Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database
[Display omitted] The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional p...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 162; pp. 184 - 199 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional percentages. The release of NLCD 2016 provides important new information on land change patterns across CONUS from 2001 to 2016. For land cover, seven epochs were concurrently generated for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Products reveal that land cover change is significant across most land cover classes and time periods. The land cover product was validated using existing reference data from the legacy NLCD 2011 accuracy assessment, applied to the 2011 epoch of the NLCD 2016 product line. The legacy and new NLCD 2011 overall accuracies were 82% and 83%, respectively, (standard error (SE) was 0.5%), demonstrating a small but significant increase in overall accuracy. Between 2001 and 2016, the CONUS landscape experienced significant change, with almost 8% of the landscape having experienced a land cover change at least once during this period. Nearly 50% of that change involves forest, driven by change agents of harvest, fire, disease and pests that resulted in an overall forest decline, including increasing fragmentation and loss of interior forest. Agricultural change represented 15.9% of the change, with total agricultural spatial extent showing only a slight increase of 4778 km2, however there was a substantial decline (7.94%) in pasture/hay during this time, transitioning mostly to cultivated crop. Water and wetland change comprised 15.2% of change and represent highly dynamic land cover classes from epoch to epoch, heavily influenced by precipitation. Grass and shrub change comprise 14.5% of the total change, with most change resulting from fire. Developed change was the most persistent and permanent land change increase adding almost 29,000 km2 over 15 years (5.6% of total CONUS change), with southern states exhibiting expansion much faster than most of the northern states. Temporal rates of developed change increased in 2001–2006 at twice the rate of 2011–2016, reflecting a slowdown in CONUS economic activity. Future NLCD plans include increasing monitoring frequency, reducing latency time between satellite imaging and product delivery, improving accuracy and expanding the variety of products available in an integrated database. |
---|---|
AbstractList | The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional percentages. The release of NLCD 2016 provides important new information on land change patterns across CONUS from 2001 to 2016. For land cover, seven epochs were concurrently generated for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Products reveal that land cover change is significant across most land cover classes and time periods. The land cover product was validated using existing reference data from the legacy NLCD 2011 accuracy assessment, applied to the 2011 epoch of the NLCD 2016 product line. The legacy and new NLCD 2011 overall accuracies were 82% and 83%, respectively, (standard error (SE) was 0.5%), demonstrating a small but significant increase in overall accuracy. Between 2001 and 2016, the CONUS landscape experienced significant change, with almost 8% of the landscape having experienced a land cover change at least once during this period. Nearly 50% of that change involves forest, driven by change agents of harvest, fire, disease and pests that resulted in an overall forest decline, including increasing fragmentation and loss of interior forest. Agricultural change represented 15.9% of the change, with total agricultural spatial extent showing only a slight increase of 4778 km², however there was a substantial decline (7.94%) in pasture/hay during this time, transitioning mostly to cultivated crop. Water and wetland change comprised 15.2% of change and represent highly dynamic land cover classes from epoch to epoch, heavily influenced by precipitation. Grass and shrub change comprise 14.5% of the total change, with most change resulting from fire. Developed change was the most persistent and permanent land change increase adding almost 29,000 km² over 15 years (5.6% of total CONUS change), with southern states exhibiting expansion much faster than most of the northern states. Temporal rates of developed change increased in 2001–2006 at twice the rate of 2011–2016, reflecting a slowdown in CONUS economic activity. Future NLCD plans include increasing monitoring frequency, reducing latency time between satellite imaging and product delivery, improving accuracy and expanding the variety of products available in an integrated database. The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional percentages. The release of NLCD 2016 provides important new information on land change patterns across CONUS from 2001 to 2016. For land cover, seven epochs were concurrently generated for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Products reveal that land cover change is significant across most land cover classes and time periods. The land cover product was validated using existing reference data from the legacy NLCD 2011 accuracy assessment, applied to the 2011 epoch of the NLCD 2016 product line. The legacy and new NLCD 2011 overall accuracies were 82% and 83%, respectively, (standard error (SE) was 0.5%), demonstrating a small but significant increase in overall accuracy. Between 2001 and 2016, the CONUS landscape experienced significant change, with almost 8% of the landscape having experienced a land cover change at least once during this period. Nearly 50% of that change involves forest, driven by change agents of harvest, fire, disease and pests that resulted in an overall forest decline, including increasing fragmentation and loss of interior forest. Agricultural change represented 15.9% of the change, with total agricultural spatial extent showing only a slight increase of 4778 km , however there was a substantial decline (7.94%) in pasture/hay during this time, transitioning mostly to cultivated crop. Water and wetland change comprised 15.2% of change and represent highly dynamic land cover classes from epoch to epoch, heavily influenced by precipitation. Grass and shrub change comprise 14.5% of the total change, with most change resulting from fire. Developed change was the most persistent and permanent land change increase adding almost 29,000 km over 15 years (5.6% of total CONUS change), with southern states exhibiting expansion much faster than most of the northern states. Temporal rates of developed change increased in 2001-2006 at twice the rate of 2011-2016, reflecting a slowdown in CONUS economic activity. Future NLCD plans include increasing monitoring frequency, reducing latency time between satellite imaging and product delivery, improving accuracy and expanding the variety of products available in an integrated database. The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional percentages. The release of NLCD 2016 provides important new information on land change patterns across CONUS from 2001 to 2016. For land cover, seven epochs were concurrently generated for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Products reveal that land cover change is significant across most land cover classes and time periods. The land cover product was validated using existing reference data from the legacy NLCD 2011 accuracy assessment, applied to the 2011 epoch of the NLCD 2016 product line. The legacy and new NLCD 2011 overall accuracies were 82% and 83%, respectively, (standard error (SE) was 0.5%), demonstrating a small but significant increase in overall accuracy. Between 2001 and 2016, the CONUS landscape experienced significant change, with almost 8% of the landscape having experienced a land cover change at least once during this period. Nearly 50% of that change involves forest, driven by change agents of harvest, fire, disease and pests that resulted in an overall forest decline, including increasing fragmentation and loss of interior forest. Agricultural change represented 15.9% of the change, with total agricultural spatial extent showing only a slight increase of 4778 km2, however there was a substantial decline (7.94%) in pasture/hay during this time, transitioning mostly to cultivated crop. Water and wetland change comprised 15.2% of change and represent highly dynamic land cover classes from epoch to epoch, heavily influenced by precipitation. Grass and shrub change comprise 14.5% of the total change, with most change resulting from fire. Developed change was the most persistent and permanent land change increase adding almost 29,000 km2 over 15 years (5.6% of total CONUS change), with southern states exhibiting expansion much faster than most of the northern states. Temporal rates of developed change increased in 2001-2006 at twice the rate of 2011-2016, reflecting a slowdown in CONUS economic activity. Future NLCD plans include increasing monitoring frequency, reducing latency time between satellite imaging and product delivery, improving accuracy and expanding the variety of products available in an integrated database.The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional percentages. The release of NLCD 2016 provides important new information on land change patterns across CONUS from 2001 to 2016. For land cover, seven epochs were concurrently generated for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Products reveal that land cover change is significant across most land cover classes and time periods. The land cover product was validated using existing reference data from the legacy NLCD 2011 accuracy assessment, applied to the 2011 epoch of the NLCD 2016 product line. The legacy and new NLCD 2011 overall accuracies were 82% and 83%, respectively, (standard error (SE) was 0.5%), demonstrating a small but significant increase in overall accuracy. Between 2001 and 2016, the CONUS landscape experienced significant change, with almost 8% of the landscape having experienced a land cover change at least once during this period. Nearly 50% of that change involves forest, driven by change agents of harvest, fire, disease and pests that resulted in an overall forest decline, including increasing fragmentation and loss of interior forest. Agricultural change represented 15.9% of the change, with total agricultural spatial extent showing only a slight increase of 4778 km2, however there was a substantial decline (7.94%) in pasture/hay during this time, transitioning mostly to cultivated crop. Water and wetland change comprised 15.2% of change and represent highly dynamic land cover classes from epoch to epoch, heavily influenced by precipitation. Grass and shrub change comprise 14.5% of the total change, with most change resulting from fire. Developed change was the most persistent and permanent land change increase adding almost 29,000 km2 over 15 years (5.6% of total CONUS change), with southern states exhibiting expansion much faster than most of the northern states. Temporal rates of developed change increased in 2001-2006 at twice the rate of 2011-2016, reflecting a slowdown in CONUS economic activity. Future NLCD plans include increasing monitoring frequency, reducing latency time between satellite imaging and product delivery, improving accuracy and expanding the variety of products available in an integrated database. The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov ), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional percentages. The release of NLCD 2016 provides important new information on land change patterns across CONUS from 2001 to 2016. For land cover, seven epochs were concurrently generated for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Products reveal that land cover change is significant across most land cover classes and time periods. The land cover product was validated using existing reference data from the legacy NLCD 2011 accuracy assessment, applied to the 2011 epoch of the NLCD 2016 product line. The legacy and new NLCD 2011 overall accuracies were 82% and 83%, respectively, (standard error (SE) was 0.5%), demonstrating a small but significant increase in overall accuracy. Between 2001 and 2016, the CONUS landscape experienced significant change, with almost 8% of the landscape having experienced a land cover change at least once during this period. Nearly 50% of that change involves forest, driven by change agents of harvest, fire, disease and pests that resulted in an overall forest decline, including increasing fragmentation and loss of interior forest. Agricultural change represented 15.9% of the change, with total agricultural spatial extent showing only a slight increase of 4778 km 2 , however there was a substantial decline (7.94%) in pasture/hay during this time, transitioning mostly to cultivated crop. Water and wetland change comprised 15.2% of change and represent highly dynamic land cover classes from epoch to epoch, heavily influenced by precipitation. Grass and shrub change comprise 14.5% of the total change, with most change resulting from fire. Developed change was the most persistent and permanent land change increase adding almost 29,000 km 2 over 15 years (5.6% of total CONUS change), with southern states exhibiting expansion much faster than most of the northern states. Temporal rates of developed change increased in 2001–2006 at twice the rate of 2011–2016, reflecting a slowdown in CONUS economic activity. Future NLCD plans include increasing monitoring frequency, reducing latency time between satellite imaging and product delivery, improving accuracy and expanding the variety of products available in an integrated database. [Display omitted] The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional percentages. The release of NLCD 2016 provides important new information on land change patterns across CONUS from 2001 to 2016. For land cover, seven epochs were concurrently generated for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Products reveal that land cover change is significant across most land cover classes and time periods. The land cover product was validated using existing reference data from the legacy NLCD 2011 accuracy assessment, applied to the 2011 epoch of the NLCD 2016 product line. The legacy and new NLCD 2011 overall accuracies were 82% and 83%, respectively, (standard error (SE) was 0.5%), demonstrating a small but significant increase in overall accuracy. Between 2001 and 2016, the CONUS landscape experienced significant change, with almost 8% of the landscape having experienced a land cover change at least once during this period. Nearly 50% of that change involves forest, driven by change agents of harvest, fire, disease and pests that resulted in an overall forest decline, including increasing fragmentation and loss of interior forest. Agricultural change represented 15.9% of the change, with total agricultural spatial extent showing only a slight increase of 4778 km2, however there was a substantial decline (7.94%) in pasture/hay during this time, transitioning mostly to cultivated crop. Water and wetland change comprised 15.2% of change and represent highly dynamic land cover classes from epoch to epoch, heavily influenced by precipitation. Grass and shrub change comprise 14.5% of the total change, with most change resulting from fire. Developed change was the most persistent and permanent land change increase adding almost 29,000 km2 over 15 years (5.6% of total CONUS change), with southern states exhibiting expansion much faster than most of the northern states. Temporal rates of developed change increased in 2001–2006 at twice the rate of 2011–2016, reflecting a slowdown in CONUS economic activity. Future NLCD plans include increasing monitoring frequency, reducing latency time between satellite imaging and product delivery, improving accuracy and expanding the variety of products available in an integrated database. |
Author | Costello, Catherine Funk, Michelle Xian, George Auch, Roger Danielson, Patrick Stehman, Stephen Gass, Leila Homer, Collin Dewitz, Jon Jin, Suming Wickham, James Riitters, Kurt |
AuthorAffiliation | d Stinger Ghaffarian Technologies, Contractor to the U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA i Southern Research Station, United States Department of Agriculture, Forest Service, Research Triangle Park 27709, USA b ASRC Federal InuTeq, Contractor to the U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA a U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA f U.S. Geological Survey, National Geospatial Technical Operations Center, 12201 Sunrise Valley Dr., Reston, VA, USA c U.S. Geological Survey, Geosciences and Environmental Change Science Center, PO Box 25046, DFC, MS 980, Denver, CO 80225, USA h SUNY-ESF, 1 Forestry Dr., 320 Bray Hall, Syracuse, NY 13210, USA g Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Researc |
AuthorAffiliation_xml | – name: g Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711, USA – name: i Southern Research Station, United States Department of Agriculture, Forest Service, Research Triangle Park 27709, USA – name: a U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA – name: d Stinger Ghaffarian Technologies, Contractor to the U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA – name: b ASRC Federal InuTeq, Contractor to the U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA – name: f U.S. Geological Survey, National Geospatial Technical Operations Center, 12201 Sunrise Valley Dr., Reston, VA, USA – name: h SUNY-ESF, 1 Forestry Dr., 320 Bray Hall, Syracuse, NY 13210, USA – name: e U.S. Geological Survey, Western Geographic Science Center, 520 N. Park Ave., Tucson, AZ 85179, USA – name: c U.S. Geological Survey, Geosciences and Environmental Change Science Center, PO Box 25046, DFC, MS 980, Denver, CO 80225, USA |
Author_xml | – sequence: 1 givenname: Collin surname: Homer fullname: Homer, Collin email: homer@usgs.gov organization: U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA – sequence: 2 givenname: Jon orcidid: 0000-0001-5674-2204 surname: Dewitz fullname: Dewitz, Jon organization: U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA – sequence: 3 givenname: Suming surname: Jin fullname: Jin, Suming organization: ASRC Federal InuTeq, Contractor to the U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA – sequence: 4 givenname: George orcidid: 0000-0002-7409-7365 surname: Xian fullname: Xian, George organization: U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA – sequence: 5 givenname: Catherine surname: Costello fullname: Costello, Catherine organization: U.S. Geological Survey, Geosciences and Environmental Change Science Center, PO Box 25046, DFC, MS 980, Denver, CO 80225, USA – sequence: 6 givenname: Patrick surname: Danielson fullname: Danielson, Patrick organization: Stinger Ghaffarian Technologies, Contractor to the U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA – sequence: 7 givenname: Leila surname: Gass fullname: Gass, Leila organization: U.S. Geological Survey, Western Geographic Science Center, 520 N. Park Ave., Tucson, AZ 85179, USA – sequence: 8 givenname: Michelle surname: Funk fullname: Funk, Michelle organization: U.S. Geological Survey, National Geospatial Technical Operations Center, 12201 Sunrise Valley Dr., Reston, VA, USA – sequence: 9 givenname: James orcidid: 0000-0001-5234-2027 surname: Wickham fullname: Wickham, James organization: Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711, USA – sequence: 10 givenname: Stephen surname: Stehman fullname: Stehman, Stephen organization: SUNY-ESF, 1 Forestry Dr., 320 Bray Hall, Syracuse, NY 13210, USA – sequence: 11 givenname: Roger surname: Auch fullname: Auch, Roger organization: U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA – sequence: 12 givenname: Kurt surname: Riitters fullname: Riitters, Kurt organization: Southern Research Station, United States Department of Agriculture, Forest Service, Research Triangle Park 27709, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35746921$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuEzEYhS1URNPCK4CXbGb6-zK3BUhVuFWKYAFdWx7PP42jiR1sJxI73oE35ElwkrYCNllYI2vOd3x0zgU5c94hIa8YlAxYfbUqbdyEuMqn5MChBF4C656QGWsbXrRcVGdkBh2XBW9YfU4uYlwBAKvq9hk5F1Uj646zGZnm3iUMa-v8NtJbZxMO9GvSCSOdtBuo8TsM1Cy1u0O60SmLXaQ8W_3--YvnLHQMfk3TEunh9lkn652e6GJPzw_0O510ryM-J09HPUV8cf-9JLcf3n-bfyoWXz7ezK8XhamgTQUKrPuhQ6Zr7CVjNbRj23UN6hHFoGUP2AjOtJBNztFWXVZLoWUrh04DDOKSvD36brb9GgeDLgU9qU2wax1-KK-t-vePs0t153cqVyLrqssGr-8Ngv--xZjU2kaDU24Ec0-K1y0DUQPnp6USoOKCVyJLX_4d6zHPwxpZ8OYoMMHHGHBUxqZDnzmlnRQDtV9frdTj-mq_vgKu8vqZb_7jH544TV4fScyz7CwGFY1FZ3CwAU1Sg7cnPf4Au7rPyg |
CitedBy_id | crossref_primary_10_1038_s41598_024_57474_4 crossref_primary_10_3390_d13030122 crossref_primary_10_1111_gcb_16700 crossref_primary_10_3389_fevo_2023_946624 crossref_primary_10_1007_s00477_023_02508_y crossref_primary_10_3390_f12060727 crossref_primary_10_1590_0001_3765202320210333 crossref_primary_10_1002_jwmg_22096 crossref_primary_10_1212_WNL_0000000000209162 crossref_primary_10_3390_rs13204128 crossref_primary_10_1109_TGRS_2021_3133534 crossref_primary_10_3390_fire7020051 crossref_primary_10_1080_17538947_2023_2224087 crossref_primary_10_1007_s10646_022_02605_8 crossref_primary_10_1080_15481603_2021_1903282 crossref_primary_10_3390_f13071023 crossref_primary_10_1016_j_scitotenv_2024_177315 crossref_primary_10_1111_cobi_14346 crossref_primary_10_1002_eap_3039 crossref_primary_10_1016_j_ejrh_2023_101565 crossref_primary_10_1029_2021GH000535 crossref_primary_10_1002_tafs_10481 crossref_primary_10_3390_urbansci9030076 crossref_primary_10_1021_acs_estlett_1c00750 crossref_primary_10_1016_j_agee_2021_107612 crossref_primary_10_1186_s42408_024_00335_2 crossref_primary_10_1016_j_landusepol_2021_105867 crossref_primary_10_1016_j_jhydrol_2024_130703 crossref_primary_10_3390_rs15102539 crossref_primary_10_1371_journal_pone_0244261 crossref_primary_10_1111_1752_1688_12963 crossref_primary_10_3390_fire7030082 crossref_primary_10_1007_s11258_020_01098_x crossref_primary_10_1080_17538947_2023_2251437 crossref_primary_10_3390_rs15133363 crossref_primary_10_1080_15287394_2024_2412659 crossref_primary_10_1002_ecs2_4298 crossref_primary_10_5194_hess_26_5627_2022 crossref_primary_10_1002_rra_3888 crossref_primary_10_1007_s10750_022_04850_8 crossref_primary_10_1016_j_jag_2024_104249 crossref_primary_10_5194_essd_13_5127_2021 crossref_primary_10_1016_j_jglr_2024_102284 crossref_primary_10_2478_eces_2021_0029 crossref_primary_10_1016_j_envsoft_2022_105606 crossref_primary_10_1016_j_resconrec_2024_107969 crossref_primary_10_1007_s11119_024_10149_6 crossref_primary_10_3390_d13090411 crossref_primary_10_1071_WF22044 crossref_primary_10_1016_j_jenvman_2025_124040 crossref_primary_10_1016_j_apgeog_2023_102970 crossref_primary_10_1016_j_heliyon_2024_e34363 crossref_primary_10_1111_1365_2664_14805 crossref_primary_10_3390_f13071112 crossref_primary_10_1093_jue_juab022 crossref_primary_10_1016_j_jhydrol_2023_129253 crossref_primary_10_1177_23998083211003884 crossref_primary_10_5194_bg_20_2485_2023 crossref_primary_10_1016_j_geodrs_2025_e00930 crossref_primary_10_1016_j_cub_2023_11_033 crossref_primary_10_1007_s10340_022_01505_4 crossref_primary_10_1016_j_foreco_2023_121433 crossref_primary_10_1002_ecy_4055 crossref_primary_10_1038_s41467_023_43046_z crossref_primary_10_1016_j_rse_2022_113266 crossref_primary_10_1016_j_ancene_2023_100371 crossref_primary_10_3390_w16020346 crossref_primary_10_1111_ddi_13502 crossref_primary_10_1016_j_jenvman_2022_114650 crossref_primary_10_1002_jwmg_22277 crossref_primary_10_1088_1748_9326_ac4537 crossref_primary_10_1002_jwmg_22280 crossref_primary_10_1016_j_rse_2020_111935 crossref_primary_10_1186_s13021_024_00251_7 crossref_primary_10_1016_j_ecolind_2020_107241 crossref_primary_10_1029_2023MS004048 crossref_primary_10_3389_fenvs_2023_1069451 crossref_primary_10_3390_rs12244093 crossref_primary_10_1016_j_scitotenv_2021_152723 crossref_primary_10_1007_s10980_021_01370_z crossref_primary_10_1002_ecs2_4267 crossref_primary_10_3390_land10111145 crossref_primary_10_3390_rs16010082 crossref_primary_10_5334_bc_226 crossref_primary_10_1016_j_jhydrol_2024_130984 crossref_primary_10_3390_land9110417 crossref_primary_10_1675_063_044_0211 crossref_primary_10_1371_journal_pone_0271405 crossref_primary_10_1093_jme_tjab107 crossref_primary_10_1016_j_isprsjprs_2024_05_002 crossref_primary_10_1016_j_buildenv_2023_110211 crossref_primary_10_3390_land10121399 crossref_primary_10_3390_rs17030457 crossref_primary_10_1002_ecs2_4496 crossref_primary_10_1016_j_rse_2022_113003 crossref_primary_10_1111_eva_13321 crossref_primary_10_1007_s40823_021_00062_3 crossref_primary_10_1177_08854122211051626 crossref_primary_10_3390_w16182572 crossref_primary_10_5194_essd_16_1353_2024 crossref_primary_10_1002_ldr_4678 crossref_primary_10_1073_pnas_2203511120 crossref_primary_10_1016_j_watres_2021_117829 crossref_primary_10_3390_f12080990 crossref_primary_10_3390_conservation2010012 crossref_primary_10_1002_jwmg_22247 crossref_primary_10_3390_land14020430 crossref_primary_10_1038_s41598_023_48093_6 crossref_primary_10_1080_15481603_2022_2104786 crossref_primary_10_3390_land11020283 crossref_primary_10_3389_ffgc_2021_716582 crossref_primary_10_1007_s10661_021_09101_2 crossref_primary_10_1073_pnas_2214199120 crossref_primary_10_1016_j_jenvman_2021_113503 crossref_primary_10_1016_j_jglr_2021_10_004 crossref_primary_10_3138_cart_2024_0010 crossref_primary_10_3390_f14101938 crossref_primary_10_1002_ecs2_4478 crossref_primary_10_1080_17538947_2022_2130461 crossref_primary_10_1007_s10661_023_12119_3 crossref_primary_10_1038_s41467_023_43755_5 crossref_primary_10_1029_2021AV000654 crossref_primary_10_1093_ornithapp_duad005 crossref_primary_10_1108_SASBE_01_2024_0014 crossref_primary_10_1088_1748_9326_ac2e35 crossref_primary_10_1016_j_rse_2021_112803 crossref_primary_10_3390_f14101933 crossref_primary_10_1016_j_scitotenv_2022_160834 crossref_primary_10_1088_2515_7620_acd3d8 crossref_primary_10_1016_j_srs_2024_100185 crossref_primary_10_1656_045_030_0107 crossref_primary_10_3389_fenvs_2023_1153133 crossref_primary_10_1007_s10021_021_00718_5 crossref_primary_10_5194_gmd_15_6637_2022 crossref_primary_10_1016_j_anai_2021_07_012 crossref_primary_10_1016_j_scitotenv_2021_149651 crossref_primary_10_1080_15481603_2023_2181143 crossref_primary_10_1111_ddi_13799 crossref_primary_10_3389_frwa_2024_1339613 crossref_primary_10_5194_hess_29_1001_2025 crossref_primary_10_1016_j_ecoser_2020_101178 crossref_primary_10_1016_j_earscirev_2024_104942 crossref_primary_10_3390_rs13061089 crossref_primary_10_5194_essd_16_4619_2024 crossref_primary_10_1007_s00442_023_05420_y crossref_primary_10_1007_s11368_023_03713_6 crossref_primary_10_3390_rs14164097 crossref_primary_10_3390_s20102757 crossref_primary_10_1093_condor_duaa040 crossref_primary_10_3390_su16145976 crossref_primary_10_1002_etc_5491 crossref_primary_10_1007_s10980_023_01647_5 crossref_primary_10_1016_j_scitotenv_2023_166753 crossref_primary_10_1111_1365_2664_14547 crossref_primary_10_1038_s41597_020_00605_z crossref_primary_10_1016_j_gecco_2022_e02115 crossref_primary_10_1016_j_scitotenv_2023_165660 crossref_primary_10_1088_1748_9326_ac09b0 crossref_primary_10_1371_journal_pone_0265175 crossref_primary_10_1002_ecs2_4317 crossref_primary_10_3390_land11020298 crossref_primary_10_1002_jwmg_22258 crossref_primary_10_1002_lno_12220 crossref_primary_10_1007_s10530_024_03397_0 crossref_primary_10_1016_j_landusepol_2022_105980 crossref_primary_10_1111_maec_12732 crossref_primary_10_1002_ecy_4362 crossref_primary_10_1016_j_agwat_2021_107106 crossref_primary_10_1111_gcb_15345 crossref_primary_10_5937_gp28_47299 crossref_primary_10_1007_s10980_024_01985_y crossref_primary_10_1002_ecs2_4429 crossref_primary_10_1016_j_landurbplan_2020_103911 crossref_primary_10_3389_fevo_2023_1102015 crossref_primary_10_3390_rs14246295 crossref_primary_10_1016_j_rsase_2025_101472 crossref_primary_10_1371_journal_pone_0256633 crossref_primary_10_1016_j_jag_2022_102747 crossref_primary_10_3390_rs13061060 crossref_primary_10_1093_ornithapp_duad062 crossref_primary_10_1007_s10980_022_01537_2 crossref_primary_10_1038_s41597_023_02382_x crossref_primary_10_1007_s00271_022_00768_0 crossref_primary_10_1016_j_compenvurbsys_2023_102053 crossref_primary_10_1016_j_jhydrol_2025_132938 crossref_primary_10_1088_1748_9326_ad0136 crossref_primary_10_1016_j_isprsjprs_2021_02_020 crossref_primary_10_1016_j_watres_2022_119123 crossref_primary_10_1002_ece3_8084 crossref_primary_10_3390_data6060063 crossref_primary_10_1021_acs_est_0c07978 crossref_primary_10_1016_j_ocecoaman_2023_106803 crossref_primary_10_1016_j_rse_2022_112905 crossref_primary_10_1029_2022JG007227 crossref_primary_10_3390_rs13245090 crossref_primary_10_1371_journal_pone_0257733 crossref_primary_10_1007_s10980_020_01124_3 crossref_primary_10_3389_fenrg_2022_837883 crossref_primary_10_1016_j_rse_2023_113498 crossref_primary_10_1016_j_ufug_2025_128778 crossref_primary_10_1007_s10661_022_10272_9 crossref_primary_10_1029_2021WR031575 crossref_primary_10_1007_s11356_022_19475_6 crossref_primary_10_3390_ijerph18137180 crossref_primary_10_1029_2021WR031537 crossref_primary_10_1016_j_jag_2021_102578 crossref_primary_10_1002_jwmg_22347 crossref_primary_10_1007_s11252_022_01214_x crossref_primary_10_3390_rs13193953 crossref_primary_10_1016_j_scitotenv_2022_160804 crossref_primary_10_1016_j_foreco_2022_120449 crossref_primary_10_1002_jeq2_20290 crossref_primary_10_3390_rs12182966 crossref_primary_10_7717_peerj_12818 crossref_primary_10_1007_s12517_020_06347_x crossref_primary_10_1371_journal_pone_0240097 crossref_primary_10_1002_eap_70006 crossref_primary_10_1007_s10980_024_01995_w crossref_primary_10_1016_j_ecolind_2022_109756 crossref_primary_10_3390_rs16163078 crossref_primary_10_5194_essd_15_2927_2023 crossref_primary_10_1371_journal_pwat_0000119 crossref_primary_10_3390_land10020136 crossref_primary_10_5194_acp_20_11065_2020 crossref_primary_10_1002_ece3_10958 crossref_primary_10_1007_s10980_022_01460_6 crossref_primary_10_1007_s10980_022_01528_3 crossref_primary_10_1656_058_020_0sp1110 crossref_primary_10_1007_s11069_024_06552_x crossref_primary_10_1038_s41893_024_01413_8 crossref_primary_10_3390_fire7040103 crossref_primary_10_3390_forecast3030031 crossref_primary_10_1111_gcb_16380 crossref_primary_10_1111_1365_2664_14045 crossref_primary_10_3390_urbansci7040121 crossref_primary_10_3390_f15030470 crossref_primary_10_3390_ijgi11030163 crossref_primary_10_1002_rvr2_59 crossref_primary_10_1038_s41467_025_57565_4 crossref_primary_10_1016_j_jhydrol_2022_128774 crossref_primary_10_3390_ijerph19105876 crossref_primary_10_1016_j_jag_2022_103015 crossref_primary_10_3390_rs13163283 crossref_primary_10_3390_rs14071718 crossref_primary_10_1371_journal_pone_0288647 crossref_primary_10_1016_j_srs_2023_100084 crossref_primary_10_1007_s10661_020_08411_1 crossref_primary_10_1016_j_tfp_2020_100045 crossref_primary_10_3390_land10050546 crossref_primary_10_1038_s41597_022_01603_z crossref_primary_10_3390_ijgi10040212 crossref_primary_10_3390_land11122325 crossref_primary_10_3389_frsen_2022_894618 crossref_primary_10_1038_s41597_020_00646_4 crossref_primary_10_3390_land10050536 crossref_primary_10_3390_f13070992 crossref_primary_10_1002_ps_6500 crossref_primary_10_1016_j_ecolind_2025_113367 crossref_primary_10_1111_csp2_12782 crossref_primary_10_3390_rs16193744 crossref_primary_10_1016_j_watres_2022_118853 crossref_primary_10_1109_JSTARS_2023_3288218 crossref_primary_10_1038_s41597_024_03044_2 crossref_primary_10_1016_j_envres_2021_111195 crossref_primary_10_1111_mec_16656 crossref_primary_10_3390_earth2040040 crossref_primary_10_5194_hess_27_1771_2023 crossref_primary_10_1111_icad_12731 crossref_primary_10_1016_j_ecoinf_2023_102110 crossref_primary_10_3390_rs13163069 crossref_primary_10_1016_j_rsase_2024_101247 crossref_primary_10_1111_gcb_17241 crossref_primary_10_1002_ecs2_4706 crossref_primary_10_1016_j_foreco_2024_122132 crossref_primary_10_1016_j_scs_2024_105628 crossref_primary_10_3390_ijgi10040231 crossref_primary_10_1016_j_jhydrol_2021_127354 crossref_primary_10_3390_su12208480 crossref_primary_10_1016_j_inffus_2022_06_003 crossref_primary_10_3390_f13030371 crossref_primary_10_1088_1748_9326_ac6b47 crossref_primary_10_3390_d13020083 crossref_primary_10_3390_d15070878 crossref_primary_10_1016_j_rsase_2022_100785 crossref_primary_10_3390_d13060266 crossref_primary_10_3390_land9070225 crossref_primary_10_3389_fevo_2023_1252632 crossref_primary_10_3390_f13020150 crossref_primary_10_1002_wll2_70001 crossref_primary_10_1007_s11356_024_35097_6 crossref_primary_10_1016_j_ecoinf_2021_101400 crossref_primary_10_1016_j_ecoinf_2023_102333 crossref_primary_10_1016_j_scitotenv_2023_165630 crossref_primary_10_1016_j_uclim_2022_101230 crossref_primary_10_1016_j_resconrec_2022_106333 crossref_primary_10_1029_2022EF003137 crossref_primary_10_1016_j_jag_2021_102296 crossref_primary_10_7589_JWD_D_21_00111 crossref_primary_10_1002_eap_2734 crossref_primary_10_3390_land11040587 crossref_primary_10_1038_s41598_023_46195_9 crossref_primary_10_1080_22797254_2024_2372855 crossref_primary_10_1016_j_rse_2021_112670 crossref_primary_10_1016_j_ecolind_2023_111506 crossref_primary_10_1007_s10661_022_10740_2 crossref_primary_10_1016_j_rse_2020_112127 crossref_primary_10_1016_j_scitotenv_2024_172684 crossref_primary_10_5194_essd_15_1005_2023 crossref_primary_10_1016_j_envc_2023_100821 crossref_primary_10_1071_WR22002 crossref_primary_10_3390_rs13040634 crossref_primary_10_3390_land11122246 crossref_primary_10_1111_1752_1688_13109 crossref_primary_10_3390_s21061966 crossref_primary_10_1016_j_rama_2022_11_004 crossref_primary_10_1016_j_scitotenv_2023_163550 crossref_primary_10_1016_j_scitotenv_2022_157933 crossref_primary_10_1016_j_rse_2020_112244 crossref_primary_10_1109_TGRS_2023_3265186 crossref_primary_10_1016_j_coastaleng_2021_103984 crossref_primary_10_1029_2023EF004106 crossref_primary_10_1016_j_jglr_2020_08_022 crossref_primary_10_1093_forestry_cpad065 crossref_primary_10_3996_JFWM_21_036 crossref_primary_10_1038_s41370_022_00467_0 crossref_primary_10_1016_j_agrformet_2021_108609 crossref_primary_10_7717_peerj_13573 crossref_primary_10_3390_rs13112090 crossref_primary_10_1016_j_scitotenv_2020_144224 crossref_primary_10_1016_j_coastaleng_2025_104721 crossref_primary_10_3390_land10030308 crossref_primary_10_3390_rs13163331 crossref_primary_10_1007_s10668_022_02235_4 crossref_primary_10_1038_s41597_021_01048_w crossref_primary_10_3390_rs14092127 crossref_primary_10_1007_s11069_023_06247_9 crossref_primary_10_3389_fenvs_2022_920733 crossref_primary_10_1002_eap_2225 crossref_primary_10_1016_j_ijdrr_2025_105273 crossref_primary_10_1186_s13717_023_00439_8 crossref_primary_10_1111_ecog_05600 crossref_primary_10_1289_EHP11164 crossref_primary_10_1001_jamanetworkopen_2022_47664 crossref_primary_10_1002_eco_2703 crossref_primary_10_1080_2150704X_2024_2446594 crossref_primary_10_1016_j_rse_2021_112357 crossref_primary_10_1093_jmammal_gyab144 crossref_primary_10_1016_j_landurbplan_2021_104309 crossref_primary_10_5194_gmd_17_4755_2024 crossref_primary_10_1080_15481603_2023_2287291 crossref_primary_10_1016_j_advwatres_2021_103940 crossref_primary_10_5194_essd_14_2833_2022 crossref_primary_10_1111_rec_13583 crossref_primary_10_5194_essd_15_265_2023 crossref_primary_10_1021_acs_est_1c02644 crossref_primary_10_1016_j_rse_2022_112992 crossref_primary_10_1676_20_00119 crossref_primary_10_3389_fenvs_2023_1070625 crossref_primary_10_1088_2752_664X_ac7eb5 crossref_primary_10_1071_WR24108 crossref_primary_10_1016_j_jglr_2023_03_011 crossref_primary_10_1029_2021GL093298 crossref_primary_10_1111_1365_2745_13999 crossref_primary_10_1016_j_kjs_2023_10_007 crossref_primary_10_1016_j_rse_2023_113918 crossref_primary_10_1177_17581559221121712 crossref_primary_10_1016_j_scitotenv_2023_161851 crossref_primary_10_3390_rs14040935 crossref_primary_10_1016_j_forpol_2022_102783 crossref_primary_10_2298_IJGI230822002P crossref_primary_10_5194_essd_14_143_2022 crossref_primary_10_1080_24694452_2021_1883416 crossref_primary_10_3390_rs14153653 crossref_primary_10_1016_j_scitotenv_2022_153652 crossref_primary_10_3390_rs12111830 crossref_primary_10_1002_wsb_1274 crossref_primary_10_1139_facets_2020_0049 crossref_primary_10_2139_ssrn_4120127 crossref_primary_10_3389_fevo_2023_1112982 crossref_primary_10_1126_science_abe5585 crossref_primary_10_1016_j_rse_2020_112175 crossref_primary_10_3390_agriculture13010043 crossref_primary_10_1007_s10021_021_00722_9 crossref_primary_10_1093_ornithology_ukad031 crossref_primary_10_69628_esbur_1_2024_100 crossref_primary_10_1038_s41597_025_04713_6 crossref_primary_10_5194_essd_16_3453_2024 crossref_primary_10_1016_j_advwatres_2020_103799 crossref_primary_10_1016_j_jenvman_2024_123628 crossref_primary_10_1111_mec_16590 crossref_primary_10_1111_oik_10749 crossref_primary_10_1139_cjz_2023_0131 crossref_primary_10_1088_1748_9326_aca77b crossref_primary_10_1073_pnas_2220616120 crossref_primary_10_1029_2021EA002123 crossref_primary_10_1016_j_jag_2024_103866 crossref_primary_10_1016_j_scs_2024_105806 crossref_primary_10_1016_j_eiar_2024_107721 crossref_primary_10_34133_remotesensing_0021 crossref_primary_10_1029_2021AV000384 crossref_primary_10_3390_land13111735 crossref_primary_10_1007_s10980_021_01238_2 crossref_primary_10_1007_s00027_023_00990_8 crossref_primary_10_1016_j_spasta_2023_100808 crossref_primary_10_1002_ecs2_4098 crossref_primary_10_1071_WR22080 crossref_primary_10_1071_WF24137 crossref_primary_10_1080_15481603_2021_1909304 crossref_primary_10_3389_fenrg_2022_830227 crossref_primary_10_3390_rs14153622 crossref_primary_10_1016_j_scitotenv_2022_161229 crossref_primary_10_1038_s41597_023_02696_w crossref_primary_10_1109_TGRS_2021_3138763 crossref_primary_10_3390_f15030532 crossref_primary_10_3097_LO_2022_1104 crossref_primary_10_1111_eff_12801 crossref_primary_10_3390_su151914270 crossref_primary_10_1088_1748_9326_acddfb crossref_primary_10_1111_1752_1688_12899 crossref_primary_10_1016_j_ejrh_2021_100802 crossref_primary_10_34133_remotesensing_0022 crossref_primary_10_1111_2041_210X_14199 |
Cites_doi | 10.1073/pnas.0401545101 10.1016/j.gloenvcha.2018.08.006 10.1073/pnas.1211658109 10.1007/s10708-011-9419-5 10.1016/j.rse.2010.02.018 10.1659/0276-4741(2001)021[0184:IOLUAL]2.0.CO;2 10.1016/j.rse.2011.08.024 10.1016/j.rse.2015.07.014 10.1016/j.cosust.2013.08.001 10.1126/science.1111772 10.1016/j.cageo.2017.08.012 10.1007/s10980-006-9054-6 10.3390/rs11242971 10.1016/j.isprsjprs.2018.09.006 10.1016/j.rse.2013.01.012 10.1007/BF03160482 10.1016/j.landusepol.2017.01.026 10.1371/journal.pone.0102261 10.1126/science.1120529 10.1038/srep00653 10.1016/j.isprsjprs.2013.09.009 10.1186/1476-072X-7-65 10.1007/s10980-015-0159-7 10.1016/j.rse.2016.12.026 10.5194/bg-9-4023-2012 10.2737/FS-FIADB-P2-6.1 10.1016/j.foreco.2011.09.022 10.1016/j.jenvman.2012.10.007 10.1038/nature10452 10.1080/01431161.2015.1093195 10.1016/j.foreco.2015.10.042 10.3133/ofr20171119 10.14358/PERS.74.12.1561 10.1080/01431161.2012.720045 10.1016/j.rse.2014.04.004 10.1890/04-1413 10.1093/biosci/biu039 10.1126/science.1244693 10.3390/rs12030412 10.1080/1747423X.2017.1413433 10.1007/s10021-002-0209-2 10.1073/pnas.0704119104 10.1080/01431161.2017.1410298 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7S9 L.6 7X8 5PM |
DOI | 10.1016/j.isprsjprs.2020.02.019 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 199 |
ExternalDocumentID | PMC9214659 35746921 10_1016_j_isprsjprs_2020_02_019 S0924271620300587 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: Intramural EPA grantid: EPA999999 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c508t-e3e6bd9e1a6eb411608f8997eafe3da4b0e7321a3472008596bd43a484d9a00d3 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Thu Aug 21 14:12:34 EDT 2025 Tue Aug 05 10:44:34 EDT 2025 Fri Jul 11 01:26:38 EDT 2025 Mon Jul 21 06:03:48 EDT 2025 Thu Apr 24 23:13:14 EDT 2025 Tue Jul 01 03:46:43 EDT 2025 Fri Feb 23 02:47:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | NLCD United States Remote sensing Land cover change Landsat |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-e3e6bd9e1a6eb411608f8997eafe3da4b0e7321a3472008596bd43a484d9a00d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5234-2027 0000-0002-7409-7365 0000-0001-5674-2204 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0924271620300587 |
PMID | 35746921 |
PQID | 2400523253 |
PQPubID | 24069 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9214659 proquest_miscellaneous_2681036022 proquest_miscellaneous_2400523253 pubmed_primary_35746921 crossref_citationtrail_10_1016_j_isprsjprs_2020_02_019 crossref_primary_10_1016_j_isprsjprs_2020_02_019 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2020_02_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 2020-Apr 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationTitleAlternate | ISPRS J Photogramm Remote Sens |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Homer, Dewitz, Fry, Coan, Hossain, Larson, Herold, McKerrow, VanDriel, Wickham (b0085) 2007; 73 Turner II, B.L., Lambin, E.F., Reenberg A., 2007. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci., USA 104:20666–20671. Riitters, K.H., Wickham, J.D., O'neill, R.V., Jones, K.B., Smith, E.R., Coulston, J.W., Wade, T.G., Smith, J.H., 2002. Fragmentation of continental United States forests. Ecosystems, 5(8), pp. 0815–0822. Zeleke, Hurni (b0275) 2001; 21 Xian, Homer, Rigge, Shi, Meyer (b0265) 2015; 168 Pielke (b0150) 2005; 310 Kalyanapu, Burian, McPherson (b0120) 2010; 9 Rigge, Homer, Cleeves, Meyer, Bunde, Shi, Xian, Schell, Bobo (b0160) 2020; 12 Wickham, Stehman, Homer (b0245) 2018; 39 Yang, Jin, Danielson, Homer, Gass, Bender, Case, Costello, Dewitz, Fry, Funk (b0270) 2018; 146 (accessed on 28 May 2019). Riitters, Coulston, Wickham (b0175) 2012; 263 Grekousis, Mountrakis, Kavouras (b0065) 2015; 36 (accessed 7 February 2018). Riitters, Wickham (b0180) 2012; 2 Wickham, Riitters, Wade, Coulston (b0235) 2007; 22 Xian, Homer (b0255) 2010; 114 Bar-Massada, Radeloff, Stewart (b0020) 2014; 64 Foley, Ramankutty, Brauman, Cassidy, Gerber, Johnston, Mueller, O’Connell, Ray, West, Balzer (b0055) 2011; 478 Hansen, Potapov, Moore, Hancher, Turubanova, Tyukavina, Thau, Stehman, Goetz, Loveland, Kommareddy, Egorov, Chini, Justice, Townshend (b0075) 2013; 342 Seto, Güneralp, Hutyra (b0195) 2012; 109 Hefner, Brown (b0080) 1984; 4 Jones, Henry, Wood, Ng, Jamieson (b0115) 2017; 109 Xian, Homer, Meyer, Granneman (b0260) 2013; 86 MPLO (Montréal Process Liaison Office). 2015. Montréal Process. Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests. Available online Jin, Homer, Yang, Danielson, Dewitz, Li, Zhu, Xian, Howard (b0100) 2019; 11 Verburg, Erb, Mertz, Espindola (b0230) 2013; 5 Foley, DeFries, Asner, Barfor, Bonan, Carpenter, Chapin, Coe, Daily, Gibbs, Helkowski, Holloway, Howard, Kucharik, Monfreda, Patz, Prentice, Ramankutty, Snyder (b0050) 2005; 205 Auch, Xian, Laingen, Sayler, Reker (b0015) 2018; 13 Howard, J.L., Jones, K.C., 2016. U.S. timber production, trade, consumption, and price statistics, 1965-2013. Research Paper FPL-RP-679. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 91 p. Jin, Homer, Yang, Xian, Fry, Danielson, Townsend (b0105) 2013; 34 Stehman, Wickham, Wade, Smith (b0205) 2008; 74 Rigge, M.B., Gass, L., Homer, C.G., Xian, G.Z., 2017. Methods for converting continuous shrubland ecosystem component values to thematic National Land Cover Database classes, Open-File Report 2017-1119. Wimberly, Janssen, Hennessy, Luri, Chowdhury, Feng (b0250) 2017; 63 Cohen, Yang, Stehman, Schroeder, Bell, Masek, Huang, Meigs (b0035) 2016; 360 Robertson G., Gualke P., McWilliams R., LaPlante S., Guldin R, (editors), 2011. National Report on Sustainable Forests--2010. Report FS-979. US Department of Agriculture, Forest Service, Washington DC. 212 pp. Radeloff, Hammer, Stewart, Fried, Holcomb, McKeefry (b0155) 2005; 15 Hansen, Loveland (b0070) 2012; 122 Homer, C.G., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, Coulston, J., Herold, N., Wickham, J., K. Megown, 2015. Completion of the 2011 National Land Cover Database for the conterminous United States – representing a decade of land cover change information, Photogrammetric Engineering and Remote Sensing, Vol. 81, 345–353. Byrd, Flint, Alvarez, Casey, Sleeter, Soulard, Flint, Sohl (b0025) 2015; 30 Anderson, Hardy, Roach, Witmer (b0005) 1976; 964 Fry, Xian, Jin, Dewitz, Homer, Yang, Barnes, Herold, Wickham (b0060) 2011; 77 Jin, Yang, Danielson, Homer, Fry, Xian (b0110) 2013; 132 O’Connell, B.M., Conkling, B.L., Wilson, A.M., Burrill, E.A., Turner, J.A., Pugh, S.A., Christiansen, G., Ridley, T., J. Menlove, 2017. The Forest Inventory and Analysis Database: Database description and user guide version 7.0 for Phase 2. US Department of Agriculture, Forest Service. 830 pp. [Online]. Available at web address Terando, Costanza, Belyea, Dunn, McKerrow, Collazo (b0210) 2014; 9 Meyfroidt, Chowdhury, de Bremond, Ellis, Erb, Filatova, Garrett, Grove, Heinimann, Kuemmerle, Kull (b0130) 2018; 53 Cova, Theobald, Norman, Siebeneck (b0045) 2013; 78 Wickham, Stehman, Gass, Dewitz, Sorenson, Granneman, Poss, Baer (b0240) 2017; 191 Cooter, Bash, Benson, Ran (b0040) 2012; 9 Vargo, Habeeb, Stone (b0225) 2013; 114 Zhang, Wang, Zhao, Liu, Yi, Zuo, Wen, LiuF, Hu (b0280) 2014; 149 Claborn, Masuoka, Morrow, Keep (b0030) 2008; 7 Rindfuss, Walsh, Turner, Fox, Mishra (b0185) 2004; 101 Bar-Massada (10.1016/j.isprsjprs.2020.02.019_b0020) 2014; 64 Jin (10.1016/j.isprsjprs.2020.02.019_b0100) 2019; 11 Homer (10.1016/j.isprsjprs.2020.02.019_b0085) 2007; 73 Xian (10.1016/j.isprsjprs.2020.02.019_b0260) 2013; 86 Rigge (10.1016/j.isprsjprs.2020.02.019_b0160) 2020; 12 Auch (10.1016/j.isprsjprs.2020.02.019_b0015) 2018; 13 Radeloff (10.1016/j.isprsjprs.2020.02.019_b0155) 2005; 15 Cooter (10.1016/j.isprsjprs.2020.02.019_b0040) 2012; 9 Wickham (10.1016/j.isprsjprs.2020.02.019_b0240) 2017; 191 Meyfroidt (10.1016/j.isprsjprs.2020.02.019_b0130) 2018; 53 Zeleke (10.1016/j.isprsjprs.2020.02.019_b0275) 2001; 21 Wickham (10.1016/j.isprsjprs.2020.02.019_b0235) 2007; 22 10.1016/j.isprsjprs.2020.02.019_b0190 Riitters (10.1016/j.isprsjprs.2020.02.019_b0180) 2012; 2 Fry (10.1016/j.isprsjprs.2020.02.019_b0060) 2011; 77 10.1016/j.isprsjprs.2020.02.019_b0145 Yang (10.1016/j.isprsjprs.2020.02.019_b0270) 2018; 146 10.1016/j.isprsjprs.2020.02.019_b0220 Hansen (10.1016/j.isprsjprs.2020.02.019_b0075) 2013; 342 Xian (10.1016/j.isprsjprs.2020.02.019_b0265) 2015; 168 Foley (10.1016/j.isprsjprs.2020.02.019_b0055) 2011; 478 Grekousis (10.1016/j.isprsjprs.2020.02.019_b0065) 2015; 36 Jin (10.1016/j.isprsjprs.2020.02.019_b0105) 2013; 34 Jin (10.1016/j.isprsjprs.2020.02.019_b0110) 2013; 132 Pielke (10.1016/j.isprsjprs.2020.02.019_b0150) 2005; 310 Wickham (10.1016/j.isprsjprs.2020.02.019_b0245) 2018; 39 Foley (10.1016/j.isprsjprs.2020.02.019_b0050) 2005; 205 Stehman (10.1016/j.isprsjprs.2020.02.019_b0205) 2008; 74 Hansen (10.1016/j.isprsjprs.2020.02.019_b0070) 2012; 122 Verburg (10.1016/j.isprsjprs.2020.02.019_b0230) 2013; 5 Claborn (10.1016/j.isprsjprs.2020.02.019_b0030) 2008; 7 Jones (10.1016/j.isprsjprs.2020.02.019_b0115) 2017; 109 Cova (10.1016/j.isprsjprs.2020.02.019_b0045) 2013; 78 10.1016/j.isprsjprs.2020.02.019_b0135 Byrd (10.1016/j.isprsjprs.2020.02.019_b0025) 2015; 30 Vargo (10.1016/j.isprsjprs.2020.02.019_b0225) 2013; 114 Riitters (10.1016/j.isprsjprs.2020.02.019_b0175) 2012; 263 Anderson (10.1016/j.isprsjprs.2020.02.019_b0005) 1976; 964 Kalyanapu (10.1016/j.isprsjprs.2020.02.019_b0120) 2010; 9 Cohen (10.1016/j.isprsjprs.2020.02.019_b0035) 2016; 360 10.1016/j.isprsjprs.2020.02.019_b0170 10.1016/j.isprsjprs.2020.02.019_b0090 Wimberly (10.1016/j.isprsjprs.2020.02.019_b0250) 2017; 63 10.1016/j.isprsjprs.2020.02.019_b0095 Terando (10.1016/j.isprsjprs.2020.02.019_b0210) 2014; 9 Hefner (10.1016/j.isprsjprs.2020.02.019_b0080) 1984; 4 Seto (10.1016/j.isprsjprs.2020.02.019_b0195) 2012; 109 Zhang (10.1016/j.isprsjprs.2020.02.019_b0280) 2014; 149 10.1016/j.isprsjprs.2020.02.019_b0165 Rindfuss (10.1016/j.isprsjprs.2020.02.019_b0185) 2004; 101 Xian (10.1016/j.isprsjprs.2020.02.019_b0255) 2010; 114 |
References_xml | – reference: (accessed on 28 May 2019). – reference: O’Connell, B.M., Conkling, B.L., Wilson, A.M., Burrill, E.A., Turner, J.A., Pugh, S.A., Christiansen, G., Ridley, T., J. Menlove, 2017. The Forest Inventory and Analysis Database: Database description and user guide version 7.0 for Phase 2. US Department of Agriculture, Forest Service. 830 pp. [Online]. Available at web address: – volume: 15 start-page: 799 year: 2005 end-page: 805 ident: b0155 article-title: The wildland–urban interface in the United States publication-title: Ecol. Appl. – volume: 64 start-page: 429 year: 2014 end-page: 437 ident: b0020 article-title: Biotic and abiotic effects of human settlements in the wildland–urban interface publication-title: Bioscience – volume: 30 start-page: 729 year: 2015 end-page: 750 ident: b0025 article-title: Integrated climate and land use change scenarios for California rangeland ecosystem services: wildlife habitat, soil carbon, and water supply publication-title: Landscape Ecol. – volume: 86 start-page: 136 year: 2013 end-page: 149 ident: b0260 article-title: An approach for characterizing the distribution of shrubland ecosystem components as continuous fields as part of NLCD publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 2 start-page: 653 year: 2012 ident: b0180 article-title: Decline of forest interior conditions in the conterminous United States publication-title: Sci. Rep. – volume: 122 start-page: 66 year: 2012 end-page: 74 ident: b0070 article-title: A review of large area monitoring of land cover change using Landsat data publication-title: Remote Sens. Environ. – volume: 478 start-page: 337 year: 2011 ident: b0055 article-title: Solutions for a cultivated planet publication-title: Nature – volume: 34 start-page: 1540 year: 2013 end-page: 1560 ident: b0105 article-title: Automated cloud and shadow detection and filling using two-date Landsat imagery in the USA publication-title: Int. J. Remote Sens. – volume: 63 start-page: 160 year: 2017 end-page: 173 ident: b0250 article-title: Cropland expansion and grassland loss in the eastern Dakotas: new insights from a farm-level survey publication-title: Land Use Pol. – volume: 12 start-page: 412 year: 2020 ident: b0160 article-title: Quantifying Western US Rangelands as fractional components with multi-resolution remote sensing and in situ data publication-title: Remote Sens. – volume: 22 start-page: 481 year: 2007 end-page: 489 ident: b0235 article-title: Temporal change in forest fragmentation at multiple scales publication-title: Landscape Ecol. – reference: (accessed 7 February 2018). – volume: 132 start-page: 159 year: 2013 end-page: 175 ident: b0110 article-title: A comprehensive change detection method for updating the National Land Cover Database to circa 2011 publication-title: Remote Sens. Environ. – volume: 114 start-page: 1676 year: 2010 end-page: 1686 ident: b0255 article-title: Updating the 2001 National Land Cover Database impervious surface products to 2006 using Landsat imagery change detection methods publication-title: Remote Sens. Environ. – volume: 4 start-page: 1 year: 1984 end-page: 11 ident: b0080 article-title: Wetland trends in the southeastern United States publication-title: Wetlands – volume: 109 start-page: 16083 year: 2012 end-page: 16088 ident: b0195 article-title: Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools publication-title: Proc. Natl. Acad. Sci. – reference: Riitters, K.H., Wickham, J.D., O'neill, R.V., Jones, K.B., Smith, E.R., Coulston, J.W., Wade, T.G., Smith, J.H., 2002. Fragmentation of continental United States forests. Ecosystems, 5(8), pp. 0815–0822. – volume: 109 start-page: 124 year: 2017 end-page: 133 ident: b0115 article-title: HERA: a dynamic web application for visualizing community exposure to flood hazards based on storm and sea level rise scenarios publication-title: Comput. Geosci. – volume: 11 start-page: 2971 year: 2019 end-page: 3003 ident: b0100 article-title: Overall methodology design for the United States national land cover database 2016 products publication-title: Remote Sens. – volume: 36 start-page: 5309 year: 2015 end-page: 5335 ident: b0065 article-title: An overview of 21 global and 43 regional land-cover mapping projects publication-title: Int. J. Remote Sens. – volume: 9 year: 2010 ident: b0120 article-title: Effect of land use-based surface roughness on hydrologic model output publication-title: J. Spat. Hydrol. – volume: 964 start-page: 28 year: 1976 ident: b0005 article-title: A land use and land cover classification system for use with remote sensor data publication-title: U.S. Geol. Surv. Prof. Pap. – reference: MPLO (Montréal Process Liaison Office). 2015. Montréal Process. Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests. Available online: – volume: 168 start-page: 286 year: 2015 end-page: 300 ident: b0265 article-title: Characterization of shrubland ecosystem components as continuous fields in the northwest United States publication-title: Remote Sens. Environ. – reference: Robertson G., Gualke P., McWilliams R., LaPlante S., Guldin R, (editors), 2011. National Report on Sustainable Forests--2010. Report FS-979. US Department of Agriculture, Forest Service, Washington DC. 212 pp. – volume: 74 start-page: 1561 year: 2008 end-page: 1571 ident: b0205 article-title: Designing a multi-objective, multi-support accuracy assessment of the 2001 National Land Cover Data (NLCD 2001) of the conterminous United States publication-title: Photogramm. Eng. Remote Sens. – volume: 101 start-page: 13976 year: 2004 end-page: 13981 ident: b0185 article-title: Developing a science of land change: challenges and methodological issues publication-title: Proc. Natl. Acad. Sci., USA – volume: 205 start-page: 570 year: 2005 end-page: 574 ident: b0050 article-title: Global consequences of land use publication-title: Science – volume: 342 start-page: 850 year: 2013 end-page: 853 ident: b0075 article-title: High-resolution global maps of 21-st-century forest cover change publication-title: Science – volume: 263 start-page: 85 year: 2012 end-page: 93 ident: b0175 article-title: Fragmentation of forest communities in the eastern United States publication-title: For. Ecol. Manage. – reference: Rigge, M.B., Gass, L., Homer, C.G., Xian, G.Z., 2017. Methods for converting continuous shrubland ecosystem component values to thematic National Land Cover Database classes, Open-File Report 2017-1119. – volume: 7 start-page: 65 year: 2008 ident: b0030 article-title: Habitat analysis of North American sand flies near veterans returning from leishmania-endemic war zones publication-title: Int. J. Health Geographics – volume: 78 start-page: 273 year: 2013 end-page: 285 ident: b0045 article-title: Mapping wildfire evacuation vulnerability in the western US: the limits of infrastructure publication-title: GeoJournal – volume: 21 start-page: 184 year: 2001 end-page: 192 ident: b0275 article-title: Implications of land use and land cover dynamics for mountain resource degradation in the Northwestern Ethiopian highlands publication-title: Mt. Res. Dev. – volume: 360 start-page: 242 year: 2016 end-page: 252 ident: b0035 article-title: Forest disturbance across the conterminous United States from 1985–2012: the emerging dominance of forest decline publication-title: For. Ecol. Manage. – volume: 73 start-page: 337 year: 2007 end-page: 341 ident: b0085 article-title: Completion of the 2001 national land cover database for the conterminous United States publication-title: Photogramm. Eng. Remote Sens. – volume: 114 start-page: 243 year: 2013 end-page: 252 ident: b0225 article-title: The importance of land cover change across urban–rural typologies for climate modeling publication-title: J. Environ. Manage. – volume: 5 start-page: 433 year: 2013 end-page: 437 ident: b0230 article-title: Land system science: between global challenges and local realities publication-title: Curr. Opin. Environ. Sustain. – volume: 77 start-page: 858 year: 2011 end-page: 864 ident: b0060 article-title: Completion of the 2006 national land cover database for the conterminous United States publication-title: PE&RS, Photogram. Eng. Remote Sens. – volume: 149 start-page: 142 year: 2014 end-page: 154 ident: b0280 article-title: A 2010 update of the national land use/cover database of China at 1:100000 scale using medium spatial resolution satellite images publication-title: Remote Sens. Environ. – reference: Turner II, B.L., Lambin, E.F., Reenberg A., 2007. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci., USA 104:20666–20671. – volume: 13 start-page: 32 year: 2018 end-page: 58 ident: b0015 article-title: Human drivers, biophysical changes, and climatic variation affecting contemporary cropping proportions in the northern prairie of the U.S publication-title: J. Land Use Sci. – volume: 9 start-page: e102261 year: 2014 ident: b0210 article-title: The southern megalopolis: using the past to predict the future of urban sprawl in the Southeast US publication-title: PLoS ONE – volume: 53 start-page: 52 year: 2018 end-page: 67 ident: b0130 article-title: Middle-range theories of land system change publication-title: Global Environ. Change – volume: 310 start-page: 1625 year: 2005 end-page: 1626 ident: b0150 article-title: Land use and climate change publication-title: Science – volume: 9 start-page: 4023 year: 2012 end-page: 4035 ident: b0040 article-title: Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments publication-title: Biogeosciences – volume: 146 start-page: 108 year: 2018 end-page: 123 ident: b0270 article-title: A new generation of the United States National Land Cover Database: requirements, research priorities, design, and implementation strategies publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 39 start-page: 1729 year: 2018 end-page: 1743 ident: b0245 article-title: Spatial patterns of the United States National Land Cover Dataset (NLCD) land-cover change thematic accuracy (2001–2011) publication-title: Int. J. Remote Sens. – volume: 191 start-page: 328 year: 2017 end-page: 341 ident: b0240 article-title: Thematic accuracy assessment of the 2011 National Land Cover Database (NLCD) publication-title: Remote Sens. Environ. – reference: Howard, J.L., Jones, K.C., 2016. U.S. timber production, trade, consumption, and price statistics, 1965-2013. Research Paper FPL-RP-679. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 91 p. – reference: Homer, C.G., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, Coulston, J., Herold, N., Wickham, J., K. Megown, 2015. Completion of the 2011 National Land Cover Database for the conterminous United States – representing a decade of land cover change information, Photogrammetric Engineering and Remote Sensing, Vol. 81, 345–353. – volume: 101 start-page: 13976 year: 2004 ident: 10.1016/j.isprsjprs.2020.02.019_b0185 article-title: Developing a science of land change: challenges and methodological issues publication-title: Proc. Natl. Acad. Sci., USA doi: 10.1073/pnas.0401545101 – volume: 53 start-page: 52 year: 2018 ident: 10.1016/j.isprsjprs.2020.02.019_b0130 article-title: Middle-range theories of land system change publication-title: Global Environ. Change doi: 10.1016/j.gloenvcha.2018.08.006 – volume: 109 start-page: 16083 issue: 40 year: 2012 ident: 10.1016/j.isprsjprs.2020.02.019_b0195 article-title: Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1211658109 – volume: 78 start-page: 273 issue: 2 year: 2013 ident: 10.1016/j.isprsjprs.2020.02.019_b0045 article-title: Mapping wildfire evacuation vulnerability in the western US: the limits of infrastructure publication-title: GeoJournal doi: 10.1007/s10708-011-9419-5 – volume: 114 start-page: 1676 issue: 8 year: 2010 ident: 10.1016/j.isprsjprs.2020.02.019_b0255 article-title: Updating the 2001 National Land Cover Database impervious surface products to 2006 using Landsat imagery change detection methods publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.02.018 – volume: 21 start-page: 184 issue: 2 year: 2001 ident: 10.1016/j.isprsjprs.2020.02.019_b0275 article-title: Implications of land use and land cover dynamics for mountain resource degradation in the Northwestern Ethiopian highlands publication-title: Mt. Res. Dev. doi: 10.1659/0276-4741(2001)021[0184:IOLUAL]2.0.CO;2 – volume: 122 start-page: 66 year: 2012 ident: 10.1016/j.isprsjprs.2020.02.019_b0070 article-title: A review of large area monitoring of land cover change using Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.08.024 – volume: 168 start-page: 286 year: 2015 ident: 10.1016/j.isprsjprs.2020.02.019_b0265 article-title: Characterization of shrubland ecosystem components as continuous fields in the northwest United States publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.07.014 – volume: 5 start-page: 433 year: 2013 ident: 10.1016/j.isprsjprs.2020.02.019_b0230 article-title: Land system science: between global challenges and local realities publication-title: Curr. Opin. Environ. Sustain. doi: 10.1016/j.cosust.2013.08.001 – volume: 205 start-page: 570 year: 2005 ident: 10.1016/j.isprsjprs.2020.02.019_b0050 article-title: Global consequences of land use publication-title: Science doi: 10.1126/science.1111772 – volume: 109 start-page: 124 year: 2017 ident: 10.1016/j.isprsjprs.2020.02.019_b0115 article-title: HERA: a dynamic web application for visualizing community exposure to flood hazards based on storm and sea level rise scenarios publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2017.08.012 – volume: 22 start-page: 481 year: 2007 ident: 10.1016/j.isprsjprs.2020.02.019_b0235 article-title: Temporal change in forest fragmentation at multiple scales publication-title: Landscape Ecol. doi: 10.1007/s10980-006-9054-6 – volume: 11 start-page: 2971 issue: 24 year: 2019 ident: 10.1016/j.isprsjprs.2020.02.019_b0100 article-title: Overall methodology design for the United States national land cover database 2016 products publication-title: Remote Sens. doi: 10.3390/rs11242971 – volume: 146 start-page: 108 year: 2018 ident: 10.1016/j.isprsjprs.2020.02.019_b0270 article-title: A new generation of the United States National Land Cover Database: requirements, research priorities, design, and implementation strategies publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.09.006 – volume: 132 start-page: 159 year: 2013 ident: 10.1016/j.isprsjprs.2020.02.019_b0110 article-title: A comprehensive change detection method for updating the National Land Cover Database to circa 2011 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.01.012 – volume: 4 start-page: 1 issue: 1 year: 1984 ident: 10.1016/j.isprsjprs.2020.02.019_b0080 article-title: Wetland trends in the southeastern United States publication-title: Wetlands doi: 10.1007/BF03160482 – volume: 63 start-page: 160 year: 2017 ident: 10.1016/j.isprsjprs.2020.02.019_b0250 article-title: Cropland expansion and grassland loss in the eastern Dakotas: new insights from a farm-level survey publication-title: Land Use Pol. doi: 10.1016/j.landusepol.2017.01.026 – volume: 73 start-page: 337 issue: 4 year: 2007 ident: 10.1016/j.isprsjprs.2020.02.019_b0085 article-title: Completion of the 2001 national land cover database for the conterminous United States publication-title: Photogramm. Eng. Remote Sens. – ident: 10.1016/j.isprsjprs.2020.02.019_b0095 – volume: 9 start-page: e102261 issue: 7 year: 2014 ident: 10.1016/j.isprsjprs.2020.02.019_b0210 article-title: The southern megalopolis: using the past to predict the future of urban sprawl in the Southeast US publication-title: PLoS ONE doi: 10.1371/journal.pone.0102261 – ident: 10.1016/j.isprsjprs.2020.02.019_b0135 – volume: 310 start-page: 1625 issue: 5754 year: 2005 ident: 10.1016/j.isprsjprs.2020.02.019_b0150 article-title: Land use and climate change publication-title: Science doi: 10.1126/science.1120529 – ident: 10.1016/j.isprsjprs.2020.02.019_b0190 – volume: 2 start-page: 653 year: 2012 ident: 10.1016/j.isprsjprs.2020.02.019_b0180 article-title: Decline of forest interior conditions in the conterminous United States publication-title: Sci. Rep. doi: 10.1038/srep00653 – volume: 86 start-page: 136 year: 2013 ident: 10.1016/j.isprsjprs.2020.02.019_b0260 article-title: An approach for characterizing the distribution of shrubland ecosystem components as continuous fields as part of NLCD publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.09.009 – volume: 7 start-page: 65 issue: 1 year: 2008 ident: 10.1016/j.isprsjprs.2020.02.019_b0030 article-title: Habitat analysis of North American sand flies near veterans returning from leishmania-endemic war zones publication-title: Int. J. Health Geographics doi: 10.1186/1476-072X-7-65 – volume: 9 issue: 2 year: 2010 ident: 10.1016/j.isprsjprs.2020.02.019_b0120 article-title: Effect of land use-based surface roughness on hydrologic model output publication-title: J. Spat. Hydrol. – volume: 30 start-page: 729 issue: 4 year: 2015 ident: 10.1016/j.isprsjprs.2020.02.019_b0025 article-title: Integrated climate and land use change scenarios for California rangeland ecosystem services: wildlife habitat, soil carbon, and water supply publication-title: Landscape Ecol. doi: 10.1007/s10980-015-0159-7 – volume: 964 start-page: 28 year: 1976 ident: 10.1016/j.isprsjprs.2020.02.019_b0005 article-title: A land use and land cover classification system for use with remote sensor data publication-title: U.S. Geol. Surv. Prof. Pap. – volume: 191 start-page: 328 year: 2017 ident: 10.1016/j.isprsjprs.2020.02.019_b0240 article-title: Thematic accuracy assessment of the 2011 National Land Cover Database (NLCD) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.12.026 – volume: 9 start-page: 4023 issue: 10 year: 2012 ident: 10.1016/j.isprsjprs.2020.02.019_b0040 article-title: Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments publication-title: Biogeosciences doi: 10.5194/bg-9-4023-2012 – ident: 10.1016/j.isprsjprs.2020.02.019_b0090 – ident: 10.1016/j.isprsjprs.2020.02.019_b0145 doi: 10.2737/FS-FIADB-P2-6.1 – volume: 263 start-page: 85 year: 2012 ident: 10.1016/j.isprsjprs.2020.02.019_b0175 article-title: Fragmentation of forest communities in the eastern United States publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2011.09.022 – volume: 77 start-page: 858 issue: 9 year: 2011 ident: 10.1016/j.isprsjprs.2020.02.019_b0060 article-title: Completion of the 2006 national land cover database for the conterminous United States publication-title: PE&RS, Photogram. Eng. Remote Sens. – volume: 114 start-page: 243 year: 2013 ident: 10.1016/j.isprsjprs.2020.02.019_b0225 article-title: The importance of land cover change across urban–rural typologies for climate modeling publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2012.10.007 – volume: 478 start-page: 337 issue: 7369 year: 2011 ident: 10.1016/j.isprsjprs.2020.02.019_b0055 article-title: Solutions for a cultivated planet publication-title: Nature doi: 10.1038/nature10452 – volume: 36 start-page: 5309 year: 2015 ident: 10.1016/j.isprsjprs.2020.02.019_b0065 article-title: An overview of 21 global and 43 regional land-cover mapping projects publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2015.1093195 – volume: 360 start-page: 242 year: 2016 ident: 10.1016/j.isprsjprs.2020.02.019_b0035 article-title: Forest disturbance across the conterminous United States from 1985–2012: the emerging dominance of forest decline publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2015.10.042 – ident: 10.1016/j.isprsjprs.2020.02.019_b0165 doi: 10.3133/ofr20171119 – volume: 74 start-page: 1561 year: 2008 ident: 10.1016/j.isprsjprs.2020.02.019_b0205 article-title: Designing a multi-objective, multi-support accuracy assessment of the 2001 National Land Cover Data (NLCD 2001) of the conterminous United States publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.74.12.1561 – volume: 34 start-page: 1540 issue: 5 year: 2013 ident: 10.1016/j.isprsjprs.2020.02.019_b0105 article-title: Automated cloud and shadow detection and filling using two-date Landsat imagery in the USA publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.720045 – volume: 149 start-page: 142 year: 2014 ident: 10.1016/j.isprsjprs.2020.02.019_b0280 article-title: A 2010 update of the national land use/cover database of China at 1:100000 scale using medium spatial resolution satellite images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.04.004 – volume: 15 start-page: 799 issue: 3 year: 2005 ident: 10.1016/j.isprsjprs.2020.02.019_b0155 article-title: The wildland–urban interface in the United States publication-title: Ecol. Appl. doi: 10.1890/04-1413 – volume: 64 start-page: 429 issue: 5 year: 2014 ident: 10.1016/j.isprsjprs.2020.02.019_b0020 article-title: Biotic and abiotic effects of human settlements in the wildland–urban interface publication-title: Bioscience doi: 10.1093/biosci/biu039 – volume: 342 start-page: 850 year: 2013 ident: 10.1016/j.isprsjprs.2020.02.019_b0075 article-title: High-resolution global maps of 21-st-century forest cover change publication-title: Science doi: 10.1126/science.1244693 – volume: 12 start-page: 412 issue: 3 year: 2020 ident: 10.1016/j.isprsjprs.2020.02.019_b0160 article-title: Quantifying Western US Rangelands as fractional components with multi-resolution remote sensing and in situ data publication-title: Remote Sens. doi: 10.3390/rs12030412 – volume: 13 start-page: 32 issue: 1–2 year: 2018 ident: 10.1016/j.isprsjprs.2020.02.019_b0015 article-title: Human drivers, biophysical changes, and climatic variation affecting contemporary cropping proportions in the northern prairie of the U.S publication-title: J. Land Use Sci. doi: 10.1080/1747423X.2017.1413433 – ident: 10.1016/j.isprsjprs.2020.02.019_b0170 doi: 10.1007/s10021-002-0209-2 – ident: 10.1016/j.isprsjprs.2020.02.019_b0220 doi: 10.1073/pnas.0704119104 – volume: 39 start-page: 1729 issue: 6 year: 2018 ident: 10.1016/j.isprsjprs.2020.02.019_b0245 article-title: Spatial patterns of the United States National Land Cover Dataset (NLCD) land-cover change thematic accuracy (2001–2011) publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1410298 |
SSID | ssj0001568 |
Score | 2.6826982 |
Snippet | [Display omitted]
The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over... The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous... The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov ), includes Landsat-based, 30 m resolution products over the conterminous... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 184 |
SubjectTerms | forest decline forests grasses hay land cover Land cover change Landsat landscapes monitoring NLCD pastures pests Remote sensing shrubs trees United States wetlands |
Title | Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2020.02.019 https://www.ncbi.nlm.nih.gov/pubmed/35746921 https://www.proquest.com/docview/2400523253 https://www.proquest.com/docview/2681036022 https://pubmed.ncbi.nlm.nih.gov/PMC9214659 |
Volume | 162 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6tlgNwQLA8tjxWRuIa6sSOHXNbFVbltRdYaW_WOHG1XVWh2pYDF8R_4B_yS5iJk7IFxB44tFKSGSn1OJ5v0m8-Azxz1plC1yazNXJLzixkoaGvGrEJlL4ph_OrgffHZnqi35yWpzswGXphmFbZr_1pTe9W6_7MuB_N8XI-H3-QVDoULIAkWXK94o5yrS3P8udff9E88tQOx8YZW29xvOar5cXqnD5UKBayE-9kyZ2_Z6g_EejvRMpLmenoNtzqIaU4THd9B3Ziuwc3LwkN7sH1fq_zsy93YdEJUjEFhop-kTCnSJhTMM1R1MzqFKkjWCw7_c12JZgV9ePbd8rkRnBPiiDkKLqjXlp7Id6x96Tzfolr5AR5D06OXn2cTLN-z4WsJqi2zqKKJjQu5mhi0HluZDWjksxGnEXVoA4yWlXkqLRl5kTpyFor1JVuHErZqPuw235q4z6I2rDWl6ksGqPRVIhoZ7bBMrjAuGMEZhhnX_eC5LwvxsIPzLNzvwmQ5wB5WXgK0AjkxnGZNDmudnkxBNJvTS9PmeNq56dD6D09fPyPCraRYuSZgEuVfFGqf9iw4psyhJVG8CBNl81dq9Jq4woaCrs1kTYGLP69faWdn3Ui4I53ZC_dw__5YY_gBh8lItJj2F1ffI5PCGOtw0H3EB3AtcPXb6fHPwH7zykf |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V7aH0gKB8dPk0EtdondixE27VQrWl273QSr1ZduJVt1qFVXc5cOM_8A_5JczETtQFRA8cEimJR0o8judN8uYZ4F2pS5XJSiW6slSSM3eJq3FXWVs7DN8Yw-nTwNlMTS7kp8v8cgfGXS0M0Srj3B_m9Ha2jmdGsTdHq8Vi9Jlj6pCRABInyfVC34NdUqfKB7B7dHI6mfUTchoq4qh9QgZbNK_FenWzvsYNc8WMt_qdpLrz9yD1Jwj9nUt5KzgdP4QHEVWyo3Djj2DHNwewf0tr8AD24nLnV98ew7LVpCIWDOb9LMBOFmAnI6Yjq4jYyUJRMFu1EpzNmhEx6uf3HxjMFaOyFIbgkbVHUV17yaZkPW6tP9iNpRj5BC6OP56PJ0lcdiGpEK1tEi-8cnXpU6u8k2mqeDHHrEx7O_eittJxr0WWWiE1kSfyEltLYWUh69JyXounMGi-NP4QWKVI7ksV2iolrSqstXqua5u70hH0GILq-tlUUZOclsZYmo58dm16BxlykOGZQQcNgfeGqyDLcbfJ-86RZmuEGQwedxu_7Vxv8P2jnyq28egjQxxcTOazXPyjDYm-CYVwaQjPwnDp71rkWqoyw67QWwOpb0D639tXmsVVqwNe0qLsefn8fx7sDexNzs-mZnoyO30B9-lK4CW9hMHm5qt_hZBr417HV-oXDEQr0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conterminous+United+States+land+cover+change+patterns+2001%E2%80%932016+from+the+2016+National+Land+Cover+Database&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Homer%2C+Collin&rft.au=Dewitz%2C+Jon&rft.au=Jin%2C+Suming&rft.au=Xian%2C+George&rft.date=2020-04-01&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=162&rft.spage=184&rft.epage=199&rft_id=info:doi/10.1016%2Fj.isprsjprs.2020.02.019&rft_id=info%3Apmid%2F35746921&rft.externalDocID=PMC9214659 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |