Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database

[Display omitted] The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional p...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 162; pp. 184 - 199
Main Authors Homer, Collin, Dewitz, Jon, Jin, Suming, Xian, George, Costello, Catherine, Danielson, Patrick, Gass, Leila, Funk, Michelle, Wickham, James, Stehman, Stephen, Auch, Roger, Riitters, Kurt
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional percentages. The release of NLCD 2016 provides important new information on land change patterns across CONUS from 2001 to 2016. For land cover, seven epochs were concurrently generated for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Products reveal that land cover change is significant across most land cover classes and time periods. The land cover product was validated using existing reference data from the legacy NLCD 2011 accuracy assessment, applied to the 2011 epoch of the NLCD 2016 product line. The legacy and new NLCD 2011 overall accuracies were 82% and 83%, respectively, (standard error (SE) was 0.5%), demonstrating a small but significant increase in overall accuracy. Between 2001 and 2016, the CONUS landscape experienced significant change, with almost 8% of the landscape having experienced a land cover change at least once during this period. Nearly 50% of that change involves forest, driven by change agents of harvest, fire, disease and pests that resulted in an overall forest decline, including increasing fragmentation and loss of interior forest. Agricultural change represented 15.9% of the change, with total agricultural spatial extent showing only a slight increase of 4778 km2, however there was a substantial decline (7.94%) in pasture/hay during this time, transitioning mostly to cultivated crop. Water and wetland change comprised 15.2% of change and represent highly dynamic land cover classes from epoch to epoch, heavily influenced by precipitation. Grass and shrub change comprise 14.5% of the total change, with most change resulting from fire. Developed change was the most persistent and permanent land change increase adding almost 29,000 km2 over 15 years (5.6% of total CONUS change), with southern states exhibiting expansion much faster than most of the northern states. Temporal rates of developed change increased in 2001–2006 at twice the rate of 2011–2016, reflecting a slowdown in CONUS economic activity. Future NLCD plans include increasing monitoring frequency, reducing latency time between satellite imaging and product delivery, improving accuracy and expanding the variety of products available in an integrated database.
AbstractList The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional percentages. The release of NLCD 2016 provides important new information on land change patterns across CONUS from 2001 to 2016. For land cover, seven epochs were concurrently generated for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Products reveal that land cover change is significant across most land cover classes and time periods. The land cover product was validated using existing reference data from the legacy NLCD 2011 accuracy assessment, applied to the 2011 epoch of the NLCD 2016 product line. The legacy and new NLCD 2011 overall accuracies were 82% and 83%, respectively, (standard error (SE) was 0.5%), demonstrating a small but significant increase in overall accuracy. Between 2001 and 2016, the CONUS landscape experienced significant change, with almost 8% of the landscape having experienced a land cover change at least once during this period. Nearly 50% of that change involves forest, driven by change agents of harvest, fire, disease and pests that resulted in an overall forest decline, including increasing fragmentation and loss of interior forest. Agricultural change represented 15.9% of the change, with total agricultural spatial extent showing only a slight increase of 4778 km², however there was a substantial decline (7.94%) in pasture/hay during this time, transitioning mostly to cultivated crop. Water and wetland change comprised 15.2% of change and represent highly dynamic land cover classes from epoch to epoch, heavily influenced by precipitation. Grass and shrub change comprise 14.5% of the total change, with most change resulting from fire. Developed change was the most persistent and permanent land change increase adding almost 29,000 km² over 15 years (5.6% of total CONUS change), with southern states exhibiting expansion much faster than most of the northern states. Temporal rates of developed change increased in 2001–2006 at twice the rate of 2011–2016, reflecting a slowdown in CONUS economic activity. Future NLCD plans include increasing monitoring frequency, reducing latency time between satellite imaging and product delivery, improving accuracy and expanding the variety of products available in an integrated database.
The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional percentages. The release of NLCD 2016 provides important new information on land change patterns across CONUS from 2001 to 2016. For land cover, seven epochs were concurrently generated for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Products reveal that land cover change is significant across most land cover classes and time periods. The land cover product was validated using existing reference data from the legacy NLCD 2011 accuracy assessment, applied to the 2011 epoch of the NLCD 2016 product line. The legacy and new NLCD 2011 overall accuracies were 82% and 83%, respectively, (standard error (SE) was 0.5%), demonstrating a small but significant increase in overall accuracy. Between 2001 and 2016, the CONUS landscape experienced significant change, with almost 8% of the landscape having experienced a land cover change at least once during this period. Nearly 50% of that change involves forest, driven by change agents of harvest, fire, disease and pests that resulted in an overall forest decline, including increasing fragmentation and loss of interior forest. Agricultural change represented 15.9% of the change, with total agricultural spatial extent showing only a slight increase of 4778 km , however there was a substantial decline (7.94%) in pasture/hay during this time, transitioning mostly to cultivated crop. Water and wetland change comprised 15.2% of change and represent highly dynamic land cover classes from epoch to epoch, heavily influenced by precipitation. Grass and shrub change comprise 14.5% of the total change, with most change resulting from fire. Developed change was the most persistent and permanent land change increase adding almost 29,000 km over 15 years (5.6% of total CONUS change), with southern states exhibiting expansion much faster than most of the northern states. Temporal rates of developed change increased in 2001-2006 at twice the rate of 2011-2016, reflecting a slowdown in CONUS economic activity. Future NLCD plans include increasing monitoring frequency, reducing latency time between satellite imaging and product delivery, improving accuracy and expanding the variety of products available in an integrated database.
The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional percentages. The release of NLCD 2016 provides important new information on land change patterns across CONUS from 2001 to 2016. For land cover, seven epochs were concurrently generated for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Products reveal that land cover change is significant across most land cover classes and time periods. The land cover product was validated using existing reference data from the legacy NLCD 2011 accuracy assessment, applied to the 2011 epoch of the NLCD 2016 product line. The legacy and new NLCD 2011 overall accuracies were 82% and 83%, respectively, (standard error (SE) was 0.5%), demonstrating a small but significant increase in overall accuracy. Between 2001 and 2016, the CONUS landscape experienced significant change, with almost 8% of the landscape having experienced a land cover change at least once during this period. Nearly 50% of that change involves forest, driven by change agents of harvest, fire, disease and pests that resulted in an overall forest decline, including increasing fragmentation and loss of interior forest. Agricultural change represented 15.9% of the change, with total agricultural spatial extent showing only a slight increase of 4778 km2, however there was a substantial decline (7.94%) in pasture/hay during this time, transitioning mostly to cultivated crop. Water and wetland change comprised 15.2% of change and represent highly dynamic land cover classes from epoch to epoch, heavily influenced by precipitation. Grass and shrub change comprise 14.5% of the total change, with most change resulting from fire. Developed change was the most persistent and permanent land change increase adding almost 29,000 km2 over 15 years (5.6% of total CONUS change), with southern states exhibiting expansion much faster than most of the northern states. Temporal rates of developed change increased in 2001-2006 at twice the rate of 2011-2016, reflecting a slowdown in CONUS economic activity. Future NLCD plans include increasing monitoring frequency, reducing latency time between satellite imaging and product delivery, improving accuracy and expanding the variety of products available in an integrated database.The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional percentages. The release of NLCD 2016 provides important new information on land change patterns across CONUS from 2001 to 2016. For land cover, seven epochs were concurrently generated for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Products reveal that land cover change is significant across most land cover classes and time periods. The land cover product was validated using existing reference data from the legacy NLCD 2011 accuracy assessment, applied to the 2011 epoch of the NLCD 2016 product line. The legacy and new NLCD 2011 overall accuracies were 82% and 83%, respectively, (standard error (SE) was 0.5%), demonstrating a small but significant increase in overall accuracy. Between 2001 and 2016, the CONUS landscape experienced significant change, with almost 8% of the landscape having experienced a land cover change at least once during this period. Nearly 50% of that change involves forest, driven by change agents of harvest, fire, disease and pests that resulted in an overall forest decline, including increasing fragmentation and loss of interior forest. Agricultural change represented 15.9% of the change, with total agricultural spatial extent showing only a slight increase of 4778 km2, however there was a substantial decline (7.94%) in pasture/hay during this time, transitioning mostly to cultivated crop. Water and wetland change comprised 15.2% of change and represent highly dynamic land cover classes from epoch to epoch, heavily influenced by precipitation. Grass and shrub change comprise 14.5% of the total change, with most change resulting from fire. Developed change was the most persistent and permanent land change increase adding almost 29,000 km2 over 15 years (5.6% of total CONUS change), with southern states exhibiting expansion much faster than most of the northern states. Temporal rates of developed change increased in 2001-2006 at twice the rate of 2011-2016, reflecting a slowdown in CONUS economic activity. Future NLCD plans include increasing monitoring frequency, reducing latency time between satellite imaging and product delivery, improving accuracy and expanding the variety of products available in an integrated database.
The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov ), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional percentages. The release of NLCD 2016 provides important new information on land change patterns across CONUS from 2001 to 2016. For land cover, seven epochs were concurrently generated for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Products reveal that land cover change is significant across most land cover classes and time periods. The land cover product was validated using existing reference data from the legacy NLCD 2011 accuracy assessment, applied to the 2011 epoch of the NLCD 2016 product line. The legacy and new NLCD 2011 overall accuracies were 82% and 83%, respectively, (standard error (SE) was 0.5%), demonstrating a small but significant increase in overall accuracy. Between 2001 and 2016, the CONUS landscape experienced significant change, with almost 8% of the landscape having experienced a land cover change at least once during this period. Nearly 50% of that change involves forest, driven by change agents of harvest, fire, disease and pests that resulted in an overall forest decline, including increasing fragmentation and loss of interior forest. Agricultural change represented 15.9% of the change, with total agricultural spatial extent showing only a slight increase of 4778 km 2 , however there was a substantial decline (7.94%) in pasture/hay during this time, transitioning mostly to cultivated crop. Water and wetland change comprised 15.2% of change and represent highly dynamic land cover classes from epoch to epoch, heavily influenced by precipitation. Grass and shrub change comprise 14.5% of the total change, with most change resulting from fire. Developed change was the most persistent and permanent land change increase adding almost 29,000 km 2 over 15 years (5.6% of total CONUS change), with southern states exhibiting expansion much faster than most of the northern states. Temporal rates of developed change increased in 2001–2006 at twice the rate of 2011–2016, reflecting a slowdown in CONUS economic activity. Future NLCD plans include increasing monitoring frequency, reducing latency time between satellite imaging and product delivery, improving accuracy and expanding the variety of products available in an integrated database.
[Display omitted] The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous (CONUS) United States (U.S.) for land cover, urban imperviousness, and tree, shrub, herbaceous and bare ground fractional percentages. The release of NLCD 2016 provides important new information on land change patterns across CONUS from 2001 to 2016. For land cover, seven epochs were concurrently generated for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. Products reveal that land cover change is significant across most land cover classes and time periods. The land cover product was validated using existing reference data from the legacy NLCD 2011 accuracy assessment, applied to the 2011 epoch of the NLCD 2016 product line. The legacy and new NLCD 2011 overall accuracies were 82% and 83%, respectively, (standard error (SE) was 0.5%), demonstrating a small but significant increase in overall accuracy. Between 2001 and 2016, the CONUS landscape experienced significant change, with almost 8% of the landscape having experienced a land cover change at least once during this period. Nearly 50% of that change involves forest, driven by change agents of harvest, fire, disease and pests that resulted in an overall forest decline, including increasing fragmentation and loss of interior forest. Agricultural change represented 15.9% of the change, with total agricultural spatial extent showing only a slight increase of 4778 km2, however there was a substantial decline (7.94%) in pasture/hay during this time, transitioning mostly to cultivated crop. Water and wetland change comprised 15.2% of change and represent highly dynamic land cover classes from epoch to epoch, heavily influenced by precipitation. Grass and shrub change comprise 14.5% of the total change, with most change resulting from fire. Developed change was the most persistent and permanent land change increase adding almost 29,000 km2 over 15 years (5.6% of total CONUS change), with southern states exhibiting expansion much faster than most of the northern states. Temporal rates of developed change increased in 2001–2006 at twice the rate of 2011–2016, reflecting a slowdown in CONUS economic activity. Future NLCD plans include increasing monitoring frequency, reducing latency time between satellite imaging and product delivery, improving accuracy and expanding the variety of products available in an integrated database.
Author Costello, Catherine
Funk, Michelle
Xian, George
Auch, Roger
Danielson, Patrick
Stehman, Stephen
Gass, Leila
Homer, Collin
Dewitz, Jon
Jin, Suming
Wickham, James
Riitters, Kurt
AuthorAffiliation d Stinger Ghaffarian Technologies, Contractor to the U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA
i Southern Research Station, United States Department of Agriculture, Forest Service, Research Triangle Park 27709, USA
b ASRC Federal InuTeq, Contractor to the U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA
a U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA
f U.S. Geological Survey, National Geospatial Technical Operations Center, 12201 Sunrise Valley Dr., Reston, VA, USA
c U.S. Geological Survey, Geosciences and Environmental Change Science Center, PO Box 25046, DFC, MS 980, Denver, CO 80225, USA
h SUNY-ESF, 1 Forestry Dr., 320 Bray Hall, Syracuse, NY 13210, USA
g Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Researc
AuthorAffiliation_xml – name: g Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711, USA
– name: i Southern Research Station, United States Department of Agriculture, Forest Service, Research Triangle Park 27709, USA
– name: a U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA
– name: d Stinger Ghaffarian Technologies, Contractor to the U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA
– name: b ASRC Federal InuTeq, Contractor to the U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA
– name: f U.S. Geological Survey, National Geospatial Technical Operations Center, 12201 Sunrise Valley Dr., Reston, VA, USA
– name: h SUNY-ESF, 1 Forestry Dr., 320 Bray Hall, Syracuse, NY 13210, USA
– name: e U.S. Geological Survey, Western Geographic Science Center, 520 N. Park Ave., Tucson, AZ 85179, USA
– name: c U.S. Geological Survey, Geosciences and Environmental Change Science Center, PO Box 25046, DFC, MS 980, Denver, CO 80225, USA
Author_xml – sequence: 1
  givenname: Collin
  surname: Homer
  fullname: Homer, Collin
  email: homer@usgs.gov
  organization: U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA
– sequence: 2
  givenname: Jon
  orcidid: 0000-0001-5674-2204
  surname: Dewitz
  fullname: Dewitz, Jon
  organization: U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA
– sequence: 3
  givenname: Suming
  surname: Jin
  fullname: Jin, Suming
  organization: ASRC Federal InuTeq, Contractor to the U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA
– sequence: 4
  givenname: George
  orcidid: 0000-0002-7409-7365
  surname: Xian
  fullname: Xian, George
  organization: U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA
– sequence: 5
  givenname: Catherine
  surname: Costello
  fullname: Costello, Catherine
  organization: U.S. Geological Survey, Geosciences and Environmental Change Science Center, PO Box 25046, DFC, MS 980, Denver, CO 80225, USA
– sequence: 6
  givenname: Patrick
  surname: Danielson
  fullname: Danielson, Patrick
  organization: Stinger Ghaffarian Technologies, Contractor to the U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA
– sequence: 7
  givenname: Leila
  surname: Gass
  fullname: Gass, Leila
  organization: U.S. Geological Survey, Western Geographic Science Center, 520 N. Park Ave., Tucson, AZ 85179, USA
– sequence: 8
  givenname: Michelle
  surname: Funk
  fullname: Funk, Michelle
  organization: U.S. Geological Survey, National Geospatial Technical Operations Center, 12201 Sunrise Valley Dr., Reston, VA, USA
– sequence: 9
  givenname: James
  orcidid: 0000-0001-5234-2027
  surname: Wickham
  fullname: Wickham, James
  organization: Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711, USA
– sequence: 10
  givenname: Stephen
  surname: Stehman
  fullname: Stehman, Stephen
  organization: SUNY-ESF, 1 Forestry Dr., 320 Bray Hall, Syracuse, NY 13210, USA
– sequence: 11
  givenname: Roger
  surname: Auch
  fullname: Auch, Roger
  organization: U.S. Geological Survey, Earth Resources and Observation Science (EROS) Center, 47914 252nd St., Sioux Falls, SD 57198, USA
– sequence: 12
  givenname: Kurt
  surname: Riitters
  fullname: Riitters, Kurt
  organization: Southern Research Station, United States Department of Agriculture, Forest Service, Research Triangle Park 27709, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35746921$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEYhS1URNPCK4CXbGb6-zK3BUhVuFWKYAFdWx7PP42jiR1sJxI73oE35ElwkrYCNllYI2vOd3x0zgU5c94hIa8YlAxYfbUqbdyEuMqn5MChBF4C656QGWsbXrRcVGdkBh2XBW9YfU4uYlwBAKvq9hk5F1Uj646zGZnm3iUMa-v8NtJbZxMO9GvSCSOdtBuo8TsM1Cy1u0O60SmLXaQ8W_3--YvnLHQMfk3TEunh9lkn652e6GJPzw_0O510ryM-J09HPUV8cf-9JLcf3n-bfyoWXz7ezK8XhamgTQUKrPuhQ6Zr7CVjNbRj23UN6hHFoGUP2AjOtJBNztFWXVZLoWUrh04DDOKSvD36brb9GgeDLgU9qU2wax1-KK-t-vePs0t153cqVyLrqssGr-8Ngv--xZjU2kaDU24Ec0-K1y0DUQPnp6USoOKCVyJLX_4d6zHPwxpZ8OYoMMHHGHBUxqZDnzmlnRQDtV9frdTj-mq_vgKu8vqZb_7jH544TV4fScyz7CwGFY1FZ3CwAU1Sg7cnPf4Au7rPyg
CitedBy_id crossref_primary_10_1038_s41598_024_57474_4
crossref_primary_10_3390_d13030122
crossref_primary_10_1111_gcb_16700
crossref_primary_10_3389_fevo_2023_946624
crossref_primary_10_1007_s00477_023_02508_y
crossref_primary_10_3390_f12060727
crossref_primary_10_1590_0001_3765202320210333
crossref_primary_10_1002_jwmg_22096
crossref_primary_10_1212_WNL_0000000000209162
crossref_primary_10_3390_rs13204128
crossref_primary_10_1109_TGRS_2021_3133534
crossref_primary_10_3390_fire7020051
crossref_primary_10_1080_17538947_2023_2224087
crossref_primary_10_1007_s10646_022_02605_8
crossref_primary_10_1080_15481603_2021_1903282
crossref_primary_10_3390_f13071023
crossref_primary_10_1016_j_scitotenv_2024_177315
crossref_primary_10_1111_cobi_14346
crossref_primary_10_1002_eap_3039
crossref_primary_10_1016_j_ejrh_2023_101565
crossref_primary_10_1029_2021GH000535
crossref_primary_10_1002_tafs_10481
crossref_primary_10_3390_urbansci9030076
crossref_primary_10_1021_acs_estlett_1c00750
crossref_primary_10_1016_j_agee_2021_107612
crossref_primary_10_1186_s42408_024_00335_2
crossref_primary_10_1016_j_landusepol_2021_105867
crossref_primary_10_1016_j_jhydrol_2024_130703
crossref_primary_10_3390_rs15102539
crossref_primary_10_1371_journal_pone_0244261
crossref_primary_10_1111_1752_1688_12963
crossref_primary_10_3390_fire7030082
crossref_primary_10_1007_s11258_020_01098_x
crossref_primary_10_1080_17538947_2023_2251437
crossref_primary_10_3390_rs15133363
crossref_primary_10_1080_15287394_2024_2412659
crossref_primary_10_1002_ecs2_4298
crossref_primary_10_5194_hess_26_5627_2022
crossref_primary_10_1002_rra_3888
crossref_primary_10_1007_s10750_022_04850_8
crossref_primary_10_1016_j_jag_2024_104249
crossref_primary_10_5194_essd_13_5127_2021
crossref_primary_10_1016_j_jglr_2024_102284
crossref_primary_10_2478_eces_2021_0029
crossref_primary_10_1016_j_envsoft_2022_105606
crossref_primary_10_1016_j_resconrec_2024_107969
crossref_primary_10_1007_s11119_024_10149_6
crossref_primary_10_3390_d13090411
crossref_primary_10_1071_WF22044
crossref_primary_10_1016_j_jenvman_2025_124040
crossref_primary_10_1016_j_apgeog_2023_102970
crossref_primary_10_1016_j_heliyon_2024_e34363
crossref_primary_10_1111_1365_2664_14805
crossref_primary_10_3390_f13071112
crossref_primary_10_1093_jue_juab022
crossref_primary_10_1016_j_jhydrol_2023_129253
crossref_primary_10_1177_23998083211003884
crossref_primary_10_5194_bg_20_2485_2023
crossref_primary_10_1016_j_geodrs_2025_e00930
crossref_primary_10_1016_j_cub_2023_11_033
crossref_primary_10_1007_s10340_022_01505_4
crossref_primary_10_1016_j_foreco_2023_121433
crossref_primary_10_1002_ecy_4055
crossref_primary_10_1038_s41467_023_43046_z
crossref_primary_10_1016_j_rse_2022_113266
crossref_primary_10_1016_j_ancene_2023_100371
crossref_primary_10_3390_w16020346
crossref_primary_10_1111_ddi_13502
crossref_primary_10_1016_j_jenvman_2022_114650
crossref_primary_10_1002_jwmg_22277
crossref_primary_10_1088_1748_9326_ac4537
crossref_primary_10_1002_jwmg_22280
crossref_primary_10_1016_j_rse_2020_111935
crossref_primary_10_1186_s13021_024_00251_7
crossref_primary_10_1016_j_ecolind_2020_107241
crossref_primary_10_1029_2023MS004048
crossref_primary_10_3389_fenvs_2023_1069451
crossref_primary_10_3390_rs12244093
crossref_primary_10_1016_j_scitotenv_2021_152723
crossref_primary_10_1007_s10980_021_01370_z
crossref_primary_10_1002_ecs2_4267
crossref_primary_10_3390_land10111145
crossref_primary_10_3390_rs16010082
crossref_primary_10_5334_bc_226
crossref_primary_10_1016_j_jhydrol_2024_130984
crossref_primary_10_3390_land9110417
crossref_primary_10_1675_063_044_0211
crossref_primary_10_1371_journal_pone_0271405
crossref_primary_10_1093_jme_tjab107
crossref_primary_10_1016_j_isprsjprs_2024_05_002
crossref_primary_10_1016_j_buildenv_2023_110211
crossref_primary_10_3390_land10121399
crossref_primary_10_3390_rs17030457
crossref_primary_10_1002_ecs2_4496
crossref_primary_10_1016_j_rse_2022_113003
crossref_primary_10_1111_eva_13321
crossref_primary_10_1007_s40823_021_00062_3
crossref_primary_10_1177_08854122211051626
crossref_primary_10_3390_w16182572
crossref_primary_10_5194_essd_16_1353_2024
crossref_primary_10_1002_ldr_4678
crossref_primary_10_1073_pnas_2203511120
crossref_primary_10_1016_j_watres_2021_117829
crossref_primary_10_3390_f12080990
crossref_primary_10_3390_conservation2010012
crossref_primary_10_1002_jwmg_22247
crossref_primary_10_3390_land14020430
crossref_primary_10_1038_s41598_023_48093_6
crossref_primary_10_1080_15481603_2022_2104786
crossref_primary_10_3390_land11020283
crossref_primary_10_3389_ffgc_2021_716582
crossref_primary_10_1007_s10661_021_09101_2
crossref_primary_10_1073_pnas_2214199120
crossref_primary_10_1016_j_jenvman_2021_113503
crossref_primary_10_1016_j_jglr_2021_10_004
crossref_primary_10_3138_cart_2024_0010
crossref_primary_10_3390_f14101938
crossref_primary_10_1002_ecs2_4478
crossref_primary_10_1080_17538947_2022_2130461
crossref_primary_10_1007_s10661_023_12119_3
crossref_primary_10_1038_s41467_023_43755_5
crossref_primary_10_1029_2021AV000654
crossref_primary_10_1093_ornithapp_duad005
crossref_primary_10_1108_SASBE_01_2024_0014
crossref_primary_10_1088_1748_9326_ac2e35
crossref_primary_10_1016_j_rse_2021_112803
crossref_primary_10_3390_f14101933
crossref_primary_10_1016_j_scitotenv_2022_160834
crossref_primary_10_1088_2515_7620_acd3d8
crossref_primary_10_1016_j_srs_2024_100185
crossref_primary_10_1656_045_030_0107
crossref_primary_10_3389_fenvs_2023_1153133
crossref_primary_10_1007_s10021_021_00718_5
crossref_primary_10_5194_gmd_15_6637_2022
crossref_primary_10_1016_j_anai_2021_07_012
crossref_primary_10_1016_j_scitotenv_2021_149651
crossref_primary_10_1080_15481603_2023_2181143
crossref_primary_10_1111_ddi_13799
crossref_primary_10_3389_frwa_2024_1339613
crossref_primary_10_5194_hess_29_1001_2025
crossref_primary_10_1016_j_ecoser_2020_101178
crossref_primary_10_1016_j_earscirev_2024_104942
crossref_primary_10_3390_rs13061089
crossref_primary_10_5194_essd_16_4619_2024
crossref_primary_10_1007_s00442_023_05420_y
crossref_primary_10_1007_s11368_023_03713_6
crossref_primary_10_3390_rs14164097
crossref_primary_10_3390_s20102757
crossref_primary_10_1093_condor_duaa040
crossref_primary_10_3390_su16145976
crossref_primary_10_1002_etc_5491
crossref_primary_10_1007_s10980_023_01647_5
crossref_primary_10_1016_j_scitotenv_2023_166753
crossref_primary_10_1111_1365_2664_14547
crossref_primary_10_1038_s41597_020_00605_z
crossref_primary_10_1016_j_gecco_2022_e02115
crossref_primary_10_1016_j_scitotenv_2023_165660
crossref_primary_10_1088_1748_9326_ac09b0
crossref_primary_10_1371_journal_pone_0265175
crossref_primary_10_1002_ecs2_4317
crossref_primary_10_3390_land11020298
crossref_primary_10_1002_jwmg_22258
crossref_primary_10_1002_lno_12220
crossref_primary_10_1007_s10530_024_03397_0
crossref_primary_10_1016_j_landusepol_2022_105980
crossref_primary_10_1111_maec_12732
crossref_primary_10_1002_ecy_4362
crossref_primary_10_1016_j_agwat_2021_107106
crossref_primary_10_1111_gcb_15345
crossref_primary_10_5937_gp28_47299
crossref_primary_10_1007_s10980_024_01985_y
crossref_primary_10_1002_ecs2_4429
crossref_primary_10_1016_j_landurbplan_2020_103911
crossref_primary_10_3389_fevo_2023_1102015
crossref_primary_10_3390_rs14246295
crossref_primary_10_1016_j_rsase_2025_101472
crossref_primary_10_1371_journal_pone_0256633
crossref_primary_10_1016_j_jag_2022_102747
crossref_primary_10_3390_rs13061060
crossref_primary_10_1093_ornithapp_duad062
crossref_primary_10_1007_s10980_022_01537_2
crossref_primary_10_1038_s41597_023_02382_x
crossref_primary_10_1007_s00271_022_00768_0
crossref_primary_10_1016_j_compenvurbsys_2023_102053
crossref_primary_10_1016_j_jhydrol_2025_132938
crossref_primary_10_1088_1748_9326_ad0136
crossref_primary_10_1016_j_isprsjprs_2021_02_020
crossref_primary_10_1016_j_watres_2022_119123
crossref_primary_10_1002_ece3_8084
crossref_primary_10_3390_data6060063
crossref_primary_10_1021_acs_est_0c07978
crossref_primary_10_1016_j_ocecoaman_2023_106803
crossref_primary_10_1016_j_rse_2022_112905
crossref_primary_10_1029_2022JG007227
crossref_primary_10_3390_rs13245090
crossref_primary_10_1371_journal_pone_0257733
crossref_primary_10_1007_s10980_020_01124_3
crossref_primary_10_3389_fenrg_2022_837883
crossref_primary_10_1016_j_rse_2023_113498
crossref_primary_10_1016_j_ufug_2025_128778
crossref_primary_10_1007_s10661_022_10272_9
crossref_primary_10_1029_2021WR031575
crossref_primary_10_1007_s11356_022_19475_6
crossref_primary_10_3390_ijerph18137180
crossref_primary_10_1029_2021WR031537
crossref_primary_10_1016_j_jag_2021_102578
crossref_primary_10_1002_jwmg_22347
crossref_primary_10_1007_s11252_022_01214_x
crossref_primary_10_3390_rs13193953
crossref_primary_10_1016_j_scitotenv_2022_160804
crossref_primary_10_1016_j_foreco_2022_120449
crossref_primary_10_1002_jeq2_20290
crossref_primary_10_3390_rs12182966
crossref_primary_10_7717_peerj_12818
crossref_primary_10_1007_s12517_020_06347_x
crossref_primary_10_1371_journal_pone_0240097
crossref_primary_10_1002_eap_70006
crossref_primary_10_1007_s10980_024_01995_w
crossref_primary_10_1016_j_ecolind_2022_109756
crossref_primary_10_3390_rs16163078
crossref_primary_10_5194_essd_15_2927_2023
crossref_primary_10_1371_journal_pwat_0000119
crossref_primary_10_3390_land10020136
crossref_primary_10_5194_acp_20_11065_2020
crossref_primary_10_1002_ece3_10958
crossref_primary_10_1007_s10980_022_01460_6
crossref_primary_10_1007_s10980_022_01528_3
crossref_primary_10_1656_058_020_0sp1110
crossref_primary_10_1007_s11069_024_06552_x
crossref_primary_10_1038_s41893_024_01413_8
crossref_primary_10_3390_fire7040103
crossref_primary_10_3390_forecast3030031
crossref_primary_10_1111_gcb_16380
crossref_primary_10_1111_1365_2664_14045
crossref_primary_10_3390_urbansci7040121
crossref_primary_10_3390_f15030470
crossref_primary_10_3390_ijgi11030163
crossref_primary_10_1002_rvr2_59
crossref_primary_10_1038_s41467_025_57565_4
crossref_primary_10_1016_j_jhydrol_2022_128774
crossref_primary_10_3390_ijerph19105876
crossref_primary_10_1016_j_jag_2022_103015
crossref_primary_10_3390_rs13163283
crossref_primary_10_3390_rs14071718
crossref_primary_10_1371_journal_pone_0288647
crossref_primary_10_1016_j_srs_2023_100084
crossref_primary_10_1007_s10661_020_08411_1
crossref_primary_10_1016_j_tfp_2020_100045
crossref_primary_10_3390_land10050546
crossref_primary_10_1038_s41597_022_01603_z
crossref_primary_10_3390_ijgi10040212
crossref_primary_10_3390_land11122325
crossref_primary_10_3389_frsen_2022_894618
crossref_primary_10_1038_s41597_020_00646_4
crossref_primary_10_3390_land10050536
crossref_primary_10_3390_f13070992
crossref_primary_10_1002_ps_6500
crossref_primary_10_1016_j_ecolind_2025_113367
crossref_primary_10_1111_csp2_12782
crossref_primary_10_3390_rs16193744
crossref_primary_10_1016_j_watres_2022_118853
crossref_primary_10_1109_JSTARS_2023_3288218
crossref_primary_10_1038_s41597_024_03044_2
crossref_primary_10_1016_j_envres_2021_111195
crossref_primary_10_1111_mec_16656
crossref_primary_10_3390_earth2040040
crossref_primary_10_5194_hess_27_1771_2023
crossref_primary_10_1111_icad_12731
crossref_primary_10_1016_j_ecoinf_2023_102110
crossref_primary_10_3390_rs13163069
crossref_primary_10_1016_j_rsase_2024_101247
crossref_primary_10_1111_gcb_17241
crossref_primary_10_1002_ecs2_4706
crossref_primary_10_1016_j_foreco_2024_122132
crossref_primary_10_1016_j_scs_2024_105628
crossref_primary_10_3390_ijgi10040231
crossref_primary_10_1016_j_jhydrol_2021_127354
crossref_primary_10_3390_su12208480
crossref_primary_10_1016_j_inffus_2022_06_003
crossref_primary_10_3390_f13030371
crossref_primary_10_1088_1748_9326_ac6b47
crossref_primary_10_3390_d13020083
crossref_primary_10_3390_d15070878
crossref_primary_10_1016_j_rsase_2022_100785
crossref_primary_10_3390_d13060266
crossref_primary_10_3390_land9070225
crossref_primary_10_3389_fevo_2023_1252632
crossref_primary_10_3390_f13020150
crossref_primary_10_1002_wll2_70001
crossref_primary_10_1007_s11356_024_35097_6
crossref_primary_10_1016_j_ecoinf_2021_101400
crossref_primary_10_1016_j_ecoinf_2023_102333
crossref_primary_10_1016_j_scitotenv_2023_165630
crossref_primary_10_1016_j_uclim_2022_101230
crossref_primary_10_1016_j_resconrec_2022_106333
crossref_primary_10_1029_2022EF003137
crossref_primary_10_1016_j_jag_2021_102296
crossref_primary_10_7589_JWD_D_21_00111
crossref_primary_10_1002_eap_2734
crossref_primary_10_3390_land11040587
crossref_primary_10_1038_s41598_023_46195_9
crossref_primary_10_1080_22797254_2024_2372855
crossref_primary_10_1016_j_rse_2021_112670
crossref_primary_10_1016_j_ecolind_2023_111506
crossref_primary_10_1007_s10661_022_10740_2
crossref_primary_10_1016_j_rse_2020_112127
crossref_primary_10_1016_j_scitotenv_2024_172684
crossref_primary_10_5194_essd_15_1005_2023
crossref_primary_10_1016_j_envc_2023_100821
crossref_primary_10_1071_WR22002
crossref_primary_10_3390_rs13040634
crossref_primary_10_3390_land11122246
crossref_primary_10_1111_1752_1688_13109
crossref_primary_10_3390_s21061966
crossref_primary_10_1016_j_rama_2022_11_004
crossref_primary_10_1016_j_scitotenv_2023_163550
crossref_primary_10_1016_j_scitotenv_2022_157933
crossref_primary_10_1016_j_rse_2020_112244
crossref_primary_10_1109_TGRS_2023_3265186
crossref_primary_10_1016_j_coastaleng_2021_103984
crossref_primary_10_1029_2023EF004106
crossref_primary_10_1016_j_jglr_2020_08_022
crossref_primary_10_1093_forestry_cpad065
crossref_primary_10_3996_JFWM_21_036
crossref_primary_10_1038_s41370_022_00467_0
crossref_primary_10_1016_j_agrformet_2021_108609
crossref_primary_10_7717_peerj_13573
crossref_primary_10_3390_rs13112090
crossref_primary_10_1016_j_scitotenv_2020_144224
crossref_primary_10_1016_j_coastaleng_2025_104721
crossref_primary_10_3390_land10030308
crossref_primary_10_3390_rs13163331
crossref_primary_10_1007_s10668_022_02235_4
crossref_primary_10_1038_s41597_021_01048_w
crossref_primary_10_3390_rs14092127
crossref_primary_10_1007_s11069_023_06247_9
crossref_primary_10_3389_fenvs_2022_920733
crossref_primary_10_1002_eap_2225
crossref_primary_10_1016_j_ijdrr_2025_105273
crossref_primary_10_1186_s13717_023_00439_8
crossref_primary_10_1111_ecog_05600
crossref_primary_10_1289_EHP11164
crossref_primary_10_1001_jamanetworkopen_2022_47664
crossref_primary_10_1002_eco_2703
crossref_primary_10_1080_2150704X_2024_2446594
crossref_primary_10_1016_j_rse_2021_112357
crossref_primary_10_1093_jmammal_gyab144
crossref_primary_10_1016_j_landurbplan_2021_104309
crossref_primary_10_5194_gmd_17_4755_2024
crossref_primary_10_1080_15481603_2023_2287291
crossref_primary_10_1016_j_advwatres_2021_103940
crossref_primary_10_5194_essd_14_2833_2022
crossref_primary_10_1111_rec_13583
crossref_primary_10_5194_essd_15_265_2023
crossref_primary_10_1021_acs_est_1c02644
crossref_primary_10_1016_j_rse_2022_112992
crossref_primary_10_1676_20_00119
crossref_primary_10_3389_fenvs_2023_1070625
crossref_primary_10_1088_2752_664X_ac7eb5
crossref_primary_10_1071_WR24108
crossref_primary_10_1016_j_jglr_2023_03_011
crossref_primary_10_1029_2021GL093298
crossref_primary_10_1111_1365_2745_13999
crossref_primary_10_1016_j_kjs_2023_10_007
crossref_primary_10_1016_j_rse_2023_113918
crossref_primary_10_1177_17581559221121712
crossref_primary_10_1016_j_scitotenv_2023_161851
crossref_primary_10_3390_rs14040935
crossref_primary_10_1016_j_forpol_2022_102783
crossref_primary_10_2298_IJGI230822002P
crossref_primary_10_5194_essd_14_143_2022
crossref_primary_10_1080_24694452_2021_1883416
crossref_primary_10_3390_rs14153653
crossref_primary_10_1016_j_scitotenv_2022_153652
crossref_primary_10_3390_rs12111830
crossref_primary_10_1002_wsb_1274
crossref_primary_10_1139_facets_2020_0049
crossref_primary_10_2139_ssrn_4120127
crossref_primary_10_3389_fevo_2023_1112982
crossref_primary_10_1126_science_abe5585
crossref_primary_10_1016_j_rse_2020_112175
crossref_primary_10_3390_agriculture13010043
crossref_primary_10_1007_s10021_021_00722_9
crossref_primary_10_1093_ornithology_ukad031
crossref_primary_10_69628_esbur_1_2024_100
crossref_primary_10_1038_s41597_025_04713_6
crossref_primary_10_5194_essd_16_3453_2024
crossref_primary_10_1016_j_advwatres_2020_103799
crossref_primary_10_1016_j_jenvman_2024_123628
crossref_primary_10_1111_mec_16590
crossref_primary_10_1111_oik_10749
crossref_primary_10_1139_cjz_2023_0131
crossref_primary_10_1088_1748_9326_aca77b
crossref_primary_10_1073_pnas_2220616120
crossref_primary_10_1029_2021EA002123
crossref_primary_10_1016_j_jag_2024_103866
crossref_primary_10_1016_j_scs_2024_105806
crossref_primary_10_1016_j_eiar_2024_107721
crossref_primary_10_34133_remotesensing_0021
crossref_primary_10_1029_2021AV000384
crossref_primary_10_3390_land13111735
crossref_primary_10_1007_s10980_021_01238_2
crossref_primary_10_1007_s00027_023_00990_8
crossref_primary_10_1016_j_spasta_2023_100808
crossref_primary_10_1002_ecs2_4098
crossref_primary_10_1071_WR22080
crossref_primary_10_1071_WF24137
crossref_primary_10_1080_15481603_2021_1909304
crossref_primary_10_3389_fenrg_2022_830227
crossref_primary_10_3390_rs14153622
crossref_primary_10_1016_j_scitotenv_2022_161229
crossref_primary_10_1038_s41597_023_02696_w
crossref_primary_10_1109_TGRS_2021_3138763
crossref_primary_10_3390_f15030532
crossref_primary_10_3097_LO_2022_1104
crossref_primary_10_1111_eff_12801
crossref_primary_10_3390_su151914270
crossref_primary_10_1088_1748_9326_acddfb
crossref_primary_10_1111_1752_1688_12899
crossref_primary_10_1016_j_ejrh_2021_100802
crossref_primary_10_34133_remotesensing_0022
crossref_primary_10_1111_2041_210X_14199
Cites_doi 10.1073/pnas.0401545101
10.1016/j.gloenvcha.2018.08.006
10.1073/pnas.1211658109
10.1007/s10708-011-9419-5
10.1016/j.rse.2010.02.018
10.1659/0276-4741(2001)021[0184:IOLUAL]2.0.CO;2
10.1016/j.rse.2011.08.024
10.1016/j.rse.2015.07.014
10.1016/j.cosust.2013.08.001
10.1126/science.1111772
10.1016/j.cageo.2017.08.012
10.1007/s10980-006-9054-6
10.3390/rs11242971
10.1016/j.isprsjprs.2018.09.006
10.1016/j.rse.2013.01.012
10.1007/BF03160482
10.1016/j.landusepol.2017.01.026
10.1371/journal.pone.0102261
10.1126/science.1120529
10.1038/srep00653
10.1016/j.isprsjprs.2013.09.009
10.1186/1476-072X-7-65
10.1007/s10980-015-0159-7
10.1016/j.rse.2016.12.026
10.5194/bg-9-4023-2012
10.2737/FS-FIADB-P2-6.1
10.1016/j.foreco.2011.09.022
10.1016/j.jenvman.2012.10.007
10.1038/nature10452
10.1080/01431161.2015.1093195
10.1016/j.foreco.2015.10.042
10.3133/ofr20171119
10.14358/PERS.74.12.1561
10.1080/01431161.2012.720045
10.1016/j.rse.2014.04.004
10.1890/04-1413
10.1093/biosci/biu039
10.1126/science.1244693
10.3390/rs12030412
10.1080/1747423X.2017.1413433
10.1007/s10021-002-0209-2
10.1073/pnas.0704119104
10.1080/01431161.2017.1410298
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7S9
L.6
7X8
5PM
DOI 10.1016/j.isprsjprs.2020.02.019
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 199
ExternalDocumentID PMC9214659
35746921
10_1016_j_isprsjprs_2020_02_019
S0924271620300587
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Intramural EPA
  grantid: EPA999999
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c508t-e3e6bd9e1a6eb411608f8997eafe3da4b0e7321a3472008596bd43a484d9a00d3
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Thu Aug 21 14:12:34 EDT 2025
Tue Aug 05 10:44:34 EDT 2025
Fri Jul 11 01:26:38 EDT 2025
Mon Jul 21 06:03:48 EDT 2025
Thu Apr 24 23:13:14 EDT 2025
Tue Jul 01 03:46:43 EDT 2025
Fri Feb 23 02:47:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords NLCD
United States
Remote sensing
Land cover change
Landsat
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-e3e6bd9e1a6eb411608f8997eafe3da4b0e7321a3472008596bd43a484d9a00d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5234-2027
0000-0002-7409-7365
0000-0001-5674-2204
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0924271620300587
PMID 35746921
PQID 2400523253
PQPubID 24069
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9214659
proquest_miscellaneous_2681036022
proquest_miscellaneous_2400523253
pubmed_primary_35746921
crossref_citationtrail_10_1016_j_isprsjprs_2020_02_019
crossref_primary_10_1016_j_isprsjprs_2020_02_019
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2020_02_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
2020-Apr
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationTitleAlternate ISPRS J Photogramm Remote Sens
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Homer, Dewitz, Fry, Coan, Hossain, Larson, Herold, McKerrow, VanDriel, Wickham (b0085) 2007; 73
Turner II, B.L., Lambin, E.F., Reenberg A., 2007. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci., USA 104:20666–20671.
Riitters, K.H., Wickham, J.D., O'neill, R.V., Jones, K.B., Smith, E.R., Coulston, J.W., Wade, T.G., Smith, J.H., 2002. Fragmentation of continental United States forests. Ecosystems, 5(8), pp. 0815–0822.
Zeleke, Hurni (b0275) 2001; 21
Xian, Homer, Rigge, Shi, Meyer (b0265) 2015; 168
Pielke (b0150) 2005; 310
Kalyanapu, Burian, McPherson (b0120) 2010; 9
Rigge, Homer, Cleeves, Meyer, Bunde, Shi, Xian, Schell, Bobo (b0160) 2020; 12
Wickham, Stehman, Homer (b0245) 2018; 39
Yang, Jin, Danielson, Homer, Gass, Bender, Case, Costello, Dewitz, Fry, Funk (b0270) 2018; 146
(accessed on 28 May 2019).
Riitters, Coulston, Wickham (b0175) 2012; 263
Grekousis, Mountrakis, Kavouras (b0065) 2015; 36
(accessed 7 February 2018).
Riitters, Wickham (b0180) 2012; 2
Wickham, Riitters, Wade, Coulston (b0235) 2007; 22
Xian, Homer (b0255) 2010; 114
Bar-Massada, Radeloff, Stewart (b0020) 2014; 64
Foley, Ramankutty, Brauman, Cassidy, Gerber, Johnston, Mueller, O’Connell, Ray, West, Balzer (b0055) 2011; 478
Hansen, Potapov, Moore, Hancher, Turubanova, Tyukavina, Thau, Stehman, Goetz, Loveland, Kommareddy, Egorov, Chini, Justice, Townshend (b0075) 2013; 342
Seto, Güneralp, Hutyra (b0195) 2012; 109
Hefner, Brown (b0080) 1984; 4
Jones, Henry, Wood, Ng, Jamieson (b0115) 2017; 109
Xian, Homer, Meyer, Granneman (b0260) 2013; 86
MPLO (Montréal Process Liaison Office). 2015. Montréal Process. Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests. Available online
Jin, Homer, Yang, Danielson, Dewitz, Li, Zhu, Xian, Howard (b0100) 2019; 11
Verburg, Erb, Mertz, Espindola (b0230) 2013; 5
Foley, DeFries, Asner, Barfor, Bonan, Carpenter, Chapin, Coe, Daily, Gibbs, Helkowski, Holloway, Howard, Kucharik, Monfreda, Patz, Prentice, Ramankutty, Snyder (b0050) 2005; 205
Auch, Xian, Laingen, Sayler, Reker (b0015) 2018; 13
Howard, J.L., Jones, K.C., 2016. U.S. timber production, trade, consumption, and price statistics, 1965-2013. Research Paper FPL-RP-679. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 91 p.
Jin, Homer, Yang, Xian, Fry, Danielson, Townsend (b0105) 2013; 34
Stehman, Wickham, Wade, Smith (b0205) 2008; 74
Rigge, M.B., Gass, L., Homer, C.G., Xian, G.Z., 2017. Methods for converting continuous shrubland ecosystem component values to thematic National Land Cover Database classes, Open-File Report 2017-1119.
Wimberly, Janssen, Hennessy, Luri, Chowdhury, Feng (b0250) 2017; 63
Cohen, Yang, Stehman, Schroeder, Bell, Masek, Huang, Meigs (b0035) 2016; 360
Robertson G., Gualke P., McWilliams R., LaPlante S., Guldin R, (editors), 2011. National Report on Sustainable Forests--2010. Report FS-979. US Department of Agriculture, Forest Service, Washington DC. 212 pp.
Radeloff, Hammer, Stewart, Fried, Holcomb, McKeefry (b0155) 2005; 15
Hansen, Loveland (b0070) 2012; 122
Homer, C.G., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, Coulston, J., Herold, N., Wickham, J., K. Megown, 2015. Completion of the 2011 National Land Cover Database for the conterminous United States – representing a decade of land cover change information, Photogrammetric Engineering and Remote Sensing, Vol. 81, 345–353.
Byrd, Flint, Alvarez, Casey, Sleeter, Soulard, Flint, Sohl (b0025) 2015; 30
Anderson, Hardy, Roach, Witmer (b0005) 1976; 964
Fry, Xian, Jin, Dewitz, Homer, Yang, Barnes, Herold, Wickham (b0060) 2011; 77
Jin, Yang, Danielson, Homer, Fry, Xian (b0110) 2013; 132
O’Connell, B.M., Conkling, B.L., Wilson, A.M., Burrill, E.A., Turner, J.A., Pugh, S.A., Christiansen, G., Ridley, T., J. Menlove, 2017. The Forest Inventory and Analysis Database: Database description and user guide version 7.0 for Phase 2. US Department of Agriculture, Forest Service. 830 pp. [Online]. Available at web address
Terando, Costanza, Belyea, Dunn, McKerrow, Collazo (b0210) 2014; 9
Meyfroidt, Chowdhury, de Bremond, Ellis, Erb, Filatova, Garrett, Grove, Heinimann, Kuemmerle, Kull (b0130) 2018; 53
Cova, Theobald, Norman, Siebeneck (b0045) 2013; 78
Wickham, Stehman, Gass, Dewitz, Sorenson, Granneman, Poss, Baer (b0240) 2017; 191
Cooter, Bash, Benson, Ran (b0040) 2012; 9
Vargo, Habeeb, Stone (b0225) 2013; 114
Zhang, Wang, Zhao, Liu, Yi, Zuo, Wen, LiuF, Hu (b0280) 2014; 149
Claborn, Masuoka, Morrow, Keep (b0030) 2008; 7
Rindfuss, Walsh, Turner, Fox, Mishra (b0185) 2004; 101
Bar-Massada (10.1016/j.isprsjprs.2020.02.019_b0020) 2014; 64
Jin (10.1016/j.isprsjprs.2020.02.019_b0100) 2019; 11
Homer (10.1016/j.isprsjprs.2020.02.019_b0085) 2007; 73
Xian (10.1016/j.isprsjprs.2020.02.019_b0260) 2013; 86
Rigge (10.1016/j.isprsjprs.2020.02.019_b0160) 2020; 12
Auch (10.1016/j.isprsjprs.2020.02.019_b0015) 2018; 13
Radeloff (10.1016/j.isprsjprs.2020.02.019_b0155) 2005; 15
Cooter (10.1016/j.isprsjprs.2020.02.019_b0040) 2012; 9
Wickham (10.1016/j.isprsjprs.2020.02.019_b0240) 2017; 191
Meyfroidt (10.1016/j.isprsjprs.2020.02.019_b0130) 2018; 53
Zeleke (10.1016/j.isprsjprs.2020.02.019_b0275) 2001; 21
Wickham (10.1016/j.isprsjprs.2020.02.019_b0235) 2007; 22
10.1016/j.isprsjprs.2020.02.019_b0190
Riitters (10.1016/j.isprsjprs.2020.02.019_b0180) 2012; 2
Fry (10.1016/j.isprsjprs.2020.02.019_b0060) 2011; 77
10.1016/j.isprsjprs.2020.02.019_b0145
Yang (10.1016/j.isprsjprs.2020.02.019_b0270) 2018; 146
10.1016/j.isprsjprs.2020.02.019_b0220
Hansen (10.1016/j.isprsjprs.2020.02.019_b0075) 2013; 342
Xian (10.1016/j.isprsjprs.2020.02.019_b0265) 2015; 168
Foley (10.1016/j.isprsjprs.2020.02.019_b0055) 2011; 478
Grekousis (10.1016/j.isprsjprs.2020.02.019_b0065) 2015; 36
Jin (10.1016/j.isprsjprs.2020.02.019_b0105) 2013; 34
Jin (10.1016/j.isprsjprs.2020.02.019_b0110) 2013; 132
Pielke (10.1016/j.isprsjprs.2020.02.019_b0150) 2005; 310
Wickham (10.1016/j.isprsjprs.2020.02.019_b0245) 2018; 39
Foley (10.1016/j.isprsjprs.2020.02.019_b0050) 2005; 205
Stehman (10.1016/j.isprsjprs.2020.02.019_b0205) 2008; 74
Hansen (10.1016/j.isprsjprs.2020.02.019_b0070) 2012; 122
Verburg (10.1016/j.isprsjprs.2020.02.019_b0230) 2013; 5
Claborn (10.1016/j.isprsjprs.2020.02.019_b0030) 2008; 7
Jones (10.1016/j.isprsjprs.2020.02.019_b0115) 2017; 109
Cova (10.1016/j.isprsjprs.2020.02.019_b0045) 2013; 78
10.1016/j.isprsjprs.2020.02.019_b0135
Byrd (10.1016/j.isprsjprs.2020.02.019_b0025) 2015; 30
Vargo (10.1016/j.isprsjprs.2020.02.019_b0225) 2013; 114
Riitters (10.1016/j.isprsjprs.2020.02.019_b0175) 2012; 263
Anderson (10.1016/j.isprsjprs.2020.02.019_b0005) 1976; 964
Kalyanapu (10.1016/j.isprsjprs.2020.02.019_b0120) 2010; 9
Cohen (10.1016/j.isprsjprs.2020.02.019_b0035) 2016; 360
10.1016/j.isprsjprs.2020.02.019_b0170
10.1016/j.isprsjprs.2020.02.019_b0090
Wimberly (10.1016/j.isprsjprs.2020.02.019_b0250) 2017; 63
10.1016/j.isprsjprs.2020.02.019_b0095
Terando (10.1016/j.isprsjprs.2020.02.019_b0210) 2014; 9
Hefner (10.1016/j.isprsjprs.2020.02.019_b0080) 1984; 4
Seto (10.1016/j.isprsjprs.2020.02.019_b0195) 2012; 109
Zhang (10.1016/j.isprsjprs.2020.02.019_b0280) 2014; 149
10.1016/j.isprsjprs.2020.02.019_b0165
Rindfuss (10.1016/j.isprsjprs.2020.02.019_b0185) 2004; 101
Xian (10.1016/j.isprsjprs.2020.02.019_b0255) 2010; 114
References_xml – reference: (accessed on 28 May 2019).
– reference: O’Connell, B.M., Conkling, B.L., Wilson, A.M., Burrill, E.A., Turner, J.A., Pugh, S.A., Christiansen, G., Ridley, T., J. Menlove, 2017. The Forest Inventory and Analysis Database: Database description and user guide version 7.0 for Phase 2. US Department of Agriculture, Forest Service. 830 pp. [Online]. Available at web address:
– volume: 15
  start-page: 799
  year: 2005
  end-page: 805
  ident: b0155
  article-title: The wildland–urban interface in the United States
  publication-title: Ecol. Appl.
– volume: 64
  start-page: 429
  year: 2014
  end-page: 437
  ident: b0020
  article-title: Biotic and abiotic effects of human settlements in the wildland–urban interface
  publication-title: Bioscience
– volume: 30
  start-page: 729
  year: 2015
  end-page: 750
  ident: b0025
  article-title: Integrated climate and land use change scenarios for California rangeland ecosystem services: wildlife habitat, soil carbon, and water supply
  publication-title: Landscape Ecol.
– volume: 86
  start-page: 136
  year: 2013
  end-page: 149
  ident: b0260
  article-title: An approach for characterizing the distribution of shrubland ecosystem components as continuous fields as part of NLCD
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 2
  start-page: 653
  year: 2012
  ident: b0180
  article-title: Decline of forest interior conditions in the conterminous United States
  publication-title: Sci. Rep.
– volume: 122
  start-page: 66
  year: 2012
  end-page: 74
  ident: b0070
  article-title: A review of large area monitoring of land cover change using Landsat data
  publication-title: Remote Sens. Environ.
– volume: 478
  start-page: 337
  year: 2011
  ident: b0055
  article-title: Solutions for a cultivated planet
  publication-title: Nature
– volume: 34
  start-page: 1540
  year: 2013
  end-page: 1560
  ident: b0105
  article-title: Automated cloud and shadow detection and filling using two-date Landsat imagery in the USA
  publication-title: Int. J. Remote Sens.
– volume: 63
  start-page: 160
  year: 2017
  end-page: 173
  ident: b0250
  article-title: Cropland expansion and grassland loss in the eastern Dakotas: new insights from a farm-level survey
  publication-title: Land Use Pol.
– volume: 12
  start-page: 412
  year: 2020
  ident: b0160
  article-title: Quantifying Western US Rangelands as fractional components with multi-resolution remote sensing and in situ data
  publication-title: Remote Sens.
– volume: 22
  start-page: 481
  year: 2007
  end-page: 489
  ident: b0235
  article-title: Temporal change in forest fragmentation at multiple scales
  publication-title: Landscape Ecol.
– reference: (accessed 7 February 2018).
– volume: 132
  start-page: 159
  year: 2013
  end-page: 175
  ident: b0110
  article-title: A comprehensive change detection method for updating the National Land Cover Database to circa 2011
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 1676
  year: 2010
  end-page: 1686
  ident: b0255
  article-title: Updating the 2001 National Land Cover Database impervious surface products to 2006 using Landsat imagery change detection methods
  publication-title: Remote Sens. Environ.
– volume: 4
  start-page: 1
  year: 1984
  end-page: 11
  ident: b0080
  article-title: Wetland trends in the southeastern United States
  publication-title: Wetlands
– volume: 109
  start-page: 16083
  year: 2012
  end-page: 16088
  ident: b0195
  article-title: Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools
  publication-title: Proc. Natl. Acad. Sci.
– reference: Riitters, K.H., Wickham, J.D., O'neill, R.V., Jones, K.B., Smith, E.R., Coulston, J.W., Wade, T.G., Smith, J.H., 2002. Fragmentation of continental United States forests. Ecosystems, 5(8), pp. 0815–0822.
– volume: 109
  start-page: 124
  year: 2017
  end-page: 133
  ident: b0115
  article-title: HERA: a dynamic web application for visualizing community exposure to flood hazards based on storm and sea level rise scenarios
  publication-title: Comput. Geosci.
– volume: 11
  start-page: 2971
  year: 2019
  end-page: 3003
  ident: b0100
  article-title: Overall methodology design for the United States national land cover database 2016 products
  publication-title: Remote Sens.
– volume: 36
  start-page: 5309
  year: 2015
  end-page: 5335
  ident: b0065
  article-title: An overview of 21 global and 43 regional land-cover mapping projects
  publication-title: Int. J. Remote Sens.
– volume: 9
  year: 2010
  ident: b0120
  article-title: Effect of land use-based surface roughness on hydrologic model output
  publication-title: J. Spat. Hydrol.
– volume: 964
  start-page: 28
  year: 1976
  ident: b0005
  article-title: A land use and land cover classification system for use with remote sensor data
  publication-title: U.S. Geol. Surv. Prof. Pap.
– reference: MPLO (Montréal Process Liaison Office). 2015. Montréal Process. Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests. Available online:
– volume: 168
  start-page: 286
  year: 2015
  end-page: 300
  ident: b0265
  article-title: Characterization of shrubland ecosystem components as continuous fields in the northwest United States
  publication-title: Remote Sens. Environ.
– reference: Robertson G., Gualke P., McWilliams R., LaPlante S., Guldin R, (editors), 2011. National Report on Sustainable Forests--2010. Report FS-979. US Department of Agriculture, Forest Service, Washington DC. 212 pp.
– volume: 74
  start-page: 1561
  year: 2008
  end-page: 1571
  ident: b0205
  article-title: Designing a multi-objective, multi-support accuracy assessment of the 2001 National Land Cover Data (NLCD 2001) of the conterminous United States
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 101
  start-page: 13976
  year: 2004
  end-page: 13981
  ident: b0185
  article-title: Developing a science of land change: challenges and methodological issues
  publication-title: Proc. Natl. Acad. Sci., USA
– volume: 205
  start-page: 570
  year: 2005
  end-page: 574
  ident: b0050
  article-title: Global consequences of land use
  publication-title: Science
– volume: 342
  start-page: 850
  year: 2013
  end-page: 853
  ident: b0075
  article-title: High-resolution global maps of 21-st-century forest cover change
  publication-title: Science
– volume: 263
  start-page: 85
  year: 2012
  end-page: 93
  ident: b0175
  article-title: Fragmentation of forest communities in the eastern United States
  publication-title: For. Ecol. Manage.
– reference: Rigge, M.B., Gass, L., Homer, C.G., Xian, G.Z., 2017. Methods for converting continuous shrubland ecosystem component values to thematic National Land Cover Database classes, Open-File Report 2017-1119.
– volume: 7
  start-page: 65
  year: 2008
  ident: b0030
  article-title: Habitat analysis of North American sand flies near veterans returning from leishmania-endemic war zones
  publication-title: Int. J. Health Geographics
– volume: 78
  start-page: 273
  year: 2013
  end-page: 285
  ident: b0045
  article-title: Mapping wildfire evacuation vulnerability in the western US: the limits of infrastructure
  publication-title: GeoJournal
– volume: 21
  start-page: 184
  year: 2001
  end-page: 192
  ident: b0275
  article-title: Implications of land use and land cover dynamics for mountain resource degradation in the Northwestern Ethiopian highlands
  publication-title: Mt. Res. Dev.
– volume: 360
  start-page: 242
  year: 2016
  end-page: 252
  ident: b0035
  article-title: Forest disturbance across the conterminous United States from 1985–2012: the emerging dominance of forest decline
  publication-title: For. Ecol. Manage.
– volume: 73
  start-page: 337
  year: 2007
  end-page: 341
  ident: b0085
  article-title: Completion of the 2001 national land cover database for the conterminous United States
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 114
  start-page: 243
  year: 2013
  end-page: 252
  ident: b0225
  article-title: The importance of land cover change across urban–rural typologies for climate modeling
  publication-title: J. Environ. Manage.
– volume: 5
  start-page: 433
  year: 2013
  end-page: 437
  ident: b0230
  article-title: Land system science: between global challenges and local realities
  publication-title: Curr. Opin. Environ. Sustain.
– volume: 77
  start-page: 858
  year: 2011
  end-page: 864
  ident: b0060
  article-title: Completion of the 2006 national land cover database for the conterminous United States
  publication-title: PE&RS, Photogram. Eng. Remote Sens.
– volume: 149
  start-page: 142
  year: 2014
  end-page: 154
  ident: b0280
  article-title: A 2010 update of the national land use/cover database of China at 1:100000 scale using medium spatial resolution satellite images
  publication-title: Remote Sens. Environ.
– reference: Turner II, B.L., Lambin, E.F., Reenberg A., 2007. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci., USA 104:20666–20671.
– volume: 13
  start-page: 32
  year: 2018
  end-page: 58
  ident: b0015
  article-title: Human drivers, biophysical changes, and climatic variation affecting contemporary cropping proportions in the northern prairie of the U.S
  publication-title: J. Land Use Sci.
– volume: 9
  start-page: e102261
  year: 2014
  ident: b0210
  article-title: The southern megalopolis: using the past to predict the future of urban sprawl in the Southeast US
  publication-title: PLoS ONE
– volume: 53
  start-page: 52
  year: 2018
  end-page: 67
  ident: b0130
  article-title: Middle-range theories of land system change
  publication-title: Global Environ. Change
– volume: 310
  start-page: 1625
  year: 2005
  end-page: 1626
  ident: b0150
  article-title: Land use and climate change
  publication-title: Science
– volume: 9
  start-page: 4023
  year: 2012
  end-page: 4035
  ident: b0040
  article-title: Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments
  publication-title: Biogeosciences
– volume: 146
  start-page: 108
  year: 2018
  end-page: 123
  ident: b0270
  article-title: A new generation of the United States National Land Cover Database: requirements, research priorities, design, and implementation strategies
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 39
  start-page: 1729
  year: 2018
  end-page: 1743
  ident: b0245
  article-title: Spatial patterns of the United States National Land Cover Dataset (NLCD) land-cover change thematic accuracy (2001–2011)
  publication-title: Int. J. Remote Sens.
– volume: 191
  start-page: 328
  year: 2017
  end-page: 341
  ident: b0240
  article-title: Thematic accuracy assessment of the 2011 National Land Cover Database (NLCD)
  publication-title: Remote Sens. Environ.
– reference: Howard, J.L., Jones, K.C., 2016. U.S. timber production, trade, consumption, and price statistics, 1965-2013. Research Paper FPL-RP-679. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 91 p.
– reference: Homer, C.G., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, Coulston, J., Herold, N., Wickham, J., K. Megown, 2015. Completion of the 2011 National Land Cover Database for the conterminous United States – representing a decade of land cover change information, Photogrammetric Engineering and Remote Sensing, Vol. 81, 345–353.
– volume: 101
  start-page: 13976
  year: 2004
  ident: 10.1016/j.isprsjprs.2020.02.019_b0185
  article-title: Developing a science of land change: challenges and methodological issues
  publication-title: Proc. Natl. Acad. Sci., USA
  doi: 10.1073/pnas.0401545101
– volume: 53
  start-page: 52
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.02.019_b0130
  article-title: Middle-range theories of land system change
  publication-title: Global Environ. Change
  doi: 10.1016/j.gloenvcha.2018.08.006
– volume: 109
  start-page: 16083
  issue: 40
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.02.019_b0195
  article-title: Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1211658109
– volume: 78
  start-page: 273
  issue: 2
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.02.019_b0045
  article-title: Mapping wildfire evacuation vulnerability in the western US: the limits of infrastructure
  publication-title: GeoJournal
  doi: 10.1007/s10708-011-9419-5
– volume: 114
  start-page: 1676
  issue: 8
  year: 2010
  ident: 10.1016/j.isprsjprs.2020.02.019_b0255
  article-title: Updating the 2001 National Land Cover Database impervious surface products to 2006 using Landsat imagery change detection methods
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.02.018
– volume: 21
  start-page: 184
  issue: 2
  year: 2001
  ident: 10.1016/j.isprsjprs.2020.02.019_b0275
  article-title: Implications of land use and land cover dynamics for mountain resource degradation in the Northwestern Ethiopian highlands
  publication-title: Mt. Res. Dev.
  doi: 10.1659/0276-4741(2001)021[0184:IOLUAL]2.0.CO;2
– volume: 122
  start-page: 66
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.02.019_b0070
  article-title: A review of large area monitoring of land cover change using Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.08.024
– volume: 168
  start-page: 286
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.02.019_b0265
  article-title: Characterization of shrubland ecosystem components as continuous fields in the northwest United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.07.014
– volume: 5
  start-page: 433
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.02.019_b0230
  article-title: Land system science: between global challenges and local realities
  publication-title: Curr. Opin. Environ. Sustain.
  doi: 10.1016/j.cosust.2013.08.001
– volume: 205
  start-page: 570
  year: 2005
  ident: 10.1016/j.isprsjprs.2020.02.019_b0050
  article-title: Global consequences of land use
  publication-title: Science
  doi: 10.1126/science.1111772
– volume: 109
  start-page: 124
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.02.019_b0115
  article-title: HERA: a dynamic web application for visualizing community exposure to flood hazards based on storm and sea level rise scenarios
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2017.08.012
– volume: 22
  start-page: 481
  year: 2007
  ident: 10.1016/j.isprsjprs.2020.02.019_b0235
  article-title: Temporal change in forest fragmentation at multiple scales
  publication-title: Landscape Ecol.
  doi: 10.1007/s10980-006-9054-6
– volume: 11
  start-page: 2971
  issue: 24
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.02.019_b0100
  article-title: Overall methodology design for the United States national land cover database 2016 products
  publication-title: Remote Sens.
  doi: 10.3390/rs11242971
– volume: 146
  start-page: 108
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.02.019_b0270
  article-title: A new generation of the United States National Land Cover Database: requirements, research priorities, design, and implementation strategies
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.09.006
– volume: 132
  start-page: 159
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.02.019_b0110
  article-title: A comprehensive change detection method for updating the National Land Cover Database to circa 2011
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.01.012
– volume: 4
  start-page: 1
  issue: 1
  year: 1984
  ident: 10.1016/j.isprsjprs.2020.02.019_b0080
  article-title: Wetland trends in the southeastern United States
  publication-title: Wetlands
  doi: 10.1007/BF03160482
– volume: 63
  start-page: 160
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.02.019_b0250
  article-title: Cropland expansion and grassland loss in the eastern Dakotas: new insights from a farm-level survey
  publication-title: Land Use Pol.
  doi: 10.1016/j.landusepol.2017.01.026
– volume: 73
  start-page: 337
  issue: 4
  year: 2007
  ident: 10.1016/j.isprsjprs.2020.02.019_b0085
  article-title: Completion of the 2001 national land cover database for the conterminous United States
  publication-title: Photogramm. Eng. Remote Sens.
– ident: 10.1016/j.isprsjprs.2020.02.019_b0095
– volume: 9
  start-page: e102261
  issue: 7
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.02.019_b0210
  article-title: The southern megalopolis: using the past to predict the future of urban sprawl in the Southeast US
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0102261
– ident: 10.1016/j.isprsjprs.2020.02.019_b0135
– volume: 310
  start-page: 1625
  issue: 5754
  year: 2005
  ident: 10.1016/j.isprsjprs.2020.02.019_b0150
  article-title: Land use and climate change
  publication-title: Science
  doi: 10.1126/science.1120529
– ident: 10.1016/j.isprsjprs.2020.02.019_b0190
– volume: 2
  start-page: 653
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.02.019_b0180
  article-title: Decline of forest interior conditions in the conterminous United States
  publication-title: Sci. Rep.
  doi: 10.1038/srep00653
– volume: 86
  start-page: 136
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.02.019_b0260
  article-title: An approach for characterizing the distribution of shrubland ecosystem components as continuous fields as part of NLCD
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.09.009
– volume: 7
  start-page: 65
  issue: 1
  year: 2008
  ident: 10.1016/j.isprsjprs.2020.02.019_b0030
  article-title: Habitat analysis of North American sand flies near veterans returning from leishmania-endemic war zones
  publication-title: Int. J. Health Geographics
  doi: 10.1186/1476-072X-7-65
– volume: 9
  issue: 2
  year: 2010
  ident: 10.1016/j.isprsjprs.2020.02.019_b0120
  article-title: Effect of land use-based surface roughness on hydrologic model output
  publication-title: J. Spat. Hydrol.
– volume: 30
  start-page: 729
  issue: 4
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.02.019_b0025
  article-title: Integrated climate and land use change scenarios for California rangeland ecosystem services: wildlife habitat, soil carbon, and water supply
  publication-title: Landscape Ecol.
  doi: 10.1007/s10980-015-0159-7
– volume: 964
  start-page: 28
  year: 1976
  ident: 10.1016/j.isprsjprs.2020.02.019_b0005
  article-title: A land use and land cover classification system for use with remote sensor data
  publication-title: U.S. Geol. Surv. Prof. Pap.
– volume: 191
  start-page: 328
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.02.019_b0240
  article-title: Thematic accuracy assessment of the 2011 National Land Cover Database (NLCD)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.12.026
– volume: 9
  start-page: 4023
  issue: 10
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.02.019_b0040
  article-title: Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments
  publication-title: Biogeosciences
  doi: 10.5194/bg-9-4023-2012
– ident: 10.1016/j.isprsjprs.2020.02.019_b0090
– ident: 10.1016/j.isprsjprs.2020.02.019_b0145
  doi: 10.2737/FS-FIADB-P2-6.1
– volume: 263
  start-page: 85
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.02.019_b0175
  article-title: Fragmentation of forest communities in the eastern United States
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2011.09.022
– volume: 77
  start-page: 858
  issue: 9
  year: 2011
  ident: 10.1016/j.isprsjprs.2020.02.019_b0060
  article-title: Completion of the 2006 national land cover database for the conterminous United States
  publication-title: PE&RS, Photogram. Eng. Remote Sens.
– volume: 114
  start-page: 243
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.02.019_b0225
  article-title: The importance of land cover change across urban–rural typologies for climate modeling
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2012.10.007
– volume: 478
  start-page: 337
  issue: 7369
  year: 2011
  ident: 10.1016/j.isprsjprs.2020.02.019_b0055
  article-title: Solutions for a cultivated planet
  publication-title: Nature
  doi: 10.1038/nature10452
– volume: 36
  start-page: 5309
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.02.019_b0065
  article-title: An overview of 21 global and 43 regional land-cover mapping projects
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2015.1093195
– volume: 360
  start-page: 242
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.02.019_b0035
  article-title: Forest disturbance across the conterminous United States from 1985–2012: the emerging dominance of forest decline
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2015.10.042
– ident: 10.1016/j.isprsjprs.2020.02.019_b0165
  doi: 10.3133/ofr20171119
– volume: 74
  start-page: 1561
  year: 2008
  ident: 10.1016/j.isprsjprs.2020.02.019_b0205
  article-title: Designing a multi-objective, multi-support accuracy assessment of the 2001 National Land Cover Data (NLCD 2001) of the conterminous United States
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.74.12.1561
– volume: 34
  start-page: 1540
  issue: 5
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.02.019_b0105
  article-title: Automated cloud and shadow detection and filling using two-date Landsat imagery in the USA
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.720045
– volume: 149
  start-page: 142
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.02.019_b0280
  article-title: A 2010 update of the national land use/cover database of China at 1:100000 scale using medium spatial resolution satellite images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.04.004
– volume: 15
  start-page: 799
  issue: 3
  year: 2005
  ident: 10.1016/j.isprsjprs.2020.02.019_b0155
  article-title: The wildland–urban interface in the United States
  publication-title: Ecol. Appl.
  doi: 10.1890/04-1413
– volume: 64
  start-page: 429
  issue: 5
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.02.019_b0020
  article-title: Biotic and abiotic effects of human settlements in the wildland–urban interface
  publication-title: Bioscience
  doi: 10.1093/biosci/biu039
– volume: 342
  start-page: 850
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.02.019_b0075
  article-title: High-resolution global maps of 21-st-century forest cover change
  publication-title: Science
  doi: 10.1126/science.1244693
– volume: 12
  start-page: 412
  issue: 3
  year: 2020
  ident: 10.1016/j.isprsjprs.2020.02.019_b0160
  article-title: Quantifying Western US Rangelands as fractional components with multi-resolution remote sensing and in situ data
  publication-title: Remote Sens.
  doi: 10.3390/rs12030412
– volume: 13
  start-page: 32
  issue: 1–2
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.02.019_b0015
  article-title: Human drivers, biophysical changes, and climatic variation affecting contemporary cropping proportions in the northern prairie of the U.S
  publication-title: J. Land Use Sci.
  doi: 10.1080/1747423X.2017.1413433
– ident: 10.1016/j.isprsjprs.2020.02.019_b0170
  doi: 10.1007/s10021-002-0209-2
– ident: 10.1016/j.isprsjprs.2020.02.019_b0220
  doi: 10.1073/pnas.0704119104
– volume: 39
  start-page: 1729
  issue: 6
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.02.019_b0245
  article-title: Spatial patterns of the United States National Land Cover Dataset (NLCD) land-cover change thematic accuracy (2001–2011)
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1410298
SSID ssj0001568
Score 2.6826982
Snippet [Display omitted] The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over...
The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov), includes Landsat-based, 30 m resolution products over the conterminous...
The 2016 National Land Cover Database (NLCD) product suite (available on www.mrlc.gov ), includes Landsat-based, 30 m resolution products over the conterminous...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 184
SubjectTerms forest decline
forests
grasses
hay
land cover
Land cover change
Landsat
landscapes
monitoring
NLCD
pastures
pests
Remote sensing
shrubs
trees
United States
wetlands
Title Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database
URI https://dx.doi.org/10.1016/j.isprsjprs.2020.02.019
https://www.ncbi.nlm.nih.gov/pubmed/35746921
https://www.proquest.com/docview/2400523253
https://www.proquest.com/docview/2681036022
https://pubmed.ncbi.nlm.nih.gov/PMC9214659
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6tlgNwQLA8tjxWRuIa6sSOHXNbFVbltRdYaW_WOHG1XVWh2pYDF8R_4B_yS5iJk7IFxB44tFKSGSn1OJ5v0m8-Azxz1plC1yazNXJLzixkoaGvGrEJlL4ph_OrgffHZnqi35yWpzswGXphmFbZr_1pTe9W6_7MuB_N8XI-H3-QVDoULIAkWXK94o5yrS3P8udff9E88tQOx8YZW29xvOar5cXqnD5UKBayE-9kyZ2_Z6g_EejvRMpLmenoNtzqIaU4THd9B3Ziuwc3LwkN7sH1fq_zsy93YdEJUjEFhop-kTCnSJhTMM1R1MzqFKkjWCw7_c12JZgV9ePbd8rkRnBPiiDkKLqjXlp7Id6x96Tzfolr5AR5D06OXn2cTLN-z4WsJqi2zqKKJjQu5mhi0HluZDWjksxGnEXVoA4yWlXkqLRl5kTpyFor1JVuHErZqPuw235q4z6I2rDWl6ksGqPRVIhoZ7bBMrjAuGMEZhhnX_eC5LwvxsIPzLNzvwmQ5wB5WXgK0AjkxnGZNDmudnkxBNJvTS9PmeNq56dD6D09fPyPCraRYuSZgEuVfFGqf9iw4psyhJVG8CBNl81dq9Jq4woaCrs1kTYGLP69faWdn3Ui4I53ZC_dw__5YY_gBh8lItJj2F1ffI5PCGOtw0H3EB3AtcPXb6fHPwH7zykf
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V7aH0gKB8dPk0EtdondixE27VQrWl273QSr1ZduJVt1qFVXc5cOM_8A_5JczETtQFRA8cEimJR0o8judN8uYZ4F2pS5XJSiW6slSSM3eJq3FXWVs7DN8Yw-nTwNlMTS7kp8v8cgfGXS0M0Srj3B_m9Ha2jmdGsTdHq8Vi9Jlj6pCRABInyfVC34NdUqfKB7B7dHI6mfUTchoq4qh9QgZbNK_FenWzvsYNc8WMt_qdpLrz9yD1Jwj9nUt5KzgdP4QHEVWyo3Djj2DHNwewf0tr8AD24nLnV98ew7LVpCIWDOb9LMBOFmAnI6Yjq4jYyUJRMFu1EpzNmhEx6uf3HxjMFaOyFIbgkbVHUV17yaZkPW6tP9iNpRj5BC6OP56PJ0lcdiGpEK1tEi-8cnXpU6u8k2mqeDHHrEx7O_eittJxr0WWWiE1kSfyEltLYWUh69JyXounMGi-NP4QWKVI7ksV2iolrSqstXqua5u70hH0GILq-tlUUZOclsZYmo58dm16BxlykOGZQQcNgfeGqyDLcbfJ-86RZmuEGQwedxu_7Vxv8P2jnyq28egjQxxcTOazXPyjDYm-CYVwaQjPwnDp71rkWqoyw67QWwOpb0D639tXmsVVqwNe0qLsefn8fx7sDexNzs-mZnoyO30B9-lK4CW9hMHm5qt_hZBr417HV-oXDEQr0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conterminous+United+States+land+cover+change+patterns+2001%E2%80%932016+from+the+2016+National+Land+Cover+Database&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Homer%2C+Collin&rft.au=Dewitz%2C+Jon&rft.au=Jin%2C+Suming&rft.au=Xian%2C+George&rft.date=2020-04-01&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=162&rft.spage=184&rft.epage=199&rft_id=info:doi/10.1016%2Fj.isprsjprs.2020.02.019&rft_id=info%3Apmid%2F35746921&rft.externalDocID=PMC9214659
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon