Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis In Vitro

Three-dimensional (3D) printed bone tissue engineering scaffolds have been widely used in research and clinical applications. β-TCP is a biomaterial commonly used in bone tissue engineering to treat bone defects, and its multifunctionality can be achieved by co-doping different metal ions. Magnesium...

Full description

Saved in:
Bibliographic Details
Published inTissue engineering and regenerative medicine Vol. 16; no. 4; p. 415
Main Authors Gu, Yifan, Zhang, Jing, Zhang, Xinzhi, Liang, Guiping, Xu, Tao, Niu, Wei
Format Journal Article
LanguageEnglish
Published Korea (South) 01.08.2019
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Three-dimensional (3D) printed bone tissue engineering scaffolds have been widely used in research and clinical applications. β-TCP is a biomaterial commonly used in bone tissue engineering to treat bone defects, and its multifunctionality can be achieved by co-doping different metal ions. Magnesium doping in biomaterials has been shown to alter physicochemical properties of cells and enhance osteogenesis. A series of Mg-doped TCP scaffolds were manufactured by using cryogenic 3D printing technology and sintering. The characteristics of the porous scaffolds, such as microstructure, chemical composition, mechanical properties, apparent porosity, etc., were examined. To further study the role of magnesium ions in simultaneously inducing osteogenesis and angiogenesis, human bone marrow mesenchymal stem cells (hBMSCs) and human umblical vein endothelial cells (HUVECs) were cultured in scaffold extracts to investigate cell proliferation, viability, and expression of osteogenic and angiogenic genes. The results showed that Mg-doped TCP scaffolds have the advantages of precise design, interconnected porous structure, and similar compressive strength to natural cancellous bone. hBMSCs and HUVECs exhibit high proliferation rate, cell morphology and viability in a certain amount of Mg . In addition, this concentration of magnesium can also increase the expression levels of osteogenic and angiogenic biomarkers. A certain concentration of magnesium ions plays an important role in new bone regeneration and reconstruction. It can be used as a simple and effective method to enhance the osteogenesis and angiogenesis of bioceramic scaffolds, and support the development of biomaterials and bone tissue engineering scaffolds.
AbstractList Three-dimensional (3D) printed bone tissue engineering scaffolds have been widely used in research and clinical applications. β-TCP is a biomaterial commonly used in bone tissue engineering to treat bone defects, and its multifunctionality can be achieved by co-doping different metal ions. Magnesium doping in biomaterials has been shown to alter physicochemical properties of cells and enhance osteogenesis. A series of Mg-doped TCP scaffolds were manufactured by using cryogenic 3D printing technology and sintering. The characteristics of the porous scaffolds, such as microstructure, chemical composition, mechanical properties, apparent porosity, etc., were examined. To further study the role of magnesium ions in simultaneously inducing osteogenesis and angiogenesis, human bone marrow mesenchymal stem cells (hBMSCs) and human umblical vein endothelial cells (HUVECs) were cultured in scaffold extracts to investigate cell proliferation, viability, and expression of osteogenic and angiogenic genes. The results showed that Mg-doped TCP scaffolds have the advantages of precise design, interconnected porous structure, and similar compressive strength to natural cancellous bone. hBMSCs and HUVECs exhibit high proliferation rate, cell morphology and viability in a certain amount of Mg . In addition, this concentration of magnesium can also increase the expression levels of osteogenic and angiogenic biomarkers. A certain concentration of magnesium ions plays an important role in new bone regeneration and reconstruction. It can be used as a simple and effective method to enhance the osteogenesis and angiogenesis of bioceramic scaffolds, and support the development of biomaterials and bone tissue engineering scaffolds.
Author Liang, Guiping
Gu, Yifan
Zhang, Jing
Niu, Wei
Zhang, Xinzhi
Xu, Tao
Author_xml – sequence: 1
  givenname: Yifan
  surname: Gu
  fullname: Gu, Yifan
  organization: 2Orthopedics Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111 Dade Road, Guangzhou, 510120 China
– sequence: 2
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: East China Institute of Digital Medical Engineering, Shangrao, 334000 China
– sequence: 3
  givenname: Xinzhi
  surname: Zhang
  fullname: Zhang, Xinzhi
  organization: East China Institute of Digital Medical Engineering, Shangrao, 334000 China
– sequence: 4
  givenname: Guiping
  surname: Liang
  fullname: Liang, Guiping
  organization: 2Orthopedics Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111 Dade Road, Guangzhou, 510120 China
– sequence: 5
  givenname: Tao
  surname: Xu
  fullname: Xu, Tao
  organization: 6Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055 China
– sequence: 6
  givenname: Wei
  surname: Niu
  fullname: Niu, Wei
  organization: 2Orthopedics Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111 Dade Road, Guangzhou, 510120 China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31413945$$D View this record in MEDLINE/PubMed
BookMark eNo9kE1OwzAQhS0EglK4AAs0FzDYiZM07EooUKlVKxHYVk48DpYau4rdBYfhEhyEM2HEjzR6bzT69J40p-TQOouEXHB2xRkrrj1Pi4JRxkvKoiSUHZBRkvCEZiIvj8lJygVPS5GNyHv9OiBSZXq03jgrt7AejA2oYNnRO7eLy-cHras13MYSqI33e4SZ7YxFjGQHT63U2m2Vv4GZ1tgGD07DUnYWvdn3MHcWKmdbtGGQIXZAnJUP6Dr8RjxIq2AaE_8PcwsvJgzujBxpufV4_utj8nw_q6tHulg9zKvpgrYZmwSqU5GzHKUShdQocy0yJVmreIpM4CRLkLFJyTnjCmWTN1mRsUZGKBdc51gkY3L5k7vbNz2qzW4wvRzeNn9_Sr4ADzdq5A
CitedBy_id crossref_primary_10_1016_j_ceramint_2021_12_335
crossref_primary_10_1039_D0TB01447H
crossref_primary_10_1016_j_actbio_2023_06_001
crossref_primary_10_1016_j_bioactmat_2022_09_014
crossref_primary_10_1016_j_cej_2020_124166
crossref_primary_10_1039_D3BM01146A
crossref_primary_10_1021_acs_iecr_1c03085
crossref_primary_10_1016_j_bioactmat_2022_02_024
crossref_primary_10_1016_j_pmatsci_2020_100686
crossref_primary_10_1039_C9BM01864F
crossref_primary_10_1016_j_jot_2022_09_013
crossref_primary_10_3389_fbioe_2020_620962
crossref_primary_10_1016_j_ijpharm_2022_122248
crossref_primary_10_1093_rb_rbab016
crossref_primary_10_3390_coatings10040356
crossref_primary_10_1039_D0BM01656J
crossref_primary_10_1016_j_bioadv_2022_213023
crossref_primary_10_1016_j_jma_2024_05_028
crossref_primary_10_3390_ma15134702
crossref_primary_10_1016_j_ceramint_2021_05_258
crossref_primary_10_1002_mba2_60
crossref_primary_10_1002_adhm_202300128
crossref_primary_10_1088_1748_605X_abf1a8
crossref_primary_10_3389_fbioe_2022_905511
crossref_primary_10_1002_jbm_a_37465
crossref_primary_10_3390_bioengineering11050508
crossref_primary_10_3389_fchem_2022_1066103
crossref_primary_10_1039_D0BM00566E
crossref_primary_10_1016_j_mtbio_2023_100912
crossref_primary_10_1039_D2TB01684B
crossref_primary_10_1557_s43577_021_00259_1
crossref_primary_10_3390_ijms23031717
crossref_primary_10_1007_s12011_020_02183_y
crossref_primary_10_1016_j_bsecv_2021_11_005
crossref_primary_10_3389_fbioe_2023_1291969
crossref_primary_10_1039_D3MA00109A
crossref_primary_10_3390_pharmaceutics15061700
crossref_primary_10_1093_rb_rbad095
crossref_primary_10_1016_j_jmbbm_2021_104831
crossref_primary_10_1016_j_tice_2023_102279
crossref_primary_10_1021_acsami_4c03024
crossref_primary_10_1039_D0BM01934H
crossref_primary_10_1016_j_ceramint_2023_12_055
crossref_primary_10_1016_j_jma_2022_02_013
crossref_primary_10_1016_j_mtchem_2023_101389
crossref_primary_10_1002_adhm_202300817
crossref_primary_10_1016_j_bioactmat_2023_09_016
crossref_primary_10_2139_ssrn_3967329
crossref_primary_10_3389_fmats_2021_698915
crossref_primary_10_1002_adtp_202200043
crossref_primary_10_1002_jbm_b_35326
crossref_primary_10_1016_j_jma_2021_04_009
crossref_primary_10_1007_s10856_022_06708_w
crossref_primary_10_2147_IJN_S390500
crossref_primary_10_3390_biom9120840
crossref_primary_10_3390_ijms241914764
crossref_primary_10_1007_s42235_023_00409_y
crossref_primary_10_1021_acs_langmuir_3c02227
crossref_primary_10_1007_s40964_023_00505_9
crossref_primary_10_3390_polym15092015
crossref_primary_10_1002_mabi_202200092
crossref_primary_10_1016_j_jconrel_2021_04_003
crossref_primary_10_3390_app11114930
crossref_primary_10_1093_rb_rbab044
crossref_primary_10_1039_D2RA04009C
crossref_primary_10_3390_ma15051971
crossref_primary_10_1016_j_molmed_2021_05_001
crossref_primary_10_1166_jbn_2022_3433
crossref_primary_10_3390_met12122074
crossref_primary_10_1016_j_bioadv_2022_212759
crossref_primary_10_1016_j_engreg_2023_10_001
crossref_primary_10_1016_j_actbio_2022_01_055
crossref_primary_10_3390_polym14142872
crossref_primary_10_3389_fbioe_2021_767256
crossref_primary_10_3390_bioengineering9060255
crossref_primary_10_1002_admi_202300224
crossref_primary_10_1016_j_ceramint_2021_08_181
crossref_primary_10_1007_s44174_023_00151_3
crossref_primary_10_1016_j_cej_2023_143015
crossref_primary_10_1039_C9BM01863H
crossref_primary_10_1088_1748_605X_ac2886
crossref_primary_10_1002_adfm_202010609
crossref_primary_10_1016_j_mser_2024_100801
crossref_primary_10_1093_rb_rbad103
crossref_primary_10_1097_JS9_0000000000001291
crossref_primary_10_3390_nano12050852
crossref_primary_10_1186_s13036_022_00302_y
crossref_primary_10_1002_adhm_202002254
crossref_primary_10_3390_ma15207117
crossref_primary_10_1016_j_bsecv_2021_03_004
crossref_primary_10_1021_acsbiomaterials_2c00368
crossref_primary_10_1088_1748_605X_ac5949
crossref_primary_10_1016_j_msec_2020_111303
crossref_primary_10_3390_jfb13030126
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1007/s13770-019-00192-0
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
EISSN 2212-5469
ExternalDocumentID 31413945
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c508t-f34606ead47afea6f45da0cd13e04e852e00891101deab6b5750ba45d641f6e72
IngestDate Fri Sep 17 20:25:40 EDT 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 3D porous scaffolds
Angiogenesis
Magnesium ions
Ion doping
Osteogenesis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c508t-f34606ead47afea6f45da0cd13e04e852e00891101deab6b5750ba45d641f6e72
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675836
PMID 31413945
ParticipantIDs pubmed_primary_31413945
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
PublicationTitle Tissue engineering and regenerative medicine
PublicationTitleAlternate Tissue Eng Regen Med
PublicationYear 2019
Score 2.5114756
Snippet Three-dimensional (3D) printed bone tissue engineering scaffolds have been widely used in research and clinical applications. β-TCP is a biomaterial commonly...
SourceID pubmed
SourceType Index Database
StartPage 415
SubjectTerms Biocompatible Materials - pharmacology
Bone and Bones - drug effects
Bone and Bones - metabolism
Bone Regeneration - drug effects
Calcium Phosphates - metabolism
Cell Proliferation - drug effects
Cells, Cultured
Compressive Strength - drug effects
Human Umbilical Vein Endothelial Cells - drug effects
Human Umbilical Vein Endothelial Cells - metabolism
Humans
Ions - pharmacology
Magnesium - pharmacology
Mesenchymal Stem Cells - drug effects
Mesenchymal Stem Cells - metabolism
Neovascularization, Physiologic - drug effects
Osteogenesis - drug effects
Porosity - drug effects
Printing, Three-Dimensional
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Title Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis In Vitro
URI https://www.ncbi.nlm.nih.gov/pubmed/31413945
Volume 16
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWcFChyKVJ03zCH5iSw0ELRcm-J6yYO6tQHp_AtECVSEdBIhmFf8i_9iX5Ib_mfDElJZp0WXQBDEIayCHGeZqFmIeRtKCMR5GFGM8EUOiipoiIPJI19Jjln_TQxvQgmZ_zknJ3O43mvd-NELa1X4l12_cu8kv_hKtKQrzpL9h84290UCXiO_MUjchiPf8njpZQ01wX6bXENb7rU9R9yb1LQD_UCTw6Go4OjkM6GU--ornQfH73QbhlCfL1TpeqvuQmOG23iOyZpgXKwXF9549qkBtpATmtiVt5nxEddaFFZ2jrPh3jPjjCuvC_lalm7xm8zt3TmNtHtsjC1r00Q0_a3_uO1URKl2qC42-M-bdWuS5yX1fVl2ZI_lQ35eK2bdBfuJofOq0raTQ5phGEYmp4Ntq1LJ7m5g1DmiGFmU0TvqAe_SZeO-rrdjp5GW7jUdy_GtV5cGcBEAWr4AYv_PLpVsrsd2iE7_USL3bPppEnYsmmb2_Pvkfvtf7bcG2PmzPbJg8Y_gUMLtoekJ6tH5NsdoEEDNGiBBj--a5CBBhlYRoMDMuhA9h4aiEGtoIMYIMTgJ4gB_lyIAUIFXIjBuAIDscfk_ONoNjyhTV8PmqE7sKIqYug2owhDUaBkyhWL89TP8iCSKCGSOJRomKIS9oNcpoIL9Ch8keJFnAWKy374hOxW-DTPCKB_LwSPhVB6W46pQaJr2Mk45iJL_EH-nDy1q3mxsMVbLtp1fvHbkZdkbwPBV-SeQmkhX6PpuRJvDCtvAfIPiWM
link.rule.ids 786
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+Printed+Mg-Doped+%CE%B2-TCP+Bone+Tissue+Engineering+Scaffolds%3A+Effects+of+Magnesium+Ion+Concentration+on+Osteogenesis+and+Angiogenesis+In+Vitro&rft.jtitle=Tissue+engineering+and+regenerative+medicine&rft.au=Gu%2C+Yifan&rft.au=Zhang%2C+Jing&rft.au=Zhang%2C+Xinzhi&rft.au=Liang%2C+Guiping&rft.date=2019-08-01&rft.eissn=2212-5469&rft.volume=16&rft.issue=4&rft.spage=415&rft_id=info:doi/10.1007%2Fs13770-019-00192-0&rft_id=info%3Apmid%2F31413945&rft_id=info%3Apmid%2F31413945&rft.externalDocID=31413945