Connecting Text Classification with Image Classification: A New Preprocessing Method for Implicit Sentiment Text Classification

As a research hotspot in the field of natural language processing (NLP), sentiment analysis can be roughly divided into explicit sentiment analysis and implicit sentiment analysis. However, due to the lack of obvious emotion words in the implicit sentiment analysis task and because the sentiment pol...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 5; p. 1899
Main Authors Chen, Meikang, Ubul, Kurban, Xu, Xuebin, Aysa, Alimjan, Muhammat, Mahpirat
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.02.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a research hotspot in the field of natural language processing (NLP), sentiment analysis can be roughly divided into explicit sentiment analysis and implicit sentiment analysis. However, due to the lack of obvious emotion words in the implicit sentiment analysis task and because the sentiment polarity contained in implicit sentiment words is not easily accurately identified by existing text-processing methods, the implicit sentiment analysis task is one of the most difficult tasks in sentiment analysis. This paper proposes a new preprocessing method for implicit sentiment text classification; this method is named Text To Picture (TTP) in this paper. TTP highlights the sentiment differences between different sentiment polarities in Chinese implicit sentiment text with the help of deep learning by converting original text data into word frequency maps. The differences between sentiment polarities are used as sentiment clues to improve the performance of the Chinese implicit sentiment text classification task. It does this by transforming the original text data into a word frequency map in order to highlight the differences between the sentiment polarities expressed in the implicit sentiment text. We conducted experimental tests on two common datasets (SMP2019, EWECT), and the results show that the accuracy of our method is significantly improved compared with that of the competitor’s. On the SMP2019 dataset, the accuracy-improvement range was 4.55–7.06%. On the EWECT dataset, the accuracy was improved by 1.81–3.95%. In conclusion, the new preprocessing method for implicit sentiment text classification proposed in this paper can achieve better classification results.
AbstractList As a research hotspot in the field of natural language processing (NLP), sentiment analysis can be roughly divided into explicit sentiment analysis and implicit sentiment analysis. However, due to the lack of obvious emotion words in the implicit sentiment analysis task and because the sentiment polarity contained in implicit sentiment words is not easily accurately identified by existing text-processing methods, the implicit sentiment analysis task is one of the most difficult tasks in sentiment analysis. This paper proposes a new preprocessing method for implicit sentiment text classification; this method is named Text To Picture (TTP) in this paper. TTP highlights the sentiment differences between different sentiment polarities in Chinese implicit sentiment text with the help of deep learning by converting original text data into word frequency maps. The differences between sentiment polarities are used as sentiment clues to improve the performance of the Chinese implicit sentiment text classification task. It does this by transforming the original text data into a word frequency map in order to highlight the differences between the sentiment polarities expressed in the implicit sentiment text. We conducted experimental tests on two common datasets (SMP2019, EWECT), and the results show that the accuracy of our method is significantly improved compared with that of the competitor’s. On the SMP2019 dataset, the accuracy-improvement range was 4.55–7.06%. On the EWECT dataset, the accuracy was improved by 1.81–3.95%. In conclusion, the new preprocessing method for implicit sentiment text classification proposed in this paper can achieve better classification results.
As a research hotspot in the field of natural language processing (NLP), sentiment analysis can be roughly divided into explicit sentiment analysis and implicit sentiment analysis. However, due to the lack of obvious emotion words in the implicit sentiment analysis task and because the sentiment polarity contained in implicit sentiment words is not easily accurately identified by existing text-processing methods, the implicit sentiment analysis task is one of the most difficult tasks in sentiment analysis. This paper proposes a new preprocessing method for implicit sentiment text classification; this method is named Text To Picture (TTP) in this paper. TTP highlights the sentiment differences between different sentiment polarities in Chinese implicit sentiment text with the help of deep learning by converting original text data into word frequency maps. The differences between sentiment polarities are used as sentiment clues to improve the performance of the Chinese implicit sentiment text classification task. It does this by transforming the original text data into a word frequency map in order to highlight the differences between the sentiment polarities expressed in the implicit sentiment text. We conducted experimental tests on two common datasets (SMP2019, EWECT), and the results show that the accuracy of our method is significantly improved compared with that of the competitor's. On the SMP2019 dataset, the accuracy-improvement range was 4.55-7.06%. On the EWECT dataset, the accuracy was improved by 1.81-3.95%. In conclusion, the new preprocessing method for implicit sentiment text classification proposed in this paper can achieve better classification results.As a research hotspot in the field of natural language processing (NLP), sentiment analysis can be roughly divided into explicit sentiment analysis and implicit sentiment analysis. However, due to the lack of obvious emotion words in the implicit sentiment analysis task and because the sentiment polarity contained in implicit sentiment words is not easily accurately identified by existing text-processing methods, the implicit sentiment analysis task is one of the most difficult tasks in sentiment analysis. This paper proposes a new preprocessing method for implicit sentiment text classification; this method is named Text To Picture (TTP) in this paper. TTP highlights the sentiment differences between different sentiment polarities in Chinese implicit sentiment text with the help of deep learning by converting original text data into word frequency maps. The differences between sentiment polarities are used as sentiment clues to improve the performance of the Chinese implicit sentiment text classification task. It does this by transforming the original text data into a word frequency map in order to highlight the differences between the sentiment polarities expressed in the implicit sentiment text. We conducted experimental tests on two common datasets (SMP2019, EWECT), and the results show that the accuracy of our method is significantly improved compared with that of the competitor's. On the SMP2019 dataset, the accuracy-improvement range was 4.55-7.06%. On the EWECT dataset, the accuracy was improved by 1.81-3.95%. In conclusion, the new preprocessing method for implicit sentiment text classification proposed in this paper can achieve better classification results.
Audience Academic
Author Aysa, Alimjan
Muhammat, Mahpirat
Ubul, Kurban
Xu, Xuebin
Chen, Meikang
AuthorAffiliation 1 College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; xj_ckk@stu.xju.edu.cn (M.C.); xuxuebin@xju.edu.cn (X.X.)
3 International Cultural Exchange College Xinjiang University, Xinjiang University, Urumqi 830046, China; xmahpu@xju.edu.cn
2 The Key Laboratory of Multilingual Information Technology, Xinjiang University, Urumqi 830046, China; alim@xju.edu.cn
AuthorAffiliation_xml – name: 3 International Cultural Exchange College Xinjiang University, Xinjiang University, Urumqi 830046, China; xmahpu@xju.edu.cn
– name: 1 College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; xj_ckk@stu.xju.edu.cn (M.C.); xuxuebin@xju.edu.cn (X.X.)
– name: 2 The Key Laboratory of Multilingual Information Technology, Xinjiang University, Urumqi 830046, China; alim@xju.edu.cn
Author_xml – sequence: 1
  givenname: Meikang
  surname: Chen
  fullname: Chen, Meikang
– sequence: 2
  givenname: Kurban
  surname: Ubul
  fullname: Ubul, Kurban
– sequence: 3
  givenname: Xuebin
  surname: Xu
  fullname: Xu, Xuebin
– sequence: 4
  givenname: Alimjan
  orcidid: 0000-0002-5464-0594
  surname: Aysa
  fullname: Aysa, Alimjan
– sequence: 5
  givenname: Mahpirat
  surname: Muhammat
  fullname: Muhammat, Mahpirat
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35271045$$D View this record in MEDLINE/PubMed
BookMark eNptkstuEzEUhkeoiF5gwQugkdjQRVrfZmyzQIqiApHKRaKsLY8viaMZO7UnFFa8OqdNidqosmRb53znt3_7HFcHMUVXVa8xOqNUovNCCGqwkPJZdYQZYRMBgYMH-8PquJQVQoRSKl5Uh7QhHCPWHFV_ZylGZ8YQF_WV-z3Ws16XEnwwegwp1jdhXNbzQS_cXuZ9Pa2_upv6e3brnIyDFEh8ceMy2dqnDEXrPpgw1j9cHMMA01MHvKyee90X9-p-Pal-fry4mn2eXH77NJ9NLyemQWKcWEZk1zHurG-7BiFw3bUadVo2HZZeEKSR4Jg7yTFrueDa8s4iioQkzntLT6r5VtcmvVLrHAad_6ikg7oLpLxQOo_B9E55zzDxGFskDfOUdJ56y1ojW8059QS0Pmy11ptucNaAtaz7R6KPMzEs1SL9UkLiBjEMAu_uBXK63rgyqiEU4_peR5c2RZGWghkCXgB9u4eu0iZHeKpbinPJ4C2AOttSCw0GQvQJzjUwrBuCgWbxAeJTLkCUNJJDwZuHFnZ3_98YAJxuAZNTKdn5HYKRum06tWs6YM_3WPj2u9-FW4T-iYp_EEXZHA
CitedBy_id crossref_primary_10_3390_bdcc8040041
crossref_primary_10_59400_jam2736
crossref_primary_10_1007_s11042_023_16538_9
Cites_doi 10.20944/preprints202107.0070.v1
10.3390/s21093092
10.2174/1874110X01408010924
10.1109/TAFFC.2017.2667642
10.23919/CCC55666.2022.9901738
10.3390/s21072266
10.1609/aaai.v29i1.9513
10.1007/978-3-319-47674-2_20
10.1145/1060745.1060797
10.18653/v1/P16-2004
10.3390/s21165431
10.23919/FRUCT53335.2021.9599992
10.1109/iEECON51072.2021.9440232
10.1109/TRO.2015.2463671
10.1109/ICCV.2011.6126544
10.1109/ISPACS.2017.8266489
10.1109/TRO.2017.2705103
10.1016/j.knosys.2018.11.023
10.1016/j.neucom.2019.11.054
10.1016/j.imavis.2012.02.009
10.1109/TRO.2021.3075644
10.18653/v1/P16-2034
10.1109/TIP.2020.3035042
10.18653/v1/E17-2068
10.17762/ijritcc2321-8169.150491
10.1109/ISMAR.2007.4538852
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s22051899
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ff412f11d09c4f32bf3fd46c96a773f2
PMC8915041
A781292597
35271045
10_3390_s22051899
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c508t-d429bb47edf6b500390b6a0ba95b19f820a08717e97146787ad7bd030892effd3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:16:20 EDT 2025
Thu Aug 21 13:38:00 EDT 2025
Thu Jul 10 23:50:31 EDT 2025
Fri Jul 25 09:26:51 EDT 2025
Tue Jun 10 21:15:31 EDT 2025
Wed Feb 19 02:27:29 EST 2025
Tue Jul 01 02:41:46 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords data preprocessing
text classification
image classification
natural language processing
implicit sentiment analysis
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-d429bb47edf6b500390b6a0ba95b19f820a08717e97146787ad7bd030892effd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5464-0594
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22051899
PMID 35271045
PQID 2637794039
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ff412f11d09c4f32bf3fd46c96a773f2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8915041
proquest_miscellaneous_2638712971
proquest_journals_2637794039
gale_infotracacademiconefile_A781292597
pubmed_primary_35271045
crossref_primary_10_3390_s22051899
crossref_citationtrail_10_3390_s22051899
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-28
PublicationDateYYYYMMDD 2022-02-28
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-28
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
ref_13
ref_35
ref_34
Jiang (ref_12) 2014; 8
ref_33
ref_10
Mankar (ref_11) 2015; 3
ref_32
ref_31
Campos (ref_20) 2021; 37
ref_30
ref_16
Strasdat (ref_18) 2012; 30
ref_15
Montiel (ref_19) 2015; 31
Wei (ref_27) 2020; 383
ref_25
ref_24
ref_22
ref_1
ref_3
ref_2
ref_29
ref_28
Liao (ref_7) 2019; 165
ref_26
ref_9
ref_8
Li (ref_23) 2017; 9
ref_5
Li (ref_21) 2020; 30
ref_4
(ref_17) 2017; 33
ref_6
References_xml – ident: ref_4
  doi: 10.20944/preprints202107.0070.v1
– ident: ref_28
– ident: ref_3
  doi: 10.3390/s21093092
– volume: 8
  start-page: 924
  year: 2014
  ident: ref_12
  article-title: An improved association rule mining approach to identification of implicit product aspects
  publication-title: Open Cybern. Syst. J.
  doi: 10.2174/1874110X01408010924
– volume: 9
  start-page: 563
  year: 2017
  ident: ref_23
  article-title: Towards reading hidden emotions: A comparative study of spontaneous micro-expression spotting and recognition methods
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2667642
– ident: ref_35
  doi: 10.23919/CCC55666.2022.9901738
– ident: ref_1
  doi: 10.3390/s21072266
– ident: ref_31
  doi: 10.1609/aaai.v29i1.9513
– ident: ref_6
  doi: 10.1007/978-3-319-47674-2_20
– ident: ref_26
– ident: ref_34
– ident: ref_14
  doi: 10.1145/1060745.1060797
– ident: ref_5
  doi: 10.18653/v1/P16-2004
– ident: ref_2
  doi: 10.3390/s21165431
– ident: ref_13
  doi: 10.23919/FRUCT53335.2021.9599992
– ident: ref_16
– ident: ref_9
  doi: 10.1109/iEECON51072.2021.9440232
– volume: 31
  start-page: 1147
  year: 2015
  ident: ref_19
  article-title: ORB-SLAM: A versatile and accurate monocular SLAM system
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2015.2463671
– ident: ref_8
  doi: 10.1109/ICCV.2011.6126544
– ident: ref_24
  doi: 10.1109/ISPACS.2017.8266489
– volume: 33
  start-page: 1255
  year: 2017
  ident: ref_17
  article-title: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2017.2705103
– volume: 165
  start-page: 197
  year: 2019
  ident: ref_7
  article-title: Identification of fact-implied implicit sentiment based on multi-level semantic fused representation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.11.023
– volume: 383
  start-page: 165
  year: 2020
  ident: ref_27
  article-title: BiLSTM with multi-polarity orthogonal attention for implicit sentiment analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.054
– volume: 30
  start-page: 65
  year: 2012
  ident: ref_18
  article-title: Visual SLAM: Why filter?
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2012.02.009
– ident: ref_25
– ident: ref_29
– ident: ref_33
– ident: ref_10
– volume: 37
  start-page: 1874
  year: 2021
  ident: ref_20
  article-title: ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2021.3075644
– ident: ref_30
  doi: 10.18653/v1/P16-2034
– volume: 30
  start-page: 249
  year: 2020
  ident: ref_21
  article-title: Joint Local and Global Information Learning With Single Apex Frame Detection for Micro-Expression Recognition
  publication-title: IEEE Trans. Image Processing
  doi: 10.1109/TIP.2020.3035042
– ident: ref_32
  doi: 10.18653/v1/E17-2068
– volume: 3
  start-page: 2184
  year: 2015
  ident: ref_11
  article-title: Implicit sentiment identification using aspect based opinion mining
  publication-title: Int. J. Recent Innov. Trends Comput. Commun.
  doi: 10.17762/ijritcc2321-8169.150491
– ident: ref_22
– ident: ref_15
  doi: 10.1109/ISMAR.2007.4538852
SSID ssj0023338
Score 2.401245
Snippet As a research hotspot in the field of natural language processing (NLP), sentiment analysis can be roughly divided into explicit sentiment analysis and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1899
SubjectTerms Algorithms
Attitude
Classification
Computational linguistics
Data Collection
data preprocessing
Datasets
Deep learning
Emotions
image classification
implicit sentiment analysis
Language
Language processing
Machine learning
Methods
Natural language interfaces
Natural Language Processing
Sentiment analysis
Text analysis
Text categorization
text classification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeBVSCjKoUnuJmtiOvea2IKoWqRUSrdSb5aeo1KaIbs_8dWacbNgtlbhwja3EGY9nvklmvgHYcc4F0aH1U0LzWnYu1l4YRX8fhQxdTI2geufjE3V4Jr-cd-crrb4oJ2ygBx4Et5-zbHlu29iYILPgPoscpQpGOa1FLtYXfd4ymBpDLYGR18AjJDCo37-hctJ2Vghe_3ifQtL_tyle8UXreZIrjufgCTweESObDyt9Cg9S_wwerfAIPodfJV0lUAYzO0Vry0qrS0oCKnJn9LGVHV2h6bgz8oHNGZo59pW4LUvFAN3iuHSVZghn2VFJOL9YsG-UVURfEu97wAs4O_h8-umwHjsr1AEB2aKO6IW8lzrFrHxH9bmNV67xznS-NRlRgWswktLJaLKkM-2i9pGobQxPOUexCRv9dZ9eAZOtSYInnOWd5CkYGU3wSYWcFGJLVcHeUuI2jLTj1P3i0mL4QZtjp82p4P009cfAtXHfpI-0bdMEoscuF1Bp7Kg09l9KU8EubbqlQ4yLCW6sRcBXIjosO9eIewxGhrqC7aVe2PF031iuiKZRotgqeDcN47mkny2uT9e3ZQ5KkKMAK3g5qNG0ZgS9COxkV4FeU7C1l1of6S--F-7vmUEEL9ut_yGF1_CQUzFHKdDfho3Fz9v0BiHWwr8tp-k3lh8nQA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucChKu_QggxCgkvUxHbsdS9oQSwtUhESrdRb5GepBNm2uz3z1zvjzaa7UHGNR4nj8bzsmW8A3lprvWhQ-ymheSkbG0onjKLbRyF9E2IlqN758JvaP5ZfT5qT_sBt1qdVLnViVtRh6umMfJcrgsaTlTAfzi9K6hpFt6t9C427cK9GS0MpXaPJlyHgEhh_LdCEBIb2uzMqKq1HGeb1xgZlqP5_FfKKRVrPllwxP5Mt2Oz9RjZeMPoh3IndI3iwgib4GP7kpBVPeczsCHUuyw0vKRUorz6jI1d28BsVyF8je2zMUNmx74RwmesG6BWHubc0Q6eWHeS087M5-0G5RXSeeNsHnsDx5PPRp_2y769QenTL5mVAW-Sc1DEk5Rqq0q2cspWzpnG1Segb2ArjKR2NJn060jZoFwjgxvCYUhBPYaObdvE5MFmbKHhEKmclj97IYLyLyqeo0MNUBbxfrnjre_Bx6oHxq8UghJjTDswp4M1Aer5A3LiN6COxbSAgkOz8YHp52vYy16Yka57qOlTGyyS4SyIFqbxRVmuReAHviOktiTJOxtu-IgF_iUCx2rFG78dgfKgL2Fnui7aX8Vl7syMLeD0Mo3TSlYvt4vQq0-AKclzAAp4tttEwZ3R90b2TTQF6bYOt_dT6SHf2MyOAjwz68bJ-8f9pbcN9TsUauQB_Bzbml1fxJbpQc_cqy8k1rjgeUg
  priority: 102
  providerName: ProQuest
Title Connecting Text Classification with Image Classification: A New Preprocessing Method for Implicit Sentiment Text Classification
URI https://www.ncbi.nlm.nih.gov/pubmed/35271045
https://www.proquest.com/docview/2637794039
https://www.proquest.com/docview/2638712971
https://pubmed.ncbi.nlm.nih.gov/PMC8915041
https://doaj.org/article/ff412f11d09c4f32bf3fd46c96a773f2
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dbxMxDLf28QIPiO_dGFVASPBS6CW5pEFCqEMrG1KnCVapb6ckl8Ck0Y6uk-CJfx07vZ56UPFyD43Vy9mOYyf2zwAvrLVeFGj9lNC8KwtbdZ0wim4fhfRFFXqC6p1Hp-p4LD9NiskWrHps1gy83hjaUT-p8fzy9c8fv97jgn9HESeG7G-uqVg0x8BhG3ZxQ9LUyGAkm8sELjAMW4IKtclbW1FC7P_XLq9tTO2kybVdaHgX7tTuIxss5X0PtsL0PtxeAxV8AL9T7oqndGZ2jqaXpb6XlBGUhMDo5JWdfEc78tfIWzZgaPPYGQFdpvIB-otRajHN0LdlJyn7_GLBvlCKER0rbnrBQxgPj84_HHfrNgtdj97ZolvhluSc1KGKyhVUrNtzyvacNYXLTUQXwfYwrNLBaDKrfW0r7SrCuTE8xFiJR7AznU3DHjCZmyB4QCpnJQ_eyMp4F5SPQaGjqTJ4teJ46WsMcmqFcVliLELCKRvhZPC8Ib1aAm9sIjoksTUEhJWdfpjNv5b10itjlDmPeV71jJdRcBdFrKTyRlmtReQZvCShl6RjOBlv68IE_CTCxioHGp0gg2GizuBgpRflSlNLrgizUSLbMnjWDOMipZsXOw2zm0SDHOTIwAweL9WomTN6wOjlySID3VKw1ke1R6YX3xIQeN-gOy_z_f9P6wnc4lSzkerwD2BnMb8JT9GTWrgObOuJxmd_-LEDu4dHp2efO-lUopNW0B_zQiQX
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQAHxJuFAgaB4LLqru21YySEwiMktKmQSKXeFj_bSpCUJhXixD_iNzLjbLYJVNx6XVu7Xo_9zYw98w0hT40xjleAfpIrlovK-NxyLfH2kQtX-VBwzHce7sj-rvi4V-2tkd-LXBgMq1xgYgJqP3F4Rr7JJFLjiYLr10ffc6wahberixIa82WxFX7-AJdt-mrwDuT7jLHe-9Hbft5UFcgdGCOz3AMCWytU8FHaCnNTCytNYY2ubKkjaERTgBehglaIIh1lvLIeaV00CzF6Du-9QC4KDpocM9N7H1oHj4O_N2cvgsZic4pJrGUn0cqe6rxUGuBfBbCkAVejM5fUXe8audrYqbQ7X1jXyVoY3yBXltgLb5JfKUjGYdw0HQHG01RgE0OPkrQpHvHSwTcArL9aXtIuBXCln5BRM-Up4CuGqZY1BSOaDlKY--GMfsZYJjy_POsDt8juucz8bbI-nozDXUJFqQNnAXpZI1hwWnjtbJAuBgkWrczIi8WM164hO8eaG19rcHpQOHUrnIw8absezRk-zur0BsXWdkBS7vRgcrxfN3u8jlGULJalL7QTkTMbefRCOi2NUjyyjDxHodcIHTAYZ5oMCPglJOGquwqsLQ3-qMrIxmJd1A2mTOvTHZCRx20zoAFe8ZhxmJykPjCDDCYwI3fmy6gdM5jaYE6KKiNqZYGt_NRqy_jwIDGOdzT4DaK89_9hPSKX-qPhdr092Nm6Ty4zTBRJyf8bZH12fBIegPk2sw_TnqHky3lv0j-ofFqs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQLxZKGAQCC6r7NredYyEUEobNZRGEbRSb4vttaESJKVJhTjxv_h1zDibNIGKW6-x5Xjn5Rl75huAZ8YYJwq0fqVQPJWFqVMrdEmvj0K6ovaZoHrnvUG5cyDfHRaHa_B7XgtDaZVzmxgNdT12dEfe5iVB48lM6HZo0iKGW703x99T6iBFL63zdhozEdn1P39g-DZ53d9CXj_nvLe9_3YnbToMpA4dk2laozW2Vipfh9IWVKea2dJk1ujC5jrg6WgyjCiU14osSkeZWtmaIF409yHUAte9BOuKoqIWrG9uD4YfFuGewOhvhmUkcN32hEpa804EmT07AWOjgH-Pg6XzcDVXc-nw612Ha43XyrozMbsBa350E64uYRnegl8xZcZRFjXbR7Kx2G6TEpEi7xld-LL-NzRff428Yl2GppYNCV8zVi3QEnuxszVDl5r1Y9L70ZR9pMwmus087w9uw8GF0P4OtEbjkb8HTObaC-5xljWSe6dlrZ31pQu-RP-2TODlnOKVa6DPqQPH1wpDIGJOtWBOAk8XU49neB_nTdokti0mEER3_GF88rlqNL4KQeY85HmdaSeD4DaIUMvS6dIoJQJP4AUxvSJDgptxpqmHwE8iSK6qq9D30hidqgQ25nJRNRZmUp3pQwJPFsNoG-jBx4z8-DTOQQpyJGACd2ditNgzOt7oXMoiAbUiYCsftToyOvoS8cc7GqMImd___7Yew2VU0Op9f7D7AK5wqhqJSAAb0JqenPqH6MtN7aNGaRh8umg9_QNibWA-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connecting+Text+Classification+with+Image+Classification%3A+A+New+Preprocessing+Method+for+Implicit+Sentiment+Text+Classification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Meikang&rft.au=Kurban+Ubul&rft.au=Xu%2C+Xuebin&rft.au=Aysa%2C+Alimjan&rft.date=2022-02-28&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=5&rft.spage=1899&rft_id=info:doi/10.3390%2Fs22051899&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon