An Imbalanced Fault Diagnosis Method Based on TFFO and CNN for Rotating Machinery

Deep learning-based fault diagnosis usually requires a rich supply of data, but fault samples are scarce in practice, posing a considerable challenge for existing diagnosis approaches to achieve highly accurate fault detection in real applications. This paper proposes an imbalanced fault diagnosis o...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 22; p. 8749
Main Authors Zhang, Long, Liu, Yangyuan, Zhou, Jianmin, Luo, Muxu, Pu, Shengxin, Yang, Xiaotong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 12.11.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning-based fault diagnosis usually requires a rich supply of data, but fault samples are scarce in practice, posing a considerable challenge for existing diagnosis approaches to achieve highly accurate fault detection in real applications. This paper proposes an imbalanced fault diagnosis of rotatory machinery that combines time-frequency feature oversampling (TFFO) with a convolutional neural network (CNN). First, the sliding segmentation sampling method is employed to primarily increase the number of fault samples in the form of one-dimensional signals. Immediately after, the signals are converted into two-dimensional time-frequency feature maps by continuous wavelet transform (CWT). Subsequently, the minority samples are expanded again using the synthetic minority oversampling technique (SMOTE) to realize TFFO. After such two-fold data expansion, a balanced data set is obtained and imported to an improved 2dCNN based on the LeNet-5 to implement fault diagnosis. In order to verify the proposed method, two experiments involving single and compound faults are conducted on locomotive wheel-set bearings and a gearbox, resulting in several datasets with different imbalanced degrees and various signal-to-noise ratios. The results demonstrate the advantages of the proposed method in terms of classification accuracy and stability as well as noise robustness in imbalanced fault diagnosis, and the fault classification accuracy is over 97%.
AbstractList Deep learning-based fault diagnosis usually requires a rich supply of data, but fault samples are scarce in practice, posing a considerable challenge for existing diagnosis approaches to achieve highly accurate fault detection in real applications. This paper proposes an imbalanced fault diagnosis of rotatory machinery that combines time-frequency feature oversampling (TFFO) with a convolutional neural network (CNN). First, the sliding segmentation sampling method is employed to primarily increase the number of fault samples in the form of one-dimensional signals. Immediately after, the signals are converted into two-dimensional time-frequency feature maps by continuous wavelet transform (CWT). Subsequently, the minority samples are expanded again using the synthetic minority oversampling technique (SMOTE) to realize TFFO. After such two-fold data expansion, a balanced data set is obtained and imported to an improved 2dCNN based on the LeNet-5 to implement fault diagnosis. In order to verify the proposed method, two experiments involving single and compound faults are conducted on locomotive wheel-set bearings and a gearbox, resulting in several datasets with different imbalanced degrees and various signal-to-noise ratios. The results demonstrate the advantages of the proposed method in terms of classification accuracy and stability as well as noise robustness in imbalanced fault diagnosis, and the fault classification accuracy is over 97%.
Deep learning-based fault diagnosis usually requires a rich supply of data, but fault samples are scarce in practice, posing a considerable challenge for existing diagnosis approaches to achieve highly accurate fault detection in real applications. This paper proposes an imbalanced fault diagnosis of rotatory machinery that combines time-frequency feature oversampling (TFFO) with a convolutional neural network (CNN). First, the sliding segmentation sampling method is employed to primarily increase the number of fault samples in the form of one-dimensional signals. Immediately after, the signals are converted into two-dimensional time-frequency feature maps by continuous wavelet transform (CWT). Subsequently, the minority samples are expanded again using the synthetic minority oversampling technique (SMOTE) to realize TFFO. After such two-fold data expansion, a balanced data set is obtained and imported to an improved 2dCNN based on the LeNet-5 to implement fault diagnosis. In order to verify the proposed method, two experiments involving single and compound faults are conducted on locomotive wheel-set bearings and a gearbox, resulting in several datasets with different imbalanced degrees and various signal-to-noise ratios. The results demonstrate the advantages of the proposed method in terms of classification accuracy and stability as well as noise robustness in imbalanced fault diagnosis, and the fault classification accuracy is over 97%.Deep learning-based fault diagnosis usually requires a rich supply of data, but fault samples are scarce in practice, posing a considerable challenge for existing diagnosis approaches to achieve highly accurate fault detection in real applications. This paper proposes an imbalanced fault diagnosis of rotatory machinery that combines time-frequency feature oversampling (TFFO) with a convolutional neural network (CNN). First, the sliding segmentation sampling method is employed to primarily increase the number of fault samples in the form of one-dimensional signals. Immediately after, the signals are converted into two-dimensional time-frequency feature maps by continuous wavelet transform (CWT). Subsequently, the minority samples are expanded again using the synthetic minority oversampling technique (SMOTE) to realize TFFO. After such two-fold data expansion, a balanced data set is obtained and imported to an improved 2dCNN based on the LeNet-5 to implement fault diagnosis. In order to verify the proposed method, two experiments involving single and compound faults are conducted on locomotive wheel-set bearings and a gearbox, resulting in several datasets with different imbalanced degrees and various signal-to-noise ratios. The results demonstrate the advantages of the proposed method in terms of classification accuracy and stability as well as noise robustness in imbalanced fault diagnosis, and the fault classification accuracy is over 97%.
Audience Academic
Author Liu, Yangyuan
Luo, Muxu
Zhou, Jianmin
Pu, Shengxin
Yang, Xiaotong
Zhang, Long
AuthorAffiliation School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
AuthorAffiliation_xml – name: School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China
Author_xml – sequence: 1
  givenname: Long
  surname: Zhang
  fullname: Zhang, Long
– sequence: 2
  givenname: Yangyuan
  orcidid: 0000-0001-7066-6738
  surname: Liu
  fullname: Liu, Yangyuan
– sequence: 3
  givenname: Jianmin
  orcidid: 0000-0002-4749-8761
  surname: Zhou
  fullname: Zhou, Jianmin
– sequence: 4
  givenname: Muxu
  surname: Luo
  fullname: Luo, Muxu
– sequence: 5
  givenname: Shengxin
  surname: Pu
  fullname: Pu, Shengxin
– sequence: 6
  givenname: Xiaotong
  orcidid: 0000-0002-4912-5360
  surname: Yang
  fullname: Yang, Xiaotong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36433352$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAQxyNURB9w4AsgS1zoYVvHdvy4IC0LCyv1IVA5WxPHyXqVtVs7Qeq3r8OWVVthH2zN_OY_nhkfFwc-eFsU70t8RqnC54nkJQVTr4qjkhE2k4Tggyf3w-I4pQ3GhFIq3xSHlLN8q8hR8XPu0WpbQw_e2AYtYewH9NVB50NyCV3aYR0a9AVSdgaPbpbLawS-QYurK9SGiH6FAQbnO3QJZu28jfdvi9ct9Mm-ezxPit_LbzeLH7OL6--rxfxiZiosh5kF2TTUGAVGlQJKVWUDrTnnRGBCQGBDpRDACMemNUIxsFhURIGVUgCmJ8Vqp9sE2Ojb6LYQ73UAp_8aQuw0xMGZ3uq6lZhxCQCMsSwCWNZV3eS0Da9E3Watzzut27He2sZYP0Ton4k-93i31l34oxVXhFGVBT49CsRwN9o06K1Lxva5rTaMSRPBcJUzq-ndH1-gmzBGn1uVKaoYJ1xO1NmO6iAX4Hwbcl6Td2O3zuTxty7b54LxilKBZQ748LSE_dv_jToDpzvAxJBStO0eKbGevpHef6PMnr9gjZvmHKbqXf-fiAdaEcXE
CitedBy_id crossref_primary_10_1177_10775463241288058
crossref_primary_10_3390_app14010219
crossref_primary_10_3390_s23073493
crossref_primary_10_1007_s11042_024_19382_7
crossref_primary_10_3390_s23229075
crossref_primary_10_3390_app122412762
crossref_primary_10_3390_s23094485
Cites_doi 10.1016/j.ymssp.2017.06.012
10.1016/j.knosys.2019.07.008
10.1016/j.compbiomed.2004.05.001
10.1109/TMECH.2021.3058061
10.1109/TIE.2017.2774777
10.1061/(ASCE)0733-9429(2007)133:11(1274)
10.1016/j.aei.2022.101552
10.1016/j.patcog.2006.05.036
10.1109/MSP.2017.2765202
10.3390/make3010011
10.1145/3065386
10.1016/j.isatra.2020.08.010
10.1016/j.jsv.2016.05.027
10.3390/s21175825
10.1109/5.726791
10.1016/j.ymssp.2017.06.022
10.1016/j.isatra.2021.03.042
10.1007/s42417-021-00379-7
10.1016/0165-1684(93)90085-O
10.3390/s19204542
10.1109/SLT48900.2021.9383526
10.1109/TR.2013.2241219
10.1007/s11768-014-0184-0
10.1088/1361-6501/ab55f8
10.3390/app8071102
10.1109/TSTE.2018.2853990
10.1016/j.ress.2021.107805
10.1016/j.patcog.2017.07.024
10.1016/j.asoc.2010.08.011
10.1016/j.measurement.2020.108389
10.1109/CVPR.2016.90
10.1177/0954406219834048
10.1016/j.ymssp.2018.03.025
10.1016/j.measurement.2020.107768
10.1007/11538059_91
10.1109/ACCESS.2018.2890693
10.1016/j.compind.2018.12.013
10.1007/s40032-014-0129-x
10.1016/j.measurement.2020.107880
10.1016/j.measurement.2021.109165
10.1007/978-3-642-01307-2_43
10.1007/s00202-022-01657-7
10.3390/s20041233
10.1155/2020/5357146
10.1007/s10462-020-09838-1
10.1007/s10845-017-1351-1
10.1016/j.compind.2020.103378
10.1109/JSEN.2019.2949057
10.1016/j.compind.2019.01.001
10.1007/978-981-19-3716-3_23
10.3390/app12147032
10.1109/19.850388
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22228749
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_bf80468aaa444075a08b5bd17ad657bf
PMC9692439
A746533708
36433352
10_3390_s22228749
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: Natural Science Foundation of Jiangxi Province
  grantid: No. 20212BAB204007
– fundername: Jiangxi Province Graduate Student Innovation Project
  grantid: No. YC2021-S422
– fundername: National Science Foundation of China
  grantid: No. 51865010
– fundername: Science Research Project of the Education Department of Jiangxi Province
  grantid: No. GJJ200616
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c508t-ea8dd3cc9ac917a195a8d3b66627022a70c3877a4260cfc794ae07529ae887a03
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:32 EDT 2025
Thu Aug 21 18:39:22 EDT 2025
Fri Jul 11 05:37:27 EDT 2025
Fri Jul 25 20:01:58 EDT 2025
Tue Jul 01 05:43:25 EDT 2025
Thu Apr 03 07:06:36 EDT 2025
Tue Jul 01 01:19:31 EDT 2025
Thu Apr 24 22:55:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords imbalanced data
data expansion
continuous wavelet transform
synthetic minority oversampling technique
convolution neural network
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-ea8dd3cc9ac917a195a8d3b66627022a70c3877a4260cfc794ae07529ae887a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7066-6738
0000-0002-4912-5360
0000-0002-4749-8761
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22228749
PMID 36433352
PQID 2739462680
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_bf80468aaa444075a08b5bd17ad657bf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9692439
proquest_miscellaneous_2740507590
proquest_journals_2739462680
gale_infotracacademiconefile_A746533708
pubmed_primary_36433352
crossref_primary_10_3390_s22228749
crossref_citationtrail_10_3390_s22228749
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221112
PublicationDateYYYYMMDD 2022-11-12
PublicationDate_xml – month: 11
  year: 2022
  text: 20221112
  day: 12
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Hinton (ref_56) 2008; 9
ref_57
Srivastava (ref_52) 2014; 15
ref_55
Antoine (ref_42) 1993; 31
ref_54
Di (ref_10) 2014; 12
ref_51
ref_16
Wang (ref_48) 2019; 105
Shao (ref_47) 2022; 27
Li (ref_12) 2019; 10
Gou (ref_36) 2020; 2020
Kankar (ref_8) 2011; 11
Yaqub (ref_23) 2013; 62
Zhao (ref_27) 2020; 31
Jia (ref_18) 2018; 110
Chikkerur (ref_34) 2007; 40
Kwon (ref_41) 2022; 16
Tyagi (ref_7) 2014; 95
Wang (ref_19) 2021; 176
ref_29
Li (ref_60) 2022; 52
(ref_32) 2005; 35
Legendre (ref_38) 2000; 49
Zhao (ref_5) 2020; 107
He (ref_61) 2019; 233
ref_33
Mosquera (ref_58) 2020; 53
ref_31
ref_30
Dong (ref_24) 2022; 121
ref_37
Vashishtha (ref_43) 2022; 10
Zhou (ref_26) 2020; 161
Jalayer (ref_44) 2021; 125
Zhang (ref_17) 2018; 100
Zhu (ref_28) 2017; 72
LeCun (ref_49) 1998; 86
Sharma (ref_1) 2021; 169
Liang (ref_39) 2020; 159
ref_46
Zhou (ref_21) 2020; 187
Yang (ref_22) 2020; 2020
Shao (ref_25) 2019; 106
ref_40
Cerrada (ref_14) 2018; 99
Zhou (ref_11) 2019; 30
ref_3
Creswell (ref_59) 2018; 35
ref_2
Zhang (ref_9) 2021; 215
Janssens (ref_15) 2016; 377
Yan (ref_6) 2020; 20
Ferrante (ref_45) 2007; 133
Mao (ref_20) 2019; 7
Alexakos (ref_35) 2021; 3
Wen (ref_13) 2018; 65
Krizhevsky (ref_53) 2017; 60
ref_4
References_xml – volume: 2020
  start-page: 8880960
  year: 2020
  ident: ref_22
  article-title: Fault Diagnosis of Rotating Machinery Based on One-Dimensional Deep Residual Shrinkage Network with a Wide Convolution Layer
  publication-title: Shock Vib.
– ident: ref_55
– volume: 99
  start-page: 169
  year: 2018
  ident: ref_14
  article-title: A review on data-driven fault severity assessment in rolling bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.06.012
– ident: ref_51
– volume: 187
  start-page: 104837
  year: 2020
  ident: ref_21
  article-title: Deep learning fault diagnosis method based on global optimization GAN for unbalanced data
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.07.008
– volume: 35
  start-page: 603
  year: 2005
  ident: ref_32
  article-title: Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2004.05.001
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_52
  article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 27
  start-page: 24
  year: 2022
  ident: ref_47
  article-title: Modified Stacked Autoencoder Using Adaptive Morlet Wavelet for Intelligent Fault Diagnosis of Rotating Machinery
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2021.3058061
– volume: 65
  start-page: 5990
  year: 2018
  ident: ref_13
  article-title: A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2774777
– volume: 133
  start-page: 1274
  year: 2007
  ident: ref_45
  article-title: Wavelets for the Analysis of Transient Pressure Signals for Leak Detection
  publication-title: J. Hydraul. Eng.
  doi: 10.1061/(ASCE)0733-9429(2007)133:11(1274)
– volume: 52
  start-page: 101552
  year: 2022
  ident: ref_60
  article-title: Multi-mode data augmentation and fault diagnosis of rotating machinery using modified ACGAN designed with new framework
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2022.101552
– volume: 40
  start-page: 198
  year: 2007
  ident: ref_34
  article-title: Fingerprint enhancement using STFT analysis
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2006.05.036
– volume: 35
  start-page: 53
  year: 2018
  ident: ref_59
  article-title: Generative Adversarial Networks: An Overview
  publication-title: IEEE Signal Proc. Mag.
  doi: 10.1109/MSP.2017.2765202
– volume: 3
  start-page: 228
  year: 2021
  ident: ref_35
  article-title: A Combined Short Time Fourier Transform and Image Classification Transformer Model for Rolling Element Bearings Fault Diagnosis in Electric Motors
  publication-title: Mach. Learn. Know. Extr.
  doi: 10.3390/make3010011
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_53
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. Acm.
  doi: 10.1145/3065386
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_56
  article-title: Visualizing Data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 107
  start-page: 224
  year: 2020
  ident: ref_5
  article-title: Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.08.010
– volume: 16
  start-page: 713
  year: 2022
  ident: ref_41
  article-title: Voice Frequency Synthesis using VAW-GAN based Amplitude Scaling for Emotion Transformation
  publication-title: KSII Trans. Internet Inf. Syst. (TIIS)
– volume: 377
  start-page: 331
  year: 2016
  ident: ref_15
  article-title: Convolutional Neural Network Based Fault Detection for Rotating Machinery
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.05.027
– ident: ref_31
– ident: ref_33
  doi: 10.3390/s21175825
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_49
  article-title: Gradient-Based Learning Applied to Document Recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 100
  start-page: 439
  year: 2018
  ident: ref_17
  article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.06.022
– volume: 121
  start-page: 327
  year: 2022
  ident: ref_24
  article-title: A new dynamic model and transfer learning based intelligent fault diagnosis framework for rolling element bearings race faults: Solving the small sample problem
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.03.042
– volume: 10
  start-page: 335
  year: 2022
  ident: ref_43
  article-title: Pelton Wheel Bucket Fault Diagnosis Using Improved Shannon Entropy and Expectation Maximization Principal Component Analysis
  publication-title: J. Vib. Eng. Technol.
  doi: 10.1007/s42417-021-00379-7
– volume: 31
  start-page: 241
  year: 1993
  ident: ref_42
  article-title: Image analysis with two-dimensional continuous wavelet transform
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(93)90085-O
– ident: ref_3
  doi: 10.3390/s19204542
– ident: ref_40
  doi: 10.1109/SLT48900.2021.9383526
– volume: 62
  start-page: 160
  year: 2013
  ident: ref_23
  article-title: An Adaptive Self-Configuration Scheme for Severity Invariant Machine Fault Diagnosis
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2013.2241219
– volume: 12
  start-page: 1
  year: 2014
  ident: ref_10
  article-title: Control of a flexible rotor active magnetic bearing test rig: A characteristic model based all-coefficient adaptive control approach
  publication-title: Control Theory Technol.
  doi: 10.1007/s11768-014-0184-0
– volume: 31
  start-page: 035004
  year: 2020
  ident: ref_27
  article-title: Enhanced data-driven fault diagnosis for machines with small and unbalanced data based on variational auto-encoder
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab55f8
– ident: ref_37
  doi: 10.3390/app8071102
– volume: 10
  start-page: 895
  year: 2019
  ident: ref_12
  article-title: A Data-Driven Residual-Based Method for Fault Diagnosis and Isolation in Wind Turbines
  publication-title: IEEE Trans. Sustain. Energ.
  doi: 10.1109/TSTE.2018.2853990
– volume: 215
  start-page: 107805
  year: 2021
  ident: ref_9
  article-title: End-to-end unsupervised fault detection using a flow-based model
  publication-title: Reliab. Eng. Syst. Safe
  doi: 10.1016/j.ress.2021.107805
– volume: 72
  start-page: 327
  year: 2017
  ident: ref_28
  article-title: Synthetic minority oversampling technique for multiclass imbalance problems
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2017.07.024
– volume: 11
  start-page: 2300
  year: 2011
  ident: ref_8
  article-title: Fault diagnosis of ball bearings using continuous wavelet transform
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.08.011
– volume: 169
  start-page: 108389
  year: 2021
  ident: ref_1
  article-title: Integrated approach based on flexible analytical wavelet transform and permutation entropy for fault detection in rotary machines
  publication-title: Meas. J. Int. Meas. Confed.
  doi: 10.1016/j.measurement.2020.108389
– ident: ref_54
  doi: 10.1109/CVPR.2016.90
– volume: 233
  start-page: 4764
  year: 2019
  ident: ref_61
  article-title: Investigation of a multi-sensor data fusion technique for the fault diagnosis of gearboxes
  publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
  doi: 10.1177/0954406219834048
– volume: 110
  start-page: 349
  year: 2018
  ident: ref_18
  article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.03.025
– volume: 159
  start-page: 107768
  year: 2020
  ident: ref_39
  article-title: Intelligent fault diagnosis of rotating machinery via wavelet transform, generative adversarial nets and convolutional neural network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107768
– ident: ref_29
  doi: 10.1007/11538059_91
– volume: 7
  start-page: 9515
  year: 2019
  ident: ref_20
  article-title: Imbalanced Fault Diagnosis of Rolling Bearing based on Generative Adversarial Network: A Comparative Study
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890693
– volume: 105
  start-page: 182
  year: 2019
  ident: ref_48
  article-title: A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.12.013
– volume: 95
  start-page: 309
  year: 2014
  ident: ref_7
  article-title: Transient Analysis of Ball Bearing Fault Simulation using Finite Element Method
  publication-title: J. Inst. Eng. (India) Ser. C
  doi: 10.1007/s40032-014-0129-x
– volume: 161
  start-page: 107880
  year: 2020
  ident: ref_26
  article-title: A novel method based on nonlinear auto-regression neural network and convolutional neural network for imbalanced fault diagnosis of rotating machinery
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107880
– volume: 176
  start-page: 109165
  year: 2021
  ident: ref_19
  article-title: A generalized health indicator for performance degradation assessment of rolling element bearings based on graph spectrum reconstruction and spectrum characterization
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109165
– ident: ref_30
  doi: 10.1007/978-3-642-01307-2_43
– ident: ref_46
  doi: 10.1007/s00202-022-01657-7
– ident: ref_16
  doi: 10.3390/s20041233
– ident: ref_50
– volume: 2020
  start-page: 5357146
  year: 2020
  ident: ref_36
  article-title: Aeroengine Control System Sensor Fault Diagnosis Based on CWT and CNN
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2020/5357146
– volume: 53
  start-page: 5929
  year: 2020
  ident: ref_58
  article-title: A review on the long short-term memory model
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09838-1
– volume: 30
  start-page: 1693
  year: 2019
  ident: ref_11
  article-title: A hybrid fault diagnosis method for mechanical components based on ontology and signal analysis
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-017-1351-1
– volume: 125
  start-page: 103378
  year: 2021
  ident: ref_44
  article-title: Fault detection and diagnosis for rotating machinery: A model based on convolutional LSTM, Fast Fourier and continuous wavelet transforms
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2020.103378
– volume: 20
  start-page: 8374
  year: 2020
  ident: ref_6
  article-title: Knowledge Transfer for Rotary Machine Fault Diagnosis
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2949057
– volume: 106
  start-page: 85
  year: 2019
  ident: ref_25
  article-title: Generative adversarial networks for data augmentation in machine fault diagnosis
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.01.001
– ident: ref_57
– ident: ref_4
  doi: 10.1007/978-981-19-3716-3_23
– ident: ref_2
  doi: 10.3390/app12147032
– volume: 49
  start-page: 524
  year: 2000
  ident: ref_38
  article-title: Wavelet-Transform-Based Method of Analysis for Lamb-Wave Ultrasonic NDE Signals
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.850388
SSID ssj0023338
Score 2.4320724
Snippet Deep learning-based fault diagnosis usually requires a rich supply of data, but fault samples are scarce in practice, posing a considerable challenge for...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 8749
SubjectTerms Algorithms
continuous wavelet transform
convolution neural network
data expansion
Datasets
Deep learning
Failure
Fault diagnosis
imbalanced data
Industrial production
Locomotives
Machinery
Magneto-electric machines
Methods
Neural networks
Signal processing
synthetic minority oversampling technique
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAQPlIKcggJLhEzcZ27By3pVFB2kWgVurNGn8sVCreqrt76L_vTJKNsgKJC9dkpDjjGc97yfiZsQ9OAYJQU-We9C9lGavcTCDkExEQzqoqxEibk2fz6uxCfr1Ul6OjvqgnrJMH7hx35BYGKZwBACmRfCgojFMuTDSESmm3oNUXa96WTPVUSyDz6nSEBJL6o1VJHzo0CWaOqk8r0v_nUjyqRbt9kqPC0zxhj3vEyKfdSJ-yBzE9Y49GOoL77Ps08S-_HXUp-hh4A5vrNf_cNdFdrfisPSWaH2PBCnyZ-HnTfOOQAj-ZzzmCVv5jST_k008-a1sr4-3dc3bRnJ6fnOX9WQm5R4i1ziOYEIT3NXgkYDCpFV4QriJ9dyzToAsvjNZAgvR-4TELIaI3yxoiLjNQiBdsLy1TfMW4cj5CFAsTIEijJBhpnFG6jNIgYBMZ-7T1ofW9kDidZ3FtkVCQu-3g7oy9H0xvOvWMvxkd00QMBiR43V7AMLB9GNh_hUHGPtI0WkpLHIyHfncBvhIJXNmpJiE5oQuTscPtTNs-X1cWQVwtkduZImPvhtuYafT7BFJcbsgGwS0-ukabl11gDGMWCOxo91rG9E7I7LzU7p109atV864rpMCiPvgfXnjNHpa0PYPaFMtDtre-3cQ3CJrW7m2bH_cqQROk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeDdQKoOQ4BI1G8exc0LbRyhIuwjUSr1F48eWSsUp-zjw75lJvOmuQFzjkWJ7PJ5v7PE3jL0zEhCE6jK1xH9Z5L5M9QhcOhIO4awsnff0OHkyLU_Piy8X8iIeuC1iWuV6T-w2atdaOiM_QDdbFYi-dfbx5ldKVaPodjWW0LjL7o3Q01BKl64_DQGXwPirZxMSGNofLHI67lBEm7nhgzqq_r835A2PtJ0tueF-6kfsYcSNfNwr-jG748MT9mCDTfAp-zYO_PNPQ7mK1jtew-p6yY_7VLqrBZ90taL5Ibotx9vAz-r6K4fg-NF0yhG68u8tXcuHSz7pEiz9_Pczdl6fnB2dprFiQmoRaC1TD9o5YW0FFsMwGFUSPwhTEss7OmtQmRVaKSBaejuzaIvgETPkFXjcbCATz9lOaIPfZVwa68GLmXbgCi0L0IU2WqrcFxphm0jYh_UcNjbSiVNVi-sGwwqa7maY7oS9HURveg6NfwkdkiIGAaK97j6088smWlFjZhrjeQ0ARYGRqIRMG2kcDtWVUplZwt6TGhsyTuyMhfjGAIdENFfNWBGdnFCZTtjeWtNNtNpFc7vGEvZmaEZ7o0sUCL5dkQxCXPx1hTIv-oUx9FkgvKM3bAlTW0tma1DbLeHqR8fpXZUYCIvq5f-79Yrdz-n5BaUh5ntsZzlf-dcIipZmv1v5fwCE0ArG
  priority: 102
  providerName: ProQuest
Title An Imbalanced Fault Diagnosis Method Based on TFFO and CNN for Rotating Machinery
URI https://www.ncbi.nlm.nih.gov/pubmed/36433352
https://www.proquest.com/docview/2739462680
https://www.proquest.com/docview/2740507590
https://pubmed.ncbi.nlm.nih.gov/PMC9692439
https://doaj.org/article/bf80468aaa444075a08b5bd17ad657bf
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7t4wIHxJssS2UQElwCbezEzgGhdtmwILXAaiv1Fk1sd1mppEsfEvvvmUnTqBF75NJDMlLjsSfzffH4G4DXRYwEQk0SWta_VJFPQtNDF_akIzgbJ857Ppw8HCVnY_V1Ek_2YNtjs3bg8lZqx_2kxovZuz-_bz5SwH9gxkmU_f0y4s8YWqX7cEgJSXMjg6FqNhMiSTRsIyrUNm-lokqx_9_38k5iahdN7mSh7D7cq-Gj6G_m-wHs-fIh3N0RFXwEP_ql-PKr4JJF653IcD1biU-birqrpRhWLaPFgLKXE_NSXGTZN4GlEyejkSAEK87nvDtfXophVWfpFzePYZydXpychXXjhNAS3lqFHo1z0toULbEx7KUxXZBFwmLvlLNRd600WiOr09uppZBET9AhStHTOwe78gkclPPSPwMRF9ajl1Pj0CkTKzTKFCbWkVeG0JsM4O3Wh7mtVcW5ucUsJ3bB7s4bdwfwqjG93khp3GY04IloDFj9urowX1zmdTDlxdQQrTeIqBQR0hi7pogLR0N1SayLaQBveBpzXjX0MBbrowY0JFa7yvuaVeWk7poAjrcznW_XXk6ILlVE9Ew3gJfNbQo73kvB0s_XbENIl_46JZunm4XRPLMklMdH2QLQrSXTGlT7Tnn1s5L2ThPiwzI9-h9eeA53Ij6rwTWL0TEcrBZr_4IQ1KrowL6eaPo12ecOHA5OR9_PO9XXiE4VOX8BrAkdvw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCwcWq413b6wNCaYtJaBMEaqXezHh3UyoVu-Qh1D_Fb2TGdkwiELdevaNkHzM739gz3wC8LCIkEKpj3zD_pQpd7OseWr8nLcHZKLbOcXHyaBwPjtTH4-h4A34ta2E4rXJ5J9YXta0MvyPfJjebKkLfOnh3_sPnrlH8dXXZQqNRi3138ZNCttnb4R6d76swzN4f7g78tquAbwiMzH2H2lppTIqGQhXspRE9kEXMTOjk0DAJjNRJgkzdbiaG9BUd-dUwRUcGiYGk370CV5UkT86V6dmHLsCTFO817EU0GGzPQn69kjBN54rPq1sD_O0AVjzgenbmirvLbsHNFqeKfqNYt2HDlXfgxgp74V343C_F8HvBuZHGWZHh4mwu9prUvdOZGNW9qcUOuUkrqlIcZtkngaUVu-OxIKgsvlScBlCeiFGd0OmmF_fg6FL28j5sllXpHoKICuPQyYm2aJWOFGqlCx0loVOaYKL04M1yD3PT0pdzF42znMIY3u68224PXnSi5w1nx7-EdvggOgGm2a4fVNOTvLXavJjoQMUaEZWiyDfCQBdRYWmpNo6SYuLBaz7GnC8DmozBtqaBlsS0Wnk_Yfo6mQTag63lSeftLTHL_-i0B8-7YbJv_miDpasWLEOQmv46JZkHjWJ0c5YEJ7lmzoNkTWXWFrU-Up5-qznE05gCb5k--v-0nsG1weHoID8Yjvcfw_WQSz84BTLcgs35dOGeECCbF09rKxDw9bLN7jd0-Uce
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFFgQCC5WHK8f6wNCSVOroSSUqpV6c8e7m1Kp2KVJhPrX-HXM2I5JBOLWqz2yd3dmdr6xZ78BeJOHSCBURa5m_svAt5GremjcnjQEZ8PIWMuHk8eTaPco-HQcHm_Ar-VZGC6rXO6J1UZtSs3fyLsUZpOA0LfyutOmLGJ_mH68-OFyByn-07psp1GbyJ69-knp2-zDaEi6fuv76c7h9q7bdBhwNQGTuWtRGSO1TlBT2oK9JKQLMo-YFZ2CG8aeliqOkWnc9VST7aKlGOsnaMk50ZP03BuwGXNW1IHNwc5k_6BN9yRlfzWXkZSJ1535_LElZtLOlQhYNQr4OxysxMP1Ws2V4JfehTsNahX92szuwYYt7sPtFS7DB_C1X4jR95wrJbU1IsXF-VwM60K-s5kYV52qxYCCphFlIQ7T9IvAwojtyUQQcBYHJRcFFKdiXJV32surh3B0Lav5CDpFWdgnIMJcW7RyqgyaQIUBqkDlKox9GygCjdKB98s1zHRDZs49Nc4zSmp4ubN2uR143Ype1Awe_xIasCJaASbdri6Ul6dZ48NZPlVeEClEDALSeIieysPc0FRNFMb51IF3rMaMtwYajMbmhANNiUm2sn7MZHYy9pQDW0tNZ82eMcv-WLgDr9rb5O38CwcLWy5YhgA2vTohmce1YbRjlgQu-QSdA_GayaxNav1OcfatYhRPIkrDZfL0_8N6CTfJ5bLPo8neM7jl8zkQrof0t6Azv1zY54TO5vmLxg0EnFy35_0GK9VMsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Imbalanced+Fault+Diagnosis+Method+Based+on+TFFO+and+CNN+for+Rotating+Machinery&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Long+Zhang&rft.au=Yangyuan+Liu&rft.au=Jianmin+Zhou&rft.au=Muxu+Luo&rft.date=2022-11-12&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=22&rft.spage=8749&rft_id=info:doi/10.3390%2Fs22228749&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bf80468aaa444075a08b5bd17ad657bf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon