A Novel Baseline Removal Paradigm for Subject-Independent Features in Emotion Classification Using EEG
Emotion plays a vital role in understanding the affective state of mind of an individual. In recent years, emotion classification using electroencephalogram (EEG) has emerged as a key element of affective computing. Many researchers have prepared datasets, such as DEAP and SEED, containing EEG signa...
Saved in:
Published in | Bioengineering (Basel) Vol. 10; no. 1; p. 54 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emotion plays a vital role in understanding the affective state of mind of an individual. In recent years, emotion classification using electroencephalogram (EEG) has emerged as a key element of affective computing. Many researchers have prepared datasets, such as DEAP and SEED, containing EEG signals captured by the elicitation of emotion using audio–visual stimuli, and many studies have been conducted to classify emotions using these datasets. However, baseline power removal is still considered one of the trivial aspects of preprocessing in feature extraction. The most common technique that prevails is subtracting the baseline power from the trial EEG power. In this paper, a novel method called InvBase method is proposed for removing baseline power before extracting features that remain invariant irrespective of the subject. The features extracted from the baseline removed EEG data are then used for classification of two classes of emotion, i.e., valence and arousal. The proposed scheme is compared with subtractive and no-baseline-correction methods. In terms of classification accuracy, it outperforms the existing state-of-art methods in both valence and arousal classification. The InvBase method plus multilayer perceptron shows an improvement of 29% over the no-baseline-correction method and 15% over the subtractive method. |
---|---|
AbstractList | Emotion plays a vital role in understanding the affective state of mind of an individual. In recent years, emotion classification using electroencephalogram (EEG) has emerged as a key element of affective computing. Many researchers have prepared datasets, such as DEAP and SEED, containing EEG signals captured by the elicitation of emotion using audio–visual stimuli, and many studies have been conducted to classify emotions using these datasets. However, baseline power removal is still considered one of the trivial aspects of preprocessing in feature extraction. The most common technique that prevails is subtracting the baseline power from the trial EEG power. In this paper, a novel method called InvBase method is proposed for removing baseline power before extracting features that remain invariant irrespective of the subject. The features extracted from the baseline removed EEG data are then used for classification of two classes of emotion, i.e., valence and arousal. The proposed scheme is compared with subtractive and no-baseline-correction methods. In terms of classification accuracy, it outperforms the existing state-of-art methods in both valence and arousal classification. The InvBase method plus multilayer perceptron shows an improvement of 29% over the no-baseline-correction method and 15% over the subtractive method. Emotion plays a vital role in understanding the affective state of mind of an individual. In recent years, emotion classification using electroencephalogram (EEG) has emerged as a key element of affective computing. Many researchers have prepared datasets, such as DEAP and SEED, containing EEG signals captured by the elicitation of emotion using audio-visual stimuli, and many studies have been conducted to classify emotions using these datasets. However, baseline power removal is still considered one of the trivial aspects of preprocessing in feature extraction. The most common technique that prevails is subtracting the baseline power from the trial EEG power. In this paper, a novel method called InvBase method is proposed for removing baseline power before extracting features that remain invariant irrespective of the subject. The features extracted from the baseline removed EEG data are then used for classification of two classes of emotion, i.e., valence and arousal. The proposed scheme is compared with subtractive and no-baseline-correction methods. In terms of classification accuracy, it outperforms the existing state-of-art methods in both valence and arousal classification. The InvBase method plus multilayer perceptron shows an improvement of 29% over the no-baseline-correction method and 15% over the subtractive method.Emotion plays a vital role in understanding the affective state of mind of an individual. In recent years, emotion classification using electroencephalogram (EEG) has emerged as a key element of affective computing. Many researchers have prepared datasets, such as DEAP and SEED, containing EEG signals captured by the elicitation of emotion using audio-visual stimuli, and many studies have been conducted to classify emotions using these datasets. However, baseline power removal is still considered one of the trivial aspects of preprocessing in feature extraction. The most common technique that prevails is subtracting the baseline power from the trial EEG power. In this paper, a novel method called InvBase method is proposed for removing baseline power before extracting features that remain invariant irrespective of the subject. The features extracted from the baseline removed EEG data are then used for classification of two classes of emotion, i.e., valence and arousal. The proposed scheme is compared with subtractive and no-baseline-correction methods. In terms of classification accuracy, it outperforms the existing state-of-art methods in both valence and arousal classification. The InvBase method plus multilayer perceptron shows an improvement of 29% over the no-baseline-correction method and 15% over the subtractive method. |
Author | Phadikar, Souvik Ghosh, Rajdeep Ahmed, Md. Zaved Iqubal Ghaderpour, Ebrahim Sinha, Nidul |
AuthorAffiliation | 5 School of Computing Science and Engineering, VIT Bhopal University, Bhopal 466114, India 4 Neurology Department, University of Wisconsin-Madison, Madison, WI 53705, USA 2 Department of Electrical Engineering, National Institute of Technology, Silchar 788010, India 3 Department of Earth Sciences and CERI Research Center, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy 1 Department of Computer Science & Engineering, National Institute of Technology, Silchar 788010, India |
AuthorAffiliation_xml | – name: 3 Department of Earth Sciences and CERI Research Center, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy – name: 2 Department of Electrical Engineering, National Institute of Technology, Silchar 788010, India – name: 1 Department of Computer Science & Engineering, National Institute of Technology, Silchar 788010, India – name: 4 Neurology Department, University of Wisconsin-Madison, Madison, WI 53705, USA – name: 5 School of Computing Science and Engineering, VIT Bhopal University, Bhopal 466114, India |
Author_xml | – sequence: 1 givenname: Md. Zaved Iqubal orcidid: 0000-0002-8416-5819 surname: Ahmed fullname: Ahmed, Md. Zaved Iqubal – sequence: 2 givenname: Nidul orcidid: 0000-0003-0410-2154 surname: Sinha fullname: Sinha, Nidul – sequence: 3 givenname: Ebrahim orcidid: 0000-0002-5165-1773 surname: Ghaderpour fullname: Ghaderpour, Ebrahim – sequence: 4 givenname: Souvik orcidid: 0000-0002-7122-2095 surname: Phadikar fullname: Phadikar, Souvik – sequence: 5 givenname: Rajdeep orcidid: 0000-0002-8045-0137 surname: Ghosh fullname: Ghosh, Rajdeep |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36671626$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1rFDEUhoNUbK39CyXgjTej-Z4MiFCXbV0oKmqvQyZzZs0yk6zJzIL_3nS3lbYIQsjne568yTkv0VGIARA6p-Qt5w151_oIYe0DQPJhTQkpTYpn6IRxoirJpTh6MD9GZzlvSFFxJpkSL9AxV6qmiqkT1F_gz3EHA_5oMwwFib_BGHd2wF9tsp1fj7iPCX-f2w24qVqFDrZQujDhS7DTnCBjH_ByjJOPAS8Gm7PvvbP75U0u_vByefUKPe_tkOHsbjxFN5fLH4tP1fWXq9Xi4rpykuipAtU0SjQdb3VLVK8aQjXnFkjDldCNlLqFTgIIpYiSoG2Zut51wlkNnAI_RasDt4t2Y7bJjzb9NtF6s9-IaW1smrwbwAjtemKhplZz0cpCr2kvJaPMCi0kK6wPB9Z2bkfoXHlzssMj6OOT4H-addyZRktRs7oA3twBUvw1Q57M6LODYbAB4pwNq5VmgoqaF-nrJ9JNnFMoX3WrKrmSTMqiOn_o6K-V-3QWwfuDwKWYc4LeOD_tU1EM-sFQYm4LyPy7gEq4ehJ-f8N_Av8AaUDOxw |
CitedBy_id | crossref_primary_10_3390_bioengineering11010030 crossref_primary_10_1016_j_dsim_2025_02_003 crossref_primary_10_1016_j_neuroimage_2025_121123 crossref_primary_10_1109_JSEN_2024_3356579 crossref_primary_10_1016_j_chb_2024_108351 crossref_primary_10_1109_ACCESS_2024_3428700 crossref_primary_10_3390_app13031605 crossref_primary_10_3389_fpsyt_2023_1256571 crossref_primary_10_3389_fpsyg_2023_1141801 crossref_primary_10_3389_fnins_2023_1330077 crossref_primary_10_3390_brainsci15020135 crossref_primary_10_1016_j_compeleceng_2024_110019 crossref_primary_10_1007_s00221_025_07002_1 crossref_primary_10_1016_j_jestch_2024_101855 crossref_primary_10_1016_j_eswa_2025_126898 crossref_primary_10_1109_JSEN_2024_3358400 crossref_primary_10_3390_s24185883 crossref_primary_10_1038_s41598_025_87569_5 crossref_primary_10_3390_math13010087 crossref_primary_10_3390_s23084112 crossref_primary_10_3390_diagnostics13132141 crossref_primary_10_1109_JSEN_2024_3390799 crossref_primary_10_1109_ACCESS_2023_3319248 crossref_primary_10_1109_ACCESS_2024_3360328 crossref_primary_10_3390_math12131989 |
Cites_doi | 10.1109/JSTARS.2022.3196611 10.3389/fncom.2022.1019776 10.1109/T-AFFC.2011.15 10.1109/TNNLS.2013.2280271 10.1186/s40708-019-0100-y 10.1109/79.581363 10.1109/TAMD.2015.2431497 10.1109/IJCNN.2009.5178748 10.1155/2017/8317357 10.1109/CCIS.2018.8691174 10.1109/IJCNN.2018.8489331 10.1007/978-3-642-34500-5_47 10.1109/ICASSP.2009.4959627 10.1109/TITB.2011.2157933 10.1007/s40708-017-0069-3 10.1109/HealthCom.2016.7749447 10.1007/978-3-642-35139-6_17 10.3390/s22062346 10.1109/T-AFFC.2010.7 10.3390/plants11202668 10.1109/MC.2008.407 10.1088/1741-2552/aa5a98 10.1088/0967-3334/27/4/008 10.1007/s10291-019-0841-3 10.1145/1980022.1980053 10.1007/s12652-020-02381-5 10.1097/00006324-199511000-00013 10.1038/nrn4044 10.3390/signals3030035 10.1109/TAFFC.2017.2660485 10.1109/NER.2013.6695876 10.1109/TITB.2010.2041553 10.1109/TAFFC.2017.2714671 10.1007/s11004-017-9691-0 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/bioengineering10010054 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database ProQuest Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2306-5354 |
ExternalDocumentID | oai_doaj_org_article_48cf0ae71a834b589571f55212a48452 PMC9854727 36671626 10_3390_bioengineering10010054 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AAFWJ AAYXX ABDBF ABJCF ACUHS ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC KQ8 L6V LK8 M7P M7S MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c508t-e699649d3b8b06f6901833ae0936489558bed5ee466065e8aee4cfcd4ca8e31e3 |
IEDL.DBID | DOA |
ISSN | 2306-5354 |
IngestDate | Wed Aug 27 01:02:59 EDT 2025 Thu Aug 21 18:38:47 EDT 2025 Thu Jul 10 17:13:08 EDT 2025 Fri Jul 25 11:51:53 EDT 2025 Thu Jan 02 22:53:11 EST 2025 Thu Apr 24 23:01:07 EDT 2025 Tue Jul 01 03:12:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | inverse filtering baseline removal EEG emotion classification |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-e699649d3b8b06f6901833ae0936489558bed5ee466065e8aee4cfcd4ca8e31e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0410-2154 0000-0002-7122-2095 0000-0002-8416-5819 0000-0002-5165-1773 0000-0002-8045-0137 |
OpenAccessLink | https://doaj.org/article/48cf0ae71a834b589571f55212a48452 |
PMID | 36671626 |
PQID | 2767165255 |
PQPubID | 2055440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_48cf0ae71a834b589571f55212a48452 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9854727 proquest_miscellaneous_2768241473 proquest_journals_2767165255 pubmed_primary_36671626 crossref_citationtrail_10_3390_bioengineering10010054 crossref_primary_10_3390_bioengineering10010054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 2023-Jan-01 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Bioengineering (Basel) |
PublicationTitleAlternate | Bioengineering (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Koelstra (ref_8) 2011; 3 Ghaderpour (ref_11) 2017; 49 Petrantonakis (ref_24) 2011; 15 ref_10 Grobbelaar (ref_20) 2022; 3 ref_32 ref_31 Chakravarthi (ref_38) 2022; 16 ref_19 ref_18 Polat (ref_22) 2017; 4 Marg (ref_2) 1995; 72 ref_17 ref_39 Zheng (ref_1) 2015; 7 ref_37 Rani (ref_4) 2003; Volume 5 Fraiwan (ref_33) 2021; 12 Ghaderpour (ref_26) 2019; 23 Khosrowabadi (ref_14) 2014; 25 Dastour (ref_36) 2022; 15 Zheng (ref_12) 2017; 14 ref_25 ref_21 Brunner (ref_7) 2008; 41 Liu (ref_13) 2018; 9 Li (ref_16) 2006; 27 Yan (ref_35) 2019; 6 Alarcao (ref_15) 2017; 10 ref_29 ref_28 Etkin (ref_3) 2015; 16 ref_27 ref_9 Petrantonakis (ref_23) 2010; 1 Mehmood (ref_30) 2017; 4 Frantzidis (ref_5) 2010; 14 ref_6 Banham (ref_34) 1997; 14 |
References_xml | – volume: 15 start-page: 6402 year: 2022 ident: ref_36 article-title: A Combined Approach for Monitoring Monthly Surface Water/Ice Dynamics of Lesser Slave Lake Via Earth Observation Data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. doi: 10.1109/JSTARS.2022.3196611 – volume: 16 start-page: 1019776 year: 2022 ident: ref_38 article-title: EEG-based emotion recognition using hybrid CNN and LSTM classification publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2022.1019776 – volume: 3 start-page: 18 year: 2011 ident: ref_8 article-title: DEAP: A database for Emotion Analysis; using Physiological Signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – volume: 25 start-page: 609 year: 2014 ident: ref_14 article-title: ERNN: A Biologically Inspired Feedforward Neural Network to Discriminate Emotion from EEG signal publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2013.2280271 – volume: 6 start-page: 7 year: 2019 ident: ref_35 article-title: A EEG-based Emotion Recognition model with Rhythm and Time Characteristics publication-title: Brain Inform. doi: 10.1186/s40708-019-0100-y – volume: 14 start-page: 24 year: 1997 ident: ref_34 article-title: Digital Image Restoration publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.581363 – volume: 7 start-page: 162 year: 2015 ident: ref_1 article-title: Investigating Critical Frequency bands and channels for EEG-based Emotion Recognition with Deep Neural Networks publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – ident: ref_32 doi: 10.1109/IJCNN.2009.5178748 – ident: ref_6 doi: 10.1155/2017/8317357 – ident: ref_18 doi: 10.1109/CCIS.2018.8691174 – ident: ref_19 doi: 10.1109/IJCNN.2018.8489331 – ident: ref_31 doi: 10.1007/978-3-642-34500-5_47 – ident: ref_27 doi: 10.1109/ICASSP.2009.4959627 – volume: 15 start-page: 737 year: 2011 ident: ref_24 article-title: A novel Emotion Elicitation Index using Frontal Brain Asymmetry for Enhanced EEG-based Emotion Recognition publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2011.2157933 – volume: 4 start-page: 241 year: 2017 ident: ref_22 article-title: Emotion Recognition based on EEG features in Movie Clips with Channel Selection publication-title: Brain Inform. doi: 10.1007/s40708-017-0069-3 – ident: ref_37 – ident: ref_28 doi: 10.1109/HealthCom.2016.7749447 – volume: 4 start-page: 5 year: 2017 ident: ref_30 article-title: Optimal Feature Selection and Deep learning Ensembles method for Emotion Recognition from Human Brain EEG sensors publication-title: Cities – ident: ref_29 doi: 10.1007/978-3-642-35139-6_17 – ident: ref_25 doi: 10.3390/s22062346 – volume: 1 start-page: 81 year: 2010 ident: ref_23 article-title: Emotion Recognition from Brain Signals using Hybrid Adaptive Filtering and Higher Order Crossings analysis publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2010.7 – ident: ref_39 doi: 10.3390/plants11202668 – volume: 41 start-page: 44 year: 2008 ident: ref_7 article-title: BioSig: A Free and Open Source Software Library for BCI Research publication-title: Computer doi: 10.1109/MC.2008.407 – volume: 14 start-page: 026017 year: 2017 ident: ref_12 article-title: A Multimodal approach to Estimating Vigilance using EEG and forehead EOG publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa5a98 – volume: 27 start-page: 425 year: 2006 ident: ref_16 article-title: Automatic Removal of the Eye blink Artifact from EEG using an ICA-based Template Matching approach publication-title: Physiol. Meas. doi: 10.1088/0967-3334/27/4/008 – volume: 23 start-page: 50 year: 2019 ident: ref_26 article-title: LSWAVE: A MATLAB software for the least-squares wavelet and cross-wavelet analyses publication-title: GPS Solut. doi: 10.1007/s10291-019-0841-3 – ident: ref_9 doi: 10.1145/1980022.1980053 – volume: Volume 5 start-page: 4896 year: 2003 ident: ref_4 article-title: Affective Communication for Implicit Human-Machine Interaction publication-title: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics – ident: ref_10 – volume: 12 start-page: 2435 year: 2021 ident: ref_33 article-title: Gauging human visual interest using multiscale entropy analysis of EEG signals publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-020-02381-5 – volume: 72 start-page: 847 year: 1995 ident: ref_2 article-title: DESCARTES’ ERROR: Emotion, Reason, and the Human Brain publication-title: Optom. Vis. Sci. doi: 10.1097/00006324-199511000-00013 – volume: 16 start-page: 693 year: 2015 ident: ref_3 article-title: The Neural Bases of Emotion Regulation publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn4044 – volume: 3 start-page: 577 year: 2022 ident: ref_20 article-title: A Survey on Denoising Techniques of Electroencephalogram Signals Using Wavelet Transform publication-title: Signals doi: 10.3390/signals3030035 – ident: ref_17 – volume: 9 start-page: 550 year: 2018 ident: ref_13 article-title: Real-time Movie-induced Discrete Emotion Recognition from EEG signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2660485 – ident: ref_21 doi: 10.1109/NER.2013.6695876 – volume: 14 start-page: 589 year: 2010 ident: ref_5 article-title: Toward Emotion aware Computing: An Integrated approach using Multichannel Neurophysiological Recordings and Affective Visual Stimuli publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2010.2041553 – volume: 10 start-page: 374 year: 2017 ident: ref_15 article-title: Emotions Recognition using EEG signals: A survey publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2714671 – volume: 49 start-page: 819 year: 2017 ident: ref_11 article-title: Least-squares wavelet analysis of unequally spaced and non-stationary time series and its applications publication-title: Math. Geosci. doi: 10.1007/s11004-017-9691-0 |
SSID | ssj0001325264 |
Score | 2.4046643 |
Snippet | Emotion plays a vital role in understanding the affective state of mind of an individual. In recent years, emotion classification using electroencephalogram... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 54 |
SubjectTerms | Affective computing Arousal baseline removal Bioengineering Brain research Classification Datasets Discriminant analysis EEG Electroencephalography emotion classification Emotional behavior Emotions Feature extraction inverse filtering Multilayer perceptrons Neural networks Physiology Support vector machines Visual signals Visual stimuli Wavelet transforms |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fT9swED5t5WV7mPabbGzypL1aTWM7cZ4QRQE2aRVCQ-Itsp0LqwQJK-3-fs6Jm1KExlsU25KTu7O_O5-_A_hOCNnlUiFPbOw4aYjg2lrJnSFjcs4K5fxF4V-z9ORc_rxQFyHgdhvSKtdrYrdQV63zMfJxkqUE7RUh4P2bv9xXjfKnq6GExnPYoSVY6xHsTIvZ6dkmyiISRVt-fzVYkH8_tvMWN0x_noHIo5atXakj738McT5MnLy3Ex29hlcBQrKDXuZv4Bk2b-HlPWLBd1AfsFn7D6_Y1HQXzpGd4XVLSsVOzcJU88trRmCV0arhwzD8x1ALd8k8JlyRD87mDSv6Gj-sq5zpc4o6MbIuzYAVxfF7OD8qfh-e8FBRgTsCYkuOKbk3Mq-E1TZOa1-MSgthMM5FKnWulLZYKUSZkl-jUBt6dLWrpDMaxQTFBxg1bYO7wBDrTBtRE_ybSJMa64zn8stylHGttYtArf9o6QLduK96cVWS2-ElUT4uiQjGw7ibnnDjyRFTL7ChtyfM7l60i8sy2F8ptatjg9nEaCGtom_NJrXyF5eN1FIlEeytxV0GK74tNzoXwbehmezPH6qYBttV10cTCpKZiOBjrx3DTETqxydpBNmW3mxNdbulmf_pOL5zrSRBy0__n9ZneJEQ6OpDQnswWi5W-IVA0tJ-DZZwB29-Fj8 priority: 102 providerName: ProQuest |
Title | A Novel Baseline Removal Paradigm for Subject-Independent Features in Emotion Classification Using EEG |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36671626 https://www.proquest.com/docview/2767165255 https://www.proquest.com/docview/2768241473 https://pubmed.ncbi.nlm.nih.gov/PMC9854727 https://doaj.org/article/48cf0ae71a834b589571f55212a48452 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swED4xeGEP08bYlg0qT9pr1DT-Eeex2VLYJCqEhsRbZLuXrRIkE2v5-zk7IWsREi97ShTbkuO7i79z7r4D-EII2eVCYpzaxMWkITzW1orYGTIm5yyXzicKn83V6aX4cSWvNkp9-Ziwjh64W7ix0K5ODGYTo7mwUucym9TSZ5waoYUMX1_a8zacqXC6wlNJW32XEszJrx_bZYv_GP4885BHK1u7USDtfwppPg6Y3NiBZq_hVQ8d2bSb8hvYweYAXm4QCr6Fesrm7R1es8KERHNkF3jTkjKxc3NrFstfN4xAKqOvhT9-ib8PNXBXzGPBNfnebNmwsqvtw0LFTB9LFMTHQngBK8uTQ7iclT-_nsZ9JYXYEQBbxajIrRH5glttE1X7IlSac4NJzpWgJZXa4kIiCkX-jERt6NbVbiGc0cgnyN_BbtM2-AEYYp1pw2uCfRNhlLHOeA6_LEeR1Fq7COTDilaupxn31S6uK3I3vCSqpyURwXgY96cj2nh2ROEFNvT2RNnhAalP1atP9Zz6RHD0IO6qt96_VZopciMleVsRfB6aye78zxTTYLsOfTShH5HxCN532jHMhCs_PlURZFt6szXV7ZZm-Ttwe-daCoKUH__Hu32C_ZQgWTgwyo9gd3W7xmOCUCs7ghd6djKCvWnxrZjRtSjn5xejYEP3SIwf6Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N8QA8IL4JDDASPEZtYztxHhDaoF3LtgqhTdpbsJ3LqLQlo2tB_FP8jZydj65ogqe9RbEdOb47-3e2734Abwgh21RIDCPTtyFpCA-VMSK0mozJWsOldYHCB9N4fCQ-HcvjDfjdxsK4a5XtnOgn6ryybo-8FyUxQXtJCPj9-ffQsUa509WWQqNWiz389ZNctot3k48k37dRNBoefhiHDatAaAmMLEKMCeKLNOdGmX5cOEImxblGcu1joVIplcFcIoqYsL1EpenRFjYXVivkA-T03RtwU3BayV1k-mh3tafDI0kAow5EpvJ-z8wqXOUVdPmOHEZaWwM9VcBV-Pbva5qX1r3RPbjbAFa2XWvYfdjA8gHcuZTG8CEU22xa_cBTtqN9eDuyL3hWkQqzz3qu89nJGSNozGiOcps-4aRj3l0wh0CX5PGzWcmGNaMQ8zyd7gaTVxrmLzWw4XD3ERxdy0g_hs2yKvEpMMQiUZoXBDYHQsfaWO0yByYpin6hlA1AtiOa2Sa5uePYOM3IyXGSyK6WRAC9rt15nd7jvy12nMC62i49t39RzU-yxtozoWzR15gMtOLCSPrXZFBIFyathRIyCmCrFXfWzBkX2UrDA3jdFZO1uyMcXWK19HUUYS6R8ACe1NrR9YTHrn0UB5Cs6c1aV9dLytk3n1E8VVIQkH327269glvjw4P9bH8y3XsOtyOCe_Vm1BZsLuZLfEHwbGFeeptg8PW6jfAPJJ1R0w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMBI8Bi1je3EeUBoZSkrg6qamLS3YDuXUWlLRteC-Nf46zjnqyua4GlvUWJHju_O-Z19dz-A14SQbSwk-oEZWJ80hPvKGOFbTcZkreHSukThz9Nw_0h8PJbHW_C7zYVxYZXtmlgt1Flp3R55P4hCgvaSEHA_b8IiZnvjd-fffccg5U5aWzqNWkUO8NdPct8u3k72SNZvgmCcfHm_7zcMA74lYLL0MSS4L-KMG2UGYe7ImRTnGsnND4WKpVQGM4koQsL5EpWmS5vbTFitkA-R03tvwHbkvKIebI-S6exwvcPDA0lwo05L5jwe9M28xHWVQVf9yCGmjT9iRRxwFdr9O2jz0l9wfBfuNPCV7db6dg-2sLgPty8VNXwA-S6blj_wlI10leyO7BDPSlJoNtMLnc1PzhgBZUYrltsC8icdD--SOTy6Iv-fzQuW1PxCrGLtdPFMlQqxKsSBJcmHh3B0LXP9CHpFWeATYIh5pDTPCXoOhQ61sdrVEYxiFINcKeuBbGc0tU2pc8e4cZqSy-MkkV4tCQ_6Xb_zutjHf3uMnMC61q5Yd3WjXJykje2nQtl8oDEaasWFkfSt0TCXLmlaCyVk4MFOK-60WUEu0rW-e_Cqe0y27w50dIHlqmqjCIGJiHvwuNaObiQ8dP2D0INoQ282hrr5pJh_q-qLx0oKgrVP_z2sl3CTDDD9NJkePINbAWG_emdqB3rLxQqfE1ZbmheNUTD4et12-Ac791dl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Baseline+Removal+Paradigm+for+Subject-Independent+Features+in+Emotion+Classification+Using+EEG&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Ahmed%2C+Md+Zaved+Iqubal&rft.au=Sinha%2C+Nidul&rft.au=Ghaderpour%2C+Ebrahim&rft.au=Phadikar%2C+Souvik&rft.date=2023-01-01&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=10&rft.issue=1&rft_id=info:doi/10.3390%2Fbioengineering10010054&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon |