Real-Time Hand Gesture Recognition Using Fine-Tuned Convolutional Neural Network

Hand gesture recognition is one of the most effective modes of interaction between humans and computers due to being highly flexible and user-friendly. A real-time hand gesture recognition system should aim to develop a user-independent interface with high recognition performance. Nowadays, convolut...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 3; p. 706
Main Authors Sahoo, Jaya Prakash, Prakash, Allam Jaya, Pławiak, Paweł, Samantray, Saunak
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.01.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hand gesture recognition is one of the most effective modes of interaction between humans and computers due to being highly flexible and user-friendly. A real-time hand gesture recognition system should aim to develop a user-independent interface with high recognition performance. Nowadays, convolutional neural networks (CNNs) show high recognition rates in image classification problems. Due to the unavailability of large labeled image samples in static hand gesture images, it is a challenging task to train deep CNN networks such as AlexNet, VGG-16 and ResNet from scratch. Therefore, inspired by CNN performance, an end-to-end fine-tuning method of a pre-trained CNN model with score-level fusion technique is proposed here to recognize hand gestures in a dataset with a low number of gesture images. The effectiveness of the proposed technique is evaluated using leave-one-subject-out cross-validation (LOO CV) and regular CV tests on two benchmark datasets. A real-time American sign language (ASL) recognition system is developed and tested using the proposed technique.
AbstractList Hand gesture recognition is one of the most effective modes of interaction between humans and computers due to being highly flexible and user-friendly. A real-time hand gesture recognition system should aim to develop a user-independent interface with high recognition performance. Nowadays, convolutional neural networks (CNNs) show high recognition rates in image classification problems. Due to the unavailability of large labeled image samples in static hand gesture images, it is a challenging task to train deep CNN networks such as AlexNet, VGG-16 and ResNet from scratch. Therefore, inspired by CNN performance, an end-to-end fine-tuning method of a pre-trained CNN model with score-level fusion technique is proposed here to recognize hand gestures in a dataset with a low number of gesture images. The effectiveness of the proposed technique is evaluated using leave-one-subject-out cross-validation (LOO CV) and regular CV tests on two benchmark datasets. A real-time American sign language (ASL) recognition system is developed and tested using the proposed technique.
Hand gesture recognition is one of the most effective modes of interaction between humans and computers due to being highly flexible and user-friendly. A real-time hand gesture recognition system should aim to develop a user-independent interface with high recognition performance. Nowadays, convolutional neural networks (CNNs) show high recognition rates in image classification problems. Due to the unavailability of large labeled image samples in static hand gesture images, it is a challenging task to train deep CNN networks such as AlexNet, VGG-16 and ResNet from scratch. Therefore, inspired by CNN performance, an end-to-end fine-tuning method of a pre-trained CNN model with score-level fusion technique is proposed here to recognize hand gestures in a dataset with a low number of gesture images. The effectiveness of the proposed technique is evaluated using leave-one-subject-out cross-validation (LOO CV) and regular CV tests on two benchmark datasets. A real-time American sign language (ASL) recognition system is developed and tested using the proposed technique.Hand gesture recognition is one of the most effective modes of interaction between humans and computers due to being highly flexible and user-friendly. A real-time hand gesture recognition system should aim to develop a user-independent interface with high recognition performance. Nowadays, convolutional neural networks (CNNs) show high recognition rates in image classification problems. Due to the unavailability of large labeled image samples in static hand gesture images, it is a challenging task to train deep CNN networks such as AlexNet, VGG-16 and ResNet from scratch. Therefore, inspired by CNN performance, an end-to-end fine-tuning method of a pre-trained CNN model with score-level fusion technique is proposed here to recognize hand gestures in a dataset with a low number of gesture images. The effectiveness of the proposed technique is evaluated using leave-one-subject-out cross-validation (LOO CV) and regular CV tests on two benchmark datasets. A real-time American sign language (ASL) recognition system is developed and tested using the proposed technique.
Audience Academic
Author Sahoo, Jaya Prakash
Pławiak, Paweł
Prakash, Allam Jaya
Samantray, Saunak
AuthorAffiliation 2 Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
4 Department of Electronics and Tele Communication Engineering, IIIT Bhubaneswar, Bhubaneswar 751003, Odisha, India; saunaks64@gmail.com
1 Department of Electronics and Communication Engineering, National Institute of Technology, Rourkela 769008, Odisha, India; sahoo.jprakash@gmail.com (J.P.S.); allamjayaprakash@gmail.com (A.J.P.)
3 Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
AuthorAffiliation_xml – name: 1 Department of Electronics and Communication Engineering, National Institute of Technology, Rourkela 769008, Odisha, India; sahoo.jprakash@gmail.com (J.P.S.); allamjayaprakash@gmail.com (A.J.P.)
– name: 2 Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
– name: 4 Department of Electronics and Tele Communication Engineering, IIIT Bhubaneswar, Bhubaneswar 751003, Odisha, India; saunaks64@gmail.com
– name: 3 Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
Author_xml – sequence: 1
  givenname: Jaya Prakash
  orcidid: 0000-0001-9016-6546
  surname: Sahoo
  fullname: Sahoo, Jaya Prakash
– sequence: 2
  givenname: Allam Jaya
  orcidid: 0000-0001-9517-8829
  surname: Prakash
  fullname: Prakash, Allam Jaya
– sequence: 3
  givenname: Paweł
  orcidid: 0000-0002-4317-2801
  surname: Pławiak
  fullname: Pławiak, Paweł
– sequence: 4
  givenname: Saunak
  orcidid: 0000-0003-3828-1939
  surname: Samantray
  fullname: Samantray, Saunak
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35161453$$D View this record in MEDLINE/PubMed
BookMark eNptkktr3DAQx0VJaR7toV-gGHpJD070sixfCmFpHhDaEjZnIUsjV1tbSmU7Jd8-2t10SUKRQGLmN3_NaOYQ7YUYAKGPBJ8w1uDTkVLMcI3FG3RAOOWlzIa9Z_d9dDiOK4wpY0y-Q_usIoLwih2gnzeg-3LpBygudbDFBYzTnKC4ARO74CcfQ3E7-tAV5z5AuZwD2GIRw33s57VT98V3mNPmmP7G9Ps9eut0P8KHp_MI3Z5_Wy4uy-sfF1eLs-vSVFhOpdFYW4BGcgKGCOcMrcCw1jgDLW153hiMlUZUmIkat1wAdc7lYhrAwNkRutrq2qhX6i75QacHFbVXG0NMndJp8qYHBQ2zjtfGSae5wES6ygG3ljosHK7arPV1q3U3twNYA2HKFb0QfekJ_pfq4r2SkmMmSRY4fhJI8c-cv1ANfjTQ9zpAnEdFBW1wVVWNzOjnV-gqzin_44aqJROM00ydbKlO5wJ8cDG_a_KyMHiTu-98tp_VkgjciLrOAZ-el7DL_V-nM_BlC5gUxzGB2yEEq_UUqd0UZfb0FWv8pNftzln4_j8RjyFeyPY
CitedBy_id crossref_primary_10_1016_j_bbe_2022_08_004
crossref_primary_10_3934_mbe_2024042
crossref_primary_10_32628_IJSRST523103122
crossref_primary_10_3390_jimaging8060153
crossref_primary_10_1007_s00371_022_02720_x
crossref_primary_10_32604_cmc_2023_042886
crossref_primary_10_3390_math11122665
crossref_primary_10_4108_eetpht_10_7230
crossref_primary_10_1109_ACCESS_2023_3336591
crossref_primary_10_1371_journal_pone_0275194
crossref_primary_10_3390_app14156782
crossref_primary_10_1080_17499518_2024_2422490
crossref_primary_10_1371_journal_pone_0286311
crossref_primary_10_1109_ACCESS_2024_3482459
crossref_primary_10_3390_sym16060681
crossref_primary_10_3390_s23063332
crossref_primary_10_1117_1_JEI_32_2_021402
crossref_primary_10_1007_s11042_023_14433_x
crossref_primary_10_3390_electronics11152427
crossref_primary_10_3390_s24092740
crossref_primary_10_1016_j_engappai_2023_106980
crossref_primary_10_3389_fnhum_2024_1376338
crossref_primary_10_1109_ACCESS_2024_3375351
crossref_primary_10_3390_app14198878
crossref_primary_10_3390_s22124554
crossref_primary_10_1007_s10462_024_10930_z
crossref_primary_10_1016_j_aej_2023_06_039
crossref_primary_10_1109_ACCESS_2023_3300712
crossref_primary_10_1007_s10209_024_01162_7
crossref_primary_10_3390_app131910799
crossref_primary_10_1016_j_mlwa_2023_100504
crossref_primary_10_3390_app12042041
crossref_primary_10_1007_s11760_024_03038_y
crossref_primary_10_1093_nsr_nwad298
crossref_primary_10_3390_s23156693
crossref_primary_10_3390_electronics11060932
crossref_primary_10_1016_j_neucom_2023_126622
crossref_primary_10_3390_s23146383
crossref_primary_10_3390_app132111795
crossref_primary_10_3390_s22239107
crossref_primary_10_3390_s23177523
crossref_primary_10_3390_electronics12132805
crossref_primary_10_3390_bioengineering10091076
crossref_primary_10_1080_21681163_2023_2227735
crossref_primary_10_1371_journal_pone_0274940
crossref_primary_10_1038_s41598_024_62008_z
crossref_primary_10_1016_j_engappai_2024_109012
crossref_primary_10_3390_app12157643
crossref_primary_10_3390_electronics13163348
crossref_primary_10_3390_systems11010021
crossref_primary_10_2478_jsiot_2024_0006
crossref_primary_10_3390_info15020085
Cites_doi 10.1109/CVPR.2015.7298594
10.1016/j.asoc.2018.09.010
10.1109/TIFS.2018.2812196
10.1049/iet-cvi.2018.5796
10.1145/1897816.1897838
10.1109/ICCVW.2011.6130290
10.1016/j.cviu.2015.08.004
10.1109/THMS.2021.3086003
10.1109/TMM.2014.2374357
10.1016/j.image.2019.115729
10.1016/j.patcog.2016.03.026
10.1109/TMM.2013.2246148
10.1109/THMS.2016.2616278
10.1016/j.engappai.2018.09.006
10.1109/TSMCC.2007.893280
10.1109/TMI.2016.2535302
10.1049/iet-cvi.2017.0079
10.1016/j.eswa.2017.11.028
10.1049/iet-ipr.2019.0230
10.1109/CVPR.2016.90
10.1049/iet-ipr.2016.1139
10.1109/IROS.2015.7353446
10.1109/TCYB.2013.2265378
10.1109/TIM.2015.2498560
10.1109/TCE.2014.6780932
10.1007/s11760-018-1370-1
10.1016/j.procs.2020.06.022
10.1007/s00521-016-2294-8
10.1016/j.eswa.2017.09.046
10.1007/s11042-020-09829-y
10.1109/ROMAN.2012.6343787
10.1016/j.patcog.2009.11.018
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22030706
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_e93df47cf8fa46018f5fe4dd2f06f05b
PMC8840381
A781609677
35161453
10_3390_s22030706
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c508t-ca0adee9841ec16ffc25ec3bcfceb2b42b40ecd8c6503670b46e2fff2209e0e43
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:15 EDT 2025
Thu Aug 21 14:02:05 EDT 2025
Fri Jul 11 12:11:09 EDT 2025
Fri Jul 25 20:38:32 EDT 2025
Tue Jun 10 21:12:58 EDT 2025
Thu Apr 03 06:56:52 EDT 2025
Thu Apr 24 22:58:18 EDT 2025
Tue Jul 01 02:41:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords score fusion
real-time gesture recognition
ASL
fine-tunning
pre-trained CNN
hand gesture recognition
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-ca0adee9841ec16ffc25ec3bcfceb2b42b40ecd8c6503670b46e2fff2209e0e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9517-8829
0000-0002-4317-2801
0000-0001-9016-6546
0000-0003-3828-1939
OpenAccessLink https://doaj.org/article/e93df47cf8fa46018f5fe4dd2f06f05b
PMID 35161453
PQID 2627836342
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_e93df47cf8fa46018f5fe4dd2f06f05b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8840381
proquest_miscellaneous_2629055598
proquest_journals_2627836342
gale_infotracacademiconefile_A781609677
pubmed_primary_35161453
crossref_primary_10_3390_s22030706
crossref_citationtrail_10_3390_s22030706
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220118
PublicationDateYYYYMMDD 2022-01-18
PublicationDate_xml – month: 1
  year: 2022
  text: 20220118
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lian (ref_6) 2014; 60
Sharma (ref_5) 2020; 173
Tajbakhsh (ref_19) 2016; 35
Han (ref_12) 2013; 43
Ding (ref_32) 2016; 13
ref_11
Guo (ref_30) 2021; 51
ref_31
Dadashzadeh (ref_29) 2019; 13
Lee (ref_25) 2018; 12
Wang (ref_8) 2015; 17
Plouffe (ref_14) 2016; 65
Chevtchenko (ref_24) 2018; 73
Modanwal (ref_13) 2016; 57
Krizhevsky (ref_20) 2012; 25
Sharma (ref_15) 2020; 14
Fang (ref_27) 2020; 82
Chevtchenko (ref_26) 2018; 92
Pisharady (ref_10) 2015; 141
Barbhuiya (ref_28) 2021; 80
Feng (ref_9) 2017; 47
Taheri (ref_36) 2018; 12
Tao (ref_17) 2018; 76
ref_23
Oyedotun (ref_18) 2017; 28
ref_22
ref_21
Akcay (ref_34) 2018; 13
Mitra (ref_1) 2007; 37
ref_3
He (ref_35) 2010; 43
Barczak (ref_37) 2011; 15
Wachs (ref_2) 2011; 54
Ren (ref_7) 2013; 15
Han (ref_33) 2018; 95
Patil (ref_16) 2019; 13
ref_4
References_xml – ident: ref_22
  doi: 10.1109/CVPR.2015.7298594
– volume: 73
  start-page: 748
  year: 2018
  ident: ref_24
  article-title: A convolutional neural network with feature fusion for real-time hand posture recognition
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.09.010
– volume: 13
  start-page: 2203
  year: 2018
  ident: ref_34
  article-title: Using Deep Convolutional Neural Network Architectures for Object Classification and Detection within X-Ray Baggage Security Imagery
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2812196
– volume: 13
  start-page: 700
  year: 2019
  ident: ref_29
  article-title: HGR-Net: A fusion network for hand gesture segmentation and recognition
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2018.5796
– volume: 54
  start-page: 60
  year: 2011
  ident: ref_2
  article-title: Vision-based hand-gesture applications
  publication-title: Commun. ACM
  doi: 10.1145/1897816.1897838
– ident: ref_3
– ident: ref_4
  doi: 10.1109/ICCVW.2011.6130290
– volume: 141
  start-page: 152
  year: 2015
  ident: ref_10
  article-title: Recent methods and databases in vision-based hand gesture recognition: A review
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2015.08.004
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref_20
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_21
– volume: 51
  start-page: 300
  year: 2021
  ident: ref_30
  article-title: Human-machine interaction sensing technology based on hand gesture recognition: A review
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2021.3086003
– volume: 17
  start-page: 29
  year: 2015
  ident: ref_8
  article-title: Superpixel-Based Hand Gesture Recognition with Kinect Depth Camera
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2014.2374357
– volume: 82
  start-page: 115729
  year: 2020
  ident: ref_27
  article-title: Real-time hand posture recognition using hand geometric features and fisher vector
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2019.115729
– volume: 57
  start-page: 50
  year: 2016
  ident: ref_13
  article-title: Towards hand gesture based writing support system for blinds
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.03.026
– volume: 15
  start-page: 12
  year: 2011
  ident: ref_37
  article-title: A new 2D static hand gesture colour image dataset for ASL gestures
  publication-title: Res. Lett. Inf. Math. Sci.
– volume: 15
  start-page: 1110
  year: 2013
  ident: ref_7
  article-title: Robust Part-Based Hand Gesture Recognition Using Kinect Sensor
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2013.2246148
– volume: 47
  start-page: 511
  year: 2017
  ident: ref_9
  article-title: Depth-Projection-Map-Based Bag of Contour Fragments for Robust Hand Gesture Recognition
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2016.2616278
– volume: 76
  start-page: 202
  year: 2018
  ident: ref_17
  article-title: American Sign Language alphabet recognition using Convolutional Neural Networks with multiview augmentation and inference fusion
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.09.006
– volume: 37
  start-page: 311
  year: 2007
  ident: ref_1
  article-title: Gesture Recognition: A Survey
  publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
  doi: 10.1109/TSMCC.2007.893280
– volume: 35
  start-page: 1299
  year: 2016
  ident: ref_19
  article-title: Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535302
– volume: 12
  start-page: 679
  year: 2018
  ident: ref_36
  article-title: Animal classification using facial images with score-level fusion
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2017.0079
– volume: 95
  start-page: 43
  year: 2018
  ident: ref_33
  article-title: A new image classification method using CNN transfer learning and web data augmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.11.028
– volume: 14
  start-page: 909
  year: 2020
  ident: ref_15
  article-title: Depth data and fusion of feature descriptors for static gesture recognition
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2019.0230
– ident: ref_23
  doi: 10.1109/CVPR.2016.90
– volume: 12
  start-page: 80
  year: 2018
  ident: ref_25
  article-title: Recognition of complex static hand gestures by using the wristband-based contour features
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2016.1139
– ident: ref_31
  doi: 10.1109/IROS.2015.7353446
– volume: 43
  start-page: 1318
  year: 2013
  ident: ref_12
  article-title: Enhanced Computer Vision with Microsoft Kinect Sensor: A Review
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2265378
– volume: 65
  start-page: 305
  year: 2016
  ident: ref_14
  article-title: Static and Dynamic Hand Gesture Recognition in Depth Data Using Dynamic Time Warping
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2015.2498560
– volume: 60
  start-page: 107
  year: 2014
  ident: ref_6
  article-title: Automatic user state recognition for hand gesture based low-cost television control system
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2014.6780932
– volume: 13
  start-page: 413
  year: 2019
  ident: ref_16
  article-title: A spatiotemporal approach for vision-based hand gesture recognition using Hough transform and neural network
  publication-title: Signal, Image Video Process.
  doi: 10.1007/s11760-018-1370-1
– volume: 173
  start-page: 181
  year: 2020
  ident: ref_5
  article-title: Hand Gesture Recognition using Image Processing and Feature Extraction Techniques
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.06.022
– volume: 28
  start-page: 3941
  year: 2017
  ident: ref_18
  article-title: Deep learning in vision-based static hand gesture recognition
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2294-8
– volume: 92
  start-page: 170
  year: 2018
  ident: ref_26
  article-title: Multi-objective optimization for hand posture recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.046
– volume: 13
  start-page: 364
  year: 2016
  ident: ref_32
  article-title: Convolutional Neural Network with Data Augmentation for SAR Target Recognition
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 80
  start-page: 3051
  year: 2021
  ident: ref_28
  article-title: CNN based feature extraction and classification for sign language
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09829-y
– ident: ref_11
  doi: 10.1109/ROMAN.2012.6343787
– volume: 43
  start-page: 1789
  year: 2010
  ident: ref_35
  article-title: Performance evaluation of score level fusion in multimodal biometric systems
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.11.018
SSID ssj0023338
Score 2.6051738
Snippet Hand gesture recognition is one of the most effective modes of interaction between humans and computers due to being highly flexible and user-friendly. A...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 706
SubjectTerms Accuracy
Analysis
ASL
Classification
Computer Systems
Datasets
Deep learning
fine-tunning
Gestures
Hand
hand gesture recognition
Humans
Interfaces
Literature reviews
Neural networks
Neural Networks, Computer
Performance evaluation
pre-trained CNN
real-time gesture recognition
Recognition, Psychology
score fusion
Sensors
Sign Language
Support vector machines
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFD7o-qIPi3erq1QR9KVs06Rp-iTr4jgIiiy7MG-hua2CtLtz8fd7TibTnaIIhUKbljTnkvM1J98BeKs4M23jyyIQDYBorEM_iKjVl16amjnVxdXzr9_k_EJ8WdSL9MNtldIqdz4xOmo3WPpHflxJqgkhuag-XF0XVDWKVldTCY3bcIeoyyilq1ncAC6O-GvLJsQR2h-vqiqquJzMQZGq_2-HvDcjTbMl96af2X04THFjfrIV9AO45fuHcG-PTfARfD_DoK-gPR35vOtd_hnfv1n6_GyXIzT0ecwQyGf4UHG-QQ-bnw7976R9-Hqi6oinmBv-GC5mn85P50UqmFBYjLPWhe3KznnfKsG8ZTIEW9XecmODRQBtBB6lJzIADMuIuM0I6asQAo5Li8IR_Akc9EPvn0HuulZgLMeMcF54hEXGcWVZxYQhgv02g_e7IdQ2sYlTUYtfGlEFjbYeRzuDN2PTqy2Fxr8afSQ5jA2I9TpeGJaXOhmR9i13AfUpqNAJRJIq1MEL56pQylDWJoN3JEVNtomdsV3aYoCfRCxX-qRRTCJma5oMjnaC1sloV_pGxTJ4Pd5Gc6M1lK73wya2aYkjrVUZPN3qxdhnXmP4LGqeQTPRmMlHTe_0P39ESm-FOBtjp-f_79YLuFvR7gu0JaaO4GC93PiXGBOtzauo-H8A6NkNYA
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB9qfdEH8dvYKlEEfYlmN5vN5qFILZ6HUJHSg74t2a8qlESvd1L_-87sJeGCfRQCgexkSeZjd37s7m8A3qiCmbryeRaIBkBU1uE4iKjV516akjnVxNXz429yvhBfz8qzHRhqbPYKvLwR2lE9qcXy4v3V778fMeAPCHEiZP9wyXl0XXkLbuOEVFF8HotxMYEXCMM2pEJT8clUFBn7_x2Xtyam6abJrVlodh_u9eljerix9wPY8e1DuLtFKvgIvp9g7pfR0Y503rQu_YL9r5c-PRm2CnVtGjcKpDN8KTtd40CbHnXtn94JsXti7Ii3uEX8MSxmn0-P5llfNyGzmG6tMtvkjfO-VoJ5y2QIlpfeFsYGizjaCLxyT5wAmJ0Rf5sR0vMQAuqlRhuJ4gnstl3rn0HqmlpgSseMcF54REfGFcoyzoQhnv06gXeDCrXtScWptsWFRnBB2tajthN4PYr-2jBp3CT0iewwChD5dXzQLc91H0va14UL6FZBhUYgoFShDF44x0MuQ16aBN6SFTU5DX6MbfqTBvhLRHalDyvFJEK3qkpgfzC0HlxPc0nVR2QheAKvxmaMOlpKaVrfraNMTVRptUrg6cYvxm8uSsyiRVkkUE08ZvJT05b254_I7K0QbmMK9fx_aGEP7nA6qoGBx9Q-7K6Wa_8CE6iVeRnD4xqOmhxl
  priority: 102
  providerName: Scholars Portal
Title Real-Time Hand Gesture Recognition Using Fine-Tuned Convolutional Neural Network
URI https://www.ncbi.nlm.nih.gov/pubmed/35161453
https://www.proquest.com/docview/2627836342
https://www.proquest.com/docview/2629055598
https://pubmed.ncbi.nlm.nih.gov/PMC8840381
https://doaj.org/article/e93df47cf8fa46018f5fe4dd2f06f05b
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7a9NIeSt91my5uKbQXE-thWT4mIZulkBCWBPYmrBcNFG9Jdvv7OyN7zZoWeikYGSxZSKMZaT40-gTwWQtmmzqURSQaAFk7j_MgotZQBmUr5nWbds8vLtXiRn5bVau9q74oJqynB-4FdxQa4SPWEXVsJaIHHasYpPc8liqWlaXZF9e8HZgaoJZA5NXzCAkE9Uf3nCflVpPVJ5H0_zkV761F0zjJvYVn_gyeDh5jfty39Dk8CN0LeLLHI_gSrpbo7hV0miNftJ3Pz7H-7V3Il7vooHWXp9iAfI4_FddbnFvz03X3a9A7rJ5IOtIrRYW_gpv52fXpohiuSigcelibwrVl60NotGTBMRWj41VwwrroEDpbiU8ZiAYAHTKibLNSBR5jRLk0OCxSvIaDbt2Ft5D7tpHoxTErfZABAZH1QjvGmbRErd9k8HUnQuMGHnG6zuKHQTxB0jajtDP4NBb92ZNn_K3QCY3DWID4rtMH1AIzaIH5lxZk8IVG0ZBVYmNcOxwuwC4Rv5U5rjVTiNbqOoPD3UCbwVzvDVd04YgSkmfwccxGQ6Pdk7YL620q0xA7WqMzeNPrxdhmUaHjLCuRQT3RmEmnpjnd7fdE5q0RYaPX9O5_SOE9POZ0OgNtjelDONjcbcMH9Jk2dgYP61WNqZ6fz-DRydnl1XKWTAbTC6l_AyP8G2w
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgGB4BI1sZ3EOSBUCsuWPoSqrbQ3N_EDkFBS9gHiT_EbmfEm6UYgbpVWWmnjWH7MjOdbz3wD8FzypCpyG0eOaABErg3aQUStNrZZlSZGlv72_PAoG5-Ij9N0ugG_u1wYCqvsbKI31KbR9B_5NsuoJkTGBXtz9j2iqlF0u9qV0FiJxb799RMh2_z13jvc3xeMjd5PdsdRW1Ug0uiMLCJdxqWxtpAisTrJnNMstZpX2mlEmZXAT2wpYx59F2I3q0RmmXOOsbjAGQiO_V6Cy3jwxqRR-fQc4HHEeyv2Is6LeHuOr5BKZYMzz5cG-PsAWDsBh9GZa8fd6AZcb_3UcGclWDdhw9a34Noae-Ft-HSMTmZEOSThuKxN-AH7X85seNzFJDV16CMSwhG-FE2WaNHD3ab-0Uo7dk_UIP7Lx6LfgZMLWcq7sFk3tb0PoSkLgb5jUgljhUUYVhkudcISURGhfxHAq24JlW7Zy6mIxjeFKIZWW_WrHcCzvunZirLjX43e0j70DYhl2__QzD6rVmmVLbhxKL9OulIgcpUudVYYw1ycuTitAnhJu6jIFuBgdNmmNOCUiFVL7eQyyRAj5nkAW91Gq9ZIzNW5SAfwtH-M6k13NmVtm6VvUxAnWyEDuLeSi37MPEV3XaQ8gHwgMYNJDZ_UX794CnGJuB59tQf_H9YTuDKeHB6og72j_YdwlVHmB-pxIrdgczFb2kfojy2qx14JQji9aK37A5OKTNc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZaxRBEC5iBNEH8XY06iiKvgw7fcz1IBIT143REEIC-9aZ6UMFmYl7KP41f51VvTOTHRTfAgsLOz1NH1XV9W1XfQXwPBesKjIbR45oAGSmDdpBRK02tmmVMJOX_vb800E6OZEfpsl0A353uTAUVtnZRG-oTaPpP_IRT6kmRCokH7k2LOJwd_zm7HtEFaToprUrp7ESkX376yfCt_nrvV3c6xecj98d70yitsJApNExWUS6jEtjbZFLZjVLndM8sVpU2mlEnJXET2wpex79GGI6q2RquXOO87jA2UiB_V6Cy5lIGOlYNj0HewKx34rJSIgiHs3xFVKvdHD--TIBfx8Ga6fhMFJz7egb34Drrc8abq-E7CZs2PoWXFtjMrwNh0focEaUTxJOytqE77H_5cyGR118UlOHPjohHONL0fESrXu409Q_WsnH7okmxH_5uPQ7cHIhS3kXNuumtvchNGUh0Y9klTRWWoRklRG5ZpzJisj9iwBedUuodMtkTgU1vilENLTaql_tAJ71Tc9W9B3_avSW9qFvQIzb_odm9lm1CqxsIYxDWXa5KyWi2NwlzkpjuItTFydVAC9pFxXZBRyMLtv0BpwSMWyp7SxnKeLFLAtgq9to1RqMuToX7wCe9o9R1en-pqxts_RtCuJnK_IA7q3koh8zSiA6WokIIBtIzGBSwyf11y-eTjxHjI9-24P_D-sJXEF9Ux_3DvYfwlVOSSCo0izfgs3FbGkfoWu2qB57HQjh9KKV7g_EdVEN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+Hand+Gesture+Recognition+Using+Fine-Tuned+Convolutional+Neural+Network&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jaya+Prakash+Sahoo&rft.au=Allam+Jaya+Prakash&rft.au=Pawe%C5%82+P%C5%82awiak&rft.au=Saunak+Samantray&rft.date=2022-01-18&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=3&rft.spage=706&rft_id=info:doi/10.3390%2Fs22030706&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e93df47cf8fa46018f5fe4dd2f06f05b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon