A Novel Baseline Removal Paradigm for Subject-Independent Features in Emotion Classification Using EEG

Emotion plays a vital role in understanding the affective state of mind of an individual. In recent years, emotion classification using electroencephalogram (EEG) has emerged as a key element of affective computing. Many researchers have prepared datasets, such as DEAP and SEED, containing EEG signa...

Full description

Saved in:
Bibliographic Details
Published inBioengineering (Basel) Vol. 10; no. 1; p. 54
Main Authors Ahmed, Md. Zaved Iqubal, Sinha, Nidul, Ghaderpour, Ebrahim, Phadikar, Souvik, Ghosh, Rajdeep
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emotion plays a vital role in understanding the affective state of mind of an individual. In recent years, emotion classification using electroencephalogram (EEG) has emerged as a key element of affective computing. Many researchers have prepared datasets, such as DEAP and SEED, containing EEG signals captured by the elicitation of emotion using audio–visual stimuli, and many studies have been conducted to classify emotions using these datasets. However, baseline power removal is still considered one of the trivial aspects of preprocessing in feature extraction. The most common technique that prevails is subtracting the baseline power from the trial EEG power. In this paper, a novel method called InvBase method is proposed for removing baseline power before extracting features that remain invariant irrespective of the subject. The features extracted from the baseline removed EEG data are then used for classification of two classes of emotion, i.e., valence and arousal. The proposed scheme is compared with subtractive and no-baseline-correction methods. In terms of classification accuracy, it outperforms the existing state-of-art methods in both valence and arousal classification. The InvBase method plus multilayer perceptron shows an improvement of 29% over the no-baseline-correction method and 15% over the subtractive method.
AbstractList Emotion plays a vital role in understanding the affective state of mind of an individual. In recent years, emotion classification using electroencephalogram (EEG) has emerged as a key element of affective computing. Many researchers have prepared datasets, such as DEAP and SEED, containing EEG signals captured by the elicitation of emotion using audio–visual stimuli, and many studies have been conducted to classify emotions using these datasets. However, baseline power removal is still considered one of the trivial aspects of preprocessing in feature extraction. The most common technique that prevails is subtracting the baseline power from the trial EEG power. In this paper, a novel method called InvBase method is proposed for removing baseline power before extracting features that remain invariant irrespective of the subject. The features extracted from the baseline removed EEG data are then used for classification of two classes of emotion, i.e., valence and arousal. The proposed scheme is compared with subtractive and no-baseline-correction methods. In terms of classification accuracy, it outperforms the existing state-of-art methods in both valence and arousal classification. The InvBase method plus multilayer perceptron shows an improvement of 29% over the no-baseline-correction method and 15% over the subtractive method.
Emotion plays a vital role in understanding the affective state of mind of an individual. In recent years, emotion classification using electroencephalogram (EEG) has emerged as a key element of affective computing. Many researchers have prepared datasets, such as DEAP and SEED, containing EEG signals captured by the elicitation of emotion using audio-visual stimuli, and many studies have been conducted to classify emotions using these datasets. However, baseline power removal is still considered one of the trivial aspects of preprocessing in feature extraction. The most common technique that prevails is subtracting the baseline power from the trial EEG power. In this paper, a novel method called InvBase method is proposed for removing baseline power before extracting features that remain invariant irrespective of the subject. The features extracted from the baseline removed EEG data are then used for classification of two classes of emotion, i.e., valence and arousal. The proposed scheme is compared with subtractive and no-baseline-correction methods. In terms of classification accuracy, it outperforms the existing state-of-art methods in both valence and arousal classification. The InvBase method plus multilayer perceptron shows an improvement of 29% over the no-baseline-correction method and 15% over the subtractive method.Emotion plays a vital role in understanding the affective state of mind of an individual. In recent years, emotion classification using electroencephalogram (EEG) has emerged as a key element of affective computing. Many researchers have prepared datasets, such as DEAP and SEED, containing EEG signals captured by the elicitation of emotion using audio-visual stimuli, and many studies have been conducted to classify emotions using these datasets. However, baseline power removal is still considered one of the trivial aspects of preprocessing in feature extraction. The most common technique that prevails is subtracting the baseline power from the trial EEG power. In this paper, a novel method called InvBase method is proposed for removing baseline power before extracting features that remain invariant irrespective of the subject. The features extracted from the baseline removed EEG data are then used for classification of two classes of emotion, i.e., valence and arousal. The proposed scheme is compared with subtractive and no-baseline-correction methods. In terms of classification accuracy, it outperforms the existing state-of-art methods in both valence and arousal classification. The InvBase method plus multilayer perceptron shows an improvement of 29% over the no-baseline-correction method and 15% over the subtractive method.
Author Phadikar, Souvik
Ghosh, Rajdeep
Ahmed, Md. Zaved Iqubal
Ghaderpour, Ebrahim
Sinha, Nidul
AuthorAffiliation 5 School of Computing Science and Engineering, VIT Bhopal University, Bhopal 466114, India
4 Neurology Department, University of Wisconsin-Madison, Madison, WI 53705, USA
2 Department of Electrical Engineering, National Institute of Technology, Silchar 788010, India
3 Department of Earth Sciences and CERI Research Center, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
1 Department of Computer Science & Engineering, National Institute of Technology, Silchar 788010, India
AuthorAffiliation_xml – name: 3 Department of Earth Sciences and CERI Research Center, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
– name: 2 Department of Electrical Engineering, National Institute of Technology, Silchar 788010, India
– name: 1 Department of Computer Science & Engineering, National Institute of Technology, Silchar 788010, India
– name: 4 Neurology Department, University of Wisconsin-Madison, Madison, WI 53705, USA
– name: 5 School of Computing Science and Engineering, VIT Bhopal University, Bhopal 466114, India
Author_xml – sequence: 1
  givenname: Md. Zaved Iqubal
  orcidid: 0000-0002-8416-5819
  surname: Ahmed
  fullname: Ahmed, Md. Zaved Iqubal
– sequence: 2
  givenname: Nidul
  orcidid: 0000-0003-0410-2154
  surname: Sinha
  fullname: Sinha, Nidul
– sequence: 3
  givenname: Ebrahim
  orcidid: 0000-0002-5165-1773
  surname: Ghaderpour
  fullname: Ghaderpour, Ebrahim
– sequence: 4
  givenname: Souvik
  orcidid: 0000-0002-7122-2095
  surname: Phadikar
  fullname: Phadikar, Souvik
– sequence: 5
  givenname: Rajdeep
  orcidid: 0000-0002-8045-0137
  surname: Ghosh
  fullname: Ghosh, Rajdeep
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36671626$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEUhoNUbK39CyXgjTej-Z4MiFCXbV0oKmqvQyZzZs0yk6zJzIL_3nS3lbYIQsjne568yTkv0VGIARA6p-Qt5w151_oIYe0DQPJhTQkpTYpn6IRxoirJpTh6MD9GZzlvSFFxJpkSL9AxV6qmiqkT1F_gz3EHA_5oMwwFib_BGHd2wF9tsp1fj7iPCX-f2w24qVqFDrZQujDhS7DTnCBjH_ByjJOPAS8Gm7PvvbP75U0u_vByefUKPe_tkOHsbjxFN5fLH4tP1fWXq9Xi4rpykuipAtU0SjQdb3VLVK8aQjXnFkjDldCNlLqFTgIIpYiSoG2Zut51wlkNnAI_RasDt4t2Y7bJjzb9NtF6s9-IaW1smrwbwAjtemKhplZz0cpCr2kvJaPMCi0kK6wPB9Z2bkfoXHlzssMj6OOT4H-addyZRktRs7oA3twBUvw1Q57M6LODYbAB4pwNq5VmgoqaF-nrJ9JNnFMoX3WrKrmSTMqiOn_o6K-V-3QWwfuDwKWYc4LeOD_tU1EM-sFQYm4LyPy7gEq4ehJ-f8N_Av8AaUDOxw
CitedBy_id crossref_primary_10_3390_bioengineering11010030
crossref_primary_10_1016_j_dsim_2025_02_003
crossref_primary_10_1016_j_neuroimage_2025_121123
crossref_primary_10_1109_JSEN_2024_3356579
crossref_primary_10_1016_j_chb_2024_108351
crossref_primary_10_1109_ACCESS_2024_3428700
crossref_primary_10_3390_app13031605
crossref_primary_10_3389_fpsyt_2023_1256571
crossref_primary_10_3389_fpsyg_2023_1141801
crossref_primary_10_3389_fnins_2023_1330077
crossref_primary_10_3390_brainsci15020135
crossref_primary_10_1016_j_compeleceng_2024_110019
crossref_primary_10_1007_s00221_025_07002_1
crossref_primary_10_1016_j_jestch_2024_101855
crossref_primary_10_1016_j_eswa_2025_126898
crossref_primary_10_1109_JSEN_2024_3358400
crossref_primary_10_3390_s24185883
crossref_primary_10_1038_s41598_025_87569_5
crossref_primary_10_3390_math13010087
crossref_primary_10_3390_s23084112
crossref_primary_10_3390_diagnostics13132141
crossref_primary_10_1109_JSEN_2024_3390799
crossref_primary_10_1109_ACCESS_2023_3319248
crossref_primary_10_1109_ACCESS_2024_3360328
crossref_primary_10_3390_math12131989
Cites_doi 10.1109/JSTARS.2022.3196611
10.3389/fncom.2022.1019776
10.1109/T-AFFC.2011.15
10.1109/TNNLS.2013.2280271
10.1186/s40708-019-0100-y
10.1109/79.581363
10.1109/TAMD.2015.2431497
10.1109/IJCNN.2009.5178748
10.1155/2017/8317357
10.1109/CCIS.2018.8691174
10.1109/IJCNN.2018.8489331
10.1007/978-3-642-34500-5_47
10.1109/ICASSP.2009.4959627
10.1109/TITB.2011.2157933
10.1007/s40708-017-0069-3
10.1109/HealthCom.2016.7749447
10.1007/978-3-642-35139-6_17
10.3390/s22062346
10.1109/T-AFFC.2010.7
10.3390/plants11202668
10.1109/MC.2008.407
10.1088/1741-2552/aa5a98
10.1088/0967-3334/27/4/008
10.1007/s10291-019-0841-3
10.1145/1980022.1980053
10.1007/s12652-020-02381-5
10.1097/00006324-199511000-00013
10.1038/nrn4044
10.3390/signals3030035
10.1109/TAFFC.2017.2660485
10.1109/NER.2013.6695876
10.1109/TITB.2010.2041553
10.1109/TAFFC.2017.2714671
10.1007/s11004-017-9691-0
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/bioengineering10010054
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
ProQuest Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed

CrossRef
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_48cf0ae71a834b589571f55212a48452
PMC9854727
36671626
10_3390_bioengineering10010054
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c508t-e699649d3b8b06f6901833ae0936489558bed5ee466065e8aee4cfcd4ca8e31e3
IEDL.DBID DOA
ISSN 2306-5354
IngestDate Wed Aug 27 01:02:59 EDT 2025
Thu Aug 21 18:38:47 EDT 2025
Thu Jul 10 17:13:08 EDT 2025
Fri Jul 25 11:51:53 EDT 2025
Thu Jan 02 22:53:11 EST 2025
Thu Apr 24 23:01:07 EDT 2025
Tue Jul 01 03:12:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords inverse filtering
baseline removal
EEG
emotion classification
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-e699649d3b8b06f6901833ae0936489558bed5ee466065e8aee4cfcd4ca8e31e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0410-2154
0000-0002-7122-2095
0000-0002-8416-5819
0000-0002-5165-1773
0000-0002-8045-0137
OpenAccessLink https://doaj.org/article/48cf0ae71a834b589571f55212a48452
PMID 36671626
PQID 2767165255
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_48cf0ae71a834b589571f55212a48452
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9854727
proquest_miscellaneous_2768241473
proquest_journals_2767165255
pubmed_primary_36671626
crossref_citationtrail_10_3390_bioengineering10010054
crossref_primary_10_3390_bioengineering10010054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
2023-Jan-01
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Koelstra (ref_8) 2011; 3
Ghaderpour (ref_11) 2017; 49
Petrantonakis (ref_24) 2011; 15
ref_10
Grobbelaar (ref_20) 2022; 3
ref_32
ref_31
Chakravarthi (ref_38) 2022; 16
ref_19
ref_18
Polat (ref_22) 2017; 4
Marg (ref_2) 1995; 72
ref_17
ref_39
Zheng (ref_1) 2015; 7
ref_37
Rani (ref_4) 2003; Volume 5
Fraiwan (ref_33) 2021; 12
Ghaderpour (ref_26) 2019; 23
Khosrowabadi (ref_14) 2014; 25
Dastour (ref_36) 2022; 15
Zheng (ref_12) 2017; 14
ref_25
ref_21
Brunner (ref_7) 2008; 41
Liu (ref_13) 2018; 9
Li (ref_16) 2006; 27
Yan (ref_35) 2019; 6
Alarcao (ref_15) 2017; 10
ref_29
ref_28
Etkin (ref_3) 2015; 16
ref_27
ref_9
Petrantonakis (ref_23) 2010; 1
Mehmood (ref_30) 2017; 4
Frantzidis (ref_5) 2010; 14
ref_6
Banham (ref_34) 1997; 14
References_xml – volume: 15
  start-page: 6402
  year: 2022
  ident: ref_36
  article-title: A Combined Approach for Monitoring Monthly Surface Water/Ice Dynamics of Lesser Slave Lake Via Earth Observation Data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens.
  doi: 10.1109/JSTARS.2022.3196611
– volume: 16
  start-page: 1019776
  year: 2022
  ident: ref_38
  article-title: EEG-based emotion recognition using hybrid CNN and LSTM classification
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2022.1019776
– volume: 3
  start-page: 18
  year: 2011
  ident: ref_8
  article-title: DEAP: A database for Emotion Analysis; using Physiological Signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 25
  start-page: 609
  year: 2014
  ident: ref_14
  article-title: ERNN: A Biologically Inspired Feedforward Neural Network to Discriminate Emotion from EEG signal
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2280271
– volume: 6
  start-page: 7
  year: 2019
  ident: ref_35
  article-title: A EEG-based Emotion Recognition model with Rhythm and Time Characteristics
  publication-title: Brain Inform.
  doi: 10.1186/s40708-019-0100-y
– volume: 14
  start-page: 24
  year: 1997
  ident: ref_34
  article-title: Digital Image Restoration
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.581363
– volume: 7
  start-page: 162
  year: 2015
  ident: ref_1
  article-title: Investigating Critical Frequency bands and channels for EEG-based Emotion Recognition with Deep Neural Networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
– ident: ref_32
  doi: 10.1109/IJCNN.2009.5178748
– ident: ref_6
  doi: 10.1155/2017/8317357
– ident: ref_18
  doi: 10.1109/CCIS.2018.8691174
– ident: ref_19
  doi: 10.1109/IJCNN.2018.8489331
– ident: ref_31
  doi: 10.1007/978-3-642-34500-5_47
– ident: ref_27
  doi: 10.1109/ICASSP.2009.4959627
– volume: 15
  start-page: 737
  year: 2011
  ident: ref_24
  article-title: A novel Emotion Elicitation Index using Frontal Brain Asymmetry for Enhanced EEG-based Emotion Recognition
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2011.2157933
– volume: 4
  start-page: 241
  year: 2017
  ident: ref_22
  article-title: Emotion Recognition based on EEG features in Movie Clips with Channel Selection
  publication-title: Brain Inform.
  doi: 10.1007/s40708-017-0069-3
– ident: ref_37
– ident: ref_28
  doi: 10.1109/HealthCom.2016.7749447
– volume: 4
  start-page: 5
  year: 2017
  ident: ref_30
  article-title: Optimal Feature Selection and Deep learning Ensembles method for Emotion Recognition from Human Brain EEG sensors
  publication-title: Cities
– ident: ref_29
  doi: 10.1007/978-3-642-35139-6_17
– ident: ref_25
  doi: 10.3390/s22062346
– volume: 1
  start-page: 81
  year: 2010
  ident: ref_23
  article-title: Emotion Recognition from Brain Signals using Hybrid Adaptive Filtering and Higher Order Crossings analysis
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2010.7
– ident: ref_39
  doi: 10.3390/plants11202668
– volume: 41
  start-page: 44
  year: 2008
  ident: ref_7
  article-title: BioSig: A Free and Open Source Software Library for BCI Research
  publication-title: Computer
  doi: 10.1109/MC.2008.407
– volume: 14
  start-page: 026017
  year: 2017
  ident: ref_12
  article-title: A Multimodal approach to Estimating Vigilance using EEG and forehead EOG
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa5a98
– volume: 27
  start-page: 425
  year: 2006
  ident: ref_16
  article-title: Automatic Removal of the Eye blink Artifact from EEG using an ICA-based Template Matching approach
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/27/4/008
– volume: 23
  start-page: 50
  year: 2019
  ident: ref_26
  article-title: LSWAVE: A MATLAB software for the least-squares wavelet and cross-wavelet analyses
  publication-title: GPS Solut.
  doi: 10.1007/s10291-019-0841-3
– ident: ref_9
  doi: 10.1145/1980022.1980053
– volume: Volume 5
  start-page: 4896
  year: 2003
  ident: ref_4
  article-title: Affective Communication for Implicit Human-Machine Interaction
  publication-title: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
– ident: ref_10
– volume: 12
  start-page: 2435
  year: 2021
  ident: ref_33
  article-title: Gauging human visual interest using multiscale entropy analysis of EEG signals
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-02381-5
– volume: 72
  start-page: 847
  year: 1995
  ident: ref_2
  article-title: DESCARTES’ ERROR: Emotion, Reason, and the Human Brain
  publication-title: Optom. Vis. Sci.
  doi: 10.1097/00006324-199511000-00013
– volume: 16
  start-page: 693
  year: 2015
  ident: ref_3
  article-title: The Neural Bases of Emotion Regulation
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn4044
– volume: 3
  start-page: 577
  year: 2022
  ident: ref_20
  article-title: A Survey on Denoising Techniques of Electroencephalogram Signals Using Wavelet Transform
  publication-title: Signals
  doi: 10.3390/signals3030035
– ident: ref_17
– volume: 9
  start-page: 550
  year: 2018
  ident: ref_13
  article-title: Real-time Movie-induced Discrete Emotion Recognition from EEG signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2660485
– ident: ref_21
  doi: 10.1109/NER.2013.6695876
– volume: 14
  start-page: 589
  year: 2010
  ident: ref_5
  article-title: Toward Emotion aware Computing: An Integrated approach using Multichannel Neurophysiological Recordings and Affective Visual Stimuli
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2010.2041553
– volume: 10
  start-page: 374
  year: 2017
  ident: ref_15
  article-title: Emotions Recognition using EEG signals: A survey
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2714671
– volume: 49
  start-page: 819
  year: 2017
  ident: ref_11
  article-title: Least-squares wavelet analysis of unequally spaced and non-stationary time series and its applications
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-017-9691-0
SSID ssj0001325264
Score 2.4046643
Snippet Emotion plays a vital role in understanding the affective state of mind of an individual. In recent years, emotion classification using electroencephalogram...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 54
SubjectTerms Affective computing
Arousal
baseline removal
Bioengineering
Brain research
Classification
Datasets
Discriminant analysis
EEG
Electroencephalography
emotion classification
Emotional behavior
Emotions
Feature extraction
inverse filtering
Multilayer perceptrons
Neural networks
Physiology
Support vector machines
Visual signals
Visual stimuli
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fT9swED5t5WV7mPabbGzypL1aTWM7cZ4QRQE2aRVCQ-Itsp0LqwQJK-3-fs6Jm1KExlsU25KTu7O_O5-_A_hOCNnlUiFPbOw4aYjg2lrJnSFjcs4K5fxF4V-z9ORc_rxQFyHgdhvSKtdrYrdQV63zMfJxkqUE7RUh4P2bv9xXjfKnq6GExnPYoSVY6xHsTIvZ6dkmyiISRVt-fzVYkH8_tvMWN0x_noHIo5atXakj738McT5MnLy3Ex29hlcBQrKDXuZv4Bk2b-HlPWLBd1AfsFn7D6_Y1HQXzpGd4XVLSsVOzcJU88trRmCV0arhwzD8x1ALd8k8JlyRD87mDSv6Gj-sq5zpc4o6MbIuzYAVxfF7OD8qfh-e8FBRgTsCYkuOKbk3Mq-E1TZOa1-MSgthMM5FKnWulLZYKUSZkl-jUBt6dLWrpDMaxQTFBxg1bYO7wBDrTBtRE_ybSJMa64zn8stylHGttYtArf9o6QLduK96cVWS2-ElUT4uiQjGw7ibnnDjyRFTL7ChtyfM7l60i8sy2F8ptatjg9nEaCGtom_NJrXyF5eN1FIlEeytxV0GK74tNzoXwbehmezPH6qYBttV10cTCpKZiOBjrx3DTETqxydpBNmW3mxNdbulmf_pOL5zrSRBy0__n9ZneJEQ6OpDQnswWi5W-IVA0tJ-DZZwB29-Fj8
  priority: 102
  providerName: ProQuest
Title A Novel Baseline Removal Paradigm for Subject-Independent Features in Emotion Classification Using EEG
URI https://www.ncbi.nlm.nih.gov/pubmed/36671626
https://www.proquest.com/docview/2767165255
https://www.proquest.com/docview/2768241473
https://pubmed.ncbi.nlm.nih.gov/PMC9854727
https://doaj.org/article/48cf0ae71a834b589571f55212a48452
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swED4xeGEP08bYlg0qT9pr1DT-Eeex2VLYJCqEhsRbZLuXrRIkE2v5-zk7IWsREi97ShTbkuO7i79z7r4D-EII2eVCYpzaxMWkITzW1orYGTIm5yyXzicKn83V6aX4cSWvNkp9-Ziwjh64W7ix0K5ODGYTo7mwUucym9TSZ5waoYUMX1_a8zacqXC6wlNJW32XEszJrx_bZYv_GP4885BHK1u7USDtfwppPg6Y3NiBZq_hVQ8d2bSb8hvYweYAXm4QCr6Fesrm7R1es8KERHNkF3jTkjKxc3NrFstfN4xAKqOvhT9-ib8PNXBXzGPBNfnebNmwsqvtw0LFTB9LFMTHQngBK8uTQ7iclT-_nsZ9JYXYEQBbxajIrRH5glttE1X7IlSac4NJzpWgJZXa4kIiCkX-jERt6NbVbiGc0cgnyN_BbtM2-AEYYp1pw2uCfRNhlLHOeA6_LEeR1Fq7COTDilaupxn31S6uK3I3vCSqpyURwXgY96cj2nh2ROEFNvT2RNnhAalP1atP9Zz6RHD0IO6qt96_VZopciMleVsRfB6aye78zxTTYLsOfTShH5HxCN532jHMhCs_PlURZFt6szXV7ZZm-Ttwe-daCoKUH__Hu32C_ZQgWTgwyo9gd3W7xmOCUCs7ghd6djKCvWnxrZjRtSjn5xejYEP3SIwf6Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N8QA8IL4JDDASPEZtYztxHhDaoF3LtgqhTdpbsJ3LqLQlo2tB_FP8jZydj65ogqe9RbEdOb47-3e2734Abwgh21RIDCPTtyFpCA-VMSK0mozJWsOldYHCB9N4fCQ-HcvjDfjdxsK4a5XtnOgn6ryybo-8FyUxQXtJCPj9-ffQsUa509WWQqNWiz389ZNctot3k48k37dRNBoefhiHDatAaAmMLEKMCeKLNOdGmX5cOEImxblGcu1joVIplcFcIoqYsL1EpenRFjYXVivkA-T03RtwU3BayV1k-mh3tafDI0kAow5EpvJ-z8wqXOUVdPmOHEZaWwM9VcBV-Pbva5qX1r3RPbjbAFa2XWvYfdjA8gHcuZTG8CEU22xa_cBTtqN9eDuyL3hWkQqzz3qu89nJGSNozGiOcps-4aRj3l0wh0CX5PGzWcmGNaMQ8zyd7gaTVxrmLzWw4XD3ERxdy0g_hs2yKvEpMMQiUZoXBDYHQsfaWO0yByYpin6hlA1AtiOa2Sa5uePYOM3IyXGSyK6WRAC9rt15nd7jvy12nMC62i49t39RzU-yxtozoWzR15gMtOLCSPrXZFBIFyathRIyCmCrFXfWzBkX2UrDA3jdFZO1uyMcXWK19HUUYS6R8ACe1NrR9YTHrn0UB5Cs6c1aV9dLytk3n1E8VVIQkH327269glvjw4P9bH8y3XsOtyOCe_Vm1BZsLuZLfEHwbGFeeptg8PW6jfAPJJ1R0w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMMBI8Bi1je3EeUBoZSkrg6qamLS3YDuXUWlLRteC-Nf46zjnqyua4GlvUWJHju_O-Z19dz-A14SQbSwk-oEZWJ80hPvKGOFbTcZkreHSukThz9Nw_0h8PJbHW_C7zYVxYZXtmlgt1Flp3R55P4hCgvaSEHA_b8IiZnvjd-fffccg5U5aWzqNWkUO8NdPct8u3k72SNZvgmCcfHm_7zcMA74lYLL0MSS4L-KMG2UGYe7ImRTnGsnND4WKpVQGM4koQsL5EpWmS5vbTFitkA-R03tvwHbkvKIebI-S6exwvcPDA0lwo05L5jwe9M28xHWVQVf9yCGmjT9iRRxwFdr9O2jz0l9wfBfuNPCV7db6dg-2sLgPty8VNXwA-S6blj_wlI10leyO7BDPSlJoNtMLnc1PzhgBZUYrltsC8icdD--SOTy6Iv-fzQuW1PxCrGLtdPFMlQqxKsSBJcmHh3B0LXP9CHpFWeATYIh5pDTPCXoOhQ61sdrVEYxiFINcKeuBbGc0tU2pc8e4cZqSy-MkkV4tCQ_6Xb_zutjHf3uMnMC61q5Yd3WjXJykje2nQtl8oDEaasWFkfSt0TCXLmlaCyVk4MFOK-60WUEu0rW-e_Cqe0y27w50dIHlqmqjCIGJiHvwuNaObiQ8dP2D0INoQ282hrr5pJh_q-qLx0oKgrVP_z2sl3CTDDD9NJkePINbAWG_emdqB3rLxQqfE1ZbmheNUTD4et12-Ac791dl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Baseline+Removal+Paradigm+for+Subject-Independent+Features+in+Emotion+Classification+Using+EEG&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Ahmed%2C+Md+Zaved+Iqubal&rft.au=Sinha%2C+Nidul&rft.au=Ghaderpour%2C+Ebrahim&rft.au=Phadikar%2C+Souvik&rft.date=2023-01-01&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=10&rft.issue=1&rft_id=info:doi/10.3390%2Fbioengineering10010054&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon