An Imbalanced Fault Diagnosis Method Based on TFFO and CNN for Rotating Machinery
Deep learning-based fault diagnosis usually requires a rich supply of data, but fault samples are scarce in practice, posing a considerable challenge for existing diagnosis approaches to achieve highly accurate fault detection in real applications. This paper proposes an imbalanced fault diagnosis o...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 22; p. 8749 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
12.11.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep learning-based fault diagnosis usually requires a rich supply of data, but fault samples are scarce in practice, posing a considerable challenge for existing diagnosis approaches to achieve highly accurate fault detection in real applications. This paper proposes an imbalanced fault diagnosis of rotatory machinery that combines time-frequency feature oversampling (TFFO) with a convolutional neural network (CNN). First, the sliding segmentation sampling method is employed to primarily increase the number of fault samples in the form of one-dimensional signals. Immediately after, the signals are converted into two-dimensional time-frequency feature maps by continuous wavelet transform (CWT). Subsequently, the minority samples are expanded again using the synthetic minority oversampling technique (SMOTE) to realize TFFO. After such two-fold data expansion, a balanced data set is obtained and imported to an improved 2dCNN based on the LeNet-5 to implement fault diagnosis. In order to verify the proposed method, two experiments involving single and compound faults are conducted on locomotive wheel-set bearings and a gearbox, resulting in several datasets with different imbalanced degrees and various signal-to-noise ratios. The results demonstrate the advantages of the proposed method in terms of classification accuracy and stability as well as noise robustness in imbalanced fault diagnosis, and the fault classification accuracy is over 97%. |
---|---|
AbstractList | Deep learning-based fault diagnosis usually requires a rich supply of data, but fault samples are scarce in practice, posing a considerable challenge for existing diagnosis approaches to achieve highly accurate fault detection in real applications. This paper proposes an imbalanced fault diagnosis of rotatory machinery that combines time-frequency feature oversampling (TFFO) with a convolutional neural network (CNN). First, the sliding segmentation sampling method is employed to primarily increase the number of fault samples in the form of one-dimensional signals. Immediately after, the signals are converted into two-dimensional time-frequency feature maps by continuous wavelet transform (CWT). Subsequently, the minority samples are expanded again using the synthetic minority oversampling technique (SMOTE) to realize TFFO. After such two-fold data expansion, a balanced data set is obtained and imported to an improved 2dCNN based on the LeNet-5 to implement fault diagnosis. In order to verify the proposed method, two experiments involving single and compound faults are conducted on locomotive wheel-set bearings and a gearbox, resulting in several datasets with different imbalanced degrees and various signal-to-noise ratios. The results demonstrate the advantages of the proposed method in terms of classification accuracy and stability as well as noise robustness in imbalanced fault diagnosis, and the fault classification accuracy is over 97%. Deep learning-based fault diagnosis usually requires a rich supply of data, but fault samples are scarce in practice, posing a considerable challenge for existing diagnosis approaches to achieve highly accurate fault detection in real applications. This paper proposes an imbalanced fault diagnosis of rotatory machinery that combines time-frequency feature oversampling (TFFO) with a convolutional neural network (CNN). First, the sliding segmentation sampling method is employed to primarily increase the number of fault samples in the form of one-dimensional signals. Immediately after, the signals are converted into two-dimensional time-frequency feature maps by continuous wavelet transform (CWT). Subsequently, the minority samples are expanded again using the synthetic minority oversampling technique (SMOTE) to realize TFFO. After such two-fold data expansion, a balanced data set is obtained and imported to an improved 2dCNN based on the LeNet-5 to implement fault diagnosis. In order to verify the proposed method, two experiments involving single and compound faults are conducted on locomotive wheel-set bearings and a gearbox, resulting in several datasets with different imbalanced degrees and various signal-to-noise ratios. The results demonstrate the advantages of the proposed method in terms of classification accuracy and stability as well as noise robustness in imbalanced fault diagnosis, and the fault classification accuracy is over 97%.Deep learning-based fault diagnosis usually requires a rich supply of data, but fault samples are scarce in practice, posing a considerable challenge for existing diagnosis approaches to achieve highly accurate fault detection in real applications. This paper proposes an imbalanced fault diagnosis of rotatory machinery that combines time-frequency feature oversampling (TFFO) with a convolutional neural network (CNN). First, the sliding segmentation sampling method is employed to primarily increase the number of fault samples in the form of one-dimensional signals. Immediately after, the signals are converted into two-dimensional time-frequency feature maps by continuous wavelet transform (CWT). Subsequently, the minority samples are expanded again using the synthetic minority oversampling technique (SMOTE) to realize TFFO. After such two-fold data expansion, a balanced data set is obtained and imported to an improved 2dCNN based on the LeNet-5 to implement fault diagnosis. In order to verify the proposed method, two experiments involving single and compound faults are conducted on locomotive wheel-set bearings and a gearbox, resulting in several datasets with different imbalanced degrees and various signal-to-noise ratios. The results demonstrate the advantages of the proposed method in terms of classification accuracy and stability as well as noise robustness in imbalanced fault diagnosis, and the fault classification accuracy is over 97%. |
Audience | Academic |
Author | Liu, Yangyuan Luo, Muxu Zhou, Jianmin Pu, Shengxin Yang, Xiaotong Zhang, Long |
AuthorAffiliation | School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China |
AuthorAffiliation_xml | – name: School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China |
Author_xml | – sequence: 1 givenname: Long surname: Zhang fullname: Zhang, Long – sequence: 2 givenname: Yangyuan orcidid: 0000-0001-7066-6738 surname: Liu fullname: Liu, Yangyuan – sequence: 3 givenname: Jianmin orcidid: 0000-0002-4749-8761 surname: Zhou fullname: Zhou, Jianmin – sequence: 4 givenname: Muxu surname: Luo fullname: Luo, Muxu – sequence: 5 givenname: Shengxin surname: Pu fullname: Pu, Shengxin – sequence: 6 givenname: Xiaotong orcidid: 0000-0002-4912-5360 surname: Yang fullname: Yang, Xiaotong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36433352$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv1DAQxyNURB9w4AsgS1zoYVvHdvy4IC0LCyv1IVA5WxPHyXqVtVs7Qeq3r8OWVVthH2zN_OY_nhkfFwc-eFsU70t8RqnC54nkJQVTr4qjkhE2k4Tggyf3w-I4pQ3GhFIq3xSHlLN8q8hR8XPu0WpbQw_e2AYtYewH9NVB50NyCV3aYR0a9AVSdgaPbpbLawS-QYurK9SGiH6FAQbnO3QJZu28jfdvi9ct9Mm-ezxPit_LbzeLH7OL6--rxfxiZiosh5kF2TTUGAVGlQJKVWUDrTnnRGBCQGBDpRDACMemNUIxsFhURIGVUgCmJ8Vqp9sE2Ojb6LYQ73UAp_8aQuw0xMGZ3uq6lZhxCQCMsSwCWNZV3eS0Da9E3Watzzut27He2sZYP0Ton4k-93i31l34oxVXhFGVBT49CsRwN9o06K1Lxva5rTaMSRPBcJUzq-ndH1-gmzBGn1uVKaoYJ1xO1NmO6iAX4Hwbcl6Td2O3zuTxty7b54LxilKBZQ748LSE_dv_jToDpzvAxJBStO0eKbGevpHef6PMnr9gjZvmHKbqXf-fiAdaEcXE |
CitedBy_id | crossref_primary_10_1177_10775463241288058 crossref_primary_10_3390_app14010219 crossref_primary_10_3390_s23073493 crossref_primary_10_1007_s11042_024_19382_7 crossref_primary_10_3390_s23229075 crossref_primary_10_3390_app122412762 crossref_primary_10_3390_s23094485 |
Cites_doi | 10.1016/j.ymssp.2017.06.012 10.1016/j.knosys.2019.07.008 10.1016/j.compbiomed.2004.05.001 10.1109/TMECH.2021.3058061 10.1109/TIE.2017.2774777 10.1061/(ASCE)0733-9429(2007)133:11(1274) 10.1016/j.aei.2022.101552 10.1016/j.patcog.2006.05.036 10.1109/MSP.2017.2765202 10.3390/make3010011 10.1145/3065386 10.1016/j.isatra.2020.08.010 10.1016/j.jsv.2016.05.027 10.3390/s21175825 10.1109/5.726791 10.1016/j.ymssp.2017.06.022 10.1016/j.isatra.2021.03.042 10.1007/s42417-021-00379-7 10.1016/0165-1684(93)90085-O 10.3390/s19204542 10.1109/SLT48900.2021.9383526 10.1109/TR.2013.2241219 10.1007/s11768-014-0184-0 10.1088/1361-6501/ab55f8 10.3390/app8071102 10.1109/TSTE.2018.2853990 10.1016/j.ress.2021.107805 10.1016/j.patcog.2017.07.024 10.1016/j.asoc.2010.08.011 10.1016/j.measurement.2020.108389 10.1109/CVPR.2016.90 10.1177/0954406219834048 10.1016/j.ymssp.2018.03.025 10.1016/j.measurement.2020.107768 10.1007/11538059_91 10.1109/ACCESS.2018.2890693 10.1016/j.compind.2018.12.013 10.1007/s40032-014-0129-x 10.1016/j.measurement.2020.107880 10.1016/j.measurement.2021.109165 10.1007/978-3-642-01307-2_43 10.1007/s00202-022-01657-7 10.3390/s20041233 10.1155/2020/5357146 10.1007/s10462-020-09838-1 10.1007/s10845-017-1351-1 10.1016/j.compind.2020.103378 10.1109/JSEN.2019.2949057 10.1016/j.compind.2019.01.001 10.1007/978-981-19-3716-3_23 10.3390/app12147032 10.1109/19.850388 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22228749 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_bf80468aaa444075a08b5bd17ad657bf PMC9692439 A746533708 36433352 10_3390_s22228749 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangxi Province grantid: No. 20212BAB204007 – fundername: Jiangxi Province Graduate Student Innovation Project grantid: No. YC2021-S422 – fundername: National Science Foundation of China grantid: No. 51865010 – fundername: Science Research Project of the Education Department of Jiangxi Province grantid: No. GJJ200616 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c508t-ea8dd3cc9ac917a195a8d3b66627022a70c3877a4260cfc794ae07529ae887a03 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:32 EDT 2025 Thu Aug 21 18:39:22 EDT 2025 Fri Jul 11 05:37:27 EDT 2025 Fri Jul 25 20:01:58 EDT 2025 Tue Jul 01 05:43:25 EDT 2025 Thu Apr 03 07:06:36 EDT 2025 Tue Jul 01 01:19:31 EDT 2025 Thu Apr 24 22:55:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | imbalanced data data expansion continuous wavelet transform synthetic minority oversampling technique convolution neural network |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-ea8dd3cc9ac917a195a8d3b66627022a70c3877a4260cfc794ae07529ae887a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7066-6738 0000-0002-4912-5360 0000-0002-4749-8761 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22228749 |
PMID | 36433352 |
PQID | 2739462680 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bf80468aaa444075a08b5bd17ad657bf pubmedcentral_primary_oai_pubmedcentral_nih_gov_9692439 proquest_miscellaneous_2740507590 proquest_journals_2739462680 gale_infotracacademiconefile_A746533708 pubmed_primary_36433352 crossref_primary_10_3390_s22228749 crossref_citationtrail_10_3390_s22228749 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221112 |
PublicationDateYYYYMMDD | 2022-11-12 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221112 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Hinton (ref_56) 2008; 9 ref_57 Srivastava (ref_52) 2014; 15 ref_55 Antoine (ref_42) 1993; 31 ref_54 Di (ref_10) 2014; 12 ref_51 ref_16 Wang (ref_48) 2019; 105 Shao (ref_47) 2022; 27 Li (ref_12) 2019; 10 Gou (ref_36) 2020; 2020 Kankar (ref_8) 2011; 11 Yaqub (ref_23) 2013; 62 Zhao (ref_27) 2020; 31 Jia (ref_18) 2018; 110 Chikkerur (ref_34) 2007; 40 Kwon (ref_41) 2022; 16 Tyagi (ref_7) 2014; 95 Wang (ref_19) 2021; 176 ref_29 Li (ref_60) 2022; 52 (ref_32) 2005; 35 Legendre (ref_38) 2000; 49 Zhao (ref_5) 2020; 107 He (ref_61) 2019; 233 ref_33 Mosquera (ref_58) 2020; 53 ref_31 ref_30 Dong (ref_24) 2022; 121 ref_37 Vashishtha (ref_43) 2022; 10 Zhou (ref_26) 2020; 161 Jalayer (ref_44) 2021; 125 Zhang (ref_17) 2018; 100 Zhu (ref_28) 2017; 72 LeCun (ref_49) 1998; 86 Sharma (ref_1) 2021; 169 Liang (ref_39) 2020; 159 ref_46 Zhou (ref_21) 2020; 187 Yang (ref_22) 2020; 2020 Shao (ref_25) 2019; 106 ref_40 Cerrada (ref_14) 2018; 99 Zhou (ref_11) 2019; 30 ref_3 Creswell (ref_59) 2018; 35 ref_2 Zhang (ref_9) 2021; 215 Janssens (ref_15) 2016; 377 Yan (ref_6) 2020; 20 Ferrante (ref_45) 2007; 133 Mao (ref_20) 2019; 7 Alexakos (ref_35) 2021; 3 Wen (ref_13) 2018; 65 Krizhevsky (ref_53) 2017; 60 ref_4 |
References_xml | – volume: 2020 start-page: 8880960 year: 2020 ident: ref_22 article-title: Fault Diagnosis of Rotating Machinery Based on One-Dimensional Deep Residual Shrinkage Network with a Wide Convolution Layer publication-title: Shock Vib. – ident: ref_55 – volume: 99 start-page: 169 year: 2018 ident: ref_14 article-title: A review on data-driven fault severity assessment in rolling bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.06.012 – ident: ref_51 – volume: 187 start-page: 104837 year: 2020 ident: ref_21 article-title: Deep learning fault diagnosis method based on global optimization GAN for unbalanced data publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.07.008 – volume: 35 start-page: 603 year: 2005 ident: ref_32 article-title: Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2004.05.001 – volume: 15 start-page: 1929 year: 2014 ident: ref_52 article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting publication-title: J. Mach. Learn. Res. – volume: 27 start-page: 24 year: 2022 ident: ref_47 article-title: Modified Stacked Autoencoder Using Adaptive Morlet Wavelet for Intelligent Fault Diagnosis of Rotating Machinery publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2021.3058061 – volume: 65 start-page: 5990 year: 2018 ident: ref_13 article-title: A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2774777 – volume: 133 start-page: 1274 year: 2007 ident: ref_45 article-title: Wavelets for the Analysis of Transient Pressure Signals for Leak Detection publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)0733-9429(2007)133:11(1274) – volume: 52 start-page: 101552 year: 2022 ident: ref_60 article-title: Multi-mode data augmentation and fault diagnosis of rotating machinery using modified ACGAN designed with new framework publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2022.101552 – volume: 40 start-page: 198 year: 2007 ident: ref_34 article-title: Fingerprint enhancement using STFT analysis publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2006.05.036 – volume: 35 start-page: 53 year: 2018 ident: ref_59 article-title: Generative Adversarial Networks: An Overview publication-title: IEEE Signal Proc. Mag. doi: 10.1109/MSP.2017.2765202 – volume: 3 start-page: 228 year: 2021 ident: ref_35 article-title: A Combined Short Time Fourier Transform and Image Classification Transformer Model for Rolling Element Bearings Fault Diagnosis in Electric Motors publication-title: Mach. Learn. Know. Extr. doi: 10.3390/make3010011 – volume: 60 start-page: 84 year: 2017 ident: ref_53 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. Acm. doi: 10.1145/3065386 – volume: 9 start-page: 2579 year: 2008 ident: ref_56 article-title: Visualizing Data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 107 start-page: 224 year: 2020 ident: ref_5 article-title: Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.08.010 – volume: 16 start-page: 713 year: 2022 ident: ref_41 article-title: Voice Frequency Synthesis using VAW-GAN based Amplitude Scaling for Emotion Transformation publication-title: KSII Trans. Internet Inf. Syst. (TIIS) – volume: 377 start-page: 331 year: 2016 ident: ref_15 article-title: Convolutional Neural Network Based Fault Detection for Rotating Machinery publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.05.027 – ident: ref_31 – ident: ref_33 doi: 10.3390/s21175825 – volume: 86 start-page: 2278 year: 1998 ident: ref_49 article-title: Gradient-Based Learning Applied to Document Recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 100 start-page: 439 year: 2018 ident: ref_17 article-title: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.06.022 – volume: 121 start-page: 327 year: 2022 ident: ref_24 article-title: A new dynamic model and transfer learning based intelligent fault diagnosis framework for rolling element bearings race faults: Solving the small sample problem publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.03.042 – volume: 10 start-page: 335 year: 2022 ident: ref_43 article-title: Pelton Wheel Bucket Fault Diagnosis Using Improved Shannon Entropy and Expectation Maximization Principal Component Analysis publication-title: J. Vib. Eng. Technol. doi: 10.1007/s42417-021-00379-7 – volume: 31 start-page: 241 year: 1993 ident: ref_42 article-title: Image analysis with two-dimensional continuous wavelet transform publication-title: Signal Process. doi: 10.1016/0165-1684(93)90085-O – ident: ref_3 doi: 10.3390/s19204542 – ident: ref_40 doi: 10.1109/SLT48900.2021.9383526 – volume: 62 start-page: 160 year: 2013 ident: ref_23 article-title: An Adaptive Self-Configuration Scheme for Severity Invariant Machine Fault Diagnosis publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2013.2241219 – volume: 12 start-page: 1 year: 2014 ident: ref_10 article-title: Control of a flexible rotor active magnetic bearing test rig: A characteristic model based all-coefficient adaptive control approach publication-title: Control Theory Technol. doi: 10.1007/s11768-014-0184-0 – volume: 31 start-page: 035004 year: 2020 ident: ref_27 article-title: Enhanced data-driven fault diagnosis for machines with small and unbalanced data based on variational auto-encoder publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab55f8 – ident: ref_37 doi: 10.3390/app8071102 – volume: 10 start-page: 895 year: 2019 ident: ref_12 article-title: A Data-Driven Residual-Based Method for Fault Diagnosis and Isolation in Wind Turbines publication-title: IEEE Trans. Sustain. Energ. doi: 10.1109/TSTE.2018.2853990 – volume: 215 start-page: 107805 year: 2021 ident: ref_9 article-title: End-to-end unsupervised fault detection using a flow-based model publication-title: Reliab. Eng. Syst. Safe doi: 10.1016/j.ress.2021.107805 – volume: 72 start-page: 327 year: 2017 ident: ref_28 article-title: Synthetic minority oversampling technique for multiclass imbalance problems publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2017.07.024 – volume: 11 start-page: 2300 year: 2011 ident: ref_8 article-title: Fault diagnosis of ball bearings using continuous wavelet transform publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.08.011 – volume: 169 start-page: 108389 year: 2021 ident: ref_1 article-title: Integrated approach based on flexible analytical wavelet transform and permutation entropy for fault detection in rotary machines publication-title: Meas. J. Int. Meas. Confed. doi: 10.1016/j.measurement.2020.108389 – ident: ref_54 doi: 10.1109/CVPR.2016.90 – volume: 233 start-page: 4764 year: 2019 ident: ref_61 article-title: Investigation of a multi-sensor data fusion technique for the fault diagnosis of gearboxes publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. doi: 10.1177/0954406219834048 – volume: 110 start-page: 349 year: 2018 ident: ref_18 article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.03.025 – volume: 159 start-page: 107768 year: 2020 ident: ref_39 article-title: Intelligent fault diagnosis of rotating machinery via wavelet transform, generative adversarial nets and convolutional neural network publication-title: Measurement doi: 10.1016/j.measurement.2020.107768 – ident: ref_29 doi: 10.1007/11538059_91 – volume: 7 start-page: 9515 year: 2019 ident: ref_20 article-title: Imbalanced Fault Diagnosis of Rolling Bearing based on Generative Adversarial Network: A Comparative Study publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890693 – volume: 105 start-page: 182 year: 2019 ident: ref_48 article-title: A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals publication-title: Comput. Ind. doi: 10.1016/j.compind.2018.12.013 – volume: 95 start-page: 309 year: 2014 ident: ref_7 article-title: Transient Analysis of Ball Bearing Fault Simulation using Finite Element Method publication-title: J. Inst. Eng. (India) Ser. C doi: 10.1007/s40032-014-0129-x – volume: 161 start-page: 107880 year: 2020 ident: ref_26 article-title: A novel method based on nonlinear auto-regression neural network and convolutional neural network for imbalanced fault diagnosis of rotating machinery publication-title: Measurement doi: 10.1016/j.measurement.2020.107880 – volume: 176 start-page: 109165 year: 2021 ident: ref_19 article-title: A generalized health indicator for performance degradation assessment of rolling element bearings based on graph spectrum reconstruction and spectrum characterization publication-title: Measurement doi: 10.1016/j.measurement.2021.109165 – ident: ref_30 doi: 10.1007/978-3-642-01307-2_43 – ident: ref_46 doi: 10.1007/s00202-022-01657-7 – ident: ref_16 doi: 10.3390/s20041233 – ident: ref_50 – volume: 2020 start-page: 5357146 year: 2020 ident: ref_36 article-title: Aeroengine Control System Sensor Fault Diagnosis Based on CWT and CNN publication-title: Math. Probl. Eng. doi: 10.1155/2020/5357146 – volume: 53 start-page: 5929 year: 2020 ident: ref_58 article-title: A review on the long short-term memory model publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09838-1 – volume: 30 start-page: 1693 year: 2019 ident: ref_11 article-title: A hybrid fault diagnosis method for mechanical components based on ontology and signal analysis publication-title: J. Intell. Manuf. doi: 10.1007/s10845-017-1351-1 – volume: 125 start-page: 103378 year: 2021 ident: ref_44 article-title: Fault detection and diagnosis for rotating machinery: A model based on convolutional LSTM, Fast Fourier and continuous wavelet transforms publication-title: Comput. Ind. doi: 10.1016/j.compind.2020.103378 – volume: 20 start-page: 8374 year: 2020 ident: ref_6 article-title: Knowledge Transfer for Rotary Machine Fault Diagnosis publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2949057 – volume: 106 start-page: 85 year: 2019 ident: ref_25 article-title: Generative adversarial networks for data augmentation in machine fault diagnosis publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.01.001 – ident: ref_57 – ident: ref_4 doi: 10.1007/978-981-19-3716-3_23 – ident: ref_2 doi: 10.3390/app12147032 – volume: 49 start-page: 524 year: 2000 ident: ref_38 article-title: Wavelet-Transform-Based Method of Analysis for Lamb-Wave Ultrasonic NDE Signals publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/19.850388 |
SSID | ssj0023338 |
Score | 2.4320724 |
Snippet | Deep learning-based fault diagnosis usually requires a rich supply of data, but fault samples are scarce in practice, posing a considerable challenge for... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 8749 |
SubjectTerms | Algorithms continuous wavelet transform convolution neural network data expansion Datasets Deep learning Failure Fault diagnosis imbalanced data Industrial production Locomotives Machinery Magneto-electric machines Methods Neural networks Signal processing synthetic minority oversampling technique Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAQPlIKcggJLhEzcZ27By3pVFB2kWgVurNGn8sVCreqrt76L_vTJKNsgKJC9dkpDjjGc97yfiZsQ9OAYJQU-We9C9lGavcTCDkExEQzqoqxEibk2fz6uxCfr1Ul6OjvqgnrJMH7hx35BYGKZwBACmRfCgojFMuTDSESmm3oNUXa96WTPVUSyDz6nSEBJL6o1VJHzo0CWaOqk8r0v_nUjyqRbt9kqPC0zxhj3vEyKfdSJ-yBzE9Y49GOoL77Ps08S-_HXUp-hh4A5vrNf_cNdFdrfisPSWaH2PBCnyZ-HnTfOOQAj-ZzzmCVv5jST_k008-a1sr4-3dc3bRnJ6fnOX9WQm5R4i1ziOYEIT3NXgkYDCpFV4QriJ9dyzToAsvjNZAgvR-4TELIaI3yxoiLjNQiBdsLy1TfMW4cj5CFAsTIEijJBhpnFG6jNIgYBMZ-7T1ofW9kDidZ3FtkVCQu-3g7oy9H0xvOvWMvxkd00QMBiR43V7AMLB9GNh_hUHGPtI0WkpLHIyHfncBvhIJXNmpJiE5oQuTscPtTNs-X1cWQVwtkduZImPvhtuYafT7BFJcbsgGwS0-ukabl11gDGMWCOxo91rG9E7I7LzU7p109atV864rpMCiPvgfXnjNHpa0PYPaFMtDtre-3cQ3CJrW7m2bH_cqQROk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeDdQKoOQ4BI1G8exc0LbRyhIuwjUSr1F48eWSsUp-zjw75lJvOmuQFzjkWJ7PJ5v7PE3jL0zEhCE6jK1xH9Z5L5M9QhcOhIO4awsnff0OHkyLU_Piy8X8iIeuC1iWuV6T-w2atdaOiM_QDdbFYi-dfbx5ldKVaPodjWW0LjL7o3Q01BKl64_DQGXwPirZxMSGNofLHI67lBEm7nhgzqq_r835A2PtJ0tueF-6kfsYcSNfNwr-jG748MT9mCDTfAp-zYO_PNPQ7mK1jtew-p6yY_7VLqrBZ90taL5Ibotx9vAz-r6K4fg-NF0yhG68u8tXcuHSz7pEiz9_Pczdl6fnB2dprFiQmoRaC1TD9o5YW0FFsMwGFUSPwhTEss7OmtQmRVaKSBaejuzaIvgETPkFXjcbCATz9lOaIPfZVwa68GLmXbgCi0L0IU2WqrcFxphm0jYh_UcNjbSiVNVi-sGwwqa7maY7oS9HURveg6NfwkdkiIGAaK97j6088smWlFjZhrjeQ0ARYGRqIRMG2kcDtWVUplZwt6TGhsyTuyMhfjGAIdENFfNWBGdnFCZTtjeWtNNtNpFc7vGEvZmaEZ7o0sUCL5dkQxCXPx1hTIv-oUx9FkgvKM3bAlTW0tma1DbLeHqR8fpXZUYCIvq5f-79Yrdz-n5BaUh5ntsZzlf-dcIipZmv1v5fwCE0ArG priority: 102 providerName: ProQuest |
Title | An Imbalanced Fault Diagnosis Method Based on TFFO and CNN for Rotating Machinery |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36433352 https://www.proquest.com/docview/2739462680 https://www.proquest.com/docview/2740507590 https://pubmed.ncbi.nlm.nih.gov/PMC9692439 https://doaj.org/article/bf80468aaa444075a08b5bd17ad657bf |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7t4wIHxJssS2UQElwCbezEzgGhdtmwILXAaiv1Fk1sd1mppEsfEvvvmUnTqBF75NJDMlLjsSfzffH4G4DXRYwEQk0SWta_VJFPQtNDF_akIzgbJ857Ppw8HCVnY_V1Ek_2YNtjs3bg8lZqx_2kxovZuz-_bz5SwH9gxkmU_f0y4s8YWqX7cEgJSXMjg6FqNhMiSTRsIyrUNm-lokqx_9_38k5iahdN7mSh7D7cq-Gj6G_m-wHs-fIh3N0RFXwEP_ql-PKr4JJF653IcD1biU-birqrpRhWLaPFgLKXE_NSXGTZN4GlEyejkSAEK87nvDtfXophVWfpFzePYZydXpychXXjhNAS3lqFHo1z0toULbEx7KUxXZBFwmLvlLNRd600WiOr09uppZBET9AhStHTOwe78gkclPPSPwMRF9ajl1Pj0CkTKzTKFCbWkVeG0JsM4O3Wh7mtVcW5ucUsJ3bB7s4bdwfwqjG93khp3GY04IloDFj9urowX1zmdTDlxdQQrTeIqBQR0hi7pogLR0N1SayLaQBveBpzXjX0MBbrowY0JFa7yvuaVeWk7poAjrcznW_XXk6ILlVE9Ew3gJfNbQo73kvB0s_XbENIl_46JZunm4XRPLMklMdH2QLQrSXTGlT7Tnn1s5L2ThPiwzI9-h9eeA53Ij6rwTWL0TEcrBZr_4IQ1KrowL6eaPo12ecOHA5OR9_PO9XXiE4VOX8BrAkdvw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCwcWq413b6wNCaYtJaBMEaqXezHh3UyoVu-Qh1D_Fb2TGdkwiELdevaNkHzM739gz3wC8LCIkEKpj3zD_pQpd7OseWr8nLcHZKLbOcXHyaBwPjtTH4-h4A34ta2E4rXJ5J9YXta0MvyPfJjebKkLfOnh3_sPnrlH8dXXZQqNRi3138ZNCttnb4R6d76swzN4f7g78tquAbwiMzH2H2lppTIqGQhXspRE9kEXMTOjk0DAJjNRJgkzdbiaG9BUd-dUwRUcGiYGk370CV5UkT86V6dmHLsCTFO817EU0GGzPQn69kjBN54rPq1sD_O0AVjzgenbmirvLbsHNFqeKfqNYt2HDlXfgxgp74V343C_F8HvBuZHGWZHh4mwu9prUvdOZGNW9qcUOuUkrqlIcZtkngaUVu-OxIKgsvlScBlCeiFGd0OmmF_fg6FL28j5sllXpHoKICuPQyYm2aJWOFGqlCx0loVOaYKL04M1yD3PT0pdzF42znMIY3u68224PXnSi5w1nx7-EdvggOgGm2a4fVNOTvLXavJjoQMUaEZWiyDfCQBdRYWmpNo6SYuLBaz7GnC8DmozBtqaBlsS0Wnk_Yfo6mQTag63lSeftLTHL_-i0B8-7YbJv_miDpasWLEOQmv46JZkHjWJ0c5YEJ7lmzoNkTWXWFrU-Up5-qznE05gCb5k--v-0nsG1weHoID8Yjvcfw_WQSz84BTLcgs35dOGeECCbF09rKxDw9bLN7jd0-Uce |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFFgQCC5WHK8f6wNCSVOroSSUqpV6c8e7m1Kp2KVJhPrX-HXM2I5JBOLWqz2yd3dmdr6xZ78BeJOHSCBURa5m_svAt5GremjcnjQEZ8PIWMuHk8eTaPco-HQcHm_Ar-VZGC6rXO6J1UZtSs3fyLsUZpOA0LfyutOmLGJ_mH68-OFyByn-07psp1GbyJ69-knp2-zDaEi6fuv76c7h9q7bdBhwNQGTuWtRGSO1TlBT2oK9JKQLMo-YFZ2CG8aeliqOkWnc9VST7aKlGOsnaMk50ZP03BuwGXNW1IHNwc5k_6BN9yRlfzWXkZSJ1535_LElZtLOlQhYNQr4OxysxMP1Ws2V4JfehTsNahX92szuwYYt7sPtFS7DB_C1X4jR95wrJbU1IsXF-VwM60K-s5kYV52qxYCCphFlIQ7T9IvAwojtyUQQcBYHJRcFFKdiXJV32surh3B0Lav5CDpFWdgnIMJcW7RyqgyaQIUBqkDlKox9GygCjdKB98s1zHRDZs49Nc4zSmp4ubN2uR143Ype1Awe_xIasCJaASbdri6Ul6dZ48NZPlVeEClEDALSeIieysPc0FRNFMb51IF3rMaMtwYajMbmhANNiUm2sn7MZHYy9pQDW0tNZ82eMcv-WLgDr9rb5O38CwcLWy5YhgA2vTohmce1YbRjlgQu-QSdA_GayaxNav1OcfatYhRPIkrDZfL0_8N6CTfJ5bLPo8neM7jl8zkQrof0t6Azv1zY54TO5vmLxg0EnFy35_0GK9VMsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Imbalanced+Fault+Diagnosis+Method+Based+on+TFFO+and+CNN+for+Rotating+Machinery&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Long+Zhang&rft.au=Yangyuan+Liu&rft.au=Jianmin+Zhou&rft.au=Muxu+Luo&rft.date=2022-11-12&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=22&rft.spage=8749&rft_id=info:doi/10.3390%2Fs22228749&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bf80468aaa444075a08b5bd17ad657bf |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |