Where the Ends Meet: An Overview of Sex Determination in Atheriniform Fishes

Abstract Atheriniform fishes have recently emerged as attractive models for evolutionary, ecological, and molecular/physiological studies on sex determination. Many species in this group have marked temperature-dependent sex determination (TSD) and yet many species also have a sex determinant gene t...

Full description

Saved in:
Bibliographic Details
Published inSexual development Vol. 15; no. 1-3; pp. 80 - 92
Main Authors Strüssmann, Carlos A., Yamamoto, Yoji, Hattori, Ricardo S., Fernandino, Juan I., Somoza, Gustavo M.
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Atheriniform fishes have recently emerged as attractive models for evolutionary, ecological, and molecular/physiological studies on sex determination. Many species in this group have marked temperature-dependent sex determination (TSD) and yet many species also have a sex determinant gene that provides a strong drive for male differentiation. Thus, in these species the 2 forms of sex determination that were once considered to be mutually exclusive, environmental (ESD) and genotypic (GSD) sex determination, can coexist at environmentally relevant conditions. Here, we review the current knowledge on sex determination in atheriniform fishes with emphasis on the molecular and physiological mechanisms of ESD and GSD, the coexistence and cross-talk between these 2 mechanisms, the possibility of extragonadal transduction of environmental information and/or extragonadal onset of sex determination, and the results of field studies applying novel tools such as otolith increment analysis and molecular markers of genetic sex developed for selected New World and Old World atheriniform species. We also discuss the existence of molecular and histological mechanisms to prevent the discrepant differentiation in parts of the gonads because of ambiguous or conflicting environmental and genetic signals and particularly the possibility that the female is the default state in these species.
AbstractList Atheriniform fishes have recently emerged as attractive models for evolutionary, ecological, and molecular/physiological studies on sex determination. Many species in this group have marked temperature-dependent sex determination (TSD) and yet many species also have a sex determinant gene that provides a strong drive for male differentiation. Thus, in these species the 2 forms of sex determination that were once considered to be mutually exclusive, environmental (ESD) and genotypic (GSD) sex determination, can coexist at environmentally relevant conditions. Here, we review the current knowledge on sex determination in atheriniform fishes with emphasis on the molecular and physiological mechanisms of ESD and GSD, the coexistence and cross-talk between these 2 mechanisms, the possibility of extragonadal transduction of environmental information and/or extragonadal onset of sex determination, and the results of field studies applying novel tools such as otolith increment analysis and molecular markers of genetic sex developed for selected New World and Old World atheriniform species. We also discuss the existence of molecular and histological mechanisms to prevent the discrepant differentiation in parts of the gonads because of ambiguous or conflicting environmental and genetic signals and particularly the possibility that the female is the default state in these species.
Abstract Atheriniform fishes have recently emerged as attractive models for evolutionary, ecological, and molecular/physiological studies on sex determination. Many species in this group have marked temperature-dependent sex determination (TSD) and yet many species also have a sex determinant gene that provides a strong drive for male differentiation. Thus, in these species the 2 forms of sex determination that were once considered to be mutually exclusive, environmental (ESD) and genotypic (GSD) sex determination, can coexist at environmentally relevant conditions. Here, we review the current knowledge on sex determination in atheriniform fishes with emphasis on the molecular and physiological mechanisms of ESD and GSD, the coexistence and cross-talk between these 2 mechanisms, the possibility of extragonadal transduction of environmental information and/or extragonadal onset of sex determination, and the results of field studies applying novel tools such as otolith increment analysis and molecular markers of genetic sex developed for selected New World and Old World atheriniform species. We also discuss the existence of molecular and histological mechanisms to prevent the discrepant differentiation in parts of the gonads because of ambiguous or conflicting environmental and genetic signals and particularly the possibility that the female is the default state in these species.
Atheriniform fishes have recently emerged as attractive models for evolutionary, ecological, and molecular/physiological studies on sex determination. Many species in this group have marked temperature-dependent sex determination (TSD) and yet many species also have a sex determinant gene that provides a strong drive for male differentiation. Thus, in these species the 2 forms of sex determination that were once considered to be mutually exclusive, environmental (ESD) and genotypic (GSD) sex determination, can coexist at environmentally relevant conditions. Here, we review the current knowledge on sex determination in atheriniform fishes with emphasis on the molecular and physiological mechanisms of ESD and GSD, the coexistence and cross-talk between these 2 mechanisms, the possibility of extragonadal transduction of environmental information and/or extragonadal onset of sex determination, and the results of field studies applying novel tools such as otolith increment analysis and molecular markers of genetic sex developed for selected New World and Old World atheriniform species. We also discuss the existence of molecular and histological mechanisms to prevent the discrepant differentiation in parts of the gonads because of ambiguous or conflicting environmental and genetic signals and particularly the possibility that the female is the default state in these species. Keywords: Atheriniformes, Genotypic sex determination, Sex determination, Sex differentiation, Temperature-dependent sex determination
Audience Academic
Author Strüssmann, Carlos A.
Somoza, Gustavo M.
Yamamoto, Yoji
Fernandino, Juan I.
Hattori, Ricardo S.
Author_xml – sequence: 1
  givenname: Carlos A.
  surname: Strüssmann
  fullname: Strüssmann, Carlos A.
  email: *Carlos A. Strüssmann, carlos@kaiyodai.ac.jp
– sequence: 2
  givenname: Yoji
  surname: Yamamoto
  fullname: Yamamoto, Yoji
– sequence: 3
  givenname: Ricardo S.
  surname: Hattori
  fullname: Hattori, Ricardo S.
– sequence: 4
  givenname: Juan I.
  surname: Fernandino
  fullname: Fernandino, Juan I.
– sequence: 5
  givenname: Gustavo M.
  surname: Somoza
  fullname: Somoza, Gustavo M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33951664$$D View this record in MEDLINE/PubMed
BookMark eNpt0d1vUyEYBnDUGbfOXXhvDIk3etGNj8MBdtfMTZfULNk0XhLKeWnRHs4Eus3_Xpp2TZYsXBB4fw8JeUZoLw4REHpHyTGlQp8QQgQVVNMX6EhLxTlVRBKm-Ut0QNuWjkXD-Ss0ehwovbcbMLGPRjn_JqQljIk3aJ9zLeqwOUDTXwtIgMsC8HnsMv4OUE7xJOKrO0h3Ae7x4PENPOAvUCD1IdoShohDxJOaSSEGP6QeX4S8gPwWvfZ2meFoux-inxfnP86-jadXXy_PJtOxE0SVsZOyk9B0oBm1vlUdU41WDbfQUOdlI3ULWsyYtsTpRjoqZo4J1tWDBU85P0SfNu_epuHvCnIxfcgOlksbYVhlUzFrGVWcVvpxQ-d2CSZEP5Rk3ZqbiSRaE07U-sHjZ1RdHfTB1SZ8qPdPAp-fBKop8FDmdpWzuby5fta6NOScwJvbFHqb_hlKzLpcsyu32g_bn61mPXQ7-VhYBe834I9Nc0g7sM3_B1HgoF8
CitedBy_id crossref_primary_10_1016_j_aqrep_2024_102172
crossref_primary_10_3390_biology10100973
crossref_primary_10_1016_j_jphotobiol_2022_112550
crossref_primary_10_1016_j_ecoenv_2023_115654
crossref_primary_10_1016_j_ecss_2022_107830
crossref_primary_10_1111_jfb_15241
crossref_primary_10_1016_j_yfrne_2021_100948
crossref_primary_10_3390_ijms232415840
crossref_primary_10_1111_jfb_15372
crossref_primary_10_1016_j_ecoenv_2022_113638
crossref_primary_10_1016_j_mce_2023_112114
crossref_primary_10_3389_fmolb_2024_1361386
crossref_primary_10_1186_s12864_024_10081_z
crossref_primary_10_1016_j_aaf_2022_02_002
Cites_doi 10.1111/jfb.13651
10.1016/j.yhbeh.2012.04.003
10.1016/j.mce.2017.07.013
10.1210/en.2010-0228
10.1038/hdy.1989.104
10.1016/bs.ctdb.2019.02.003
10.1016/j.tree.2019.02.012
10.1016/j.ympev.2015.03.001
10.1002/jez.416
10.1093/icb/ict093
10.3390/genes10090679
10.1371/journal.pone.0006548
10.1371/journal.pone.0064943
10.1002/ece3.4148
10.1002/jez.a.159
10.1371/journal.pone.0102574
10.1111/j.1420-9101.2006.01138.x
10.1007/s00018-020-03532-9
10.1159/000353506
10.1371/journal.pgen.1008013
10.1210/endocr/bqz024
10.1371/journal.pgen.1005678
10.1002/mrd.21179
10.1159/000223077
10.1371/journal.pone.0173974
10.1016/j.ygcen.2013.05.024
10.1002/dneu.22303
10.1038/326496a0
10.1016/bs.ctdb.2018.12.014
10.1002/ece3.2277
10.1002/jmor.10351
10.1210/endo.139.4.5899
10.1139/f86-061
10.1111/jfb.14429
10.1006/jfbi.1996.0064
10.1159/000498997
10.3109/07435800009048638
10.3389/fgene.2019.01128
10.1016/j.yfrne.2010.01.003
10.1677/joe.0.1810367
10.1126/science.213.4507.577
10.1111/j.1558-5646.1993.tb02108.x
10.3354/meps13174
10.1016/j.ygcen.2018.03.013
10.1006/dbio.2000.9952
10.1006/gcen.2001.7687
10.1371/journal.pone.0002837
10.1016/s0016-6480(03)00117-5
10.1016/j.ygcen.2008.07.006
10.1111/j.1558-5646.1992.tb01164.x
10.1002/jez.612
10.1111/brv.12156
10.2307/1445667
10.1038/s41598-017-09631-1
10.1023/b:fish.0000030498.33279.69
10.1073/pnas.1018392109
10.1002/mrd.21203
10.2307/1445559
10.1111/j.1095-8649.1992.tb03876.x
10.1002/dvdy.21731
10.1002/nafm.10484
10.1159/000316022
10.1007/s10641-016-0491-z
10.1016/j.jembe.2014.07.009
10.1073/pnas.1609411114
10.1643/cg-10-189
10.1016/j.cbpa.2020.110701
10.1016/j.ygcen.2020.113634
10.1086/284205
10.1159/000452362
10.1016/0044-8486(95)01161-7
10.1016/j.ygcen.2009.10.004
10.1111/mec.15490
10.1016/j.ygcen.2020.113605
10.1111/j.1095-8649.2010.02780.x
10.1038/srep18581
10.1210/en.2016-1865
10.1098/rstb.2016.0326
10.1038/nature13151
10.1016/j.ygcen.2005.11.005
10.3390/ijms19030689
10.1111/j.1365-2052.2009.01948.x
10.1002/(sici)1097-010x(19970615)278:3%3c167::aid-jez6%3e3.0.co;2-m
10.1159/000324423
10.1002/wdev.42
10.1534/g3.117.042697
10.1023/a:1008924418720
ContentType Journal Article
Copyright 2021 S. Karger AG, Basel
2021 S. Karger AG, Basel.
COPYRIGHT 2021 S. Karger AG
Copyright_xml – notice: 2021 S. Karger AG, Basel
– notice: 2021 S. Karger AG, Basel.
– notice: COPYRIGHT 2021 S. Karger AG
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISR
7X8
DOI 10.1159/000515191
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Science
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE

CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISBN 9783318070293
3318070297
EISSN 1661-5433
EndPage 92
ExternalDocumentID A709903083
10_1159_000515191
33951664
515191
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GeographicLocations Japan
California
GeographicLocations_xml – name: California
– name: Japan
GroupedDBID ---
0R~
0~5
0~B
123
3O.
4.4
53G
8UI
AAYIC
ABDBF
ABJNI
ABPAZ
ACGFS
ACPSR
ADBBV
AENEX
AEYAO
AFJJK
ALDHI
ALMA_UNASSIGNED_HOLDINGS
AZPMC
CAG
COF
CS3
CYUIP
DU5
E0A
EBS
EJD
F5P
FB.
HZ~
IAO
IHR
ISR
IY7
KUZGX
N9A
O1H
O9-
P2P
RKO
UJ6
CGR
CUY
CVF
ECM
EIF
ITC
NPM
AAYXX
CITATION
AAKET
ABZSI
ACHQM
7X8
ID FETCH-LOGICAL-c508t-c77d7e4de921af68d2849843ae41cf74796e95b29a0c947c15bc252dc94aef133
ISBN 3318070289
9783318070286
ISSN 1661-5425
IngestDate Fri Jun 28 05:05:37 EDT 2024
Thu Feb 22 23:38:32 EST 2024
Sat Dec 16 00:09:59 EST 2023
Thu Aug 01 19:34:58 EDT 2024
Thu Sep 26 17:10:29 EDT 2024
Sat Sep 28 08:21:43 EDT 2024
Thu Aug 29 12:04:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-3
Keywords Temperature-dependent sex determination
Genotypic sex determination
Sex determination
Sex differentiation
Atheriniformes
Language English
License Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
2021 S. Karger AG, Basel.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c508t-c77d7e4de921af68d2849843ae41cf74796e95b29a0c947c15bc252dc94aef133
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://www.karger.com/Article/Pdf/515191
PMID 33951664
PQID 2522621831
PQPubID 23479
PageCount 13
ParticipantIDs gale_infotracmisc_A709903083
crossref_primary_10_1159_000515191
proquest_miscellaneous_2522621831
gale_infotracacademiconefile_A709903083
karger_primary_515191
gale_incontextgauss_ISR_A709903083
pubmed_primary_33951664
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Switzerland
PublicationTitle Sexual development
PublicationTitleAlternate Sex Dev
PublicationYear 2021
Publisher S. Karger AG
Publisher_xml – name: S. Karger AG
References Strobl-Mazzulla PH, Lethimonier C, Gueguen MM, Karube M, Fernandino JI, Yoshizaki G, . Brain aromatase (Cyp19A2) and estrogen receptors, in larvae and adult pejerrey fish Odontesthes bonariensis: Neuroanatomical and functional relations. Gen Comp Endocrinol. 2008;158(2):191–201.
Strüssmann CA, Takashima F, Toda K. Sex differentiation and hormonal feminization in pejerrey Odontesthes bonariensis. Aquaculture. 1996c;139(1-2):31–45.
Moreno-Mendoza N, Harley VR, Merchant-Larios H. Temperature regulates SOX9 expression in cultured gonads of Lepidochelys olivacea, a species with temperature sex determination. Dev Biol. 2001;229(2):319–26.
Strüssmann CA, Oikawa T, Otake T, Kasuga S. Potential use of otolith microchemistry for field studies of temperature-dependent sex determination and gonadal degeneration in fish. Fish Physiol Biochem. 2003;28(1-4):129–30.
Yatsu R, Miyagawa S, Kohno S, Saito S, Lowers RH, Ogino Y, . TRPV4 associates environmental temperature and sex determination in the American alligator. Sci Rep. 2015;5:18581.
Strüssmann CA, Conover DO, Somoza GM, Miranda LA. Implications of climate change for the reproductive capacity and survival of New World silversides (family Atherinopsidae). J Fish Biol. 2010;77(8):1818–34.
Strüssmann CA, Patiño R. Sex determination, environmental. In: Knobil E, Neill JD (eds). Encyclopedia of Reproduction, Vol. 4. San Diego: Academic Press; 1999. p. 402–9.
Pan Q, Feron R, Yano A, Guyomard R, Jouanno E, Vigouroux E, . Identification of the master sex determining gene in Northern pike (Esox lucius) reveals restricted sex chromosome differentiation. PLoS Genet. 2019;15(8):e1008013.
Lagomarsino IV, Conover DO. Variation in environmental and genotypic sex-determining mechanisms across a latitudinal gradient in the fish, Menidia menidia. Evolution. 1993;47(2):487–94.
Pokorná MJ, Kratochvíl L. What was the ancestral sex-determining mechanism in amniote vertebrates?. Biol Rev. 2016;91(1):1–12.
Strüssmann CA, Patiño R, Strüssmann CA, Patiño R. Temperature manipulation of sex differentiation in fish. In: Goetz FW, Thomas P (eds). Proceedings of the Fifth International Symposium on the Reproductive Physiology of Fish. Austin: FishSymp95; 1995. p. 153–7.
Conover DO, Van Voorhees DA, Ehtisham A. Sex ratio selection and the evolution of environmental sex determination in laboratory populations of Menidia menidia. Evolution. 1992;46(6):1722–30.
Hayashi Y, Kobira H, Yamaguchi T, Shiraishi E, Yazawa T, Hirai T, . High temperature causes masculinization of genetically female medaka by elevation of cortisol. Mol Reprod Dev. 2010;77(8):679–86.
Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, . A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci USA. 2012;109(8):2955–9.
Ribas L, Liew WC, Díaz N, Sreenivasan R, Orbán L, Piferrer F. Heat-induced masculinization in domesticated zebrafish is family-specific and yields a set of different gonadal transcriptomes. Proc Natl Acad Sci USA. 2017;114(6):E941–50.
Conover DO, Heins SW. Adaptive variation in environmental and genetic sex determination in a fish. Nature. 1987a;326(6112):496–8.
Feng K, Cui X, Song Y, Tao B, Chen J, Wang J, . Gnrh3 regulates PGC proliferation and sex differentiation in developing zebrafish. Endocrinology. 2020;161(1):1–3.
Corona-Herrera GA, Arranz SE, Martínez-Palacios CA, Navarrete-Ramírez P, Toledo-Cuevas EM, Valdez-Alarcón JJ, . Experimental evidence of masculinization by continuous illumination in a temperature sex determination teleost (Atherinopsidae) model: is oxidative stress involved?. J Fish Biol. 2018;93(2):229–37.
Corona-Herrera GA, Tello-Ballinas JA, Hattori RS, Martínez-Palacios CA, Strüssmann CA, Cárdenas-Reygadas RR, et al. Gonadal differentiation and temperature effects on sex determination in the freshwater pike silverside Chirostoma estor Jordan 1880. Environ Biol Fish. 2016;99(5):463–71.
Conover DO, Fleisher MH. Temperature-sensitive period of sex determination in the Atlantic silverside, Menidia menidia. Can J Fish Aquat Sci. 1986;43(3):514–20.
Hattori RS, Castañeda-Cortés DC, Arias Padilla LF, Strobl-Mazzulla PH, Fernandino JI. Activation of stress response axis as a key process in environment-induced sex plasticity in fish. Cell Mol Life Sci. 2020;77(21):4223–36.
Conover DO. Adaptive significance of temperature-dependent sex determination in a fish. Am Nat. 1984;123(3):297–313.
Baroiller JF, D'Cotta H, Saillant E. Environmental effects on fish sex determination and differentiation. Sex Dev. 2009;3(2-3):118–35.
Nelson JS, Grande TC, Wilson MVH. Fishes of the World, ed 5. New York: John Wiley & Sons; 2016.
Hattori RS, Somoza GM, Fernandino JI, Colautti DC, Miyoshi K, Gong Z, . The duplicated Y-specific amhy gene is conserved and linked to maleness in silversides of the genus Odontesthes. Genes. 2019;10(9):679.
Lin CJ, Fan-Chiang YC, Dufour S, Chang CF. Activation of brain steroidogenesis and neurogenesis during the gonadal differentiation in protandrous black porgy, Acanthopagrus schlegelii. Dev Neurobiol. 2016;76(2):121–36.
Conover DO, Heins SW. The environmental and genetic components of sex ratio in Menidia menidia (Pisces: Atherinidae). Copeia. 1987b;1987(3):732–43.
Rousseau K, Prunet P, Dufour S. Special features of neuroendocrine interactions between stress and reproduction in teleosts. Gen Comp Endocrinol. 2021;300:113634.
Wedekind C. Demographic and genetic consequences of disturbed sex determination. Philos Trans R Soc Lond B Biol Sci. 2017;372(1729):20160326.
Yamamoto Y, Hattori RS, Patiño R, Strüssmann CA. Environmental regulation of sex determination in fishes: Insights from Atheriniformes. Curr Top Dev Biol. 2019;134:49–69.
Geffroy B, Wedekind C. Effects of global warming on sex ratios in fishes. J Fish Biol. 2020;97(3):596–606.
Fernandino JI, Hattori RS, Kishii A, Strüssmann CA, Somoza GM. The cortisol and androgen pathways cross talk in high temperature-induced masculinization: The 11β-hydroxysteroid dehydrogenase as a key enzyme. Endocrinology. 2012;153:6003–11.
Hattori RS, Oura M, Sakamoto T, Yokota M, Watanabe S, Strüssmann CA. Establishment of a strain inheriting a sex-linked SNP marker in Patagonian pejerrey (Odontesthes hatcheri), a species with both genotypic and temperature-dependent sex determination. Anim Genet. 2010;41(1):81–4.
Yamamoto Y, Hattori RS, Kitahara A, Kimura H, Yamashita M, Strüssmann CA. Thermal and endocrine regulation of gonadal apoptosis during sex differentiation in pejerrey Odontesthes bonariensis. Sex Dev. 2013;7(6):316–24.
Ospina-Álvarez N, Piferrer F. Temperature-dependent sex determination in fish revisited: Prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS One. 2008;3(7):e2837.
Bull JJ, Bulmer MG. Longevity enhances selection of environmental sex determination. Heredity. 1989;63(Pt 3):315–20.
Sarida M, Hattori RS, Zhang Y, Yamamoto Y, Strüssmann CA. Spatiotemporal correlations between amh and cyp19a1a transcript expression and apoptosis during gonadal sex differentiation of pejerrey, Odontesthes bonariensis. Sex Dev. 2019;13(2):99–108.
Tchoudakova A, Callard GV. Identification of multiple CYP19 genes encoding different cytochrome P450 aromatase isozymes in brain and ovary. Endocrinology. 1998;139(4):2179–89.
Mommsen TP, Vijayan MM, Moon TW. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev Fish Biol Fish. 1999;9(3):211–68.
Chi W, Gao Y, Hu Q, Guo W, Li D. Genome-wide analysis of brain and gonad transcripts reveals changes of key sex reversal-related genes expression and signaling pathways in three stages of Monopterus albus. PloS One. 2017;12(3):e0173974.
Lee SLJ, Horsfield JA, Black MA, Rutherford K, Gemmell NJ. Identification of sex differences in zebrafish (Danio rerio) brains during early sexual differentiation and masculinization using 17α-methyltestoterone. Biol Reprod. 2018;99(2):446–60.
Yamamoto Y, Zhang Y, Sarida M, Hattori RS, Strüssmann CA. Coexistence of genotypic and temperature-dependent sex determination in pejerrey Odontesthes bonariensis. PLoS One. 2014;9(7):e102574.
Castañeda-Cortés DC, Arias Padilla LF, Langlois VS, Somoza GM, Fernandino JI. The central nervous system acts as a transducer of stress-induced masculinization through corticotropin-releasing hormone B. Development. 2019;146:dev172866.
Li M, Sun Y, Zhao J, Shi H, Zeng S, Ye K, . A tandem duplicate of anti-Müllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile tilapia, Oreochromis niloticus. PLoS Genet. 2015;11(11):e1005678.
Yamaguchi T, Yoshinaga N, Yazawa T, Gen K, Kitano T. Cortisol is involved in temperature-dependent sex determination in the Japanese flounder. Endocrinology. 2010;151(8):3900–8.
Mankiewicz JL, Godwin J, Holler BL, Turner PM, Murashige R, Shamey R, . Masculinizing effect of background color and cortisol in a flatfish with environmental sex-determination. Integr Comp Biol. 2013;53(4):755–65.
Diotel N, Le Page Y, Mouriec K, Tong SK, Pellegrini E, Vaillant C, . Aromatase in the brain of teleost fish: Expression, regulation and putative functions. Front Neuroendocrinol. 2010;31(2):172–92.
Karube M, Fernandino JI, Strobl-Mazzulla P, Strüssmann CA, Yoshizaki G, Somoza GM, . Characterization and expression profile of the ovarian cytochrome P-450 aromatase (cyp19A1) gene during thermolabile sex determination in pejerrey, Odontesthes bonariensis. J Exp Zool A Ecol Genet Physiol. 2007;307(11):625–36.
Fernandino JI, Hattori RS, Moreno Acosta OD, Strüssmann CA, Somoza GM. Environmental stress-induced testis differentiation: Androgen as a by-product of cortisol inactivation. Gen Comp Endocrinol. 2013;192:36–44.
Hattori RS, Fernandino JI, Kishii A, Kimura H, Kinno T, Oura M, . Cortisol-induced masculinization: Does thermal stress affect gonadal fate in pejerrey, a teleost fish with temperature-dependent sex determination. PLoS One. 2009;4(8):e6548.
Strüssmann CA, Calsina Cota JC, Phonlor G, Higuchi H, Takashima F. Temperatur
ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref86
ref41
ref85
ref44
ref43
ref87
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref19
  doi: 10.1111/jfb.13651
– ident: ref23
  doi: 10.1016/j.yhbeh.2012.04.003
– ident: ref55
  doi: 10.1016/j.mce.2017.07.013
– ident: ref81
  doi: 10.1210/en.2010-0228
– ident: ref6
  doi: 10.1038/hdy.1989.104
– ident: ref84
  doi: 10.1016/bs.ctdb.2019.02.003
– ident: ref31
  doi: 10.1016/j.tree.2019.02.012
– ident: ref8
  doi: 10.1016/j.ympev.2015.03.001
– ident: ref43
  doi: 10.1002/jez.416
– ident: ref47
  doi: 10.1093/icb/ict093
– ident: ref39
  doi: 10.3390/genes10090679
– ident: ref35
  doi: 10.1371/journal.pone.0006548
– ident: ref77
  doi: 10.1371/journal.pone.0064943
– ident: ref38
  doi: 10.1002/ece3.4148
– ident: ref41
  doi: 10.1002/jez.a.159
– ident: ref83
  doi: 10.1371/journal.pone.0102574
– ident: ref42
  doi: 10.1111/j.1420-9101.2006.01138.x
– ident: ref40
  doi: 10.1007/s00018-020-03532-9
– ident: ref82
  doi: 10.1159/000353506
– ident: ref57
  doi: 10.1371/journal.pgen.1008013
– ident: ref25
  doi: 10.1210/endocr/bqz024
– ident: ref45
  doi: 10.1371/journal.pgen.1005678
– ident: ref65
  doi: 10.1002/mrd.21179
– ident: ref2
  doi: 10.1159/000223077
– ident: ref10
  doi: 10.1371/journal.pone.0173974
– ident: ref28
  doi: 10.1016/j.ygcen.2013.05.024
– ident: ref46
  doi: 10.1002/dneu.22303
– ident: ref14
  doi: 10.1038/326496a0
– ident: ref33
  doi: 10.1016/bs.ctdb.2018.12.014
– ident: ref64
  doi: 10.1002/ece3.2277
– ident: ref68
  doi: 10.1002/jmor.10351
– ident: ref76
  doi: 10.1210/endo.139.4.5899
– ident: ref13
  doi: 10.1139/f86-061
– ident: ref32
  doi: 10.1111/jfb.14429
– ident: ref69
  doi: 10.1006/jfbi.1996.0064
– ident: ref63
  doi: 10.1159/000498997
– ident: ref54
  doi: 10.3109/07435800009048638
– ident: ref78
  doi: 10.3389/fgene.2019.01128
– ident: ref22
  doi: 10.1016/j.yfrne.2010.01.003
– ident: ref58
  doi: 10.1677/joe.0.1810367
– ident: ref16
  doi: 10.1126/science.213.4507.577
– ident: ref44
  doi: 10.1111/j.1558-5646.1993.tb02108.x
– ident: ref60
  doi: 10.3354/meps13174
– ident: ref87
  doi: 10.1016/j.ygcen.2018.03.013
– ident: ref53
  doi: 10.1006/dbio.2000.9952
– ident: ref50
  doi: 10.1006/gcen.2001.7687
– ident: ref56
  doi: 10.1371/journal.pone.0002837
– ident: ref49
  doi: 10.1016/s0016-6480(03)00117-5
– ident: ref66
  doi: 10.1016/j.ygcen.2008.07.006
– ident: ref17
  doi: 10.1111/j.1558-5646.1992.tb01164.x
– ident: ref24
  doi: 10.1002/jez.612
– ident: ref59
  doi: 10.1111/brv.12156
– ident: ref15
  doi: 10.2307/1445667
– ident: ref21
  doi: 10.1038/s41598-017-09631-1
– ident: ref72
  doi: 10.1023/b:fish.0000030498.33279.69
– ident: ref37
  doi: 10.1073/pnas.1018392109
– ident: ref34
  doi: 10.1002/mrd.21203
– ident: ref48
  doi: 10.2307/1445559
– ident: ref12
  doi: 10.1111/j.1095-8649.1992.tb03876.x
– ident: ref26
  doi: 10.1002/dvdy.21731
– ident: ref74
  doi: 10.1002/nafm.10484
– ident: ref67
  doi: 10.1159/000316022
– ident: ref18
  doi: 10.1007/s10641-016-0491-z
– ident: ref7
  doi: 10.1016/j.jembe.2014.07.009
– ident: ref61
  doi: 10.1073/pnas.1609411114
– ident: ref3
  doi: 10.1643/cg-10-189
– ident: ref30
  doi: 10.1016/j.cbpa.2020.110701
– ident: ref62
  doi: 10.1016/j.ygcen.2020.113634
– ident: ref11
  doi: 10.1086/284205
– ident: ref1
  doi: 10.1159/000452362
– ident: ref70
  doi: 10.1016/0044-8486(95)01161-7
– ident: ref4
  doi: 10.1016/j.ygcen.2009.10.004
– ident: ref51
  doi: 10.1111/mec.15490
– ident: ref9
  doi: 10.1016/j.ygcen.2020.113605
– ident: ref73
  doi: 10.1111/j.1095-8649.2010.02780.x
– ident: ref85
  doi: 10.1038/srep18581
– ident: ref86
  doi: 10.1210/en.2016-1865
– ident: ref80
  doi: 10.1098/rstb.2016.0326
– ident: ref20
  doi: 10.1038/nature13151
– ident: ref29
  doi: 10.1016/j.ygcen.2005.11.005
– ident: ref75
  doi: 10.3390/ijms19030689
– ident: ref36
  doi: 10.1111/j.1365-2052.2009.01948.x
– ident: ref71
  doi: 10.1002/(sici)1097-010x(19970615)278:3%3c167::aid-jez6%3e3.0.co;2-m
– ident: ref27
  doi: 10.1159/000324423
– ident: ref79
  doi: 10.1002/wdev.42
– ident: ref5
  doi: 10.1534/g3.117.042697
– ident: ref52
  doi: 10.1023/a:1008924418720
SSID ssj0060225
Score 2.3766084
SecondaryResourceType review_article
Snippet Abstract Atheriniform fishes have recently emerged as attractive models for evolutionary, ecological, and molecular/physiological studies on sex determination....
Atheriniform fishes have recently emerged as attractive models for evolutionary, ecological, and molecular/physiological studies on sex determination. Many...
SourceID proquest
gale
crossref
pubmed
karger
SourceType Aggregation Database
Index Database
Publisher
StartPage 80
SubjectTerms Analysis
Animals
Female
Fishes
Fishes - genetics
Genotype
Gonads
Male
Physiological aspects
Review Article
Sex Determination Analysis
Sex Determination Processes - genetics
Sex determination, Diagnostic
Sex Differentiation - genetics
Temperature
Title Where the Ends Meet: An Overview of Sex Determination in Atheriniform Fishes
URI https://karger.com/doi/10.1159/000515191
https://www.ncbi.nlm.nih.gov/pubmed/33951664
https://search.proquest.com/docview/2522621831
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKhtBeELABg4EMQvBQpSyJ48S8pWXThhhIdJPGU-Q4DupGk6lJEfAv-MccX-KlwCTgJWpSO3Vyvn4-xz4XhJ4VIglLwgKPFgnxiARZ8KBQK2Ky5CIOcqqrKBy9owcn5M1pdDoY_Oh5LS3bfCS-_zGu5H-kCtdAripK9h8k624KF-AzyBeOIGE4_pWMgUkXUquOe8qx9UjKbqHv_RfFATYmRX4FWrFeL51vY2oC_1Rc1nyo6583fT11qjMxdyFVfe-Yaas318eTppnbAssTvvhcN8N05CiEzzlAQK_CfqzPZpc016qcJDagH7BZD6euk13RnlVmL2gJxHM46i9KBL7zurK2aQhUAWQSmPJAlltBFfAiYuKcR7J_zeTCcIQc9YHnhT1-NVWf7Extiuj9PgdEzDhNgqrmm1JgPSxczDUYwhBUS2oSqP-ScNt0u4bWg5hFYM-vp-PX4_1ueqeg9Ci_WPc0KmDIPa1J6eTOqc1lBUN66Qa0gW50v76iDFmV4Pq5CgFYXG3xaM3n-Ba6aU0WnBr83UYDWd1BmylgqZ5_w8-xdiLWuzOb6K2GJAZwYQVJrCD5CqcV7gCJ6xIDuPAKIPGswn1AYgPILXSyv3c8OfBswQ5PgJ7feiKOi1iSQrLA5yVNCtB9WEJCLokvSjBcGZUsygPGdwUjsfCjXARRUMAJl6UfhnfRWlVX8j7CRSJ3o1IQQklMckITlvuUlYmQPhc0IdvoaffmsguTlyXT9mzEMvemoZF6p5nKc1IpR6pPfNk02eH0Q5bGakc4BANkG72wjcq6XXDBbVwKjEOlRltpubPSEohYrHy9ZUTnBtSN4kknyUx1UV6NlayXTRYo40fZKNDmnhGx69tB5MEVd32INi7_eDtorV0s5SPQj9v8sUXsT6h3rTI
link.rule.ids 315,786,790,27957,27958
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Where+the+Ends+Meet%3A+An+Overview+of+Sex+Determination+in+Atheriniform+Fishes&rft.jtitle=Sexual+development&rft.au=Str%C3%BCssmann%2C+Carlos+A.&rft.au=Yamamoto%2C+Yoji&rft.au=Hattori%2C+Ricardo+S.&rft.au=Fernandino%2C+Juan+I.&rft.date=2021-09-01&rft.isbn=3318070289&rft.issn=1661-5425&rft.eissn=1661-5433&rft.volume=15&rft.issue=1-3&rft.spage=80&rft.epage=92&rft_id=info:doi/10.1159%2F000515191&rft_id=info%3Apmid%2F33951664&rft.externalDocID=515191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-5425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-5425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-5425&client=summon