Real-Time Hand Gesture Recognition Using Fine-Tuned Convolutional Neural Network
Hand gesture recognition is one of the most effective modes of interaction between humans and computers due to being highly flexible and user-friendly. A real-time hand gesture recognition system should aim to develop a user-independent interface with high recognition performance. Nowadays, convolut...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 3; p. 706 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.01.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hand gesture recognition is one of the most effective modes of interaction between humans and computers due to being highly flexible and user-friendly. A real-time hand gesture recognition system should aim to develop a user-independent interface with high recognition performance. Nowadays, convolutional neural networks (CNNs) show high recognition rates in image classification problems. Due to the unavailability of large labeled image samples in static hand gesture images, it is a challenging task to train deep CNN networks such as AlexNet, VGG-16 and ResNet from scratch. Therefore, inspired by CNN performance, an end-to-end fine-tuning method of a pre-trained CNN model with score-level fusion technique is proposed here to recognize hand gestures in a dataset with a low number of gesture images. The effectiveness of the proposed technique is evaluated using leave-one-subject-out cross-validation (LOO CV) and regular CV tests on two benchmark datasets. A real-time American sign language (ASL) recognition system is developed and tested using the proposed technique. |
---|---|
AbstractList | Hand gesture recognition is one of the most effective modes of interaction between humans and computers due to being highly flexible and user-friendly. A real-time hand gesture recognition system should aim to develop a user-independent interface with high recognition performance. Nowadays, convolutional neural networks (CNNs) show high recognition rates in image classification problems. Due to the unavailability of large labeled image samples in static hand gesture images, it is a challenging task to train deep CNN networks such as AlexNet, VGG-16 and ResNet from scratch. Therefore, inspired by CNN performance, an end-to-end fine-tuning method of a pre-trained CNN model with score-level fusion technique is proposed here to recognize hand gestures in a dataset with a low number of gesture images. The effectiveness of the proposed technique is evaluated using leave-one-subject-out cross-validation (LOO CV) and regular CV tests on two benchmark datasets. A real-time American sign language (ASL) recognition system is developed and tested using the proposed technique. Hand gesture recognition is one of the most effective modes of interaction between humans and computers due to being highly flexible and user-friendly. A real-time hand gesture recognition system should aim to develop a user-independent interface with high recognition performance. Nowadays, convolutional neural networks (CNNs) show high recognition rates in image classification problems. Due to the unavailability of large labeled image samples in static hand gesture images, it is a challenging task to train deep CNN networks such as AlexNet, VGG-16 and ResNet from scratch. Therefore, inspired by CNN performance, an end-to-end fine-tuning method of a pre-trained CNN model with score-level fusion technique is proposed here to recognize hand gestures in a dataset with a low number of gesture images. The effectiveness of the proposed technique is evaluated using leave-one-subject-out cross-validation (LOO CV) and regular CV tests on two benchmark datasets. A real-time American sign language (ASL) recognition system is developed and tested using the proposed technique.Hand gesture recognition is one of the most effective modes of interaction between humans and computers due to being highly flexible and user-friendly. A real-time hand gesture recognition system should aim to develop a user-independent interface with high recognition performance. Nowadays, convolutional neural networks (CNNs) show high recognition rates in image classification problems. Due to the unavailability of large labeled image samples in static hand gesture images, it is a challenging task to train deep CNN networks such as AlexNet, VGG-16 and ResNet from scratch. Therefore, inspired by CNN performance, an end-to-end fine-tuning method of a pre-trained CNN model with score-level fusion technique is proposed here to recognize hand gestures in a dataset with a low number of gesture images. The effectiveness of the proposed technique is evaluated using leave-one-subject-out cross-validation (LOO CV) and regular CV tests on two benchmark datasets. A real-time American sign language (ASL) recognition system is developed and tested using the proposed technique. |
Audience | Academic |
Author | Sahoo, Jaya Prakash Pławiak, Paweł Prakash, Allam Jaya Samantray, Saunak |
AuthorAffiliation | 2 Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland 4 Department of Electronics and Tele Communication Engineering, IIIT Bhubaneswar, Bhubaneswar 751003, Odisha, India; saunaks64@gmail.com 1 Department of Electronics and Communication Engineering, National Institute of Technology, Rourkela 769008, Odisha, India; sahoo.jprakash@gmail.com (J.P.S.); allamjayaprakash@gmail.com (A.J.P.) 3 Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland |
AuthorAffiliation_xml | – name: 1 Department of Electronics and Communication Engineering, National Institute of Technology, Rourkela 769008, Odisha, India; sahoo.jprakash@gmail.com (J.P.S.); allamjayaprakash@gmail.com (A.J.P.) – name: 2 Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland – name: 4 Department of Electronics and Tele Communication Engineering, IIIT Bhubaneswar, Bhubaneswar 751003, Odisha, India; saunaks64@gmail.com – name: 3 Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland |
Author_xml | – sequence: 1 givenname: Jaya Prakash orcidid: 0000-0001-9016-6546 surname: Sahoo fullname: Sahoo, Jaya Prakash – sequence: 2 givenname: Allam Jaya orcidid: 0000-0001-9517-8829 surname: Prakash fullname: Prakash, Allam Jaya – sequence: 3 givenname: Paweł orcidid: 0000-0002-4317-2801 surname: Pławiak fullname: Pławiak, Paweł – sequence: 4 givenname: Saunak orcidid: 0000-0003-3828-1939 surname: Samantray fullname: Samantray, Saunak |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35161453$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktr3DAQx0VJaR7toV-gGHpJD070sixfCmFpHhDaEjZnIUsjV1tbSmU7Jd8-2t10SUKRQGLmN3_NaOYQ7YUYAKGPBJ8w1uDTkVLMcI3FG3RAOOWlzIa9Z_d9dDiOK4wpY0y-Q_usIoLwih2gnzeg-3LpBygudbDFBYzTnKC4ARO74CcfQ3E7-tAV5z5AuZwD2GIRw33s57VT98V3mNPmmP7G9Ps9eut0P8KHp_MI3Z5_Wy4uy-sfF1eLs-vSVFhOpdFYW4BGcgKGCOcMrcCw1jgDLW153hiMlUZUmIkat1wAdc7lYhrAwNkRutrq2qhX6i75QacHFbVXG0NMndJp8qYHBQ2zjtfGSae5wES6ygG3ljosHK7arPV1q3U3twNYA2HKFb0QfekJ_pfq4r2SkmMmSRY4fhJI8c-cv1ANfjTQ9zpAnEdFBW1wVVWNzOjnV-gqzin_44aqJROM00ydbKlO5wJ8cDG_a_KyMHiTu-98tp_VkgjciLrOAZ-el7DL_V-nM_BlC5gUxzGB2yEEq_UUqd0UZfb0FWv8pNftzln4_j8RjyFeyPY |
CitedBy_id | crossref_primary_10_1016_j_bbe_2022_08_004 crossref_primary_10_3934_mbe_2024042 crossref_primary_10_32628_IJSRST523103122 crossref_primary_10_3390_jimaging8060153 crossref_primary_10_1007_s00371_022_02720_x crossref_primary_10_32604_cmc_2023_042886 crossref_primary_10_3390_math11122665 crossref_primary_10_4108_eetpht_10_7230 crossref_primary_10_1109_ACCESS_2023_3336591 crossref_primary_10_1371_journal_pone_0275194 crossref_primary_10_3390_app14156782 crossref_primary_10_1080_17499518_2024_2422490 crossref_primary_10_1371_journal_pone_0286311 crossref_primary_10_1109_ACCESS_2024_3482459 crossref_primary_10_3390_sym16060681 crossref_primary_10_3390_s23063332 crossref_primary_10_1117_1_JEI_32_2_021402 crossref_primary_10_1007_s11042_023_14433_x crossref_primary_10_3390_electronics11152427 crossref_primary_10_3390_s24092740 crossref_primary_10_1016_j_engappai_2023_106980 crossref_primary_10_3389_fnhum_2024_1376338 crossref_primary_10_1109_ACCESS_2024_3375351 crossref_primary_10_3390_app14198878 crossref_primary_10_3390_s22124554 crossref_primary_10_1007_s10462_024_10930_z crossref_primary_10_1016_j_aej_2023_06_039 crossref_primary_10_1109_ACCESS_2023_3300712 crossref_primary_10_1007_s10209_024_01162_7 crossref_primary_10_3390_app131910799 crossref_primary_10_1016_j_mlwa_2023_100504 crossref_primary_10_3390_app12042041 crossref_primary_10_1007_s11760_024_03038_y crossref_primary_10_1093_nsr_nwad298 crossref_primary_10_3390_s23156693 crossref_primary_10_3390_electronics11060932 crossref_primary_10_1016_j_neucom_2023_126622 crossref_primary_10_3390_s23146383 crossref_primary_10_3390_app132111795 crossref_primary_10_3390_s22239107 crossref_primary_10_3390_s23177523 crossref_primary_10_3390_electronics12132805 crossref_primary_10_3390_bioengineering10091076 crossref_primary_10_1080_21681163_2023_2227735 crossref_primary_10_1371_journal_pone_0274940 crossref_primary_10_1038_s41598_024_62008_z crossref_primary_10_1016_j_engappai_2024_109012 crossref_primary_10_3390_app12157643 crossref_primary_10_3390_electronics13163348 crossref_primary_10_3390_systems11010021 crossref_primary_10_2478_jsiot_2024_0006 crossref_primary_10_3390_info15020085 |
Cites_doi | 10.1109/CVPR.2015.7298594 10.1016/j.asoc.2018.09.010 10.1109/TIFS.2018.2812196 10.1049/iet-cvi.2018.5796 10.1145/1897816.1897838 10.1109/ICCVW.2011.6130290 10.1016/j.cviu.2015.08.004 10.1109/THMS.2021.3086003 10.1109/TMM.2014.2374357 10.1016/j.image.2019.115729 10.1016/j.patcog.2016.03.026 10.1109/TMM.2013.2246148 10.1109/THMS.2016.2616278 10.1016/j.engappai.2018.09.006 10.1109/TSMCC.2007.893280 10.1109/TMI.2016.2535302 10.1049/iet-cvi.2017.0079 10.1016/j.eswa.2017.11.028 10.1049/iet-ipr.2019.0230 10.1109/CVPR.2016.90 10.1049/iet-ipr.2016.1139 10.1109/IROS.2015.7353446 10.1109/TCYB.2013.2265378 10.1109/TIM.2015.2498560 10.1109/TCE.2014.6780932 10.1007/s11760-018-1370-1 10.1016/j.procs.2020.06.022 10.1007/s00521-016-2294-8 10.1016/j.eswa.2017.09.046 10.1007/s11042-020-09829-y 10.1109/ROMAN.2012.6343787 10.1016/j.patcog.2009.11.018 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22030706 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_e93df47cf8fa46018f5fe4dd2f06f05b PMC8840381 A781609677 35161453 10_3390_s22030706 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c508t-ca0adee9841ec16ffc25ec3bcfceb2b42b40ecd8c6503670b46e2fff2209e0e43 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:15 EDT 2025 Thu Aug 21 14:02:05 EDT 2025 Fri Jul 11 12:11:09 EDT 2025 Fri Jul 25 20:38:32 EDT 2025 Tue Jun 10 21:12:58 EDT 2025 Thu Apr 03 06:56:52 EDT 2025 Thu Apr 24 22:58:18 EDT 2025 Tue Jul 01 02:41:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | score fusion real-time gesture recognition ASL fine-tunning pre-trained CNN hand gesture recognition |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-ca0adee9841ec16ffc25ec3bcfceb2b42b40ecd8c6503670b46e2fff2209e0e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9517-8829 0000-0002-4317-2801 0000-0001-9016-6546 0000-0003-3828-1939 |
OpenAccessLink | https://doaj.org/article/e93df47cf8fa46018f5fe4dd2f06f05b |
PMID | 35161453 |
PQID | 2627836342 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e93df47cf8fa46018f5fe4dd2f06f05b pubmedcentral_primary_oai_pubmedcentral_nih_gov_8840381 proquest_miscellaneous_2629055598 proquest_journals_2627836342 gale_infotracacademiconefile_A781609677 pubmed_primary_35161453 crossref_primary_10_3390_s22030706 crossref_citationtrail_10_3390_s22030706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220118 |
PublicationDateYYYYMMDD | 2022-01-18 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220118 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Lian (ref_6) 2014; 60 Sharma (ref_5) 2020; 173 Tajbakhsh (ref_19) 2016; 35 Han (ref_12) 2013; 43 Ding (ref_32) 2016; 13 ref_11 Guo (ref_30) 2021; 51 ref_31 Dadashzadeh (ref_29) 2019; 13 Lee (ref_25) 2018; 12 Wang (ref_8) 2015; 17 Plouffe (ref_14) 2016; 65 Chevtchenko (ref_24) 2018; 73 Modanwal (ref_13) 2016; 57 Krizhevsky (ref_20) 2012; 25 Sharma (ref_15) 2020; 14 Fang (ref_27) 2020; 82 Chevtchenko (ref_26) 2018; 92 Pisharady (ref_10) 2015; 141 Barbhuiya (ref_28) 2021; 80 Feng (ref_9) 2017; 47 Taheri (ref_36) 2018; 12 Tao (ref_17) 2018; 76 ref_23 Oyedotun (ref_18) 2017; 28 ref_22 ref_21 Akcay (ref_34) 2018; 13 Mitra (ref_1) 2007; 37 ref_3 He (ref_35) 2010; 43 Barczak (ref_37) 2011; 15 Wachs (ref_2) 2011; 54 Ren (ref_7) 2013; 15 Han (ref_33) 2018; 95 Patil (ref_16) 2019; 13 ref_4 |
References_xml | – ident: ref_22 doi: 10.1109/CVPR.2015.7298594 – volume: 73 start-page: 748 year: 2018 ident: ref_24 article-title: A convolutional neural network with feature fusion for real-time hand posture recognition publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.09.010 – volume: 13 start-page: 2203 year: 2018 ident: ref_34 article-title: Using Deep Convolutional Neural Network Architectures for Object Classification and Detection within X-Ray Baggage Security Imagery publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2018.2812196 – volume: 13 start-page: 700 year: 2019 ident: ref_29 article-title: HGR-Net: A fusion network for hand gesture segmentation and recognition publication-title: IET Comput. Vis. doi: 10.1049/iet-cvi.2018.5796 – volume: 54 start-page: 60 year: 2011 ident: ref_2 article-title: Vision-based hand-gesture applications publication-title: Commun. ACM doi: 10.1145/1897816.1897838 – ident: ref_3 – ident: ref_4 doi: 10.1109/ICCVW.2011.6130290 – volume: 141 start-page: 152 year: 2015 ident: ref_10 article-title: Recent methods and databases in vision-based hand gesture recognition: A review publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2015.08.004 – volume: 25 start-page: 1097 year: 2012 ident: ref_20 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_21 – volume: 51 start-page: 300 year: 2021 ident: ref_30 article-title: Human-machine interaction sensing technology based on hand gesture recognition: A review publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2021.3086003 – volume: 17 start-page: 29 year: 2015 ident: ref_8 article-title: Superpixel-Based Hand Gesture Recognition with Kinect Depth Camera publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2014.2374357 – volume: 82 start-page: 115729 year: 2020 ident: ref_27 article-title: Real-time hand posture recognition using hand geometric features and fisher vector publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2019.115729 – volume: 57 start-page: 50 year: 2016 ident: ref_13 article-title: Towards hand gesture based writing support system for blinds publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.03.026 – volume: 15 start-page: 12 year: 2011 ident: ref_37 article-title: A new 2D static hand gesture colour image dataset for ASL gestures publication-title: Res. Lett. Inf. Math. Sci. – volume: 15 start-page: 1110 year: 2013 ident: ref_7 article-title: Robust Part-Based Hand Gesture Recognition Using Kinect Sensor publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2013.2246148 – volume: 47 start-page: 511 year: 2017 ident: ref_9 article-title: Depth-Projection-Map-Based Bag of Contour Fragments for Robust Hand Gesture Recognition publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2016.2616278 – volume: 76 start-page: 202 year: 2018 ident: ref_17 article-title: American Sign Language alphabet recognition using Convolutional Neural Networks with multiview augmentation and inference fusion publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.09.006 – volume: 37 start-page: 311 year: 2007 ident: ref_1 article-title: Gesture Recognition: A Survey publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) doi: 10.1109/TSMCC.2007.893280 – volume: 35 start-page: 1299 year: 2016 ident: ref_19 article-title: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2535302 – volume: 12 start-page: 679 year: 2018 ident: ref_36 article-title: Animal classification using facial images with score-level fusion publication-title: IET Comput. Vis. doi: 10.1049/iet-cvi.2017.0079 – volume: 95 start-page: 43 year: 2018 ident: ref_33 article-title: A new image classification method using CNN transfer learning and web data augmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.11.028 – volume: 14 start-page: 909 year: 2020 ident: ref_15 article-title: Depth data and fusion of feature descriptors for static gesture recognition publication-title: IET Image Process. doi: 10.1049/iet-ipr.2019.0230 – ident: ref_23 doi: 10.1109/CVPR.2016.90 – volume: 12 start-page: 80 year: 2018 ident: ref_25 article-title: Recognition of complex static hand gestures by using the wristband-based contour features publication-title: IET Image Process. doi: 10.1049/iet-ipr.2016.1139 – ident: ref_31 doi: 10.1109/IROS.2015.7353446 – volume: 43 start-page: 1318 year: 2013 ident: ref_12 article-title: Enhanced Computer Vision with Microsoft Kinect Sensor: A Review publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2265378 – volume: 65 start-page: 305 year: 2016 ident: ref_14 article-title: Static and Dynamic Hand Gesture Recognition in Depth Data Using Dynamic Time Warping publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2015.2498560 – volume: 60 start-page: 107 year: 2014 ident: ref_6 article-title: Automatic user state recognition for hand gesture based low-cost television control system publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2014.6780932 – volume: 13 start-page: 413 year: 2019 ident: ref_16 article-title: A spatiotemporal approach for vision-based hand gesture recognition using Hough transform and neural network publication-title: Signal, Image Video Process. doi: 10.1007/s11760-018-1370-1 – volume: 173 start-page: 181 year: 2020 ident: ref_5 article-title: Hand Gesture Recognition using Image Processing and Feature Extraction Techniques publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.06.022 – volume: 28 start-page: 3941 year: 2017 ident: ref_18 article-title: Deep learning in vision-based static hand gesture recognition publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2294-8 – volume: 92 start-page: 170 year: 2018 ident: ref_26 article-title: Multi-objective optimization for hand posture recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.09.046 – volume: 13 start-page: 364 year: 2016 ident: ref_32 article-title: Convolutional Neural Network with Data Augmentation for SAR Target Recognition publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 80 start-page: 3051 year: 2021 ident: ref_28 article-title: CNN based feature extraction and classification for sign language publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09829-y – ident: ref_11 doi: 10.1109/ROMAN.2012.6343787 – volume: 43 start-page: 1789 year: 2010 ident: ref_35 article-title: Performance evaluation of score level fusion in multimodal biometric systems publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.11.018 |
SSID | ssj0023338 |
Score | 2.6051738 |
Snippet | Hand gesture recognition is one of the most effective modes of interaction between humans and computers due to being highly flexible and user-friendly. A... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 706 |
SubjectTerms | Accuracy Analysis ASL Classification Computer Systems Datasets Deep learning fine-tunning Gestures Hand hand gesture recognition Humans Interfaces Literature reviews Neural networks Neural Networks, Computer Performance evaluation pre-trained CNN real-time gesture recognition Recognition, Psychology score fusion Sensors Sign Language Support vector machines |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFD7o-qIPi3erq1QR9KVs06Rp-iTr4jgIiiy7MG-hua2CtLtz8fd7TibTnaIIhUKbljTnkvM1J98BeKs4M23jyyIQDYBorEM_iKjVl16amjnVxdXzr9_k_EJ8WdSL9MNtldIqdz4xOmo3WPpHflxJqgkhuag-XF0XVDWKVldTCY3bcIeoyyilq1ncAC6O-GvLJsQR2h-vqiqquJzMQZGq_2-HvDcjTbMl96af2X04THFjfrIV9AO45fuHcG-PTfARfD_DoK-gPR35vOtd_hnfv1n6_GyXIzT0ecwQyGf4UHG-QQ-bnw7976R9-Hqi6oinmBv-GC5mn85P50UqmFBYjLPWhe3KznnfKsG8ZTIEW9XecmODRQBtBB6lJzIADMuIuM0I6asQAo5Li8IR_Akc9EPvn0HuulZgLMeMcF54hEXGcWVZxYQhgv02g_e7IdQ2sYlTUYtfGlEFjbYeRzuDN2PTqy2Fxr8afSQ5jA2I9TpeGJaXOhmR9i13AfUpqNAJRJIq1MEL56pQylDWJoN3JEVNtomdsV3aYoCfRCxX-qRRTCJma5oMjnaC1sloV_pGxTJ4Pd5Gc6M1lK73wya2aYkjrVUZPN3qxdhnXmP4LGqeQTPRmMlHTe_0P39ESm-FOBtjp-f_79YLuFvR7gu0JaaO4GC93PiXGBOtzauo-H8A6NkNYA priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB9qfdEH8dvYKlEEfYlmN5vN5qFILZ6HUJHSg74t2a8qlESvd1L_-87sJeGCfRQCgexkSeZjd37s7m8A3qiCmbryeRaIBkBU1uE4iKjV516akjnVxNXz429yvhBfz8qzHRhqbPYKvLwR2lE9qcXy4v3V778fMeAPCHEiZP9wyXl0XXkLbuOEVFF8HotxMYEXCMM2pEJT8clUFBn7_x2Xtyam6abJrVlodh_u9eljerix9wPY8e1DuLtFKvgIvp9g7pfR0Y503rQu_YL9r5c-PRm2CnVtGjcKpDN8KTtd40CbHnXtn94JsXti7Ii3uEX8MSxmn0-P5llfNyGzmG6tMtvkjfO-VoJ5y2QIlpfeFsYGizjaCLxyT5wAmJ0Rf5sR0vMQAuqlRhuJ4gnstl3rn0HqmlpgSseMcF54REfGFcoyzoQhnv06gXeDCrXtScWptsWFRnBB2tajthN4PYr-2jBp3CT0iewwChD5dXzQLc91H0va14UL6FZBhUYgoFShDF44x0MuQ16aBN6SFTU5DX6MbfqTBvhLRHalDyvFJEK3qkpgfzC0HlxPc0nVR2QheAKvxmaMOlpKaVrfraNMTVRptUrg6cYvxm8uSsyiRVkkUE08ZvJT05b254_I7K0QbmMK9fx_aGEP7nA6qoGBx9Q-7K6Wa_8CE6iVeRnD4xqOmhxl priority: 102 providerName: Scholars Portal |
Title | Real-Time Hand Gesture Recognition Using Fine-Tuned Convolutional Neural Network |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35161453 https://www.proquest.com/docview/2627836342 https://www.proquest.com/docview/2629055598 https://pubmed.ncbi.nlm.nih.gov/PMC8840381 https://doaj.org/article/e93df47cf8fa46018f5fe4dd2f06f05b |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7a9NIeSt91my5uKbQXE-thWT4mIZulkBCWBPYmrBcNFG9Jdvv7OyN7zZoWeikYGSxZSKMZaT40-gTwWQtmmzqURSQaAFk7j_MgotZQBmUr5nWbds8vLtXiRn5bVau9q74oJqynB-4FdxQa4SPWEXVsJaIHHasYpPc8liqWlaXZF9e8HZgaoJZA5NXzCAkE9Uf3nCflVpPVJ5H0_zkV761F0zjJvYVn_gyeDh5jfty39Dk8CN0LeLLHI_gSrpbo7hV0miNftJ3Pz7H-7V3Il7vooHWXp9iAfI4_FddbnFvz03X3a9A7rJ5IOtIrRYW_gpv52fXpohiuSigcelibwrVl60NotGTBMRWj41VwwrroEDpbiU8ZiAYAHTKibLNSBR5jRLk0OCxSvIaDbt2Ft5D7tpHoxTErfZABAZH1QjvGmbRErd9k8HUnQuMGHnG6zuKHQTxB0jajtDP4NBb92ZNn_K3QCY3DWID4rtMH1AIzaIH5lxZk8IVG0ZBVYmNcOxwuwC4Rv5U5rjVTiNbqOoPD3UCbwVzvDVd04YgSkmfwccxGQ6Pdk7YL620q0xA7WqMzeNPrxdhmUaHjLCuRQT3RmEmnpjnd7fdE5q0RYaPX9O5_SOE9POZ0OgNtjelDONjcbcMH9Jk2dgYP61WNqZ6fz-DRydnl1XKWTAbTC6l_AyP8G2w |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgGB4BI1sZ3EOSBUCsuWPoSqrbQ3N_EDkFBS9gHiT_EbmfEm6UYgbpVWWmnjWH7MjOdbz3wD8FzypCpyG0eOaABErg3aQUStNrZZlSZGlv72_PAoG5-Ij9N0ugG_u1wYCqvsbKI31KbR9B_5NsuoJkTGBXtz9j2iqlF0u9qV0FiJxb799RMh2_z13jvc3xeMjd5PdsdRW1Ug0uiMLCJdxqWxtpAisTrJnNMstZpX2mlEmZXAT2wpYx59F2I3q0RmmXOOsbjAGQiO_V6Cy3jwxqRR-fQc4HHEeyv2Is6LeHuOr5BKZYMzz5cG-PsAWDsBh9GZa8fd6AZcb_3UcGclWDdhw9a34Noae-Ft-HSMTmZEOSThuKxN-AH7X85seNzFJDV16CMSwhG-FE2WaNHD3ab-0Uo7dk_UIP7Lx6LfgZMLWcq7sFk3tb0PoSkLgb5jUgljhUUYVhkudcISURGhfxHAq24JlW7Zy6mIxjeFKIZWW_WrHcCzvunZirLjX43e0j70DYhl2__QzD6rVmmVLbhxKL9OulIgcpUudVYYw1ycuTitAnhJu6jIFuBgdNmmNOCUiFVL7eQyyRAj5nkAW91Gq9ZIzNW5SAfwtH-M6k13NmVtm6VvUxAnWyEDuLeSi37MPEV3XaQ8gHwgMYNJDZ_UX794CnGJuB59tQf_H9YTuDKeHB6og72j_YdwlVHmB-pxIrdgczFb2kfojy2qx14JQji9aK37A5OKTNc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZaxRBEC5iBNEH8XY06iiKvgw7fcz1IBIT143REEIC-9aZ6UMFmYl7KP41f51VvTOTHRTfAgsLOz1NH1XV9W1XfQXwPBesKjIbR45oAGSmDdpBRK02tmmVMJOX_vb800E6OZEfpsl0A353uTAUVtnZRG-oTaPpP_IRT6kmRCokH7k2LOJwd_zm7HtEFaToprUrp7ESkX376yfCt_nrvV3c6xecj98d70yitsJApNExWUS6jEtjbZFLZjVLndM8sVpU2mlEnJXET2wpex79GGI6q2RquXOO87jA2UiB_V6Cy5lIGOlYNj0HewKx34rJSIgiHs3xFVKvdHD--TIBfx8Ga6fhMFJz7egb34Drrc8abq-E7CZs2PoWXFtjMrwNh0focEaUTxJOytqE77H_5cyGR118UlOHPjohHONL0fESrXu409Q_WsnH7okmxH_5uPQ7cHIhS3kXNuumtvchNGUh0Y9klTRWWoRklRG5ZpzJisj9iwBedUuodMtkTgU1vilENLTaql_tAJ71Tc9W9B3_avSW9qFvQIzb_odm9lm1CqxsIYxDWXa5KyWi2NwlzkpjuItTFydVAC9pFxXZBRyMLtv0BpwSMWyp7SxnKeLFLAtgq9to1RqMuToX7wCe9o9R1en-pqxts_RtCuJnK_IA7q3koh8zSiA6WokIIBtIzGBSwyf11y-eTjxHjI9-24P_D-sJXEF9Ux_3DvYfwlVOSSCo0izfgs3FbGkfoWu2qB57HQjh9KKV7g_EdVEN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Hand+Gesture+Recognition+Using+Fine-Tuned+Convolutional+Neural+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jaya+Prakash+Sahoo&rft.au=Allam+Jaya+Prakash&rft.au=Pawe%C5%82+P%C5%82awiak&rft.au=Saunak+Samantray&rft.date=2022-01-18&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=3&rft.spage=706&rft_id=info:doi/10.3390%2Fs22030706&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e93df47cf8fa46018f5fe4dd2f06f05b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |