Connecting Text Classification with Image Classification: A New Preprocessing Method for Implicit Sentiment Text Classification
As a research hotspot in the field of natural language processing (NLP), sentiment analysis can be roughly divided into explicit sentiment analysis and implicit sentiment analysis. However, due to the lack of obvious emotion words in the implicit sentiment analysis task and because the sentiment pol...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 5; p. 1899 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
28.02.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a research hotspot in the field of natural language processing (NLP), sentiment analysis can be roughly divided into explicit sentiment analysis and implicit sentiment analysis. However, due to the lack of obvious emotion words in the implicit sentiment analysis task and because the sentiment polarity contained in implicit sentiment words is not easily accurately identified by existing text-processing methods, the implicit sentiment analysis task is one of the most difficult tasks in sentiment analysis. This paper proposes a new preprocessing method for implicit sentiment text classification; this method is named Text To Picture (TTP) in this paper. TTP highlights the sentiment differences between different sentiment polarities in Chinese implicit sentiment text with the help of deep learning by converting original text data into word frequency maps. The differences between sentiment polarities are used as sentiment clues to improve the performance of the Chinese implicit sentiment text classification task. It does this by transforming the original text data into a word frequency map in order to highlight the differences between the sentiment polarities expressed in the implicit sentiment text. We conducted experimental tests on two common datasets (SMP2019, EWECT), and the results show that the accuracy of our method is significantly improved compared with that of the competitor’s. On the SMP2019 dataset, the accuracy-improvement range was 4.55–7.06%. On the EWECT dataset, the accuracy was improved by 1.81–3.95%. In conclusion, the new preprocessing method for implicit sentiment text classification proposed in this paper can achieve better classification results. |
---|---|
AbstractList | As a research hotspot in the field of natural language processing (NLP), sentiment analysis can be roughly divided into explicit sentiment analysis and implicit sentiment analysis. However, due to the lack of obvious emotion words in the implicit sentiment analysis task and because the sentiment polarity contained in implicit sentiment words is not easily accurately identified by existing text-processing methods, the implicit sentiment analysis task is one of the most difficult tasks in sentiment analysis. This paper proposes a new preprocessing method for implicit sentiment text classification; this method is named Text To Picture (TTP) in this paper. TTP highlights the sentiment differences between different sentiment polarities in Chinese implicit sentiment text with the help of deep learning by converting original text data into word frequency maps. The differences between sentiment polarities are used as sentiment clues to improve the performance of the Chinese implicit sentiment text classification task. It does this by transforming the original text data into a word frequency map in order to highlight the differences between the sentiment polarities expressed in the implicit sentiment text. We conducted experimental tests on two common datasets (SMP2019, EWECT), and the results show that the accuracy of our method is significantly improved compared with that of the competitor’s. On the SMP2019 dataset, the accuracy-improvement range was 4.55–7.06%. On the EWECT dataset, the accuracy was improved by 1.81–3.95%. In conclusion, the new preprocessing method for implicit sentiment text classification proposed in this paper can achieve better classification results. As a research hotspot in the field of natural language processing (NLP), sentiment analysis can be roughly divided into explicit sentiment analysis and implicit sentiment analysis. However, due to the lack of obvious emotion words in the implicit sentiment analysis task and because the sentiment polarity contained in implicit sentiment words is not easily accurately identified by existing text-processing methods, the implicit sentiment analysis task is one of the most difficult tasks in sentiment analysis. This paper proposes a new preprocessing method for implicit sentiment text classification; this method is named Text To Picture (TTP) in this paper. TTP highlights the sentiment differences between different sentiment polarities in Chinese implicit sentiment text with the help of deep learning by converting original text data into word frequency maps. The differences between sentiment polarities are used as sentiment clues to improve the performance of the Chinese implicit sentiment text classification task. It does this by transforming the original text data into a word frequency map in order to highlight the differences between the sentiment polarities expressed in the implicit sentiment text. We conducted experimental tests on two common datasets (SMP2019, EWECT), and the results show that the accuracy of our method is significantly improved compared with that of the competitor's. On the SMP2019 dataset, the accuracy-improvement range was 4.55-7.06%. On the EWECT dataset, the accuracy was improved by 1.81-3.95%. In conclusion, the new preprocessing method for implicit sentiment text classification proposed in this paper can achieve better classification results.As a research hotspot in the field of natural language processing (NLP), sentiment analysis can be roughly divided into explicit sentiment analysis and implicit sentiment analysis. However, due to the lack of obvious emotion words in the implicit sentiment analysis task and because the sentiment polarity contained in implicit sentiment words is not easily accurately identified by existing text-processing methods, the implicit sentiment analysis task is one of the most difficult tasks in sentiment analysis. This paper proposes a new preprocessing method for implicit sentiment text classification; this method is named Text To Picture (TTP) in this paper. TTP highlights the sentiment differences between different sentiment polarities in Chinese implicit sentiment text with the help of deep learning by converting original text data into word frequency maps. The differences between sentiment polarities are used as sentiment clues to improve the performance of the Chinese implicit sentiment text classification task. It does this by transforming the original text data into a word frequency map in order to highlight the differences between the sentiment polarities expressed in the implicit sentiment text. We conducted experimental tests on two common datasets (SMP2019, EWECT), and the results show that the accuracy of our method is significantly improved compared with that of the competitor's. On the SMP2019 dataset, the accuracy-improvement range was 4.55-7.06%. On the EWECT dataset, the accuracy was improved by 1.81-3.95%. In conclusion, the new preprocessing method for implicit sentiment text classification proposed in this paper can achieve better classification results. |
Audience | Academic |
Author | Aysa, Alimjan Muhammat, Mahpirat Ubul, Kurban Xu, Xuebin Chen, Meikang |
AuthorAffiliation | 1 College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; xj_ckk@stu.xju.edu.cn (M.C.); xuxuebin@xju.edu.cn (X.X.) 3 International Cultural Exchange College Xinjiang University, Xinjiang University, Urumqi 830046, China; xmahpu@xju.edu.cn 2 The Key Laboratory of Multilingual Information Technology, Xinjiang University, Urumqi 830046, China; alim@xju.edu.cn |
AuthorAffiliation_xml | – name: 3 International Cultural Exchange College Xinjiang University, Xinjiang University, Urumqi 830046, China; xmahpu@xju.edu.cn – name: 1 College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China; xj_ckk@stu.xju.edu.cn (M.C.); xuxuebin@xju.edu.cn (X.X.) – name: 2 The Key Laboratory of Multilingual Information Technology, Xinjiang University, Urumqi 830046, China; alim@xju.edu.cn |
Author_xml | – sequence: 1 givenname: Meikang surname: Chen fullname: Chen, Meikang – sequence: 2 givenname: Kurban surname: Ubul fullname: Ubul, Kurban – sequence: 3 givenname: Xuebin surname: Xu fullname: Xu, Xuebin – sequence: 4 givenname: Alimjan orcidid: 0000-0002-5464-0594 surname: Aysa fullname: Aysa, Alimjan – sequence: 5 givenname: Mahpirat surname: Muhammat fullname: Muhammat, Mahpirat |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35271045$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstuEzEUhkeoiF5gwQugkdjQRVrfZmyzQIqiApHKRaKsLY8viaMZO7UnFFa8OqdNidqosmRb53znt3_7HFcHMUVXVa8xOqNUovNCCGqwkPJZdYQZYRMBgYMH-8PquJQVQoRSKl5Uh7QhHCPWHFV_ZylGZ8YQF_WV-z3Ws16XEnwwegwp1jdhXNbzQS_cXuZ9Pa2_upv6e3brnIyDFEh8ceMy2dqnDEXrPpgw1j9cHMMA01MHvKyee90X9-p-Pal-fry4mn2eXH77NJ9NLyemQWKcWEZk1zHurG-7BiFw3bUadVo2HZZeEKSR4Jg7yTFrueDa8s4iioQkzntLT6r5VtcmvVLrHAad_6ikg7oLpLxQOo_B9E55zzDxGFskDfOUdJ56y1ojW8059QS0Pmy11ptucNaAtaz7R6KPMzEs1SL9UkLiBjEMAu_uBXK63rgyqiEU4_peR5c2RZGWghkCXgB9u4eu0iZHeKpbinPJ4C2AOttSCw0GQvQJzjUwrBuCgWbxAeJTLkCUNJJDwZuHFnZ3_98YAJxuAZNTKdn5HYKRum06tWs6YM_3WPj2u9-FW4T-iYp_EEXZHA |
CitedBy_id | crossref_primary_10_3390_bdcc8040041 crossref_primary_10_59400_jam2736 crossref_primary_10_1007_s11042_023_16538_9 |
Cites_doi | 10.20944/preprints202107.0070.v1 10.3390/s21093092 10.2174/1874110X01408010924 10.1109/TAFFC.2017.2667642 10.23919/CCC55666.2022.9901738 10.3390/s21072266 10.1609/aaai.v29i1.9513 10.1007/978-3-319-47674-2_20 10.1145/1060745.1060797 10.18653/v1/P16-2004 10.3390/s21165431 10.23919/FRUCT53335.2021.9599992 10.1109/iEECON51072.2021.9440232 10.1109/TRO.2015.2463671 10.1109/ICCV.2011.6126544 10.1109/ISPACS.2017.8266489 10.1109/TRO.2017.2705103 10.1016/j.knosys.2018.11.023 10.1016/j.neucom.2019.11.054 10.1016/j.imavis.2012.02.009 10.1109/TRO.2021.3075644 10.18653/v1/P16-2034 10.1109/TIP.2020.3035042 10.18653/v1/E17-2068 10.17762/ijritcc2321-8169.150491 10.1109/ISMAR.2007.4538852 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s22051899 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_ff412f11d09c4f32bf3fd46c96a773f2 PMC8915041 A781292597 35271045 10_3390_s22051899 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC COVID DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c508t-d429bb47edf6b500390b6a0ba95b19f820a08717e97146787ad7bd030892effd3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:16:20 EDT 2025 Thu Aug 21 13:38:00 EDT 2025 Thu Jul 10 23:50:31 EDT 2025 Fri Jul 25 09:26:51 EDT 2025 Tue Jun 10 21:15:31 EDT 2025 Wed Feb 19 02:27:29 EST 2025 Tue Jul 01 02:41:46 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | data preprocessing text classification image classification natural language processing implicit sentiment analysis |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-d429bb47edf6b500390b6a0ba95b19f820a08717e97146787ad7bd030892effd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5464-0594 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22051899 |
PMID | 35271045 |
PQID | 2637794039 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ff412f11d09c4f32bf3fd46c96a773f2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8915041 proquest_miscellaneous_2638712971 proquest_journals_2637794039 gale_infotracacademiconefile_A781292597 pubmed_primary_35271045 crossref_primary_10_3390_s22051899 crossref_citationtrail_10_3390_s22051899 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-28 |
PublicationDateYYYYMMDD | 2022-02-28 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_14 ref_13 ref_35 ref_34 Jiang (ref_12) 2014; 8 ref_33 ref_10 Mankar (ref_11) 2015; 3 ref_32 ref_31 Campos (ref_20) 2021; 37 ref_30 ref_16 Strasdat (ref_18) 2012; 30 ref_15 Montiel (ref_19) 2015; 31 Wei (ref_27) 2020; 383 ref_25 ref_24 ref_22 ref_1 ref_3 ref_2 ref_29 ref_28 Liao (ref_7) 2019; 165 ref_26 ref_9 ref_8 Li (ref_23) 2017; 9 ref_5 Li (ref_21) 2020; 30 ref_4 (ref_17) 2017; 33 ref_6 |
References_xml | – ident: ref_4 doi: 10.20944/preprints202107.0070.v1 – ident: ref_28 – ident: ref_3 doi: 10.3390/s21093092 – volume: 8 start-page: 924 year: 2014 ident: ref_12 article-title: An improved association rule mining approach to identification of implicit product aspects publication-title: Open Cybern. Syst. J. doi: 10.2174/1874110X01408010924 – volume: 9 start-page: 563 year: 2017 ident: ref_23 article-title: Towards reading hidden emotions: A comparative study of spontaneous micro-expression spotting and recognition methods publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2667642 – ident: ref_35 doi: 10.23919/CCC55666.2022.9901738 – ident: ref_1 doi: 10.3390/s21072266 – ident: ref_31 doi: 10.1609/aaai.v29i1.9513 – ident: ref_6 doi: 10.1007/978-3-319-47674-2_20 – ident: ref_26 – ident: ref_34 – ident: ref_14 doi: 10.1145/1060745.1060797 – ident: ref_5 doi: 10.18653/v1/P16-2004 – ident: ref_2 doi: 10.3390/s21165431 – ident: ref_13 doi: 10.23919/FRUCT53335.2021.9599992 – ident: ref_16 – ident: ref_9 doi: 10.1109/iEECON51072.2021.9440232 – volume: 31 start-page: 1147 year: 2015 ident: ref_19 article-title: ORB-SLAM: A versatile and accurate monocular SLAM system publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2015.2463671 – ident: ref_8 doi: 10.1109/ICCV.2011.6126544 – ident: ref_24 doi: 10.1109/ISPACS.2017.8266489 – volume: 33 start-page: 1255 year: 2017 ident: ref_17 article-title: Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2017.2705103 – volume: 165 start-page: 197 year: 2019 ident: ref_7 article-title: Identification of fact-implied implicit sentiment based on multi-level semantic fused representation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.11.023 – volume: 383 start-page: 165 year: 2020 ident: ref_27 article-title: BiLSTM with multi-polarity orthogonal attention for implicit sentiment analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.054 – volume: 30 start-page: 65 year: 2012 ident: ref_18 article-title: Visual SLAM: Why filter? publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2012.02.009 – ident: ref_25 – ident: ref_29 – ident: ref_33 – ident: ref_10 – volume: 37 start-page: 1874 year: 2021 ident: ref_20 article-title: ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2021.3075644 – ident: ref_30 doi: 10.18653/v1/P16-2034 – volume: 30 start-page: 249 year: 2020 ident: ref_21 article-title: Joint Local and Global Information Learning With Single Apex Frame Detection for Micro-Expression Recognition publication-title: IEEE Trans. Image Processing doi: 10.1109/TIP.2020.3035042 – ident: ref_32 doi: 10.18653/v1/E17-2068 – volume: 3 start-page: 2184 year: 2015 ident: ref_11 article-title: Implicit sentiment identification using aspect based opinion mining publication-title: Int. J. Recent Innov. Trends Comput. Commun. doi: 10.17762/ijritcc2321-8169.150491 – ident: ref_22 – ident: ref_15 doi: 10.1109/ISMAR.2007.4538852 |
SSID | ssj0023338 |
Score | 2.401245 |
Snippet | As a research hotspot in the field of natural language processing (NLP), sentiment analysis can be roughly divided into explicit sentiment analysis and... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1899 |
SubjectTerms | Algorithms Attitude Classification Computational linguistics Data Collection data preprocessing Datasets Deep learning Emotions image classification implicit sentiment analysis Language Language processing Machine learning Methods Natural language interfaces Natural Language Processing Sentiment analysis Text analysis Text categorization text classification |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAeBVSCjKoUnuJmtiOvea2IKoWqRUSrdSb5aeo1KaIbs_8dWacbNgtlbhwja3EGY9nvklmvgHYcc4F0aH1U0LzWnYu1l4YRX8fhQxdTI2geufjE3V4Jr-cd-crrb4oJ2ygBx4Et5-zbHlu29iYILPgPoscpQpGOa1FLtYXfd4ymBpDLYGR18AjJDCo37-hctJ2Vghe_3ifQtL_tyle8UXreZIrjufgCTweESObDyt9Cg9S_wwerfAIPodfJV0lUAYzO0Vry0qrS0oCKnJn9LGVHV2h6bgz8oHNGZo59pW4LUvFAN3iuHSVZghn2VFJOL9YsG-UVURfEu97wAs4O_h8-umwHjsr1AEB2aKO6IW8lzrFrHxH9bmNV67xznS-NRlRgWswktLJaLKkM-2i9pGobQxPOUexCRv9dZ9eAZOtSYInnOWd5CkYGU3wSYWcFGJLVcHeUuI2jLTj1P3i0mL4QZtjp82p4P009cfAtXHfpI-0bdMEoscuF1Bp7Kg09l9KU8EubbqlQ4yLCW6sRcBXIjosO9eIewxGhrqC7aVe2PF031iuiKZRotgqeDcN47mkny2uT9e3ZQ5KkKMAK3g5qNG0ZgS9COxkV4FeU7C1l1of6S--F-7vmUEEL9ut_yGF1_CQUzFHKdDfho3Fz9v0BiHWwr8tp-k3lh8nQA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucChKu_QggxCgkvUxHbsdS9oQSwtUhESrdRb5GepBNm2uz3z1zvjzaa7UHGNR4nj8bzsmW8A3lprvWhQ-ymheSkbG0onjKLbRyF9E2IlqN758JvaP5ZfT5qT_sBt1qdVLnViVtRh6umMfJcrgsaTlTAfzi9K6hpFt6t9C427cK9GS0MpXaPJlyHgEhh_LdCEBIb2uzMqKq1HGeb1xgZlqP5_FfKKRVrPllwxP5Mt2Oz9RjZeMPoh3IndI3iwgib4GP7kpBVPeczsCHUuyw0vKRUorz6jI1d28BsVyF8je2zMUNmx74RwmesG6BWHubc0Q6eWHeS087M5-0G5RXSeeNsHnsDx5PPRp_2y769QenTL5mVAW-Sc1DEk5Rqq0q2cspWzpnG1Segb2ArjKR2NJn060jZoFwjgxvCYUhBPYaObdvE5MFmbKHhEKmclj97IYLyLyqeo0MNUBbxfrnjre_Bx6oHxq8UghJjTDswp4M1Aer5A3LiN6COxbSAgkOz8YHp52vYy16Yka57qOlTGyyS4SyIFqbxRVmuReAHviOktiTJOxtu-IgF_iUCx2rFG78dgfKgL2Fnui7aX8Vl7syMLeD0Mo3TSlYvt4vQq0-AKclzAAp4tttEwZ3R90b2TTQF6bYOt_dT6SHf2MyOAjwz68bJ-8f9pbcN9TsUauQB_Bzbml1fxJbpQc_cqy8k1rjgeUg priority: 102 providerName: ProQuest |
Title | Connecting Text Classification with Image Classification: A New Preprocessing Method for Implicit Sentiment Text Classification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35271045 https://www.proquest.com/docview/2637794039 https://www.proquest.com/docview/2638712971 https://pubmed.ncbi.nlm.nih.gov/PMC8915041 https://doaj.org/article/ff412f11d09c4f32bf3fd46c96a773f2 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dbxMxDLf28QIPiO_dGFVASPBS6CW5pEFCqEMrG1KnCVapb6ckl8Ck0Y6uk-CJfx07vZ56UPFyD43Vy9mOYyf2zwAvrLVeFGj9lNC8KwtbdZ0wim4fhfRFFXqC6p1Hp-p4LD9NiskWrHps1gy83hjaUT-p8fzy9c8fv97jgn9HESeG7G-uqVg0x8BhG3ZxQ9LUyGAkm8sELjAMW4IKtclbW1FC7P_XLq9tTO2kybVdaHgX7tTuIxss5X0PtsL0PtxeAxV8AL9T7oqndGZ2jqaXpb6XlBGUhMDo5JWdfEc78tfIWzZgaPPYGQFdpvIB-otRajHN0LdlJyn7_GLBvlCKER0rbnrBQxgPj84_HHfrNgtdj97ZolvhluSc1KGKyhVUrNtzyvacNYXLTUQXwfYwrNLBaDKrfW0r7SrCuTE8xFiJR7AznU3DHjCZmyB4QCpnJQ_eyMp4F5SPQaGjqTJ4teJ46WsMcmqFcVliLELCKRvhZPC8Ib1aAm9sIjoksTUEhJWdfpjNv5b10itjlDmPeV71jJdRcBdFrKTyRlmtReQZvCShl6RjOBlv68IE_CTCxioHGp0gg2GizuBgpRflSlNLrgizUSLbMnjWDOMipZsXOw2zm0SDHOTIwAweL9WomTN6wOjlySID3VKw1ke1R6YX3xIQeN-gOy_z_f9P6wnc4lSzkerwD2BnMb8JT9GTWrgObOuJxmd_-LEDu4dHp2efO-lUopNW0B_zQiQX |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQAHxJuFAgaB4LLqru21YySEwiMktKmQSKXeFj_bSpCUJhXixD_iNzLjbLYJVNx6XVu7Xo_9zYw98w0hT40xjleAfpIrlovK-NxyLfH2kQtX-VBwzHce7sj-rvi4V-2tkd-LXBgMq1xgYgJqP3F4Rr7JJFLjiYLr10ffc6wahberixIa82WxFX7-AJdt-mrwDuT7jLHe-9Hbft5UFcgdGCOz3AMCWytU8FHaCnNTCytNYY2ubKkjaERTgBehglaIIh1lvLIeaV00CzF6Du-9QC4KDpocM9N7H1oHj4O_N2cvgsZic4pJrGUn0cqe6rxUGuBfBbCkAVejM5fUXe8audrYqbQ7X1jXyVoY3yBXltgLb5JfKUjGYdw0HQHG01RgE0OPkrQpHvHSwTcArL9aXtIuBXCln5BRM-Up4CuGqZY1BSOaDlKY--GMfsZYJjy_POsDt8juucz8bbI-nozDXUJFqQNnAXpZI1hwWnjtbJAuBgkWrczIi8WM164hO8eaG19rcHpQOHUrnIw8absezRk-zur0BsXWdkBS7vRgcrxfN3u8jlGULJalL7QTkTMbefRCOi2NUjyyjDxHodcIHTAYZ5oMCPglJOGquwqsLQ3-qMrIxmJd1A2mTOvTHZCRx20zoAFe8ZhxmJykPjCDDCYwI3fmy6gdM5jaYE6KKiNqZYGt_NRqy_jwIDGOdzT4DaK89_9hPSKX-qPhdr092Nm6Ty4zTBRJyf8bZH12fBIegPk2sw_TnqHky3lv0j-ofFqs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQLxZKGAQCC6r7NredYyEUEobNZRGEbRSb4vttaESJKVJhTjxv_h1zDibNIGKW6-x5Xjn5Rl75huAZ8YYJwq0fqVQPJWFqVMrdEmvj0K6ovaZoHrnvUG5cyDfHRaHa_B7XgtDaZVzmxgNdT12dEfe5iVB48lM6HZo0iKGW703x99T6iBFL63zdhozEdn1P39g-DZ53d9CXj_nvLe9_3YnbToMpA4dk2laozW2Vipfh9IWVKea2dJk1ujC5jrg6WgyjCiU14osSkeZWtmaIF409yHUAte9BOuKoqIWrG9uD4YfFuGewOhvhmUkcN32hEpa804EmT07AWOjgH-Pg6XzcDVXc-nw612Ha43XyrozMbsBa350E64uYRnegl8xZcZRFjXbR7Kx2G6TEpEi7xld-LL-NzRff428Yl2GppYNCV8zVi3QEnuxszVDl5r1Y9L70ZR9pMwmus087w9uw8GF0P4OtEbjkb8HTObaC-5xljWSe6dlrZ31pQu-RP-2TODlnOKVa6DPqQPH1wpDIGJOtWBOAk8XU49neB_nTdokti0mEER3_GF88rlqNL4KQeY85HmdaSeD4DaIUMvS6dIoJQJP4AUxvSJDgptxpqmHwE8iSK6qq9D30hidqgQ25nJRNRZmUp3pQwJPFsNoG-jBx4z8-DTOQQpyJGACd2ditNgzOt7oXMoiAbUiYCsftToyOvoS8cc7GqMImd___7Yew2VU0Op9f7D7AK5wqhqJSAAb0JqenPqH6MtN7aNGaRh8umg9_QNibWA- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connecting+Text+Classification+with+Image+Classification%3A+A+New+Preprocessing+Method+for+Implicit+Sentiment+Text+Classification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Meikang&rft.au=Kurban+Ubul&rft.au=Xu%2C+Xuebin&rft.au=Aysa%2C+Alimjan&rft.date=2022-02-28&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=5&rft.spage=1899&rft_id=info:doi/10.3390%2Fs22051899&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |