Quantum simulation of 2D topological physics in a 1D array of optical cavities

Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not bee...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 6; no. 1; p. 7704
Main Authors Luo, Xi-Wang, Zhou, Xingxiang, Li, Chuan-Feng, Xu, Jin-Shi, Guo, Guang-Can, Zhou, Zheng-Wei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.07.2015
Nature Publishing Group
Nature Pub. Group
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/ncomms8704

Cover

Loading…
Abstract Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration. A wide variety of interesting phenomena arise in 2D systems subject to external gauge fields, but these are sometimes challenging to verify experimentally. Here the authors propose a setup to simulate 2D physics with a 1D arrangement of cavities, by exploiting the orbital angular momentum of trapped photons.
AbstractList Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.
Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.
Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration. A wide variety of interesting phenomena arise in 2D systems subject to external gauge fields, but these are sometimes challenging to verify experimentally. Here the authors propose a setup to simulate 2D physics with a 1D arrangement of cavities, by exploiting the orbital angular momentum of trapped photons.
ArticleNumber 7704
Author Xu, Jin-Shi
Li, Chuan-Feng
Zhou, Zheng-Wei
Luo, Xi-Wang
Guo, Guang-Can
Zhou, Xingxiang
Author_xml – sequence: 1
  givenname: Xi-Wang
  surname: Luo
  fullname: Luo, Xi-Wang
  organization: Key Laboratory of Quantum Information, University of Science and Technology of China, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 2
  givenname: Xingxiang
  orcidid: 0000-0002-7337-9133
  surname: Zhou
  fullname: Zhou, Xingxiang
  email: xizhou@ustc.edu.cn
  organization: Key Laboratory of Quantum Information, University of Science and Technology of China, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 3
  givenname: Chuan-Feng
  surname: Li
  fullname: Li, Chuan-Feng
  email: cfli@ustc.edu.cn
  organization: Key Laboratory of Quantum Information, University of Science and Technology of China, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 4
  givenname: Jin-Shi
  surname: Xu
  fullname: Xu, Jin-Shi
  organization: Key Laboratory of Quantum Information, University of Science and Technology of China, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 5
  givenname: Guang-Can
  surname: Guo
  fullname: Guo, Guang-Can
  organization: Key Laboratory of Quantum Information, University of Science and Technology of China, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 6
  givenname: Zheng-Wei
  surname: Zhou
  fullname: Zhou, Zheng-Wei
  email: zwzhou@ustc.edu.cn
  organization: Key Laboratory of Quantum Information, University of Science and Technology of China, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26145177$$D View this record in MEDLINE/PubMed
BookMark eNptkdtrVDEQxkOp9GZf-gdIwBdpWZ3czuVFkN4UiiLoc5jNyW5TzkmOSU5h_3uz3Vq31XnJQH7z8c18h2TXB28JOWHwnoFoPngThiE1NcgdcsBBshmrudjd6vfJcUp3UEq0rJFyj-zziknF6vqAfP0-oc_TQJMbph6zC56GBeUXNIcx9GHpDPZ0vF0lZxJ1niJlFxRjxNWaC2N-AAzeu-xsek1eLbBP9vjxPSI_ry5_nH-e3Xy7_nL-6WZmFDR51tUdApgObdWx1gBUBqwABiBbhrWSSnWcC4W84gAorbVM1a1Upu3m9VyII_JxoztO88F2xvocsddjdAPGlQ7o9PMf7271MtxrqaBSsi0C7x4FYvg12ZT14JKxfY_ehilpVrXlQKoSUNC3L9C7MEVf1ltTomq44GtHb7YdPVn5c-oCnG4AE0NK0S6eEAZ6HaX-G2WB4QVsXH5Ip2zj-v-PnG1GUtH1Sxu3bP5L_wbAWrA5
CitedBy_id crossref_primary_10_1364_OL_491680
crossref_primary_10_1364_OE_462156
crossref_primary_10_1038_s41467_019_11117_9
crossref_primary_10_1103_PhysRevLett_122_083903
crossref_primary_10_1038_srep31161
crossref_primary_10_1364_PRJ_533602
crossref_primary_10_1002_lpor_202000041
crossref_primary_10_1002_adom_202001739
crossref_primary_10_1103_PhysRevLett_118_083603
crossref_primary_10_1103_PhysRevB_99_214433
crossref_primary_10_1364_OE_471703
crossref_primary_10_1103_PhysRevA_100_043817
crossref_primary_10_1103_PhysRevB_97_104105
crossref_primary_10_1038_s41377_021_00646_y
crossref_primary_10_1103_PhysRevB_99_245101
crossref_primary_10_1080_00018732_2019_1594094
crossref_primary_10_1063_5_0181151
crossref_primary_10_1103_PhysRevResearch_5_L012046
crossref_primary_10_1103_PhysRevLett_118_156801
crossref_primary_10_1103_PhysRevA_109_063322
crossref_primary_10_1515_nanoph_2020_0415
crossref_primary_10_1007_s11128_016_1428_3
crossref_primary_10_1088_1361_648X_ab3d72
crossref_primary_10_1103_PhysRevB_98_125431
crossref_primary_10_1364_OPTICA_424258
crossref_primary_10_1103_RevModPhys_91_015006
crossref_primary_10_1364_AOP_529288
crossref_primary_10_1364_OPTICA_429945
crossref_primary_10_1038_s41586_022_05129_7
crossref_primary_10_1103_PhysRevA_101_063839
crossref_primary_10_1364_OL_546410
crossref_primary_10_1063_5_0056359
crossref_primary_10_1103_PhysRevA_101_053807
crossref_primary_10_1021_acsphotonics_4c00439
crossref_primary_10_1038_s41467_022_29779_3
crossref_primary_10_1126_sciadv_abe4335
crossref_primary_10_1103_PhysRevApplied_23_034076
crossref_primary_10_1063_5_0228315
crossref_primary_10_1209_0295_5075_116_30005
crossref_primary_10_1103_PhysRevA_93_043827
crossref_primary_10_1364_OL_41_000741
crossref_primary_10_1088_1674_1056_ad4eb3
crossref_primary_10_1364_OL_42_002042
crossref_primary_10_1038_s41566_022_00986_0
crossref_primary_10_1007_s11433_018_9212_4
crossref_primary_10_1103_PhysRevA_108_013316
crossref_primary_10_1002_lpor_202200518
crossref_primary_10_1038_s41467_018_08281_9
crossref_primary_10_1002_andp_202200288
crossref_primary_10_1038_ncomms13731
crossref_primary_10_1103_PhysRevLett_120_106402
crossref_primary_10_1364_OL_452983
crossref_primary_10_1088_1612_202X_aa9e58
crossref_primary_10_1063_5_0099111
crossref_primary_10_1038_s41566_023_01236_7
crossref_primary_10_3390_e23111404
crossref_primary_10_1007_s44214_022_00015_9
crossref_primary_10_1088_0256_307X_41_9_090301
crossref_primary_10_1038_s41586_019_0943_7
crossref_primary_10_1038_s42254_019_0045_3
crossref_primary_10_1103_PhysRevA_92_041805
crossref_primary_10_1103_PhysRevB_106_195411
crossref_primary_10_1103_PhysRevA_94_063613
crossref_primary_10_1103_PhysRevA_97_043841
crossref_primary_10_1364_PRJ_396731
crossref_primary_10_1103_PhysRevResearch_2_032017
crossref_primary_10_1186_s43593_021_00002_y
crossref_primary_10_1103_PhysRevResearch_5_043004
crossref_primary_10_1364_OL_43_004607
crossref_primary_10_1103_PhysRevB_110_115405
crossref_primary_10_1364_OL_44_005254
crossref_primary_10_1103_PhysRevX_10_011059
crossref_primary_10_1016_j_fmre_2024_03_029
crossref_primary_10_1002_lpor_202301363
crossref_primary_10_1103_PhysRevB_101_205141
crossref_primary_10_1364_OE_446276
crossref_primary_10_1021_acs_chemrev_2c00800
crossref_primary_10_1364_AOP_418074
crossref_primary_10_1038_s42005_024_01677_8
crossref_primary_10_1364_OSAC_413213
crossref_primary_10_1364_OL_44_000755
crossref_primary_10_1080_23746149_2018_1461026
crossref_primary_10_1063_5_0193233
crossref_primary_10_1103_PhysRevB_93_155163
crossref_primary_10_1364_OME_546801
crossref_primary_10_1103_PhysRevLett_127_093901
crossref_primary_10_1103_PhysRevA_96_013857
crossref_primary_10_1088_2058_9565_1_1_015006
crossref_primary_10_1039_D0NJ02868A
crossref_primary_10_1117_1_AP_4_3_036002
crossref_primary_10_1103_PhysRevA_108_043507
crossref_primary_10_1103_PhysRevA_95_022341
crossref_primary_10_1103_PhysRevApplied_17_064029
crossref_primary_10_1103_PhysRevResearch_2_043340
crossref_primary_10_1038_s41467_022_31140_7
crossref_primary_10_1126_sciadv_abp8943
crossref_primary_10_1126_science_adf9621
crossref_primary_10_1088_2633_4356_ad3b5d
crossref_primary_10_1103_PhysRevApplied_19_044054
crossref_primary_10_1103_PhysRevB_93_245113
crossref_primary_10_1126_science_aaz3071
crossref_primary_10_2528_PIER20083101
crossref_primary_10_1364_OPTICA_5_001396
crossref_primary_10_1063_1_5025132
crossref_primary_10_1103_PhysRevB_109_125415
crossref_primary_10_1007_s11433_022_1926_0
crossref_primary_10_1103_PhysRevB_102_075133
crossref_primary_10_1103_PhysRevA_106_043718
crossref_primary_10_1038_s41467_022_33529_w
crossref_primary_10_1103_PhysRevA_95_023607
crossref_primary_10_1103_PhysRevA_102_023501
crossref_primary_10_1002_lpor_202401156
crossref_primary_10_1038_ncomms16097
crossref_primary_10_1002_lpor_202100340
crossref_primary_10_1103_PhysRevLett_133_233805
crossref_primary_10_1364_OPTICA_430821
crossref_primary_10_1103_PhysRevA_110_013326
crossref_primary_10_1103_PhysRevA_110_013325
crossref_primary_10_1007_s11433_020_1700_5
crossref_primary_10_1103_PhysRevA_95_033801
crossref_primary_10_1103_PhysRevLett_118_013601
crossref_primary_10_1073_pnas_2100691118
crossref_primary_10_1080_23746149_2024_2325611
crossref_primary_10_1364_OE_24_002166
Cites_doi 10.1103/RevModPhys.82.3045
10.1038/nature08293
10.1038/nphoton.2013.274
10.1038/nature04235
10.1126/science.1190523
10.1038/nphoton.2014.248
10.1364/OE.18.008033
10.1126/science.1148047
10.1103/PhysRevLett.109.106402
10.1364/AO.8.000189
10.1038/ncomms3527
10.1103/PhysRevLett.112.043001
10.1038/nphys2063
10.1103/RevModPhys.83.1523
10.1088/1367-2630/12/3/033041
10.1103/PhysRevLett.112.130401
10.1103/RevModPhys.81.109
10.1364/OL.29.001796
10.1103/PhysRevB.59.15882
10.1088/1367-2630/14/1/015007
10.1103/PhysRevA.45.8185
10.1126/science.1227193
10.1103/PhysRevLett.45.494
10.1103/PhysRevLett.49.405
10.1073/pnas.1402365111
10.1038/nphys919
10.1103/PhysRevLett.97.036808
10.1103/PhysRevA.84.043804
10.1103/PhysRevLett.102.135702
10.1038/35085529
10.1103/PhysRevLett.100.013904
10.1103/PhysRevLett.105.255302
10.1038/nphys607
10.1364/OL.37.005178
10.1038/nphoton.2011.81
10.1103/PhysRevLett.95.146802
10.1103/PhysRevLett.112.133902
10.1364/AOP.3.000161
10.1103/PhysRevB.14.2239
10.1103/PhysRevLett.42.1698
10.1038/nphoton.2013.355
10.1038/nphoton.2012.236
10.1038/ncomms4115
10.1103/PhysRevLett.103.035301
10.1364/AO.43.000688
10.1103/PhysRevA.79.023624
10.1038/nature12066
10.1038/nphoton.2012.138
10.1103/PhysRevLett.101.246809
10.1038/ncomms5502
10.1103/PhysRevLett.110.166802
10.1103/PhysRevLett.48.1559
10.1073/pnas.1300170110
10.1103/PhysRevLett.103.013601
10.1088/1367-2630/13/3/035002
10.1038/nphys2790
10.1103/PhysRevLett.95.240501
10.1038/nmat3520
ContentType Journal Article
Copyright The Author(s) 2015
Copyright Nature Publishing Group Jul 2015
Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
Copyright_xml – notice: The Author(s) 2015
– notice: Copyright Nature Publishing Group Jul 2015
– notice: Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOI 10.1038/ncomms8704
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

CrossRef

PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2041-1723
ExternalDocumentID PMC4506549
3735084551
26145177
10_1038_ncomms8704
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
4.4
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABAWZ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c508t-d7da00cdae6d19c006c0e30100491a75455d2235a26200a4eee157945c9db7b33
IEDL.DBID M48
ISSN 2041-1723
IngestDate Thu Aug 21 18:30:25 EDT 2025
Mon Jul 21 10:25:28 EDT 2025
Wed Aug 13 06:32:53 EDT 2025
Mon Jul 21 06:03:53 EDT 2025
Tue Jul 01 02:31:01 EDT 2025
Thu Apr 24 23:06:52 EDT 2025
Fri Feb 21 02:39:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-d7da00cdae6d19c006c0e30100491a75455d2235a26200a4eee157945c9db7b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7337-9133
0000000273379133
OpenAccessLink https://www.proquest.com/docview/1693682323?pq-origsite=%requestingapplication%
PMID 26145177
PQID 1693682323
PQPubID 546298
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4506549
proquest_miscellaneous_1695175630
proquest_journals_1693682323
pubmed_primary_26145177
crossref_primary_10_1038_ncomms8704
crossref_citationtrail_10_1038_ncomms8704
springer_journals_10_1038_ncomms8704
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150706
PublicationDateYYYYMMDD 2015-07-06
PublicationDate_xml – month: 7
  year: 2015
  text: 20150706
  day: 6
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2015
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Pub. Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Pub. Group
References Goldman, Kubasiak, Gaspard, Lewenstein (CR51) 2009; 79
Molina-Terriza, Torres, Torner (CR15) 2007; 3
Goldman (CR53) 2009; 103
Lu, Joannopoulos, Soljačić (CR35) 2014; 8
Oemrawsingh (CR38) 2005; 95
Thouless, Kohmoto, Nightingale, Nijs (CR56) 1982; 49
Kraus, Lahini, Ringel, Verbin, Zilberberg (CR34) 2012; 109
Su (CR58) 2012; 37
Zhang, Tan, Stormer, Kim (CR52) 2005; 438
Nagali (CR10) 2009; 103
Rechtsman (CR33) 2013; 496
Wang (CR8) 2012; 6
Mair, Vaziri, Weihs, Zeilinger (CR3) 2001; 412
Fang, Yu, Fan (CR30) 2012; 6
Ozawa, Carusotto (CR57) 2014; 112
Nicolas (CR13) 2014; 8
Arnaud (CR36) 1969; 8
Atala (CR46) 2013; 9
Ding, Zhou, Shi, Guo (CR12) 2013; 4
CR2
König (CR20) 2007; 318
Bermudez, Patanè, Amico, Martin-Delgado (CR59) 2009; 102
Oemrawsingh (CR39) 2004; 43
Wang, Soluyanov, Troyer (CR48) 2013; 110
Tsui, Stormer, Gossard (CR19) 1982; 48
Hasan, Kane (CR21) 2010; 82
Malik (CR5) 2014; 5
Fan (CR45) 1999; 59
Fickler (CR11) 2014; 5
Allen, Beijersbergen, Spreeuw, Woerdman (CR1) 1992; 45
Barreiro, Wei, Kwiat (CR7) 2008; 4
Bermudez, Goldman, Kubasiak, Lewenstein, Martin-Delgado (CR43) 2010; 12
Khanikaev (CR31) 2012; 12
Leach (CR14) 2010; 329
Sheng, Weng, Sheng, Haldane (CR55) 2006; 97
Wang, Chong, Joannopoulos, Soljacic (CR26) 2009; 461
Krenna (CR17) 2014; 111
Umucallar, Carusotto (CR28) 2011; 84
Cho, Angelakis, Bose (CR27) 2008; 101
Goldman (CR54) 2010; 105
Dalibard, Gerbier, Juzeliūnas, Öhberg (CR22) 2011; 83
Yao, Padgett (CR6) 2011; 3
Goldman (CR47) 2013; 110
Klitzing, Dorda, Pepper (CR18) 1980; 45
Hofstadter (CR40) 1976; 14
Celi (CR41) 2014; 112
Hafezi, Demler, Lukin, Taylor (CR29) 2011; 7
Su, Schrieffer, Heeger (CR61) 1979; 42
Viyuela, Rivas, Martin-Delgado (CR60) 2014; 112
Lee, Yuan, Cheong (CR4) 2004; 29
Bermudez, Goldman, Kubasiak, Lewenstein, Martin-Delgado (CR24) 2012; 14
Mazza (CR44) 2012; 14
Fickler (CR16) 2012; 338
Castro Neto, Guinea, Peres, Novoselov, Geim (CR50) 2009; 81
Padgett, Bowman (CR9) 2011; 5
Kane, Mele (CR42) 2005; 95
Mazza (CR23) 2010; 12
Boada, Celi, Latorre, Lewenstein (CR49) 2011; 13
Chalopin, Chiummo, Fabre, Matre, Treps (CR37) 2010; 18
Hafezi, Mittal, Fan, Migdall, Taylor (CR32) 2013; 7
Haldane, Raghu (CR25) 2008; 100
R Fickler (BFncomms8704_CR11) 2014; 5
BFncomms8704_CR2
Z Wang (BFncomms8704_CR26) 2009; 461
AB Khanikaev (BFncomms8704_CR31) 2012; 12
E Nagali (BFncomms8704_CR10) 2009; 103
X Su (BFncomms8704_CR58) 2012; 37
JA Arnaud (BFncomms8704_CR36) 1969; 8
N Goldman (BFncomms8704_CR51) 2009; 79
J Dalibard (BFncomms8704_CR22) 2011; 83
A Celi (BFncomms8704_CR41) 2014; 112
DN Sheng (BFncomms8704_CR55) 2006; 97
WP Su (BFncomms8704_CR61) 1979; 42
G Molina-Terriza (BFncomms8704_CR15) 2007; 3
J Wang (BFncomms8704_CR8) 2012; 6
YE Kraus (BFncomms8704_CR34) 2012; 109
DJ Thouless (BFncomms8704_CR56) 1982; 49
M Padgett (BFncomms8704_CR9) 2011; 5
M König (BFncomms8704_CR20) 2007; 318
KV Klitzing (BFncomms8704_CR18) 1980; 45
L Allen (BFncomms8704_CR1) 1992; 45
M Malik (BFncomms8704_CR5) 2014; 5
R Fickler (BFncomms8704_CR16) 2012; 338
FDM Haldane (BFncomms8704_CR25) 2008; 100
A Bermudez (BFncomms8704_CR59) 2009; 102
SSR Oemrawsingh (BFncomms8704_CR39) 2004; 43
N Goldman (BFncomms8704_CR54) 2010; 105
MC Rechtsman (BFncomms8704_CR33) 2013; 496
RO Umucallar (BFncomms8704_CR28) 2011; 84
A Mair (BFncomms8704_CR3) 2001; 412
J Leach (BFncomms8704_CR14) 2010; 329
MZ Hasan (BFncomms8704_CR21) 2010; 82
N Goldman (BFncomms8704_CR53) 2009; 103
T Ozawa (BFncomms8704_CR57) 2014; 112
M Krenna (BFncomms8704_CR17) 2014; 111
SSR Oemrawsingh (BFncomms8704_CR38) 2005; 95
DR Hofstadter (BFncomms8704_CR40) 1976; 14
KJ Fang (BFncomms8704_CR30) 2012; 6
L Mazza (BFncomms8704_CR23) 2010; 12
AH Castro Neto (BFncomms8704_CR50) 2009; 81
YB Zhang (BFncomms8704_CR52) 2005; 438
O Boada (BFncomms8704_CR49) 2011; 13
M Atala (BFncomms8704_CR46) 2013; 9
A Bermudez (BFncomms8704_CR43) 2010; 12
DS Ding (BFncomms8704_CR12) 2013; 4
SH Fan (BFncomms8704_CR45) 1999; 59
AM Yao (BFncomms8704_CR6) 2011; 3
L Wang (BFncomms8704_CR48) 2013; 110
M Hafezi (BFncomms8704_CR32) 2013; 7
DC Tsui (BFncomms8704_CR19) 1982; 48
A Nicolas (BFncomms8704_CR13) 2014; 8
L Lu (BFncomms8704_CR35) 2014; 8
B Chalopin (BFncomms8704_CR37) 2010; 18
N Goldman (BFncomms8704_CR47) 2013; 110
WM Lee (BFncomms8704_CR4) 2004; 29
O Viyuela (BFncomms8704_CR60) 2014; 112
L Mazza (BFncomms8704_CR44) 2012; 14
A Bermudez (BFncomms8704_CR24) 2012; 14
JT Barreiro (BFncomms8704_CR7) 2008; 4
J Cho (BFncomms8704_CR27) 2008; 101
CL Kane (BFncomms8704_CR42) 2005; 95
M Hafezi (BFncomms8704_CR29) 2011; 7
19392370 - Phys Rev Lett. 2009 Apr 3;102(13):135702
20689014 - Science. 2010 Aug 6;329(5992):662-5
18232766 - Phys Rev Lett. 2008 Jan 11;100(1):013904
11460157 - Nature. 2001 Jul 19;412(6844):313-6
21231599 - Phys Rev Lett. 2010 Dec 17;105(25):255302
23258044 - Opt Lett. 2012 Dec 15;37(24):5178-80
24084711 - Nat Commun. 2013;4:2527
24745393 - Phys Rev Lett. 2014 Apr 4;112(13):130401
24745421 - Phys Rev Lett. 2014 Apr 4;112(13):133902
25073906 - Nat Commun. 2014 Jul 30;5:4502
23241532 - Nat Mater. 2013 Mar;12(3):233-9
23118185 - Science. 2012 Nov 2;338(6107):640-3
19113651 - Phys Rev Lett. 2008 Dec 12;101(24):246809
24706902 - Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6243-7
20072194 - Appl Opt. 1969 Jan 1;8(1):189-95
20588647 - Opt Express. 2010 Apr 12;18(8):8033-42
16384361 - Phys Rev Lett. 2005 Dec 9;95(24):240501
9906912 - Phys Rev A. 1992 Jun 1;45(11):8185-8189
16281031 - Nature. 2005 Nov 10;438(7065):201-4
19659145 - Phys Rev Lett. 2009 Jul 3;103(1):013601
17885096 - Science. 2007 Nov 2;318(5851):766-70
23569266 - Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6736-41
23679630 - Phys Rev Lett. 2013 Apr 19;110(16):166802
15352373 - Opt Lett. 2004 Aug 1;29(15):1796-8
16907533 - Phys Rev Lett. 2006 Jul 21;97(3):036808
23579677 - Nature. 2013 Apr 11;496(7444):196-200
24445503 - Nat Commun. 2014;5:3115
24580445 - Phys Rev Lett. 2014 Jan 31;112(4):043001
19659289 - Phys Rev Lett. 2009 Jul 17;103(3):035301
16241681 - Phys Rev Lett. 2005 Sep 30;95(14):146802
23005308 - Phys Rev Lett. 2012 Sep 7;109(10):106402
14765932 - Appl Opt. 2004 Jan 20;43(3):688-94
19812669 - Nature. 2009 Oct 8;461(7265):772-5
References_xml – volume: 82
  start-page: 3045
  year: 2010
  end-page: 3067
  ident: CR21
  article-title: Colloquium: topological insulators
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.3045
– volume: 461
  start-page: 772
  year: 2009
  end-page: 775
  ident: CR26
  article-title: Observation of unidirectional backscattering-immune topological electromagnetic states
  publication-title: Nature
  doi: 10.1038/nature08293
– volume: 7
  start-page: 1001
  year: 2013
  end-page: 1005
  ident: CR32
  article-title: Imaging topological edge states in silicon photonics
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2013.274
– volume: 438
  start-page: 201
  year: 2005
  end-page: 204
  ident: CR52
  article-title: Experimental observation of the quantum hall effect and berry’s phase in graphene
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 329
  start-page: 662
  year: 2010
  end-page: 665
  ident: CR14
  article-title: Quantum correlations in optical angle-orbital angular momentum variables
  publication-title: Science
  doi: 10.1126/science.1190523
– volume: 8
  start-page: 821
  year: 2014
  end-page: 829
  ident: CR35
  article-title: Topological photonics
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2014.248
– volume: 18
  start-page: 8033
  year: 2010
  end-page: 8042
  ident: CR37
  article-title: Frequency doubling of low power images using a self-imaging cavity
  publication-title: Opt. Express
  doi: 10.1364/OE.18.008033
– volume: 318
  start-page: 766
  year: 2007
  end-page: 770
  ident: CR20
  article-title: Quantum spin hall insulator state in HgTe quantum wells
  publication-title: Science
  doi: 10.1126/science.1148047
– volume: 109
  start-page: 106402
  year: 2012
  ident: CR34
  article-title: Topological States and Adiabatic Pumping in Quasicrystals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.106402
– volume: 8
  start-page: 189
  year: 1969
  end-page: 195
  ident: CR36
  article-title: Degenerate optical cavities
  publication-title: Appl. Opt.
  doi: 10.1364/AO.8.000189
– volume: 4
  start-page: 2527
  year: 2013
  ident: CR12
  article-title: Single-photon-level quantum image memory based on cold atomic ensembles
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3527
– volume: 112
  start-page: 043001
  year: 2014
  ident: CR41
  article-title: Synthetic Gauge Fields in Synthetic Dimensions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.043001
– volume: 7
  start-page: 907
  year: 2011
  end-page: 912
  ident: CR29
  article-title: Robust optical delay lines with topological protection
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2063
– volume: 83
  start-page: 1523
  year: 2011
  end-page: 1543
  ident: CR22
  article-title: Colloquium: Artificial gauge potentials for neutral atoms
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.1523
– volume: 12
  start-page: 033041
  year: 2010
  ident: CR43
  article-title: Topological phase transitions in the non-Abelian honeycomb lattice
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/12/3/033041
– volume: 112
  start-page: 130401
  year: 2014
  ident: CR60
  article-title: Uhlmann phase as a topological measure for one-dimensional fermion systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.130401
– volume: 81
  start-page: 109
  year: 2009
  end-page: 162
  ident: CR50
  article-title: The electronic properties of graphene
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 29
  start-page: 1796
  year: 2004
  end-page: 1798
  ident: CR4
  article-title: Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation
  publication-title: Opt. Lett.
  doi: 10.1364/OL.29.001796
– volume: 59
  start-page: 15882
  year: 1999
  end-page: 15892
  ident: CR45
  article-title: Theoretical analysis of channel drop tunneling processes
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.15882
– volume: 14
  start-page: 015007
  year: 2012
  ident: CR44
  article-title: An optical-lattice-based quantum simulator for relativistic field theories and topological insulators
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/14/1/015007
– volume: 45
  start-page: 8185
  year: 1992
  end-page: 8189
  ident: CR1
  article-title: Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.45.8185
– volume: 338
  start-page: 640
  year: 2012
  end-page: 643
  ident: CR16
  article-title: Quantum entanglement of high angular momenta
  publication-title: Science
  doi: 10.1126/science.1227193
– volume: 45
  start-page: 494
  year: 1980
  end-page: 497
  ident: CR18
  article-title: New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.494
– volume: 49
  start-page: 405
  year: 1982
  end-page: 408
  ident: CR56
  article-title: Quantized hall conductance in a two-dimensional periodic potential
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.405
– volume: 111
  start-page: 6243
  year: 2014
  end-page: 6247
  ident: CR17
  article-title: Generation and confirmation of a (100 × 100)-dimensional entangled quantum system
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1402365111
– volume: 4
  start-page: 282
  year: 2008
  end-page: 286
  ident: CR7
  article-title: Beating the channel capacity limit for linear photonic superdense coding
  publication-title: Nat. Phys.
  doi: 10.1038/nphys919
– volume: 97
  start-page: 036808
  year: 2006
  ident: CR55
  article-title: Quantum spin-hall effect and topologically invariant chern numbers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.036808
– volume: 84
  start-page: 043804
  year: 2011
  ident: CR28
  article-title: Artificial gauge field for photons in coupled cavity arrays
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.84.043804
– volume: 102
  start-page: 135702
  year: 2009
  ident: CR59
  article-title: Topology-induced anomalous defect production by crossing a quantum critical point
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.135702
– volume: 412
  start-page: 313
  year: 2001
  end-page: 316
  ident: CR3
  article-title: Entanglement of the orbital angular momentum states of photons
  publication-title: Nature
  doi: 10.1038/35085529
– volume: 12
  start-page: 033041
  year: 2010
  ident: CR23
  article-title: Topological phase transitions in the non-Abelian honeycomb lattice
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/12/3/033041
– volume: 100
  start-page: 013904
  year: 2008
  ident: CR25
  article-title: Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.013904
– volume: 105
  start-page: 255302
  year: 2010
  ident: CR54
  article-title: Realistic Time-Reversal Invariant Topological Insulators with Neutral Atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.255302
– ident: CR2
– volume: 3
  start-page: 305
  year: 2007
  end-page: 310
  ident: CR15
  article-title: Twisted photons
  publication-title: Nat. Phys.
  doi: 10.1038/nphys607
– volume: 37
  start-page: 5178
  year: 2012
  ident: CR58
  article-title: Experimental preparation of eight-partite cluster state for photonic qumodes
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.005178
– volume: 5
  start-page: 343
  year: 2011
  end-page: 348
  ident: CR9
  article-title: Tweezers with a twist
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2011.81
– volume: 95
  start-page: 146802
  year: 2005
  ident: CR42
  article-title: Z 2 topological order and the quantum spin hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.146802
– volume: 112
  start-page: 133902
  year: 2014
  ident: CR57
  article-title: Anomalous and Quantum Hall Effects in Lossy Photonic Lattices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.133902
– volume: 3
  start-page: 161
  year: 2011
  end-page: 204
  ident: CR6
  article-title: Orbital angular momentum: origins, behavior and applications
  publication-title: Adv. Opt. Photon.
  doi: 10.1364/AOP.3.000161
– volume: 14
  start-page: 2239
  year: 1976
  end-page: 2249
  ident: CR40
  article-title: Energy levels and wave functions of bloch electrons in rational and irrational magnetic fields
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.14.2239
– volume: 42
  start-page: 1698
  year: 1979
  end-page: 1701
  ident: CR61
  article-title: Solitons in Polyacetylene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.42.1698
– volume: 8
  start-page: 234
  year: 2014
  end-page: 238
  ident: CR13
  article-title: A quantum memory for orbital angular momentum photonic qubits
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2013.355
– volume: 6
  start-page: 782
  year: 2012
  end-page: 787
  ident: CR30
  article-title: Realizing effective magnetic field for photons by controlling the phase of dynamic modulation
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2012.236
– volume: 5
  start-page: 3115
  year: 2014
  ident: CR5
  article-title: Direct measurement of a 27-dimensional orbital-angular-momentum state vector
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4115
– volume: 103
  start-page: 035301
  year: 2009
  ident: CR53
  article-title: Non-abelian optical lattices: Anomalous quantum hall effect and dirac fermions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.035301
– volume: 43
  start-page: 688
  year: 2004
  end-page: 694
  ident: CR39
  article-title: Production and characterization of spiral phase plates for optical wavelengths
  publication-title: Appl. Opt.
  doi: 10.1364/AO.43.000688
– volume: 79
  start-page: 023624
  year: 2009
  ident: CR51
  article-title: Ultracold atomic gases in non-abelian gauge potentials: The case of constant wilson loop
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.79.023624
– volume: 496
  start-page: 196
  year: 2013
  end-page: 200
  ident: CR33
  article-title: Photonic floquet topological insulators
  publication-title: Nature
  doi: 10.1038/nature12066
– volume: 6
  start-page: 488
  year: 2012
  end-page: 496
  ident: CR8
  article-title: Terabit free-space data transmission employing orbital angular momentum multiplexing
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2012.138
– volume: 101
  start-page: 246809
  year: 2008
  ident: CR27
  article-title: Fractional quantum hall state in coupled cavities
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.246809
– volume: 5
  start-page: 4502
  year: 2014
  ident: CR11
  article-title: Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5502
– volume: 110
  start-page: 166802
  year: 2013
  ident: CR48
  article-title: Proposal for direct measurement of topological invariants in optical lattices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.166802
– volume: 48
  start-page: 1559
  year: 1982
  end-page: 1562
  ident: CR19
  article-title: Two-dimensional magnetotransport in the extreme quantum limit
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.1559
– volume: 110
  start-page: 6736
  year: 2013
  end-page: 6741
  ident: CR47
  article-title: Direct imaging of topological edge states in cold-atom systems
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1300170110
– volume: 103
  start-page: 013601
  year: 2009
  ident: CR10
  article-title: Quantum information transfer from spin to orbital angular momentum of photons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.013601
– volume: 14
  start-page: 015007
  year: 2012
  ident: CR24
  article-title: An optical-lattice-based quantum simulator for relativistic field theories and topological insulators
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/1/015007
– volume: 13
  start-page: 035002
  year: 2011
  ident: CR49
  article-title: Dirac equation for cold atoms in artificial curved spacetimes
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/13/3/035002
– volume: 9
  start-page: 795
  year: 2013
  end-page: 800
  ident: CR46
  article-title: Direct measurement of the Zak phase in topological Bloch bands
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2790
– volume: 95
  start-page: 240501
  year: 2005
  ident: CR38
  article-title: Experimental demonstration of fractional orbital angular momentum entanglement of two photons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.240501
– volume: 12
  start-page: 233
  year: 2012
  end-page: 239
  ident: CR31
  article-title: Photonic topological insulators
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3520
– volume: 13
  start-page: 035002
  year: 2011
  ident: BFncomms8704_CR49
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/13/3/035002
– volume: 110
  start-page: 166802
  year: 2013
  ident: BFncomms8704_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.166802
– volume: 45
  start-page: 8185
  year: 1992
  ident: BFncomms8704_CR1
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.45.8185
– volume: 8
  start-page: 234
  year: 2014
  ident: BFncomms8704_CR13
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2013.355
– volume: 43
  start-page: 688
  year: 2004
  ident: BFncomms8704_CR39
  publication-title: Appl. Opt.
  doi: 10.1364/AO.43.000688
– volume: 4
  start-page: 282
  year: 2008
  ident: BFncomms8704_CR7
  publication-title: Nat. Phys.
  doi: 10.1038/nphys919
– volume: 83
  start-page: 1523
  year: 2011
  ident: BFncomms8704_CR22
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.1523
– volume: 95
  start-page: 146802
  year: 2005
  ident: BFncomms8704_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.146802
– volume: 5
  start-page: 4502
  year: 2014
  ident: BFncomms8704_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5502
– volume: 95
  start-page: 240501
  year: 2005
  ident: BFncomms8704_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.240501
– volume: 81
  start-page: 109
  year: 2009
  ident: BFncomms8704_CR50
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 82
  start-page: 3045
  year: 2010
  ident: BFncomms8704_CR21
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.3045
– volume: 84
  start-page: 043804
  year: 2011
  ident: BFncomms8704_CR28
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.84.043804
– volume: 7
  start-page: 907
  year: 2011
  ident: BFncomms8704_CR29
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2063
– volume: 12
  start-page: 033041
  year: 2010
  ident: BFncomms8704_CR23
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/12/3/033041
– volume: 18
  start-page: 8033
  year: 2010
  ident: BFncomms8704_CR37
  publication-title: Opt. Express
  doi: 10.1364/OE.18.008033
– volume: 48
  start-page: 1559
  year: 1982
  ident: BFncomms8704_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.1559
– volume: 8
  start-page: 821
  year: 2014
  ident: BFncomms8704_CR35
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2014.248
– volume: 112
  start-page: 043001
  year: 2014
  ident: BFncomms8704_CR41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.043001
– volume: 112
  start-page: 133902
  year: 2014
  ident: BFncomms8704_CR57
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.133902
– volume: 3
  start-page: 161
  year: 2011
  ident: BFncomms8704_CR6
  publication-title: Adv. Opt. Photon.
  doi: 10.1364/AOP.3.000161
– volume: 329
  start-page: 662
  year: 2010
  ident: BFncomms8704_CR14
  publication-title: Science
  doi: 10.1126/science.1190523
– volume: 338
  start-page: 640
  year: 2012
  ident: BFncomms8704_CR16
  publication-title: Science
  doi: 10.1126/science.1227193
– volume: 4
  start-page: 2527
  year: 2013
  ident: BFncomms8704_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3527
– volume: 103
  start-page: 035301
  year: 2009
  ident: BFncomms8704_CR53
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.035301
– volume: 102
  start-page: 135702
  year: 2009
  ident: BFncomms8704_CR59
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.135702
– volume: 112
  start-page: 130401
  year: 2014
  ident: BFncomms8704_CR60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.130401
– volume: 59
  start-page: 15882
  year: 1999
  ident: BFncomms8704_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.15882
– volume: 412
  start-page: 313
  year: 2001
  ident: BFncomms8704_CR3
  publication-title: Nature
  doi: 10.1038/35085529
– volume: 318
  start-page: 766
  year: 2007
  ident: BFncomms8704_CR20
  publication-title: Science
  doi: 10.1126/science.1148047
– volume: 9
  start-page: 795
  year: 2013
  ident: BFncomms8704_CR46
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2790
– volume: 12
  start-page: 033041
  year: 2010
  ident: BFncomms8704_CR43
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/12/3/033041
– volume: 7
  start-page: 1001
  year: 2013
  ident: BFncomms8704_CR32
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2013.274
– volume: 14
  start-page: 015007
  year: 2012
  ident: BFncomms8704_CR44
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/14/1/015007
– volume: 45
  start-page: 494
  year: 1980
  ident: BFncomms8704_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.494
– volume: 29
  start-page: 1796
  year: 2004
  ident: BFncomms8704_CR4
  publication-title: Opt. Lett.
  doi: 10.1364/OL.29.001796
– volume: 5
  start-page: 3115
  year: 2014
  ident: BFncomms8704_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4115
– volume: 79
  start-page: 023624
  year: 2009
  ident: BFncomms8704_CR51
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.79.023624
– volume: 496
  start-page: 196
  year: 2013
  ident: BFncomms8704_CR33
  publication-title: Nature
  doi: 10.1038/nature12066
– volume: 100
  start-page: 013904
  year: 2008
  ident: BFncomms8704_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.013904
– volume: 12
  start-page: 233
  year: 2012
  ident: BFncomms8704_CR31
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3520
– volume: 3
  start-page: 305
  year: 2007
  ident: BFncomms8704_CR15
  publication-title: Nat. Phys.
  doi: 10.1038/nphys607
– volume: 103
  start-page: 013601
  year: 2009
  ident: BFncomms8704_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.013601
– volume: 14
  start-page: 2239
  year: 1976
  ident: BFncomms8704_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.14.2239
– volume: 97
  start-page: 036808
  year: 2006
  ident: BFncomms8704_CR55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.036808
– ident: BFncomms8704_CR2
– volume: 105
  start-page: 255302
  year: 2010
  ident: BFncomms8704_CR54
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.255302
– volume: 6
  start-page: 782
  year: 2012
  ident: BFncomms8704_CR30
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2012.236
– volume: 49
  start-page: 405
  year: 1982
  ident: BFncomms8704_CR56
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.405
– volume: 110
  start-page: 6736
  year: 2013
  ident: BFncomms8704_CR47
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1300170110
– volume: 461
  start-page: 772
  year: 2009
  ident: BFncomms8704_CR26
  publication-title: Nature
  doi: 10.1038/nature08293
– volume: 111
  start-page: 6243
  year: 2014
  ident: BFncomms8704_CR17
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1402365111
– volume: 6
  start-page: 488
  year: 2012
  ident: BFncomms8704_CR8
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2012.138
– volume: 109
  start-page: 106402
  year: 2012
  ident: BFncomms8704_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.106402
– volume: 8
  start-page: 189
  year: 1969
  ident: BFncomms8704_CR36
  publication-title: Appl. Opt.
  doi: 10.1364/AO.8.000189
– volume: 5
  start-page: 343
  year: 2011
  ident: BFncomms8704_CR9
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2011.81
– volume: 101
  start-page: 246809
  year: 2008
  ident: BFncomms8704_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.246809
– volume: 42
  start-page: 1698
  year: 1979
  ident: BFncomms8704_CR61
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.42.1698
– volume: 438
  start-page: 201
  year: 2005
  ident: BFncomms8704_CR52
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 14
  start-page: 015007
  year: 2012
  ident: BFncomms8704_CR24
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/1/015007
– volume: 37
  start-page: 5178
  year: 2012
  ident: BFncomms8704_CR58
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.005178
– reference: 16241681 - Phys Rev Lett. 2005 Sep 30;95(14):146802
– reference: 19812669 - Nature. 2009 Oct 8;461(7265):772-5
– reference: 23569266 - Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6736-41
– reference: 20072194 - Appl Opt. 1969 Jan 1;8(1):189-95
– reference: 23579677 - Nature. 2013 Apr 11;496(7444):196-200
– reference: 23118185 - Science. 2012 Nov 2;338(6107):640-3
– reference: 23241532 - Nat Mater. 2013 Mar;12(3):233-9
– reference: 11460157 - Nature. 2001 Jul 19;412(6844):313-6
– reference: 19113651 - Phys Rev Lett. 2008 Dec 12;101(24):246809
– reference: 14765932 - Appl Opt. 2004 Jan 20;43(3):688-94
– reference: 19392370 - Phys Rev Lett. 2009 Apr 3;102(13):135702
– reference: 24084711 - Nat Commun. 2013;4:2527
– reference: 24745421 - Phys Rev Lett. 2014 Apr 4;112(13):133902
– reference: 23258044 - Opt Lett. 2012 Dec 15;37(24):5178-80
– reference: 24706902 - Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6243-7
– reference: 18232766 - Phys Rev Lett. 2008 Jan 11;100(1):013904
– reference: 23679630 - Phys Rev Lett. 2013 Apr 19;110(16):166802
– reference: 16384361 - Phys Rev Lett. 2005 Dec 9;95(24):240501
– reference: 24745393 - Phys Rev Lett. 2014 Apr 4;112(13):130401
– reference: 24580445 - Phys Rev Lett. 2014 Jan 31;112(4):043001
– reference: 15352373 - Opt Lett. 2004 Aug 1;29(15):1796-8
– reference: 17885096 - Science. 2007 Nov 2;318(5851):766-70
– reference: 16281031 - Nature. 2005 Nov 10;438(7065):201-4
– reference: 19659289 - Phys Rev Lett. 2009 Jul 17;103(3):035301
– reference: 9906912 - Phys Rev A. 1992 Jun 1;45(11):8185-8189
– reference: 19659145 - Phys Rev Lett. 2009 Jul 3;103(1):013601
– reference: 20689014 - Science. 2010 Aug 6;329(5992):662-5
– reference: 23005308 - Phys Rev Lett. 2012 Sep 7;109(10):106402
– reference: 25073906 - Nat Commun. 2014 Jul 30;5:4502
– reference: 20588647 - Opt Express. 2010 Apr 12;18(8):8033-42
– reference: 24445503 - Nat Commun. 2014;5:3115
– reference: 16907533 - Phys Rev Lett. 2006 Jul 21;97(3):036808
– reference: 21231599 - Phys Rev Lett. 2010 Dec 17;105(25):255302
SSID ssj0000391844
Score 2.541784
Snippet Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7704
SubjectTerms 639/301/119/2795
639/766/400
639/766/483/640
Humanities and Social Sciences
multidisciplinary
Physics
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8QwEB48EHwRb-tFRF98KPZI0vZJxAMRFASFfStpkuKC267bXWH_vZP00HXFpxYytCHTSb45-g3AWcyU9KgvXF-GnktpkLlZ7uduzrnQSRLwUJmM7uMTv3-lDz3WawJuVVNW2e6JdqNWpTQx8gtDGsJjPP_Dy-GHa7pGmexq00JjEZYNdZkp6Yp6URdjMeznMaUtK2kYXxT4yEGF3yidPYfmwOV8jeSvRKk9f-7WYa0BjuSq1vQGLOhiE1bqVpJTvLOlnLLagqfnCa7WZECq_qDpzUXKnAQ3ZFw3RDBqIXVEoyL9ggji3xAxGompkSuHNrpNpPi0ZKvb8Hp3-3J97zZdE1yJYGvsqkgJz5NKaK78RKJVSU-jGRtfwBcRIiamEBMwYajoPUG11j5Dq2QyUVmUheEOLBVlofeA8DzO0IPEPSjX6AciWsAL1YGfqyDJaO7AebuGqWwoxU1ni_fUprbDOP1ebwdOO9lhTaTxp9Rhq4q0MaYq_Va9AyfdMJqByW2IQpcTK8MQCfHQc2C31lz3GnQSKQ5GDkQzOu0EDMX27EjRf7NU25SZn28TB85a7f-Y1tzs9_-f_QGsItxittiXH8LSeDTRRwhpxtmx_W6_AIui-EU
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD7oRPBFvFtvRNyLD8VekrR9lE0RQUFwsLeSJikOXCfrJvjvPUkvbs4Hn0rJKQ3n0nzJOf0OQDdmSnrUF64vQ8-lNMjcLPdzN-dc6CQJeKhMRvfpmT8M6OOQDWuanLIuq6woLe1nuqkOuynwblyic9F12DCU7cabe7zXnqcYpvOY0oaBNIwXHllec1aA5Go95K-kqF1r7ndguwaJ5Laa1i6s6WIPNqu2kV_78PwyR33Mx6QcjevuW2SSk6BPZlXLA6N4Up1ZlGRUEEH8PhHTqfgycpMPe35NpPi0dKoHMLi_e-09uHVfBFcinJq5KlLC86QSmis_kRg30tMYqAbt-yJCTMQUrvpMGLJ5T1Cttc8w7phMVBZlYXgInWJS6GMgPI8z3CPiVybXuNNDPIAXqgM_V0GS0dyB60ZzqaxJw03vivfUJq_DOP3RsgNXrexHRZXxp9RZY4C0DpcyNYwwPEZwFzpw2Q6jo5vshSj0ZG5lGGIdHnoOHFX2al-D20CKg5ED0ZIlWwFDor08UozeLJk2Zeb32sSBbmPzhWmtzP7kf2KnsIXAitmyXn4Gndl0rs8RvMyyC-u137aM8Yw
  priority: 102
  providerName: Springer Nature
Title Quantum simulation of 2D topological physics in a 1D array of optical cavities
URI https://link.springer.com/article/10.1038/ncomms8704
https://www.ncbi.nlm.nih.gov/pubmed/26145177
https://www.proquest.com/docview/1693682323
https://www.proquest.com/docview/1695175630
https://pubmed.ncbi.nlm.nih.gov/PMC4506549
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1bT9swFD7iIiReJrZxCZfKCF72EMjFsZOHCXWFDlWi2oBKfYsc29Eq0RR6mdZ_v2MnKXRlL4kUnyiWP5_4O758B-A8jpT0qC9cX4aeS2mQuVnu527OmNBJErBQmRXduy677dFOP-qvQZ2_s2rAybuhnckn1Rs_Xfx5mV-hw38tj4zHlwViM5xgx6PrsIkjEjcOelfRfPtHDhMMZGitTrr0ilEDZiZdLefLQ9MK31zdNvnP2qkdkto78KHikqRZgv8R1nTxCbbK7JLzz9D9OcNmmw3JZDCsknSRUU6CazItMyMYfEg5tTEhg4II4l8TMR6LubEbPdtpbiLFb6u6ugu99s1j69at0ie4ElnX1FVcCc-TSmim_ESie0lPoz-boMAXHKlTpJAcRMJo0nuCaq39CN0zkonKeBaGe7BRjAp9AITlcYahJP6Mco0BIdIGvFEd-LkKkozmDnypWy6Vlba4SXHxlNo17jBOXxvcgbOF7XOpqPGu1XENQFp3itQIx7AYOWDowOmiGP3BLHKIQo9m1gaxNKpnDuyXeC0-UwPtAF9CcmFgtLaXS4rBL6u5TSNzCjdx4LzG_E21Vmp_-N9PH8E2Uq7Ibvhlx7AxHc_0CdKaadaAdd7neI3b3xuw2Wx2Hjp4_3bT_XGPT1us1bATBg3bt_8Ct8f-lA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB5CQmgvJekrzqsqTQ89mPghyfahlNJt2DTJQiGBvbmyJJOFrL1d77bsn8pvzEh-JNsNveXkBQ2srJnRfJqRvwE4ipmSHvWF68vQcykNMjfL_dzNORc6SQIeKlPRvRjw_hX9MWTDNbhtv4Ux1yrbPdFu1KqUJkd-bEhDeIzxP_wy-e2arlGmutq20KjN4kwv_uKRrfp82kP9fgyCk--X3_pu01XAlQhGZq6KlPA8qYTmyk8kWp30NJq5wcq-iBBRMIUxkwlD1e4JqrX2GVotk4nKoswkQHHL38DA6xmPioZRl9MxbOsxpS0LahgfF_gK4wp9gi7HvRUwu3on85_CrI13J1vwogGq5GttWduwpouXsFm3rlzgL3t1VFavYPBzjtqZj0k1Gje9wEiZk6BHZnUDBmMGpM6gVGRUEEH8HhHTqVgYuXJis-lEij-W3PU1XD3Jer6B9aIs9A4QnscZnlhxz8s1njsRneCD6sDPVZBkNHfgU7uGqWwozE0njZvUltLDOL1fbwc-dLKTmrjjUan9VhVp47xVem9qDrzvhtHtTC1FFLqcWxmGyIuHngNva811f4OHUoqDkQPRkk47AUPpvTxSjK4ttTdl5mPfxIGjVvsPprUy-93_z_4dPOtfXpyn56eDsz14jlCP2YvGfB_WZ9O5PkA4NcsOrQ0T-PXUTnMH0wEz4Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9Nm0C8oPG5sAFGjAceosaJ7SQP04Qo1cagAolJfQuO7YhKNOmaFtR_jb-Os_MxShFve0oln1THd2f_fHf5HcBxwrUKGJU-VVHgMxbmfl7Qwi-EkCZNQxFpm9H9OBZnl-z9hE924Ff3LYwtq-z2RLdR60rZGPnAkoaIBM__aFC0ZRGfhqPT-ZVvO0jZTGvXTqMxkQuz_onXt_rkfIi6fhWGo3df3p75bYcBXyEwWfo61jIIlJZGaJoqtEAVGDR5i5upjBFdcI3nJ5eWtj2QzBhDOVowV6nO49wGQ3H734sjTq2PxZO4j-9Y5vWEsY4RNUoGJb7OrEb_YJtn4Baw3a7P_CtJ686-0T7cbUEredNY2T3YMeV9uNW0sVzjL1dGquoHMP68Qk2tZqSeztq-YKQqSDgky6YZgzUJ0kRTajItiSR0SORiIddWrpq7yDpR8ocjen0Ilzeyno9gt6xKcwBEFEmOt1fc_wqDd1BEKvhgJqSFDtOcFR687tYwUy2due2q8T1zafUoya7X24OXvey8IfH4p9RRp4qsdeQ6uzY7D170w-iCNq8iS1OtnAxHFCaiwIPHjeb6v8ELKsPB2IN4Q6e9gKX33hwpp98czTfj9sPf1IPjTvt_TGtr9k_-P_vncBvdJftwPr44hDuI-rirORZHsLtcrMxTRFbL_JkzYQJfb9pnfgP18TgX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+simulation+of+2D+topological+physics+in+a+1D+array+of+optical+cavities&rft.jtitle=Nature+communications&rft.au=Luo%2C+Xi-Wang&rft.au=Zhou%2C+Xingxiang&rft.au=Li%2C+Chuan-Feng&rft.au=Xu%2C+Jin-Shi&rft.date=2015-07-06&rft.eissn=2041-1723&rft.volume=6&rft.spage=7704&rft_id=info:doi/10.1038%2Fncomms8704&rft_id=info%3Apmid%2F26145177&rft.externalDocID=26145177
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon