981_8 crossref_primary_10_1039_C6TA05816G crossref_primary_10_1039_C9NR00083F crossref_primary_10_1088_1361_6439_aa9d28 crossref_primary_10_1016_j_nanoen_2018_07_037 crossref_primary_10_1016_j_nanoen_2016_11_037 crossref_primary_10_1016_j_tibtech_2017_04_005 crossref_primary_10_1002_admt_202301316 crossref_primary_10_1002_aelm_201600256 crossref_primary_10_1002_aelm_201900531 crossref_primary_10_1016_j_nanoen_2020_104738 crossref_primary_10_1109_TPEL_2019_2934676 crossref_primary_10_1021_acsami_7b17408 crossref_primary_10_1021_acsnano_8b07944 crossref_primary_10_1002_ente_201800162 crossref_primary_10_1016_j_nanoen_2022_107219 crossref_primary_10_1016_j_nanoen_2023_108964 crossref_primary_10_1080_03772063_2019_1651678 crossref_primary_10_1002_aelm_202300713 crossref_primary_10_1021_acsami_8b08337 crossref_primary_10_1016_j_nanoen_2017_05_027 crossref_primary_10_1039_C6TA02764D crossref_primary_10_1021_acsnano_6b03293 crossref_primary_10_1002_eom2_12093 crossref_primary_10_1088_1674_4926_38_9_095001 crossref_primary_10_1038_s41467_021_25554_y crossref_primary_10_1021_acsami_9b02233 crossref_primary_10_3390_nanoenergyadv2010006 crossref_primary_10_1016_j_matt_2021_01_006 crossref_primary_10_3390_nanoenergyadv2010004 crossref_primary_10_1016_j_nanoen_2023_108856 crossref_primary_10_3390_s17112649 crossref_primary_10_1002_adfm_201900098 crossref_primary_10_1002_smll_202301135 crossref_primary_10_1016_j_scib_2019_06_020 crossref_primary_10_1063_5_0076658 crossref_primary_10_1016_j_nanoen_2018_07_016 crossref_primary_10_1039_D4SD00032C crossref_primary_10_1002_admt_202000368 crossref_primary_10_1016_j_isci_2020_102018 crossref_primary_10_1007_s40684_023_00569_6 crossref_primary_10_1063_5_0241082 crossref_primary_10_1002_smll_202107034 crossref_primary_10_1016_j_nanoen_2020_104843 crossref_primary_10_1021_acsbiomaterials_1c01106 crossref_primary_10_1002_adma_202400124 crossref_primary_10_1002_aenm_202103249 crossref_primary_10_1016_j_nanoen_2018_08_055 crossref_primary_10_1021_acsnano_6b07633 crossref_primary_10_1016_j_nanoen_2023_108749 crossref_primary_10_1002_adma_202008276 crossref_primary_10_1002_adfm_202313794 crossref_primary_10_1002_aenm_201800889 crossref_primary_10_1088_1361_6528_aac658 crossref_primary_10_1021_acsami_8b20143 crossref_primary_10_1002_smll_202400824 crossref_primary_10_1016_j_nanoen_2019_104372 crossref_primary_10_1021_acsami_9b03338 crossref_primary_10_1016_j_dsp_2021_103038 crossref_primary_10_1016_j_nanoen_2017_04_035 crossref_primary_10_1016_j_nanoen_2020_104827 crossref_primary_10_1002_aisy_201900063 crossref_primary_10_1002_adma_202307194 crossref_primary_10_1002_inf2_12016 crossref_primary_10_1021_acsaelm_0c00407 crossref_primary_10_1016_j_nanoen_2022_107308 crossref_primary_10_1016_j_nanoen_2022_107422 crossref_primary_10_1016_j_cej_2021_132559 crossref_primary_10_1021_acs_nanolett_1c03922 crossref_primary_10_7498_aps_69_20200784 crossref_primary_10_1016_j_nanoen_2019_104137 crossref_primary_10_1016_j_nanoen_2019_104379 crossref_primary_10_1007_s12053_018_9677_x crossref_primary_10_1016_j_nanoen_2018_06_034 crossref_primary_10_1007_s12274_022_5238_x crossref_primary_10_1016_j_nanoen_2018_06_038 crossref_primary_10_1109_TPEL_2022_3156871 crossref_primary_10_1002_aelm_202400013 crossref_primary_10_1088_1361_665X_aabe04 crossref_primary_10_1021_acsnano_2c12458 crossref_primary_10_1002_adsu_202000108 crossref_primary_10_1016_j_nanoen_2017_05_063 crossref_primary_10_1126_science_aam8771 crossref_primary_10_1109_TPEL_2018_2815536 crossref_primary_10_1016_j_nanoen_2022_107774 crossref_primary_10_1039_C8NR09978B crossref_primary_10_1016_j_mtener_2021_100900 crossref_primary_10_1002_aenm_201802906 crossref_primary_10_1088_1361_6633_ac0a50 crossref_primary_10_1016_j_sna_2021_113270 crossref_primary_10_1002_adfm_202213407 crossref_primary_10_1038_s41378_018_0024_3 crossref_primary_10_1016_j_enconman_2019_111820 crossref_primary_10_3390_s22041668 crossref_primary_10_3390_s24041091 crossref_primary_10_1021_acsnano_8b05359 crossref_primary_10_1039_D0TA03215H crossref_primary_10_1021_acsaem_2c00703 crossref_primary_10_1002_aenm_202103677 crossref_primary_10_1002_er_4789 crossref_primary_10_1557_s43577_025_00860_8 crossref_primary_10_1002_adfm_202103081 crossref_primary_10_1080_03772063_2018_1530074 crossref_primary_10_1007_s40820_021_00713_4 crossref_primary_10_1016_j_nanoen_2019_104165 crossref_primary_10_1016_j_cej_2024_151059 crossref_primary_10_1002_smll_202201754 crossref_primary_10_1007_s10853_022_06875_9 crossref_primary_10_1021_acsaelm_0c00890 crossref_primary_10_1002_advs_202307369 crossref_primary_10_1021_acsami_3c15956 crossref_primary_10_3390_ma14071689 crossref_primary_10_1016_j_nanoen_2022_107318 crossref_primary_10_1063_1_4979081 crossref_primary_10_1021_acsami_7b18640 crossref_primary_10_1007_s12274_017_1951_2 crossref_primary_10_1016_j_nanoen_2022_107556 crossref_primary_10_1039_C8EE00902C crossref_primary_10_1016_j_nanoen_2017_05_048 crossref_primary_10_1002_adfm_202103132 crossref_primary_10_1126_sciadv_abo2418 crossref_primary_10_1002_smll_202100442 crossref_primary_10_1109_ACCESS_2024_3404037 crossref_primary_10_1002_adfm_201808820 crossref_primary_10_1021_acsami_0c03843 crossref_primary_10_1038_ncomms12744 crossref_primary_10_1109_TPEL_2022_3162947 crossref_primary_10_1002_admt_201800167 crossref_primary_10_1039_D4SE00754A crossref_primary_10_1016_j_nanoen_2021_106816 crossref_primary_10_1007_s12274_016_1275_7 crossref_primary_10_1016_j_enconman_2018_04_003 crossref_primary_10_1016_j_mattod_2016_12_001 crossref_primary_10_1016_j_nanoen_2023_108796 crossref_primary_10_1007_s40820_018_0207_3 crossref_primary_10_1016_j_nanoen_2019_104103 crossref_primary_10_1016_j_nanoen_2018_06_075 crossref_primary_10_1039_C6EE02135B crossref_primary_10_1039_D3EE00220A crossref_primary_10_1016_j_nanoen_2021_105974 crossref_primary_10_1088_1361_6528_ab0e34 crossref_primary_10_1002_aenm_201601529 crossref_primary_10_1002_er_7900 crossref_primary_10_1002_inf2_12064 crossref_primary_10_1021_acsami_3c17037 crossref_primary_10_1016_j_nanoen_2018_10_045 crossref_primary_10_1002_aenm_202000965 crossref_primary_10_1016_j_apsusc_2021_150075 crossref_primary_10_1016_j_nanoen_2021_106908 crossref_primary_10_1016_j_mser_2025_100934 crossref_primary_10_1038_s41598_017_10990_y crossref_primary_10_1557_mrs_2019_183 crossref_primary_10_1002_adfm_201805216 crossref_primary_10_1002_adma_202412858 crossref_primary_10_1088_1742_6596_2686_1_012007 crossref_primary_10_1016_j_ensm_2019_03_009 crossref_primary_10_1063_5_0039089 crossref_primary_10_1016_j_nanoen_2020_105303 crossref_primary_10_46670_JSST_2022_31_6_376 crossref_primary_10_1016_j_nanoen_2018_05_011 crossref_primary_10_1016_j_nanoen_2020_105307 crossref_primary_10_1016_j_nanoen_2020_105549 crossref_primary_10_1039_D2EE03246E crossref_primary_10_1016_j_nanoen_2019_104117 crossref_primary_10_1016_j_apenergy_2020_115799 crossref_primary_10_1360_SST_2023_0082 crossref_primary_10_3390_app8122485 crossref_primary_10_1021_acsnano_7b08674 crossref_primary_10_1088_1361_6463_ad14ba crossref_primary_10_1002_admt_201800054 crossref_primary_10_1016_j_esci_2022_07_002 crossref_primary_10_1002_adfm_201604462 crossref_primary_10_1007_s10854_023_11207_x crossref_primary_10_1002_adfm_201808849 crossref_primary_10_1002_admt_201901075 crossref_primary_10_1002_advs_202000254 crossref_primary_10_3390_s19133010 crossref_primary_10_1002_adma_202402824 crossref_primary_10_1016_j_mattod_2020_11_012 crossref_primary_10_1016_j_nanoen_2018_10_021 crossref_primary_10_1140_epjp_i2017_11520_y crossref_primary_10_1007_s10853_020_04359_2 crossref_primary_10_1155_2024_8838934 crossref_primary_10_1360_SST_2023_0034 crossref_primary_10_1016_j_pmatsci_2023_101184 crossref_primary_10_1002_adfm_201908479 crossref_primary_10_3390_mi7120206 crossref_primary_10_1021_acsnano_8b08329 crossref_primary_10_1063_5_0079709 crossref_primary_10_1002_admt_201800360 crossref_primary_10_1002_adem_201800823 crossref_primary_10_1002_eem2_12654 crossref_primary_10_1016_j_nanoen_2022_107023 crossref_primary_10_1080_10667857_2021_1959157 crossref_primary_10_1002_adma_201601900 crossref_primary_10_1021_acsnano_0c09803 crossref_primary_10_1063_1_4978936 crossref_primary_10_1088_1361_6463_aae44d crossref_primary_10_1088_1742_6596_1533_2_022128 crossref_primary_10_1007_s40820_021_00644_0 crossref_primary_10_1016_j_nanoen_2018_11_078 crossref_primary_10_1016_j_nanoen_2018_11_077 crossref_primary_10_1016_j_nanoen_2018_11_083 crossref_primary_10_1177_1045389X19873420 crossref_primary_10_1016_j_nanoen_2023_108762 crossref_primary_10_1016_j_nanoen_2023_108761 crossref_primary_10_1557_s43577_025_00876_0 crossref_primary_10_1002_aelm_202000034 crossref_primary_10_1016_j_jpowsour_2020_228954 crossref_primary_10_1109_ACCESS_2021_3082499 crossref_primary_10_1007_s10825_016_0882_6 crossref_primary_10_1016_j_compscitech_2022_109260 crossref_primary_10_1016_j_nantod_2018_12_003 crossref_primary_10_1109_JSSC_2020_3012991 crossref_primary_10_1246_cl_210019 crossref_primary_10_1002_adfm_201904090 crossref_primary_10_1016_j_nanoen_2020_104774 crossref_primary_10_1039_C6TA07288G crossref_primary_10_1016_j_nanoen_2020_105627 crossref_primary_10_1016_j_nanoen_2022_108139 crossref_primary_10_1002_admt_202000737 crossref_primary_10_1016_j_apmt_2023_101732 crossref_primary_10_3390_en17194935 crossref_primary_10_1016_j_nanoen_2020_104770 crossref_primary_10_1242_jeb_247851 crossref_primary_10_1016_j_nanoen_2022_107168 crossref_primary_10_1016_j_nanoen_2019_104202 crossref_primary_10_1038_s41467_018_03319_4 crossref_primary_10_1039_D2MH00692H crossref_primary_10_1021_acsnano_7b00866 crossref_primary_10_1016_j_jsamd_2022_100461 crossref_primary_10_1002_cnma_201600191 crossref_primary_10_1039_D0NR04868B crossref_primary_10_1002_admt_202301896 crossref_primary_10_1007_s12274_016_1294_4 crossref_primary_10_1021_acsomega_9b01963 crossref_primary_10_1002_adfm_201907378 crossref_primary_10_3390_s16091502 crossref_primary_10_1088_0022_3727_49_47_47LT02 crossref_primary_10_1016_j_nanoen_2022_107279 crossref_primary_10_1038_s41467_020_15373_y crossref_primary_10_1016_j_simpat_2016_08_002 crossref_primary_10_1002_aisy_201900129 crossref_primary_10_1016_j_nanoen_2020_104760 |
Cites_doi | 10.1021/nl503402c 10.1016/S1003-6326(13)62564-9 10.1126/science.1201512 10.1039/c0ee00137f 10.1002/anie.200701812 10.1016/j.mattod.2014.05.006 10.1088/0957-0233/17/12/R01 10.1088/0964-1726/19/7/075015 10.1016/j.sna.2008.03.008 10.1016/j.sna.2004.12.032 10.1021/nl500925n 10.1016/j.nanoen.2013.07.012 10.1016/j.nantod.2012.08.004 10.1002/adma.201400172 10.1088/0964-1726/22/2/025021 10.1126/science.1111063 10.1021/jp907072z 10.1088/0964-1726/20/10/105013 10.1016/j.nanoen.2014.11.034 10.1021/ja3091438 10.1109/TED.2014.2377728 10.1126/science.1149860 10.1088/0964-1726/24/3/035004 10.1038/nature06181 10.1016/j.nanoen.2012.01.004 10.1021/nn4007708 10.1109/TIE.2009.2024652 10.1109/MPRV.2005.21 10.1021/nn4050408 10.1109/MPRV.2005.9 10.1126/science.1246432 10.1038/ncomms4426 10.1039/c3ee42571a 10.1002/adma.200600527 10.1038/35104620 10.1001/jama.2014.17915 10.1088/0960-1317/18/10/104006 10.1021/nl3045684 10.1021/nl5032106 10.1007/b100747 |
ContentType | Journal Article |
Copyright | The Author(s) 2015 Copyright Nature Publishing Group Dec 2015 Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2015 – notice: Copyright Nature Publishing Group Dec 2015 – notice: Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM |
DOI | 10.1038/ncomms9975 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
ExternalDocumentID | PMC4682168 3891772061 26656252 10_1038_ncomms9975 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 4.4 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EJD EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c508t-f74a9d4eb34e1d902a408d0dce209463f4446fb2405fb4b9f83f4f70d96f34d3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Thu Aug 21 13:52:31 EDT 2025 Thu Jul 10 18:21:47 EDT 2025 Wed Aug 13 10:59:32 EDT 2025 Mon Jul 21 05:57:09 EDT 2025 Tue Jul 01 02:31:10 EDT 2025 Thu Apr 24 22:53:17 EDT 2025 Fri Feb 21 02:39:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-f74a9d4eb34e1d902a408d0dce209463f4446fb2405fb4b9f83f4f70d96f34d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-1973-2204 |
OpenAccessLink | https://www.nature.com/articles/ncomms9975 |
PMID | 26656252 |
PQID | 1747800178 |
PQPubID | 546298 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4682168 proquest_miscellaneous_1750013399 proquest_journals_1747800178 pubmed_primary_26656252 crossref_primary_10_1038_ncomms9975 crossref_citationtrail_10_1038_ncomms9975 springer_journals_10_1038_ncomms9975 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20151211 |
PublicationDateYYYYMMDD | 2015-12-11 |
PublicationDate_xml | – month: 12 year: 2015 text: 20151211 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Lee (CR4) 2014; 343 Vazquez-Mena (CR12) 2014; 14 Tian (CR13) 2007; 449 Zhu, Chen, Zhang, Jing, Wang (CR26) 2014; 5 Khaligh, Zeng, Zheng (CR7) 2010; 57 Wu, Cui (CR3) 2012; 7 Nguyen, Yang (CR36) 2013; 2 CR37 Niu (CR33) 2013; 6 Ban, He, Shao, Du (CR40) 2013; 23 Chortos, Bao (CR2) 2014; 17 Goodenough, Park (CR5) 2013; 135 Qi, McAlpine (CR8) 2010; 3 Paradiso, Starner (CR6) 2005; 4 Jeon, Sood, Jeong, Kim (CR23) 2005; 122 Beeby, Tudor, White (CR14) 2006; 17 Baytekin (CR25) 2011; 333 Fan, Tian, Wang (CR27) 2012; 1 Niu, Wang (CR30) 2015; 14 Rome, Flynn, Goldman, Yoo (CR17) 2005; 309 Lal, Duggirala, Li (CR20) 2005; 4 McCarty, Whitesides (CR24) 2008; 47 Niu (CR31) 2015; 62 Kim (CR29) 2014; 26 Saha, O’Donnell, Wang, McCloskey (CR15) 2008; 147 Boisseau, Despesse, Ricart, Defay, Sylvestre (CR21) 2011; 20 Perez, Boisseau, Gasnier, Willemin, Reboud (CR22) 2015; 24 Dresselhaus (CR10) 2007; 19 Wang (CR32) 2013; 7 Bai (CR34) 2013; 7 Steele, Heinzel (CR11) 2001; 414 Yang (CR9) 2014; 14 Jeong (CR35) 2014; 14 Fang, Wu, Song, Wang (CR39) 2009; 113 Boisseau, Despesse, Sylvestre (CR18) 2010; 19 Lo, Tai (CR19) 2008; 18 Rogers (CR1) 2015; 313 Zhang (CR28) 2013; 13 Donelan (CR16) 2008; 319 Boisseau, Despesse, Monfray, Puscasu, Skotnicki (CR38) 2013; 22 CR Saha (BFncomms9975_CR15) 2008; 147 SM Niu (BFncomms9975_CR31) 2015; 62 O Vazquez-Mena (BFncomms9975_CR12) 2014; 14 MS Dresselhaus (BFncomms9975_CR10) 2007; 19 JA Rogers (BFncomms9975_CR1) 2015; 313 JA Paradiso (BFncomms9975_CR6) 2005; 4 LS McCarty (BFncomms9975_CR24) 2008; 47 YB Jeon (BFncomms9975_CR23) 2005; 122 M Perez (BFncomms9975_CR22) 2015; 24 S Boisseau (BFncomms9975_CR21) 2011; 20 LC Rome (BFncomms9975_CR17) 2005; 309 Y Yang (BFncomms9975_CR9) 2014; 14 G Zhu (BFncomms9975_CR26) 2014; 5 J Lee (BFncomms9975_CR4) 2014; 343 S Boisseau (BFncomms9975_CR38) 2013; 22 SM Niu (BFncomms9975_CR30) 2015; 14 P Bai (BFncomms9975_CR34) 2013; 7 BCH Steele (BFncomms9975_CR11) 2001; 414 BZ Tian (BFncomms9975_CR13) 2007; 449 S Kim (BFncomms9975_CR29) 2014; 26 CK Jeong (BFncomms9975_CR35) 2014; 14 Y Qi (BFncomms9975_CR8) 2010; 3 JM Donelan (BFncomms9975_CR16) 2008; 319 HW Lo (BFncomms9975_CR19) 2008; 18 A Khaligh (BFncomms9975_CR7) 2010; 57 HT Baytekin (BFncomms9975_CR25) 2011; 333 SM Niu (BFncomms9975_CR33) 2013; 6 A Lal (BFncomms9975_CR20) 2005; 4 H Wu (BFncomms9975_CR3) 2012; 7 SH Wang (BFncomms9975_CR32) 2013; 7 V Nguyen (BFncomms9975_CR36) 2013; 2 XS Zhang (BFncomms9975_CR28) 2013; 13 FR Fan (BFncomms9975_CR27) 2012; 1 S Boisseau (BFncomms9975_CR18) 2010; 19 JB Goodenough (BFncomms9975_CR5) 2013; 135 A Chortos (BFncomms9975_CR2) 2014; 17 BFncomms9975_CR37 H Fang (BFncomms9975_CR39) 2009; 113 SP Beeby (BFncomms9975_CR14) 2006; 17 CL Ban (BFncomms9975_CR40) 2013; 23 25307065 - Nano Lett. 2014 Nov 12;14(11):6578-83 18258914 - Science. 2008 Feb 8;319(5864):807-10 18270989 - Angew Chem Int Ed Engl. 2008;47(12):2188-207 16151012 - Science. 2005 Sep 9;309(5741):1725-8 11713541 - Nature. 2001 Nov 15;414(6861):345-52 21700838 - Science. 2011 Jul 15;333(6040):308-12 23384278 - Nano Lett. 2013 Mar 13;13(3):1168-72 24407480 - Science. 2014 Jan 31;343(6170):519-22 24266595 - ACS Nano. 2013 Dec 23;7(12):11263-71 25058004 - Nano Lett. 2014 Aug 13;14(8):4280-5 23484470 - ACS Nano. 2013 Apr 23;7(4):3713-9 23294028 - J Am Chem Soc. 2013 Jan 30;135(4):1167-76 24677389 - Adv Mater. 2014 Jun 18;26(23):3918-25 24594501 - Nat Commun. 2014 Mar 04;5:3426 25668256 - JAMA. 2015 Feb 10;313(6):561-2 25393064 - Nano Lett. 2014 Dec 10;14(12):7031-8 17943126 - Nature. 2007 Oct 18;449(7164):885-9 |
References_xml | – volume: 14 start-page: 7031 year: 2014 end-page: 7038 ident: CR35 article-title: Topographically-designed triboelectric nanogenerator via block copolymer self-assembly publication-title: Nano Lett. doi: 10.1021/nl503402c – volume: 23 start-page: 1039 year: 2013 end-page: 1045 ident: CR40 article-title: Effect of pretreatment on electrochemical etching behavior of Al foil in HCl-H2SO4 publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(13)62564-9 – volume: 333 start-page: 308 year: 2011 end-page: 312 ident: CR25 article-title: The mosaic of surface charge in contact electrification publication-title: Science doi: 10.1126/science.1201512 – volume: 3 start-page: 1275 year: 2010 end-page: 1285 ident: CR8 article-title: Nanotechnology-enabled flexible and biocompatible energy harvesting publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00137f – volume: 47 start-page: 2188 year: 2008 end-page: 2207 ident: CR24 article-title: Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200701812 – volume: 17 start-page: 321 year: 2014 end-page: 331 ident: CR2 article-title: Skin-inspired electronic devices publication-title: Mater. Today doi: 10.1016/j.mattod.2014.05.006 – volume: 17 start-page: R175 year: 2006 end-page: R195 ident: CR14 article-title: Energy harvesting vibration sources for microsystems applications publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/17/12/R01 – volume: 19 start-page: 075015 year: 2010 ident: CR18 article-title: Optimization of an electret-based energy harvester publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/19/7/075015 – volume: 147 start-page: 248 year: 2008 end-page: 253 ident: CR15 article-title: Electromagnetic generator for harvesting energy from human motion publication-title: Sens. Actuators A doi: 10.1016/j.sna.2008.03.008 – volume: 122 start-page: 16 year: 2005 end-page: 22 ident: CR23 article-title: MEMS power generator with transverse mode thin film PZT publication-title: Sens. Actuators A doi: 10.1016/j.sna.2004.12.032 – volume: 14 start-page: 4280 year: 2014 end-page: 4285 ident: CR12 article-title: Performance enhancement of a graphene-zinc phosphide solar cell using the electric field-effect publication-title: Nano Lett. doi: 10.1021/nl500925n – ident: CR37 – volume: 2 start-page: 604 year: 2013 end-page: 608 ident: CR36 article-title: Effect of humidity and pressure on the triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.07.012 – volume: 7 start-page: 414 year: 2012 end-page: 429 ident: CR3 article-title: Designing nanostructured Si anodes for high energy lithium ion batteries publication-title: Nano Today doi: 10.1016/j.nantod.2012.08.004 – volume: 26 start-page: 3918 year: 2014 end-page: 3925 ident: CR29 article-title: Transparent flexible graphene triboelectric nanogenerators publication-title: Adv. Mater. doi: 10.1002/adma.201400172 – volume: 22 start-page: 025021 year: 2013 ident: CR38 article-title: Semi-flexible bimetal-based thermal energy harvesters publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/2/025021 – volume: 309 start-page: 1725 year: 2005 end-page: 1728 ident: CR17 article-title: Generating electricity while walking with loads publication-title: Science doi: 10.1126/science.1111063 – volume: 113 start-page: 16571 year: 2009 end-page: 16574 ident: CR39 article-title: Controlled growth of aligned polymer nanowires publication-title: J. Phys. Chem. C doi: 10.1021/jp907072z – volume: 20 start-page: 105013 year: 2011 ident: CR21 article-title: Cantilever-based electret energy harvesters publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/20/10/105013 – volume: 14 start-page: 161 year: 2015 ident: CR30 article-title: Theoretical systems of triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.034 – volume: 135 start-page: 1167 year: 2013 end-page: 1176 ident: CR5 article-title: The Li-ion rechargeable battery: a perspective publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3091438 – volume: 62 start-page: 641 year: 2015 end-page: 647 ident: CR31 article-title: Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2014.2377728 – volume: 319 start-page: 807 year: 2008 end-page: 810 ident: CR16 article-title: Biomechanical energy harvesting: generating electricity during walking with minimal user effort publication-title: Science doi: 10.1126/science.1149860 – volume: 24 start-page: 035004 year: 2015 ident: CR22 article-title: An electret-based aeroelastic flutter energy harvester publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/3/035004 – volume: 449 start-page: 885 year: 2007 end-page: U888 ident: CR13 article-title: Coaxial silicon nanowires as solar cells and nanoelectronic power sources publication-title: Nature doi: 10.1038/nature06181 – volume: 1 start-page: 328 year: 2012 end-page: 334 ident: CR27 article-title: Flexible triboelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 7 start-page: 3713 year: 2013 end-page: 3719 ident: CR34 article-title: Integrated multi-layered triboelectric nanogenerator for harvesting biomechanical energy from human motions publication-title: Acs Nano doi: 10.1021/nn4007708 – volume: 57 start-page: 850 year: 2010 end-page: 860 ident: CR7 article-title: Kinetic energy harvesting using piezoelectric and electromagnetic technologies-state of the art publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2009.2024652 – volume: 4 start-page: 53 year: 2005 end-page: 61 ident: CR20 article-title: Pervasive power: a radioisotope-powered piezoelectric generator publication-title: IEEE Pervas. Comput. doi: 10.1109/MPRV.2005.21 – volume: 7 start-page: 11263 year: 2013 end-page: 11271 ident: CR32 article-title: Motion charged battery as sustainable flexible-power-unit publication-title: Acs Nano doi: 10.1021/nn4050408 – volume: 4 start-page: 18 year: 2005 end-page: 27 ident: CR6 article-title: Energy scavenging for mobile and wireless electronics publication-title: IEEE Pervas. Comput. doi: 10.1109/MPRV.2005.9 – volume: 343 start-page: 519 year: 2014 end-page: 522 ident: CR4 article-title: Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries publication-title: Science doi: 10.1126/science.1246432 – volume: 5 start-page: 3426 year: 2014 ident: CR26 article-title: Radial-arrayed rotary electrification for high performance triboelectric generator publication-title: Nat. Commun. doi: 10.1038/ncomms4426 – volume: 6 start-page: 3576 year: 2013 end-page: 3583 ident: CR33 article-title: Theoretical study of contact-mode triboelectric nanogenerators as an effective power source publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42571a – volume: 19 start-page: 1043 year: 2007 end-page: 1053 ident: CR10 article-title: New directions for low-dimensional thermoelectric materials publication-title: Adv. Mater. doi: 10.1002/adma.200600527 – volume: 414 start-page: 345 year: 2001 end-page: 352 ident: CR11 article-title: Materials for fuel-cell technologies publication-title: Nature doi: 10.1038/35104620 – volume: 313 start-page: 561 year: 2015 end-page: 562 ident: CR1 article-title: Electronics for the human body publication-title: J. Am. Med. Assoc. doi: 10.1001/jama.2014.17915 – volume: 18 start-page: 104006 year: 2008 ident: CR19 article-title: Parylene-based electret power generators publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/18/10/104006 – volume: 13 start-page: 1168 year: 2013 end-page: 1172 ident: CR28 article-title: Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems publication-title: Nano Lett. doi: 10.1021/nl3045684 – volume: 14 start-page: 6578 year: 2014 end-page: 6583 ident: CR9 article-title: Membrane-free battery for harvesting low-grade thermal energy publication-title: Nano Lett. doi: 10.1021/nl5032106 – volume: 3 start-page: 1275 year: 2010 ident: BFncomms9975_CR8 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00137f – volume: 4 start-page: 53 year: 2005 ident: BFncomms9975_CR20 publication-title: IEEE Pervas. Comput. doi: 10.1109/MPRV.2005.21 – volume: 14 start-page: 4280 year: 2014 ident: BFncomms9975_CR12 publication-title: Nano Lett. doi: 10.1021/nl500925n – volume: 22 start-page: 025021 year: 2013 ident: BFncomms9975_CR38 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/2/025021 – volume: 7 start-page: 11263 year: 2013 ident: BFncomms9975_CR32 publication-title: Acs Nano doi: 10.1021/nn4050408 – volume: 14 start-page: 7031 year: 2014 ident: BFncomms9975_CR35 publication-title: Nano Lett. doi: 10.1021/nl503402c – volume: 18 start-page: 104006 year: 2008 ident: BFncomms9975_CR19 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/18/10/104006 – volume: 7 start-page: 3713 year: 2013 ident: BFncomms9975_CR34 publication-title: Acs Nano doi: 10.1021/nn4007708 – volume: 449 start-page: 885 year: 2007 ident: BFncomms9975_CR13 publication-title: Nature doi: 10.1038/nature06181 – volume: 13 start-page: 1168 year: 2013 ident: BFncomms9975_CR28 publication-title: Nano Lett. doi: 10.1021/nl3045684 – volume: 333 start-page: 308 year: 2011 ident: BFncomms9975_CR25 publication-title: Science doi: 10.1126/science.1201512 – volume: 2 start-page: 604 year: 2013 ident: BFncomms9975_CR36 publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.07.012 – volume: 23 start-page: 1039 year: 2013 ident: BFncomms9975_CR40 publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(13)62564-9 – ident: BFncomms9975_CR37 doi: 10.1007/b100747 – volume: 17 start-page: 321 year: 2014 ident: BFncomms9975_CR2 publication-title: Mater. Today doi: 10.1016/j.mattod.2014.05.006 – volume: 309 start-page: 1725 year: 2005 ident: BFncomms9975_CR17 publication-title: Science doi: 10.1126/science.1111063 – volume: 24 start-page: 035004 year: 2015 ident: BFncomms9975_CR22 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/3/035004 – volume: 14 start-page: 6578 year: 2014 ident: BFncomms9975_CR9 publication-title: Nano Lett. doi: 10.1021/nl5032106 – volume: 26 start-page: 3918 year: 2014 ident: BFncomms9975_CR29 publication-title: Adv. Mater. doi: 10.1002/adma.201400172 – volume: 113 start-page: 16571 year: 2009 ident: BFncomms9975_CR39 publication-title: J. Phys. Chem. C doi: 10.1021/jp907072z – volume: 47 start-page: 2188 year: 2008 ident: BFncomms9975_CR24 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200701812 – volume: 5 start-page: 3426 year: 2014 ident: BFncomms9975_CR26 publication-title: Nat. Commun. doi: 10.1038/ncomms4426 – volume: 343 start-page: 519 year: 2014 ident: BFncomms9975_CR4 publication-title: Science doi: 10.1126/science.1246432 – volume: 319 start-page: 807 year: 2008 ident: BFncomms9975_CR16 publication-title: Science doi: 10.1126/science.1149860 – volume: 19 start-page: 075015 year: 2010 ident: BFncomms9975_CR18 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/19/7/075015 – volume: 6 start-page: 3576 year: 2013 ident: BFncomms9975_CR33 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42571a – volume: 7 start-page: 414 year: 2012 ident: BFncomms9975_CR3 publication-title: Nano Today doi: 10.1016/j.nantod.2012.08.004 – volume: 57 start-page: 850 year: 2010 ident: BFncomms9975_CR7 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2009.2024652 – volume: 1 start-page: 328 year: 2012 ident: BFncomms9975_CR27 publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 19 start-page: 1043 year: 2007 ident: BFncomms9975_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.200600527 – volume: 135 start-page: 1167 year: 2013 ident: BFncomms9975_CR5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3091438 – volume: 122 start-page: 16 year: 2005 ident: BFncomms9975_CR23 publication-title: Sens. Actuators A doi: 10.1016/j.sna.2004.12.032 – volume: 313 start-page: 561 year: 2015 ident: BFncomms9975_CR1 publication-title: J. Am. Med. Assoc. doi: 10.1001/jama.2014.17915 – volume: 4 start-page: 18 year: 2005 ident: BFncomms9975_CR6 publication-title: IEEE Pervas. Comput. doi: 10.1109/MPRV.2005.9 – volume: 14 start-page: 161 year: 2015 ident: BFncomms9975_CR30 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.034 – volume: 20 start-page: 105013 year: 2011 ident: BFncomms9975_CR21 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/20/10/105013 – volume: 147 start-page: 248 year: 2008 ident: BFncomms9975_CR15 publication-title: Sens. Actuators A doi: 10.1016/j.sna.2008.03.008 – volume: 414 start-page: 345 year: 2001 ident: BFncomms9975_CR11 publication-title: Nature doi: 10.1038/35104620 – volume: 17 start-page: R175 year: 2006 ident: BFncomms9975_CR14 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/17/12/R01 – volume: 62 start-page: 641 year: 2015 ident: BFncomms9975_CR31 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2014.2377728 – reference: 18270989 - Angew Chem Int Ed Engl. 2008;47(12):2188-207 – reference: 23484470 - ACS Nano. 2013 Apr 23;7(4):3713-9 – reference: 21700838 - Science. 2011 Jul 15;333(6040):308-12 – reference: 18258914 - Science. 2008 Feb 8;319(5864):807-10 – reference: 25393064 - Nano Lett. 2014 Dec 10;14(12):7031-8 – reference: 25058004 - Nano Lett. 2014 Aug 13;14(8):4280-5 – reference: 24594501 - Nat Commun. 2014 Mar 04;5:3426 – reference: 24407480 - Science. 2014 Jan 31;343(6170):519-22 – reference: 11713541 - Nature. 2001 Nov 15;414(6861):345-52 – reference: 25668256 - JAMA. 2015 Feb 10;313(6):561-2 – reference: 24677389 - Adv Mater. 2014 Jun 18;26(23):3918-25 – reference: 17943126 - Nature. 2007 Oct 18;449(7164):885-9 – reference: 23294028 - J Am Chem Soc. 2013 Jan 30;135(4):1167-76 – reference: 24266595 - ACS Nano. 2013 Dec 23;7(12):11263-71 – reference: 16151012 - Science. 2005 Sep 9;309(5741):1725-8 – reference: 23384278 - Nano Lett. 2013 Mar 13;13(3):1168-72 – reference: 25307065 - Nano Lett. 2014 Nov 12;14(11):6578-83 |
SSID | ssj0000391844 |
Score | 2.6420102 |
Snippet | Human biomechanical energy is characterized by fluctuating amplitudes and variable low frequency, and an effective utilization of such energy cannot be... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8975 |
SubjectTerms | 639/301/1005/1007 Biomechanical Phenomena Electric Power Supplies Electricity Electromagnetic Phenomena Energy sources Energy storage Humanities and Social Sciences Humans Materials Testing multidisciplinary Nanotechnology Running Science Science (multidisciplinary) Thermometers Walking |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-0wEB58ILgRX_daX-Ry3bgI9pGm6UpEFHHhSuHsStskKHjaoz1H8N87kz6OesRtM6RpJ8l8k5l8A3ASKyOsVJoHUuZcCB1zylXk2uYq1egPhNaxfd7JmwdxO4pH3YFb06VV9nui26h1XdIZ-VlARO-umPz55IVT1SiKrnYlNJZhlajLKKUrGSXDGQuxnyshelbSSJ1V2OW4SVNKK_xshxbA5WKO5LdAqbM_15uw0QFHdtFqeguWTLUNa20pyfcdeLtgszbHAoUa82y540DCrlhL1sz0K21srHhnaJ50PWbu5j1d_CU9MeMuATLEsKyZX6pi9cS0c4TVlo3rAjcRNi-d0-zC_fXV_eUN72oq8BKh2JTbROSoA3ShhQl06oe58JX28TNDdPRkZAX6h7ZAOx_bQhSpVfjIJr5OpY2Ejv7ASlVXZg9YWtooLIJUCeULEZUKRXSUYB8aTV4hPTjtf3BWdnzjVPbiOXNx70hlc2V48H-QnbQsGz9KHfZ6yrqV1mTzeeHBv6EZ1wgFPvLK1DOSiQnqIhbz4G-r1uE1CFDIBww9SL4ofBAg_u2vLdXTo-PhFlKFgcT3nvRT49OwFka___voD2AdsVhMmTJBcAgr09eZOUK8My2O3aT-AN3nBcU priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BERIL4k2gICO6METk4TjOWFVUFQNTkbpFSWwLpDZBTYvUf8_ZebSlDIxJLrbjO_s-x-fvAHoBl1QxLmyXscSmVAS2jlW0hUp4JHA94CnD9vnGRu_0dRJMapqcsg6rrCgtzTTdRIc953g1K6MoDPbhQFO2a2sesEH7P0UznXNKGwZSn2-8su1zdoDkbjzkr01R42uGJ3Bcg0TSr5p1CnsyP4PDKm3k6hy--2RZxVOgUCmnyjZ8R1gUqYiZiZjrSYykK4KuSBQzYk7Z60O-WidEmgN_BPEqKdcHqEjxJSt7IIUisyLFCYOs0-SUFzAevowHI7vOn2BnCLsWtgppgv2Ny2UqXRE5XkIdLhz8TA8XdcxXFLtRpejTA5XSNFIcb6nQERFTPhX-JXTyIpfXQKJM-V7qRpxyh1I_4ygi_BDLEOjeUmbBU9PBcVZzi-sUF9PY7HH7PF4rw4LHVvarYtT4U6rb6CmuR1UZu5rsX_tVbsFD-xjHg97kSHJZLLVMoGEt4i4Lriq1ttUgGNHrPc-CcEvhrYDm2t5-kn9-GM5tyrjnMqy315jGRrN2Wn_zP7FbOEL8FejoGNftQmcxX8o7xDiL9N4Y9w_6gQIf priority: 102 providerName: Springer Nature |
Title | A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics |
URI | https://link.springer.com/article/10.1038/ncomms9975 https://www.ncbi.nlm.nih.gov/pubmed/26656252 https://www.proquest.com/docview/1747800178 https://www.proquest.com/docview/1750013399 https://pubmed.ncbi.nlm.nih.gov/PMC4682168 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT-MwEB5B0UpcEK-FAFt5BRcO2c3DcewDWpWKLqoEQjyk3qKkjgVSm0DTIvrvGTtJSylcEimZxI7H9nwTe74BOAl4ShXj0nYZi21KZWDrvYq2VDEXEv0BTxm2z2t2-UC7vaC3AnX-zqoBiy9dO51P6mE0-PP2Mv2HA_6sDBnnfzPUzbAQIgxWYQ0tUqgH6FUF882M7At0ZGjNTrrwiGYDZky7Ad6iaVrCm8vbJj-tnRqT1NmEjQpLklap_C1YSbNt-FFml5zuwGuLTMptFyhUpANlG1okfBUp-ZuJHOm5jiRTghZL5kNigvF1LLBWHUlNXCBBWEuKeZwVwQYquw3JFRnmCc4rZJ5Np9iF-87FffvSrtIs2H1EZ2NbhTRGtaBXTVNXCseLqcOlg5_poe_HfEXRZVQJmv5AJTQRiuMlFTpSMOVT6f-ERpZn6T4Q0Ve-l7iCU-5Q6vc5ikg_xHdItIIJs-C0buCoX1GQ60wYg8gshfs8muvFguOZ7HNJvPGl1FGtp6juO5GrcwJo88st-D27jcNGr4XEWZpPtEyg0S_CMwv2SrXOiqn7gwXhgsJnApqSe_FO9vRoqLkp457LsNyTumt8qNZS7Q--LfoQ1hGZBXrfjOseQWM8mqS_EP2Mkyashr0Qj7zzvwlrrVb3rovn84vrm1u82mbtpvmv0DRD4B1q5w8e |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQvFe-mLeCKcuBgNQ_HcQ4IVUC1pY_TIu0tSmJbReom22a3aH8U_7Ezzibbsohbr8nIcTJjzzfxzDcA-7EywkqleSBlzoXQMadcRa5trlKN8UBoHdvnuRz8FD9G8WgN_nS1MJRW2e2JbqPWdUn_yA8CInp3zeS_TK44dY2i09WuhUZrFidm_htDtubz8TfU78cwPPo-_Drgi64CvEQwMuU2ETnOAoNIYQKd-mEufKV9XZoQQx0ZWYERki3Q08W2EEVqFV6yia9TaSOhIxz2ETxGv-vTgkpGSf9Lh8jWlRAdCWqkDip8g3GTppTFeNftrWDZ1ZTMv85lnbs7egabC5zKDlvDeg5rpnoBT9rOlfOXcHPIZm1KBwo15tJyR7mEQ7GWG5rpa9pHWTFn6A11PWau0J_qjMksmHE1hwwhM2uWNVysnpjWJFlt2bgucM9iy049zSsYPsTHfg3rVV2ZLWBpaaOwCFIllC9EVCoU0VGCY2j0sIX04FP3gbNyQW9OXTYuM3fMHqlsqQwPPvSyk5bU459Su52essXCbrKlGXqw19_GJUnnLHll6hnJxISsEfp58KZVa_8YxEMUcoYeJPcU3gsQ3ff9O9WvC0f7LaQKA4nP3e9M4860Vma__f_Zv4eng-HZaXZ6fH6yAxsIA2NK0gmCXVifXs_MW4Ra0-KdM3AG2QMvqFs5qEIM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAC0aUAwdrk9hJnAOqKsqqpajiUKS9RUlsq0jdZNvsttqf1n_HjPPYlkXceo1HtpOZ8czEM98A7ETKSBsrzYM4zrmUOuKUq8i1zVWqMR4IrUP7PI4Pfsnvk2iyAdd9LQylVfZnojuodV3SP_JRQEDvrpn8yHZpET_3x7uzc04dpOimtW-n0YrIkVleYfjWfDncR15_CsPxt5OvB7zrMMBLdEzm3CYyxx1hQClNoFM_zKWvtK9LE2LYEwsrMVqyBVq9yBaySK3CRzbxdRpbIbXAae_B_UREAalYMkmG3zsEvK6k7AFRhRpV-DbTJk0po_GmCVzza9fTM_-6o3Wmb_wEHnc-K9trhewpbJjqGTxou1gun8PlHlu06R1I1Jgzyx38Ek7FWpxopi_oTGXFkqFl1PWUuaJ_qjkmEWHG1R8ydJ9Zs6rnYvXMtOLJasumdYHnF1t17WlewMldfOyXsFnVlXkNLC2tCIsgVVL5UopSIYkWCc6h0doWsQef-w-clR3UOXXcOMvclbtQ2YoZHnwcaGctwMc_qbZ6PmWdkjfZSiQ9-DAMo3rSnUtemXpBNBF52egGevCqZeuwDPpGFH6GHiS3GD4QEPT37ZHq96mDAJexCoMY193pRePGttZ2_-b_u38PD1GVsh-Hx0dv4RF6hBHl6wTBFmzOLxZmG72uefHOyTeD7I716Q_HZUZC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal+self-charging+system+driven+by+random+biomechanical+energy+for+sustainable+operation+of+mobile+electronics&rft.jtitle=Nature+communications&rft.au=Niu%2C+Simiao&rft.au=Wang%2C+Xiaofeng&rft.au=Yi%2C+Fang&rft.au=Zhou%2C+Yu+Sheng&rft.date=2015-12-11&rft.eissn=2041-1723&rft.volume=6&rft.spage=8975&rft_id=info:doi/10.1038%2Fncomms9975&rft_id=info%3Apmid%2F26656252&rft.externalDocID=26656252 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |