Leveraging Self-Attention Mechanism for Attitude Estimation in Smartphones

Inertial attitude estimation is a crucial component of many modern systems and applications. Attitude estimation from commercial-grade inertial sensors has been the subject of an abundance of research in recent years due to the proliferation of Inertial Measurement Units (IMUs) in mobile devices, su...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 22; p. 9011
Main Authors Brotchie, James, Shao, Wei, Li, Wenchao, Kealy, Allison
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 21.11.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inertial attitude estimation is a crucial component of many modern systems and applications. Attitude estimation from commercial-grade inertial sensors has been the subject of an abundance of research in recent years due to the proliferation of Inertial Measurement Units (IMUs) in mobile devices, such as the smartphone. Traditional methodologies involve probabilistic, iterative-state estimation; however, these approaches do not generalise well over changing motion dynamics and environmental conditions, as they require context-specific parameter tuning. In this work, we explore novel methods for attitude estimation from low-cost inertial sensors using a self-attention-based neural network, the Attformer. This paper proposes to part ways from the traditional cycle of continuous integration algorithms, and formulate it as an optimisation problem. This approach separates itself by leveraging attention operations to learn the complex patterns and dynamics associated with inertial data, allowing for the linear complexity in the dimension of the feature vector to account for these patterns. Additionally, we look at combining traditional state-of-the-art approaches with our self-attention method. These models were evaluated on entirely unseen sequences, over a range of different activities, users and devices, and compared with a recent alternate deep learning approach, the unscented Kalman filter and the iOS CoreMotion API. The inbuilt iOS had a mean angular distance from the true attitude of 117.31∘, the GRU 21.90∘, the UKF 16.38∘, the Attformer 16.28∘ and, finally, the UKF-Attformer had mean angular distance of 10.86∘. We show that this plug-and-play solution outperforms previous approaches and generalises well across different users, devices and activities.
AbstractList Inertial attitude estimation is a crucial component of many modern systems and applications. Attitude estimation from commercial-grade inertial sensors has been the subject of an abundance of research in recent years due to the proliferation of Inertial Measurement Units (IMUs) in mobile devices, such as the smartphone. Traditional methodologies involve probabilistic, iterative-state estimation; however, these approaches do not generalise well over changing motion dynamics and environmental conditions, as they require context-specific parameter tuning. In this work, we explore novel methods for attitude estimation from low-cost inertial sensors using a self-attention-based neural network, the Attformer. This paper proposes to part ways from the traditional cycle of continuous integration algorithms, and formulate it as an optimisation problem. This approach separates itself by leveraging attention operations to learn the complex patterns and dynamics associated with inertial data, allowing for the linear complexity in the dimension of the feature vector to account for these patterns. Additionally, we look at combining traditional state-of-the-art approaches with our self-attention method. These models were evaluated on entirely unseen sequences, over a range of different activities, users and devices, and compared with a recent alternate deep learning approach, the unscented Kalman filter and the iOS CoreMotion API. The inbuilt iOS had a mean angular distance from the true attitude of 117.31∘, the GRU 21.90∘, the UKF 16.38∘, the Attformer 16.28∘ and, finally, the UKF-Attformer had mean angular distance of 10.86∘. We show that this plug-and-play solution outperforms previous approaches and generalises well across different users, devices and activities.
Inertial attitude estimation is a crucial component of many modern systems and applications. Attitude estimation from commercial-grade inertial sensors has been the subject of an abundance of research in recent years due to the proliferation of Inertial Measurement Units (IMUs) in mobile devices, such as the smartphone. Traditional methodologies involve probabilistic, iterative-state estimation; however, these approaches do not generalise well over changing motion dynamics and environmental conditions, as they require context-specific parameter tuning. In this work, we explore novel methods for attitude estimation from low-cost inertial sensors using a self-attention-based neural network, the Attformer. This paper proposes to part ways from the traditional cycle of continuous integration algorithms, and formulate it as an optimisation problem. This approach separates itself by leveraging attention operations to learn the complex patterns and dynamics associated with inertial data, allowing for the linear complexity in the dimension of the feature vector to account for these patterns. Additionally, we look at combining traditional state-of-the-art approaches with our self-attention method. These models were evaluated on entirely unseen sequences, over a range of different activities, users and devices, and compared with a recent alternate deep learning approach, the unscented Kalman filter and the iOS CoreMotion API. The inbuilt iOS had a mean angular distance from the true attitude of 117.31[sup.∘], the GRU 21.90[sup.∘], the UKF 16.38[sup.∘], the Attformer 16.28[sup.∘] and, finally, the UKF-Attformer had mean angular distance of 10.86[sup.∘]. We show that this plug-and-play solution outperforms previous approaches and generalises well across different users, devices and activities.
Inertial attitude estimation is a crucial component of many modern systems and applications. Attitude estimation from commercial-grade inertial sensors has been the subject of an abundance of research in recent years due to the proliferation of Inertial Measurement Units (IMUs) in mobile devices, such as the smartphone. Traditional methodologies involve probabilistic, iterative-state estimation; however, these approaches do not generalise well over changing motion dynamics and environmental conditions, as they require context-specific parameter tuning. In this work, we explore novel methods for attitude estimation from low-cost inertial sensors using a self-attention-based neural network, the Attformer. This paper proposes to part ways from the traditional cycle of continuous integration algorithms, and formulate it as an optimisation problem. This approach separates itself by leveraging attention operations to learn the complex patterns and dynamics associated with inertial data, allowing for the linear complexity in the dimension of the feature vector to account for these patterns. Additionally, we look at combining traditional state-of-the-art approaches with our self-attention method. These models were evaluated on entirely unseen sequences, over a range of different activities, users and devices, and compared with a recent alternate deep learning approach, the unscented Kalman filter and the iOS CoreMotion API. The inbuilt iOS had a mean angular distance from the true attitude of 117 . 31 ∘ , the GRU 21 . 90 ∘ , the UKF 16 . 38 ∘ , the Attformer 16 . 28 ∘ and, finally, the UKF–Attformer had mean angular distance of 10 . 86 ∘ . We show that this plug-and-play solution outperforms previous approaches and generalises well across different users, devices and activities.
Audience Academic
Author Shao, Wei
Li, Wenchao
Brotchie, James
Kealy, Allison
AuthorAffiliation 2 School of Electrical and Computer Engineering, UC Davis, Davis, CA 95616, USA
1 School of Science, RMIT, Melbourne, VIC 3000, Australia
3 Victorian Department of Environment, Land, Water and Planning, Melbourne, VIC 3000, Australia
AuthorAffiliation_xml – name: 1 School of Science, RMIT, Melbourne, VIC 3000, Australia
– name: 3 Victorian Department of Environment, Land, Water and Planning, Melbourne, VIC 3000, Australia
– name: 2 School of Electrical and Computer Engineering, UC Davis, Davis, CA 95616, USA
Author_xml – sequence: 1
  givenname: James
  orcidid: 0000-0001-7912-8741
  surname: Brotchie
  fullname: Brotchie, James
  organization: School of Science, RMIT, Melbourne, VIC 3000, Australia
– sequence: 2
  givenname: Wei
  surname: Shao
  fullname: Shao, Wei
  organization: School of Electrical and Computer Engineering, UC Davis, Davis, CA 95616, USA
– sequence: 3
  givenname: Wenchao
  orcidid: 0000-0001-8926-5539
  surname: Li
  fullname: Li, Wenchao
  organization: School of Science, RMIT, Melbourne, VIC 3000, Australia
– sequence: 4
  givenname: Allison
  surname: Kealy
  fullname: Kealy, Allison
  organization: Victorian Department of Environment, Land, Water and Planning, Melbourne, VIC 3000, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36433607$$D View this record in MEDLINE/PubMed
BookMark eNpdUk1v1DAQjVAR_YADfwBF4tIeUia28-EL0qpqoWgRh8LZcuxJ1qvEXuykEv-eabesWuyDR-M3b94bzWl25IPHLHtfwiXnEj4lRkdCWb7KTkrBRNEyBkfP4uPsNKUtAOOct2-yY14LzmtoTrJva7zHqAfnh_wOx75YzTP62QWff0ez0d6lKe9DzCnv5sVifp1mN-lHhPP53aTjvNuQnvQ2e93rMeG7p_cs-3Vz_fPqa7H-8eX2arUuTAXtXKAVbW37SqBuoEFAW-q2YxwagVjVpqtkCbYF1GUjuq5iPUBftaiRImkrfpbd7nlt0Fu1i6Qm_lFBO_WYCHFQpMmZEZVpuBBUzwySY607aVsBtTa67IwWLXF93nPtlm5Ca8h61OML0pc_3m3UEO6VrKXkjSCC8yeCGH4vmGY1uWRwHLXHsCTFGgEVNC1_6PXxP-g2LNHTqAjFpahqyWpCXe5RgyYDzveB-hq6FidnaM69o_yqEXXFBYCkgot9gYkhpYj9QX0J6mE91GE9CPvhud0D8t8-8L_mFLac
CitedBy_id crossref_primary_10_1016_j_measurement_2023_113105
crossref_primary_10_3390_s23063217
Cites_doi 10.1109/TAC.2008.923738
10.1109/MFI.2010.5604460
10.1109/ROBOT.2004.1308895
10.1109/ISSNIP.2014.6827613
10.1016/j.heliyon.2018.e00938
10.1109/ICASSP.2018.8462497
10.1007/s10851-009-0161-2
10.1007/978-3-030-63846-7_47
10.2514/3.56190
10.2514/1.17951
10.1109/41.982256
10.1109/ACCESS.2021.3135012
10.1609/aaai.v32i1.12102
10.1109/LRA.2018.2792142
10.1109/LRA.2019.2959507
10.1609/aaai.v35i7.16763
10.3390/s21144650
10.1109/TII.2022.3158935
10.1155/2014/540235
10.2514/3.55779
10.3390/s90402586
10.2514/1.22452
10.23919/FUSION45008.2020.9190634
10.3390/ai2030028
10.3390/s19102372
10.1109/TVT.2021.3101515
10.1016/j.inffus.2020.10.018
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22229011
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c7344f002ce643aab9d8406aca1bca48
A746534009
10_3390_s22229011
36433607
Genre Journal Article
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GroupedDBID ---
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BPHCQ
BVXVI
CCPQU
CGR
CS3
CUY
CVF
D1I
DU5
E3Z
EBD
ECM
EIF
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
ITC
KB.
KQ8
L6V
M1P
M48
M7S
MODMG
M~E
NPM
OK1
P2P
P62
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
AAYXX
CITATION
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c508t-ed486df54ea707e0ed1a8b23074ee56cb5910d80ea174bb52f00f58eae2f09d53
IEDL.DBID RPM
ISSN 1424-8220
IngestDate Tue Oct 22 15:10:15 EDT 2024
Tue Sep 17 21:31:44 EDT 2024
Wed Dec 04 02:07:44 EST 2024
Fri Nov 29 11:48:32 EST 2024
Tue Nov 12 23:17:33 EST 2024
Fri Dec 06 08:42:23 EST 2024
Sat Sep 28 08:21:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords inertial measurement unit
deep learning
self-attention
smartphone
attitude estimation
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-ed486df54ea707e0ed1a8b23074ee56cb5910d80ea174bb52f00f58eae2f09d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8926-5539
0000-0001-7912-8741
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699374/
PMID 36433607
PQID 2739456926
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c7344f002ce643aab9d8406aca1bca48
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9699374
proquest_miscellaneous_2740507838
proquest_journals_2739456926
gale_infotracacademiconefile_A746534009
crossref_primary_10_3390_s22229011
pubmed_primary_36433607
PublicationCentury 2000
PublicationDate 20221121
PublicationDateYYYYMMDD 2022-11-21
PublicationDate_xml – month: 11
  year: 2022
  text: 20221121
  day: 21
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lefferts (ref_2) 1982; 5
Liu (ref_3) 2014; 2014
Armesto (ref_37) 2021; 70
Abiodun (ref_11) 2018; 4
Ruegamer (ref_1) 2015; 3
ref_14
ref_36
ref_13
ref_35
Farrenkopf (ref_26) 1978; 1
Esfahani (ref_21) 2019; 5
ref_33
ref_10
ref_32
ref_31
Fathian (ref_29) 2018; 3
ref_30
Chiang (ref_18) 2009; 9
Zweiri (ref_20) 2019; 69
ref_19
Mahony (ref_27) 2008; 53
ref_39
ref_16
ref_38
ref_15
Shi (ref_34) 2002; 49
ref_25
ref_23
ref_22
ref_42
ref_40
Brossard (ref_17) 2020; 5
Nazarahari (ref_28) 2021; 68
Brotchie (ref_6) 2021; 9
Oshman (ref_8) 2006; 29
Weber (ref_24) 2021; 2
ref_9
Pazouki (ref_12) 2021; 9
ref_5
ref_4
Crassidis (ref_7) 2007; 30
Huynh (ref_41) 2009; 35
References_xml – ident: ref_9
– ident: ref_30
– volume: 9
  start-page: 1
  year: 2021
  ident: ref_12
  article-title: A transformer self-attention model for time series forecasting
  publication-title: J. Electr. Comput. Eng. Innov. (JECEI)
  contributor:
    fullname: Pazouki
– volume: 53
  start-page: 1203
  year: 2008
  ident: ref_27
  article-title: Nonlinear complementary filters on the special orthogonal group
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.923738
  contributor:
    fullname: Mahony
– ident: ref_5
  doi: 10.1109/MFI.2010.5604460
– ident: ref_40
  doi: 10.1109/ROBOT.2004.1308895
– ident: ref_4
  doi: 10.1109/ISSNIP.2014.6827613
– volume: 4
  start-page: e00938
  year: 2018
  ident: ref_11
  article-title: State-of-the-art in artificial neural network applications: A survey
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00938
  contributor:
    fullname: Abiodun
– ident: ref_15
  doi: 10.1109/ICASSP.2018.8462497
– volume: 35
  start-page: 155
  year: 2009
  ident: ref_41
  article-title: Metrics for 3D rotations: Comparison and analysis
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-009-0161-2
  contributor:
    fullname: Huynh
– volume: 3
  start-page: 17
  year: 2015
  ident: ref_1
  article-title: Jamming and spoofing of gnss signals—An underestimated risk?!
  publication-title: Proc. Wisdom Ages Challenges Mod. World
  contributor:
    fullname: Ruegamer
– ident: ref_16
– ident: ref_19
  doi: 10.1007/978-3-030-63846-7_47
– ident: ref_39
– volume: 5
  start-page: 417
  year: 1982
  ident: ref_2
  article-title: Kalman filtering for spacecraft attitude estimation
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/3.56190
  contributor:
    fullname: Lefferts
– volume: 29
  start-page: 879
  year: 2006
  ident: ref_8
  article-title: Attitude estimation from vector observations using a genetic-algorithm-embedded quaternion particle filter
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.17951
  contributor:
    fullname: Oshman
– volume: 49
  start-page: 124
  year: 2002
  ident: ref_34
  article-title: Speed estimation of an induction motor drive using an optimized extended Kalman filter
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/41.982256
  contributor:
    fullname: Shi
– ident: ref_14
– volume: 9
  start-page: 168806
  year: 2021
  ident: ref_6
  article-title: Evaluating Tracking Rotations using Maximal Entropy Distributions for Smartphone Applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3135012
  contributor:
    fullname: Brotchie
– ident: ref_42
– ident: ref_35
– ident: ref_22
  doi: 10.1609/aaai.v32i1.12102
– volume: 3
  start-page: 857
  year: 2018
  ident: ref_29
  article-title: QuEst: A Quaternion-Based Approach for Camera Motion Estimation From Minimal Feature Points
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2792142
  contributor:
    fullname: Fathian
– volume: 5
  start-page: 399
  year: 2019
  ident: ref_21
  article-title: OriNet: Robust 3-D orientation estimation with a single particular IMU
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2959507
  contributor:
    fullname: Esfahani
– volume: 69
  start-page: 24
  year: 2019
  ident: ref_20
  article-title: Deep-learning-based neural network training for state estimation enhancement: Application to attitude estimation
  publication-title: IEEE Trans. Instrum. Meas.
  contributor:
    fullname: Zweiri
– ident: ref_23
  doi: 10.1609/aaai.v35i7.16763
– ident: ref_25
– ident: ref_31
– ident: ref_36
  doi: 10.3390/s21144650
– ident: ref_38
  doi: 10.1109/TII.2022.3158935
– volume: 2014
  start-page: 540235
  year: 2014
  ident: ref_3
  article-title: An efficient nonlinear filter for spacecraft attitude estimation
  publication-title: Int. J. Aerosp. Eng.
  doi: 10.1155/2014/540235
  contributor:
    fullname: Liu
– ident: ref_10
– volume: 1
  start-page: 282
  year: 1978
  ident: ref_26
  article-title: Analytic steady-state accuracy solutions for two common spacecraft attitude estimators
  publication-title: J. Guid. Control
  doi: 10.2514/3.55779
  contributor:
    fullname: Farrenkopf
– volume: 9
  start-page: 2586
  year: 2009
  ident: ref_18
  article-title: An artificial neural network embedded position and orientation determination algorithm for low cost MEMS INS/GPS integrated sensors
  publication-title: Sensors
  doi: 10.3390/s90402586
  contributor:
    fullname: Chiang
– ident: ref_13
– volume: 5
  start-page: 4796
  year: 2020
  ident: ref_17
  article-title: Denoising imu gyroscopes with deep learning for open-loop attitude estimation
  publication-title: IEEE Robot. Autom. Lett.
  contributor:
    fullname: Brossard
– volume: 30
  start-page: 12
  year: 2007
  ident: ref_7
  article-title: Survey of nonlinear attitude estimation methods
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.22452
  contributor:
    fullname: Crassidis
– ident: ref_32
  doi: 10.23919/FUSION45008.2020.9190634
– volume: 2
  start-page: 444
  year: 2021
  ident: ref_24
  article-title: RIANN–A Robust Neural Network Outperforms Attitude Estimation Filters
  publication-title: AI
  doi: 10.3390/ai2030028
  contributor:
    fullname: Weber
– ident: ref_33
  doi: 10.3390/s19102372
– volume: 70
  start-page: 8617
  year: 2021
  ident: ref_37
  article-title: Asynchronous Sensor Fusion of GPS, IMU and CAN-Based Odometry for Heavy-Duty Vehicles
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3101515
  contributor:
    fullname: Armesto
– volume: 68
  start-page: 67
  year: 2021
  ident: ref_28
  article-title: 40 years of sensor fusion for orientation tracking via magnetic and inertial measurement units: Methods, lessons learned, and future challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.10.018
  contributor:
    fullname: Nazarahari
SSID ssj0023338
Score 2.4562187
Snippet Inertial attitude estimation is a crucial component of many modern systems and applications. Attitude estimation from commercial-grade inertial sensors has...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 9011
SubjectTerms Accelerometry
Algorithms
attitude estimation
Attitudes
Augmented Reality
Bias
Computational linguistics
deep learning
inertial measurement unit
Inertial navigation
Inertial navigation (Aeronautics)
Inertial platforms
Kalman filters
Language processing
Microelectromechanical systems
Natural language interfaces
Neural networks
self-attention
Sensors
Smart phones
Smartphone
Smartphones
State estimation
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_i2_oiiuCp2KZJ2hxXUUTUiwreQpJOcUGruN3_70zbXbZ48OKllCS0k28yyQyZfGHszHjltFMqDqpSsfRCxz7HB8hKCK8LEULL9vmob1_k3at6Xbjqi3LCOnrgDriLkGdSVmi3AXDxdM6bEmMS7YJLPTFyt7NvImbBVB9qZRh5dTxCGQb1FxNB11YnaTpYfVqS_t9T8cJaNMyTXFh4btbZWu8x8lEn6QZbgnqTrS7wCG6xu3vAEdneN8Sf4L2KR03TpTHyB6CjvePJB0fvlGP5mMgs-TVadndokY9r_vSBOFCSOky22cvN9fPVbdxfkoDoJkUTQykLXVZKgsuTHBIoU1d4Su-WAEoHr9AhKIsEHMYe3iuBWFaqAAf4ZkqV7bDlGr-_x7hTlYESMlPKILVwjqhhdO5ACoQ9zSN2OgPPfnVcGBZjCELYzhGO2CXBOm9A9NVtASrV9kq1fyk1YuekFEtGhsgH158VQDmJrsqOcqKFw-nHROxwpjfbW9_Eoktm0DE0QkfsZF6NdkObIa6Gzym1QVeV9jDxZ7udmucyZyhUphPscD4YAINODWvq8VvLzW00OXxy_z9QOGArgg5bpGks0kO23HxP4QhdoMYft6P9B3IOBtM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDLdgXOCA-KYwUEBInKq1aZK2J_RAe0wTcBmTdovy4cKTWN9Yu_8fu-0rr0LiUlVtlLqOHduJ8zPAu9prZ5zWadCNTpWXJvUlXVA1UnpTyRAGtM9v5uRcnV7oi2nBrZvSKndz4jBRx23gNfIjMrM1Gftamg9Xv1OuGsW7q1MJjdtwJ5el4ZS-av15DrgKir9GNKGCQvujTnLx6izPFzZogOr_d0Les0jLbMk987N-APcnv1GsxoF-CLewfQT39tAEH8PpFyS5HKoOiTP81aSrvh-TGcVX5AO-m-5SkI8q6PmGIS3FMen3eHRRbFpxdklixKnq2D2B8_Xx908n6VQqgXicVX2KUVUmNlqhK7MSM4y5qzwneStEbYLX5BbEKkNHEYj3WjZZ1ugKHdJdHXXxFA5a6v85CKebGiMWdVRBGekcA8SY0qGSzlNwl8DbHfPs1YiIYSmSYA7bmcMJfGS2zg0YxHp4sL3-YSedsKEslCJCZEDyixz1HincNC643DPYegLveVAsqxpxPrjpxADRyaBVdlUyOBxNQnUCh7txs5MOdvavxCTwZn5N2sNbIq7F7Q23IYeVdzLpY8_GYZ5pLoiowmT0w-VCABY_tXzTbn4OCN21YbdPvfg_WS_hruTDFHmeyvwQDvrrG3xFLk7vXw9y_AeXMf2x
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1CekkPod9xmxS1FHpyYsuSbB9K2ZSEEJJe0oXchCSPm4XEaXcdaP99Z2yvWdMeezHGErI0Gklv0MwbgA-l1844reOgax0rL03sc3qgqqX0ppAhdGyfX83ZXJ1f6-stWOfYHAS4-qdpx_mk5svbw18_f3-mBf-JLU4y2Y9WkpNSJxzh-0jSgcieXZdqvEyQGZlhPanQtPrkKOoY-__elzcOpqnT5MYpdPoEdgf4KGb9fD-FLWyeweMNUsHncH6BpJ5d8iFxhbd1PGvb3qdRXCLH-S5Wd4KgqqDvC2a2FCe0zPsIRrFoxNUdaRN7rOPqBcxPT759OYuHjAkk6qRoY6xUYapaK3R5kmOCVeoKz77eClGb4DWhg6pI0JEh4r2WdZLUukCH9FZWOnsJ2w21vwfC6brECrOyUkEZ6RzzxJjcoZLOk40Xwfu18OyPnhjDkkHBErajhCM4ZrGOFZjLuvtwv_xuh6VhQ54pRR2RAQkeOWq9IqvTuOBSz5zrEXzkSbGsAyT54IbAAeonc1fZWc4ccbQXlRHsr-fNrjXJEj4rCSWW0kTwbiymRcQ3I67B-weuQ7iVLzTpZ6_6aR77nFGnMpPQgPOJAkwGNS1pFjcdUXdpGP2p1_9DCm9gR3LkRZrGMt2H7Xb5gAeEh1r_ttP2P4QPDGc
  priority: 102
  providerName: Scholars Portal
Title Leveraging Self-Attention Mechanism for Attitude Estimation in Smartphones
URI https://www.ncbi.nlm.nih.gov/pubmed/36433607
https://www.proquest.com/docview/2739456926
https://search.proquest.com/docview/2740507838
https://pubmed.ncbi.nlm.nih.gov/PMC9699374
https://doaj.org/article/c7344f002ce643aab9d8406aca1bca48
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5wwDLf68bI9TOs-2boTmybtiR6EJMDjtbpbVfWqal2le0NJMBtSj1Y9-v_P5uN0aG99iVAI4Dg2tsH-BeB7ZpXRRqnAqVIF0god2IQalKUQVqfCuRbt80qf38qLlVrtgRpqYdqkfWerk_pufVJXf9vcyoe1mw55YtPr5Vmm2arK6T7sk_kdQvQ-yoop6OoghGKK56cbwTtWh1E0MjwtPv__b-EdMzROkdyxOYvX8Kp3Fv1ZR9QR7GH9Bl7uQAi-hYtLJGFstxryb_CuDGZN02Uw-kvkqt5qs_bJMfWpv2IcS39OSt3VK_pV7d-sacqcn46bd3C7mP8-Ow_6_RGIsWHaBFjIVBelkmiSMMEQi8ikljO7JaLSziryBYo0RENhh7VKlGFYqhQN0lFWqPg9HNR0_4_gG1VmWGCcFdJJLYxhVBidGJTCWIroPPg2MC9_6GAwcgofmMP5lsMenDJbtwMYubrtuH_8k_frl7sklpIIEQ7JGTJ094JiTG2ciSwjrHvwgxclZ_0izjvTlwkQnYxUlc8SRoSjN0_mwfGwbnmveJucvLGMfMJMaA--bk-TyvB_EFPj_ROPIS-Vf1_Swz50y7ylOSaiYh3ShJORAIwmNT5DUtrCcvdS-enZV36GF4KLK6IoENExHDSPT_iFXJ7GTkjQVwm16eLnBA5P51fXvybt5wNqlzKdtCrwD0TLCkU
link.rule.ids 230,314,727,780,784,864,885,2102,2221,12056,12765,21388,24318,27924,27925,31719,31720,33373,33374,33744,33745,43310,43600,43805,53791,53793,73745,74035,74302
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLfg9gA8ID5HYUBBSDxVa9MkbZ_QDd10jNsJsU3aW5SkLpzEemPt_n_stlfuhMRLVbVR6jp2bCfOzwAfCqestkpFXlUqkk7oyGV0QVkJ4XQuvO_QPpd6fiFPLtXlsODWDGmVmzmxm6jLtec18kMyswUZ-0LoT9e_I64axburQwmNu7DHyOlqAntHs-W372PIlVIE1uMJpRTcHzaCy1fHSbJjhTqw_n-n5C2btJsvuWWAjh_Bw8FzDKf9UD-GO1g_gQdbeIJP4WSBJJld3aHwDH9V0bRt-3TG8BT5iO-quQrJSw3p-YpBLcMZaXh_eDFc1eHZFQkSJ6tj8wwujmfnn-fRUCyBuBznbYSlzHVZKYk2izOMsUxs7jjNWyIq7Z0ix6DMY7QUgzinRBXHlcrRIt0VpUqfw6Sm_l9AaFVVYIlpUUovtbCWIWJ0ZlEK6yi8C-D9hnnmusfEMBRLMIfNyOEAjpitYwOGse4erG9-mEErjM9SKYkQ4ZE8I0u9lxRwautt4hhuPYCPPCiGlY047-1wZoDoZNgqM80YHo6moSKAg824mUELG_NXZgJ4N74m_eFNEVvj-pbbkMvKe5n0sf1-mEeaUyIq1TH9cLYjADs_tfumXv3sMLoLzY6ffPl_st7Cvfn56cIsviy_voL7go9WJEkkkgOYtDe3-Jocnta9GaT6D-eTAhE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI_gJiF4QHyOwgYFIfFUXZsmafuEbtudxhiniTFpb1GSunAS6421-_-x21y5CmkvVZVWqePYsd04PzP2sbDSKCNl5GQlI2G5imyGFxAV51bl3LkO7XOpji_EyaW89PlPjU-r3KyJ3UJdrh39I5-imS3Q2BdcTSufFnF2tPh8_SeiClK00-rLadxnO2gVYz5hOwfz5dn3IfxKMRrrsYVSDPSnDadS1nGSjCxSB9z___K8ZZ_GuZNbxmjxhD32XmQ466f9KbsH9TP2aAtb8Dk7OQWU0q4GUXgOv6to1rZ9amP4Dei476q5CtFjDbF9RQCX4Ry1vT_IGK7q8PwKhYoS16F5wS4W8x-Hx5EvnIAcj_M2glLkqqykAJPFGcRQJia3lPItAKRyVqKTUOYxGIxHrJW8iuNK5mAA74pSpi_ZpMb-X7HQyKqAEtKiFE4obgzBxajMgODGYqgXsA8b5unrHh9DY1xBHNYDhwN2QGwdXiBI665hffNTew3RLkuFQEK4A_SSDPZeYvCpjDOJJej1gH2iSdGkeMh5Z_z5AaSTIKz0LCOoOFySioDtbeZNe41s9D_5Cdj74THqEm2QmBrWt_QOuq-0r4kf2-2neaA5RaJSFeOAs5EAjAY1flKvfnV43YUiJ1C8vpusd-wBCrQ-_bL8-oY95HTKIkkinuyxSXtzC_vo-7T2rRfqv8FhBj4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+Self-Attention+Mechanism+for+Attitude+Estimation+in+Smartphones&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=James+Brotchie&rft.au=Wei+Shao&rft.au=Wenchao+Li&rft.au=Allison+Kealy&rft.date=2022-11-21&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=22&rft.spage=9011&rft_id=info:doi/10.3390%2Fs22229011&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c7344f002ce643aab9d8406aca1bca48
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon