Regional Magnetic Resonance Imaging Measures for Multivariate Analysis in Alzheimer’s Disease and Mild Cognitive Impairment
Automated structural magnetic resonance imaging (MRI) processing pipelines are gaining popularity for Alzheimer’s disease (AD) research. They generate regional volumes, cortical thickness measures and other measures, which can be used as input for multivariate analysis. It is not clear which combina...
Saved in:
Published in | Brain topography Vol. 26; no. 1; pp. 9 - 23 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.01.2013
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automated structural magnetic resonance imaging (MRI) processing pipelines are gaining popularity for Alzheimer’s disease (AD) research. They generate regional volumes, cortical thickness measures and other measures, which can be used as input for multivariate analysis. It is not clear which combination of measures and normalization approach are most useful for AD classification and to predict mild cognitive impairment (MCI) conversion. The current study includes MRI scans from 699 subjects [AD, MCI and controls (CTL)] from the Alzheimer’s disease Neuroimaging Initiative (ADNI). The Freesurfer pipeline was used to generate regional volume, cortical thickness, gray matter volume, surface area, mean curvature, gaussian curvature, folding index and curvature index measures. 259 variables were used for orthogonal partial least square to latent structures (OPLS) multivariate analysis. Normalisation approaches were explored and the optimal combination of measures determined. Results indicate that cortical thickness measures should not be normalized, while volumes should probably be normalized by intracranial volume (ICV). Combining regional cortical thickness measures (not normalized) with cortical and subcortical volumes (normalized with ICV) using OPLS gave a prediction accuracy of 91.5 % when distinguishing AD versus CTL. This model prospectively predicted future decline from MCI to AD with 75.9 % of converters correctly classified. Normalization strategy did not have a significant effect on the accuracies of multivariate models containing multiple MRI measures for this large dataset. The appropriate choice of input for multivariate analysis in AD and MCI is of great importance. The results support the use of un-normalised cortical thickness measures and volumes normalised by ICV. |
---|---|
AbstractList | Automated structural magnetic resonance imaging (MRI) processing pipelines are gaining popularity for Alzheimer's disease (AD) research. They generate regional volumes, cortical thickness measures and other measures, which can be used as input for multivariate analysis. It is not clear which combination of measures and normalization approach are most useful for AD classification and to predict mild cognitive impairment (MCI) conversion. The current study includes MRI scans from 699 subjects [AD, MCI and controls (CTL)] from the Alzheimer's disease Neuroimaging Initiative (ADNI). The Freesurfer pipeline was used to generate regional volume, cortical thickness, gray matter volume, surface area, mean curvature, gaussian curvature, folding index and curvature index measures. 259 variables were used for orthogonal partial least square to latent structures (OPLS) multivariate analysis. Normalisation approaches were explored and the optimal combination of measures determined. Results indicate that cortical thickness measures should not be normalized, while volumes should probably be normalized by intracranial volume (ICV). Combining regional cortical thickness measures (not normalized) with cortical and subcortical volumes (normalized with ICV) using OPLS gave a prediction accuracy of 91.5 % when distinguishing AD versus CTL. This model prospectively predicted future decline from MCI to AD with 75.9 % of converters correctly classified. Normalization strategy did not have a significant effect on the accuracies of multivariate models containing multiple MRI measures for this large dataset. The appropriate choice of input for multivariate analysis in AD and MCI is of great importance. The results support the use of un-normalised cortical thickness measures and volumes normalised by ICV. Automated structural magnetic resonance imaging (MRI) processing pipelines are gaining popularity for Alzheimer's disease (AD) research. They generate regional volumes, cortical thickness measures and other measures, which can be used as input for multivariate analysis. It is not clear which combination of measures and normalization approach are most useful for AD classification and to predict mild cognitive impairment (MCI) conversion. The current study includes MRI scans from 699 subjects [AD, MCI and controls (CTL)] from the Alzheimer's disease Neuroimaging Initiative (ADNI). The Freesurfer pipeline was used to generate regional volume, cortical thickness, gray matter volume, surface area, mean curvature, gaussian curvature, folding index and curvature index measures. 259 variables were used for orthogonal partial least square to latent structures (OPLS) multivariate analysis. Normalisation approaches were explored and the optimal combination of measures determined. Results indicate that cortical thickness measures should not be normalized, while volumes should probably be normalized by intracranial volume (ICV). Combining regional cortical thickness measures (not normalized) with cortical and subcortical volumes (normalized with ICV) using OPLS gave a prediction accuracy of 91.5 % when distinguishing AD versus CTL. This model prospectively predicted future decline from MCI to AD with 75.9 % of converters correctly classified. Normalization strategy did not have a significant effect on the accuracies of multivariate models containing multiple MRI measures for this large dataset. The appropriate choice of input for multivariate analysis in AD and MCI is of great importance. The results support the use of un-normalised cortical thickness measures and volumes normalised by ICV.Automated structural magnetic resonance imaging (MRI) processing pipelines are gaining popularity for Alzheimer's disease (AD) research. They generate regional volumes, cortical thickness measures and other measures, which can be used as input for multivariate analysis. It is not clear which combination of measures and normalization approach are most useful for AD classification and to predict mild cognitive impairment (MCI) conversion. The current study includes MRI scans from 699 subjects [AD, MCI and controls (CTL)] from the Alzheimer's disease Neuroimaging Initiative (ADNI). The Freesurfer pipeline was used to generate regional volume, cortical thickness, gray matter volume, surface area, mean curvature, gaussian curvature, folding index and curvature index measures. 259 variables were used for orthogonal partial least square to latent structures (OPLS) multivariate analysis. Normalisation approaches were explored and the optimal combination of measures determined. Results indicate that cortical thickness measures should not be normalized, while volumes should probably be normalized by intracranial volume (ICV). Combining regional cortical thickness measures (not normalized) with cortical and subcortical volumes (normalized with ICV) using OPLS gave a prediction accuracy of 91.5 % when distinguishing AD versus CTL. This model prospectively predicted future decline from MCI to AD with 75.9 % of converters correctly classified. Normalization strategy did not have a significant effect on the accuracies of multivariate models containing multiple MRI measures for this large dataset. The appropriate choice of input for multivariate analysis in AD and MCI is of great importance. The results support the use of un-normalised cortical thickness measures and volumes normalised by ICV. Automated structural magnetic resonance imaging (MRI) processing pipelines are gaining popularity for Alzheimer's disease (AD) research. They generate regional volumes, cortical thickness measures and other measures, which can be used as input for multivariate analysis. It is not clear which combination of measures and normalization approach are most useful for AD classification and to predict mild cognitive impairment (MCI) conversion. The current study includes MRI scans from 699 subjects [AD, MCI and controls (CTL)] from the Alzheimer's disease Neuroimaging Initiative (ADNI). The Freesurfer pipeline was used to generate regional volume, cortical thickness, gray matter volume, surface area, mean curvature, gaussian curvature, folding index and curvature index measures. 259 variables were used for orthogonal partial least square to latent structures (OPLS) multivariate analysis. Normalisation approaches were explored and the optimal combination of measures determined. Results indicate that cortical thickness measures should not be normalized, while volumes should probably be normalized by intracranial volume (ICV). Combining regional cortical thickness measures (not normalized) with cortical and subcortical volumes (normalized with ICV) using OPLS gave a prediction accuracy of 91.5 % when distinguishing AD versus CTL. This model prospectively predicted future decline from MCI to AD with 75.9 % of converters correctly classified. Normalization strategy did not have a significant effect on the accuracies of multivariate models containing multiple MRI measures for this large dataset. The appropriate choice of input for multivariate analysis in AD and MCI is of great importance. The results support the use of un-normalised cortical thickness measures and volumes normalised by ICV.[PUBLICATION ABSTRACT] |
Author | Westman, Eric Muehlboeck, J-Sebastian Aguilar, Carlos Simmons, Andrew |
Author_xml | – sequence: 1 givenname: Eric surname: Westman fullname: Westman, Eric email: eric.westman@ki.se organization: Department of Neuroimaging, Institute of Psychiatry, King’s College London – sequence: 2 givenname: Carlos surname: Aguilar fullname: Aguilar, Carlos organization: Department of Neurobiology, Care Sciences and Society, Karolinska Institutet – sequence: 3 givenname: J-Sebastian surname: Muehlboeck fullname: Muehlboeck, J-Sebastian organization: Department of Neuroimaging, Institute of Psychiatry, King’s College London – sequence: 4 givenname: Andrew surname: Simmons fullname: Simmons, Andrew organization: Department of Neuroimaging, Institute of Psychiatry, King’s College London, NIHR Biomedical Research Centre for Mental Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22890700$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:125894525$$DView record from Swedish Publication Index |
BookMark | eNp9ks9u1DAQxi1URLeFB-CCLHHhEhjbSZxckFbLv0pdIVVwtpxkkrokzmInpUVC4jV4PZ6EWe0WtZXgZMvz-7755JkjduBHj4w9FfBSAOhXUUCWFgkImYBM8-TqAVuITKsk16U8YAsoypwquT5kRzFeAIAqtX7EDqUsStAAC_bjDDs3etvzte08Tq7mZxjpwdfITwbbOd_xNdo4B4y8HQNfz_3kLm1wdkK-JOV1dJE7z5f993N0A4bfP39F_sZFUiG3vuFr1zd8NXbekXJru7EuDOinx-xha_uIT_bnMfv87u2n1Yfk9OP7k9XyNKkzKKakzkWBrRKgilJkoHKrGiggrZSGRjRVqpu6alqZ1pVudWYLsBYaEJWqWiulVccs2fnGb7iZK7MJbrDh2ozWmf3TF7qhyVQmtSL-9Y6nyoBNTVGD7e_I7la8OzfdeGlUpvJSF2TwYm8Qxq8zxskMLtbY99bjOEcjqIukuaVA6PN76MU4B_pXolJdQKkVpEQ9u53ob5SbSRKgd0AdxhgDtqZ2k51othTQ9UaA2e6M2e2Mod5muzPmipTinvLG_H8auf9QYn2H4Vbof4r-AKBR15M |
CODEN | BRTOEZ |
CitedBy_id | crossref_primary_10_1016_j_nicl_2016_05_017 crossref_primary_10_1007_s11831_021_09674_8 crossref_primary_10_1038_s41598_024_65846_z crossref_primary_10_1016_j_neurobiolaging_2013_10_095 crossref_primary_10_1016_j_compbiomed_2024_108029 crossref_primary_10_1016_j_neurad_2019_02_004 crossref_primary_10_1089_neu_2020_6999 crossref_primary_10_3389_fnagi_2021_680200 crossref_primary_10_1016_j_nicl_2020_102303 crossref_primary_10_1016_j_lfs_2021_119749 crossref_primary_10_1016_j_nicl_2019_101957 crossref_primary_10_1016_j_neuroimage_2021_117740 crossref_primary_10_1016_j_neuroimage_2018_08_042 crossref_primary_10_1186_1471_2105_16_S7_S8 crossref_primary_10_1016_j_jad_2018_05_015 crossref_primary_10_3389_fneur_2020_00021 crossref_primary_10_1111_jon_12845 crossref_primary_10_1016_j_jneumeth_2020_108856 crossref_primary_10_1016_j_neuroimage_2024_120742 crossref_primary_10_1016_j_compbiomed_2024_108035 crossref_primary_10_1007_s40846_023_00775_2 crossref_primary_10_1016_j_jneuroim_2014_06_010 crossref_primary_10_1016_j_mri_2018_03_003 crossref_primary_10_1016_j_jpsychires_2015_01_015 crossref_primary_10_1088_1741_2552_aa9ee9 crossref_primary_10_1109_TCBB_2017_2731849 crossref_primary_10_1080_02603594_2016_1241616 crossref_primary_10_1016_j_jalz_2015_05_008 crossref_primary_10_1186_s13195_018_0374_y crossref_primary_10_1186_s12880_024_01520_0 crossref_primary_10_1002_hbm_22822 crossref_primary_10_1002_hbm_23432 crossref_primary_10_1177_1352458516688349 crossref_primary_10_1007_s11682_020_00366_8 crossref_primary_10_1177_1533317518775033 crossref_primary_10_1016_j_jalz_2014_11_001 crossref_primary_10_3389_fnagi_2017_00038 crossref_primary_10_1016_j_neuroimage_2014_09_062 crossref_primary_10_1080_23273798_2018_1476727 crossref_primary_10_1016_j_jalz_2014_11_008 crossref_primary_10_1002_hbm_24359 crossref_primary_10_2217_fnl_14_57 crossref_primary_10_3389_fnagi_2019_00015 crossref_primary_10_1002_hbm_23147 crossref_primary_10_1007_s10548_014_0386_2 crossref_primary_10_1016_j_nicl_2016_11_025 crossref_primary_10_1172_JCI82636 crossref_primary_10_1371_journal_pone_0134368 crossref_primary_10_1152_ajpendo_00067_2014 crossref_primary_10_1371_journal_pone_0105542 crossref_primary_10_1016_j_nicl_2017_08_014 crossref_primary_10_18614_deutip_1135057 crossref_primary_10_1007_s10548_014_0415_1 crossref_primary_10_3389_fneur_2023_1161527 crossref_primary_10_1111_joim_12164 crossref_primary_10_1007_s11682_018_9887_z crossref_primary_10_3389_fnins_2019_01424 crossref_primary_10_1109_JBHI_2020_3042447 crossref_primary_10_3389_fnagi_2018_00439 crossref_primary_10_1016_j_jneumeth_2017_12_010 crossref_primary_10_1093_jn_nxab168 crossref_primary_10_1016_j_neuroimage_2020_117271 crossref_primary_10_57062_ijpem_st_2023_0066 crossref_primary_10_1515_tnsci_2022_0248 crossref_primary_10_3389_fnagi_2014_00264 crossref_primary_10_1007_s10522_015_9595_7 crossref_primary_10_1016_j_jalz_2016_08_003 crossref_primary_10_1038_s41598_018_29295_9 crossref_primary_10_1016_j_nicl_2014_08_023 crossref_primary_10_1134_S1819712422030096 crossref_primary_10_1038_s41598_018_29927_0 crossref_primary_10_1016_j_cortex_2017_05_010 crossref_primary_10_1155_2013_108021 crossref_primary_10_1016_j_neuroimage_2017_06_070 crossref_primary_10_1186_s42492_020_00062_w crossref_primary_10_14336_AD_2016_0305 crossref_primary_10_3174_ajnr_A7316 crossref_primary_10_1186_s41747_018_0055_4 crossref_primary_10_1186_s13195_024_01517_5 crossref_primary_10_3389_fpsyt_2021_795299 crossref_primary_10_1038_s41598_023_43706_6 crossref_primary_10_3389_fnagi_2024_1492078 crossref_primary_10_3233_JAD_230253 crossref_primary_10_3233_JAD_170261 crossref_primary_10_1097_PHM_0000000000000881 crossref_primary_10_1016_j_jalz_2019_03_012 crossref_primary_10_1186_s40695_020_00055_y crossref_primary_10_1111_acel_12281 crossref_primary_10_1371_journal_pone_0105563 crossref_primary_10_1016_j_neuroimage_2014_09_034 crossref_primary_10_1186_s13195_021_00879_4 crossref_primary_10_1016_j_nicl_2019_101811 crossref_primary_10_1007_s10548_015_0455_1 crossref_primary_10_1017_S1041610218001618 crossref_primary_10_1002_mds_25633 crossref_primary_10_1016_j_nicl_2016_06_010 crossref_primary_10_1038_s41598_018_37769_z crossref_primary_10_1038_s41598_020_57951_6 crossref_primary_10_1038_tp_2015_78 crossref_primary_10_1016_j_compbiomed_2018_09_004 crossref_primary_10_1093_cercor_bhaa126 crossref_primary_10_1002_hbm_25216 crossref_primary_10_1007_s11682_016_9581_y crossref_primary_10_1155_2014_862307 crossref_primary_10_1016_j_mri_2022_10_006 crossref_primary_10_1002_brb3_942 crossref_primary_10_1177_1533317516653827 crossref_primary_10_3233_JAD_190262 crossref_primary_10_1007_s12021_016_9318_5 crossref_primary_10_1017_S0033291719000151 crossref_primary_10_1007_s42979_022_01371_y crossref_primary_10_3233_JAD_200175 crossref_primary_10_1016_j_neuroimage_2016_05_053 crossref_primary_10_1016_j_pscychresns_2012_11_005 crossref_primary_10_1093_gerona_glac078 crossref_primary_10_3174_ajnr_A6601 crossref_primary_10_1016_j_nicl_2013_07_004 crossref_primary_10_1016_j_pscychresns_2018_02_005 crossref_primary_10_1186_s40478_022_01471_z crossref_primary_10_1007_s00429_016_1212_2 crossref_primary_10_1155_2015_583931 crossref_primary_10_1016_j_cortex_2019_10_017 crossref_primary_10_3389_fnins_2022_920150 crossref_primary_10_1016_j_neuroimage_2013_08_022 crossref_primary_10_1016_j_jalz_2013_09_016 crossref_primary_10_1016_j_neuroimage_2023_120461 crossref_primary_10_1016_j_mednuc_2014_12_010 crossref_primary_10_1186_s40035_020_00215_0 crossref_primary_10_1016_j_neurobiolaging_2014_04_034 crossref_primary_10_1016_j_rehab_2021_101599 crossref_primary_10_1007_s12021_015_9266_5 crossref_primary_10_1016_j_nicl_2019_101793 crossref_primary_10_1016_j_biopsych_2013_11_020 crossref_primary_10_1016_j_nicl_2024_103650 crossref_primary_10_1007_s11682_018_9846_8 crossref_primary_10_1016_j_jalz_2014_05_1749 crossref_primary_10_1016_j_neurobiolaging_2022_11_004 crossref_primary_10_1002_ima_22308 crossref_primary_10_1155_2014_541802 crossref_primary_10_1016_j_mri_2022_01_004 crossref_primary_10_1016_j_compbiomed_2022_106282 crossref_primary_10_1097_j_pain_0000000000003221 crossref_primary_10_1016_j_pscychresns_2013_09_006 |
Cites_doi | 10.1016/S0896-6273(02)00569-X 10.1212/WNL.42.1.183 10.1016/j.neuroimage.2011.01.008 10.1093/brain/119.6.2001 10.1212/01.wnl.0000304108.32283.aa 10.1111/j.1365-313X.2007.03293.x 10.1016/j.neurobiolaging.2007.03.002 10.1007/BF00308809 10.1016/j.jalz.2007.04.381 10.1111/j.1750-3639.1991.tb00671.x 10.1016/j.neuroimage.2006.01.021 10.1016/j.neurobiolaging.2009.05.013 10.1148/radiol.11101975 10.1109/TMI.2006.887364 10.1016/j.neurobiolaging.2009.07.008 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 10.1016/j.neurobiolaging.2011.03.017 10.1016/j.neuroimage.2012.01.055 10.1016/j.neuroimage.2012.04.056 10.1212/WNL.49.3.786 10.1186/1471-2202-10-33 10.1371/journal.pone.0021896 10.1162/jocn.1993.5.2.162 10.1016/j.neuroimage.2004.07.016 10.1016/j.neuroimage.2011.06.065 10.1016/j.jalz.2007.02.001 10.1073/pnas.82.12.4245 10.1073/pnas.200033797 10.1109/42.906426 10.1001/archgenpsychiatry.2010.78 10.1021/ac0713510 10.1016/j.jalz.2011.03.005 10.1016/S0006-291X(84)80190-4 10.1148/radiol.2511080924 10.1016/S1474-4422(07)70178-3 10.1259/bjr/33117326 10.1016/j.neuroimage.2010.06.013 10.1016/j.neurobiolaging.2010.01.022 10.1111/j.1749-6632.2009.05063.x 10.1002/cem.695 10.1109/42.668698 10.1093/cercor/bhg087 10.1016/j.neuroimage.2010.08.044 10.1006/nimg.1998.0395 10.1016/j.neuroimage.2004.07.020 10.1021/pr060124w 10.1016/j.nbd.2006.12.012 10.1111/j.1532-5415.2008.01684.x 10.1093/cercor/bhn232 10.1371/journal.pone.0022506 10.1016/j.neuroimage.2010.06.025 10.1016/j.neuroimage.2004.03.032 10.1016/j.neuroimage.2011.11.066 10.1002/gps.2491 10.1148/radiology.148.3.6878708 10.3233/JAD-2011-0028 10.3233/JAD-2011-110497 10.3233/JAD-2010-100201 10.1159/000320136 10.3233/JAD-2010-100168 |
ContentType | Journal Article |
Copyright | The Author(s) 2012 Springer Science+Business Media New York 2013 |
Copyright_xml | – notice: The Author(s) 2012 – notice: Springer Science+Business Media New York 2013 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88A 88E 88G 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM ADTPV AOWAS D8T ZZAVC |
DOI | 10.1007/s10548-012-0246-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: C6C name: (Open Access) Springer Nature eJournals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1573-6792 |
EndPage | 23 |
ExternalDocumentID | oai_swepub_ki_se_535273 PMC3536978 3184733111 22890700 10_1007_s10548_012_0246_x |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P30 AG010129 – fundername: NIA NIH HHS grantid: U01 AG024904 – fundername: NIA NIH HHS grantid: K01 AG030514 |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6NX 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0L M1P M2M M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PF0 PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UAP UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7X ZGI ZMTXR ZOVNA ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK ABRTQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO Q9U 7X8 5PM ADTPV AOWAS D8T ZZAVC |
ID | FETCH-LOGICAL-c508t-c618ef31038915036a3d0804b370d1db47dcbdf24cb7f75a80aa0d01b3bfa22a3 |
IEDL.DBID | U2A |
ISSN | 0896-0267 1573-6792 |
IngestDate | Mon Sep 01 03:36:01 EDT 2025 Thu Aug 21 14:11:11 EDT 2025 Fri Jul 11 07:21:03 EDT 2025 Sat Aug 23 14:01:09 EDT 2025 Thu Apr 03 06:58:26 EDT 2025 Tue Jul 01 02:16:33 EDT 2025 Thu Apr 24 22:57:52 EDT 2025 Fri Feb 21 02:32:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Freesurfer Sensitivity Specificity AD MRI MCI conversion OPLS |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-c618ef31038915036a3d0804b370d1db47dcbdf24cb7f75a80aa0d01b3bfa22a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s10548-012-0246-x |
PMID | 22890700 |
PQID | 1478097304 |
PQPubID | 37296 |
PageCount | 15 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_535273 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3536978 proquest_miscellaneous_1273201240 proquest_journals_1478097304 pubmed_primary_22890700 crossref_citationtrail_10_1007_s10548_012_0246_x crossref_primary_10_1007_s10548_012_0246_x springer_journals_10_1007_s10548_012_0246_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-01 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: United States – name: New York |
PublicationSubtitle | A Journal of Cerebral Function and Dynamics |
PublicationTitle | Brain topography |
PublicationTitleAbbrev | Brain Topogr |
PublicationTitleAlternate | Brain Topogr |
PublicationYear | 2013 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | O’Brien (CR41) 2007; 80 Thambisetty, Simmons, Velayudhan, Hye, Campbell, Zhang, Wahlund, Westman, Kinsey, Guntert, Proitsi, Powell, Causevic, Killick, Lunnon, Lynham, Broadstock, Choudhry, Howlett, Williams, Sharp, Mitchelmore, Tunnard, Leung, Foy, O’Brien, Breen, Furney, Ward, Kloszewska, Mecocci, Soininen, Tsolaki, Vellas, Hodges, Murphy, Parkins, Richardson, Resnick, Ferrucci, Wong, Zhou, Muehlboeck, Evans, Francis, Spenger, Lovestone (CR47) 2010; 67 Dale, Sereno (CR8) 1993; 5 Fischl, Liu, Dale (CR16) 2001; 20 Cui, Liu, Luo, Zhen, Fan, Liu, Zhu, Park, Jiang, Jin (CR6) 2011; 6 Farias, Mungas, Reed, Carmichael, Beckett, Harvey, Olichney, Simmons, Decarli (CR13) 2011; 33 Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (CR17) 2002; 33 Goedert, Spillantini, Crowther (CR23) 1991; 1 Fischl, Dale (CR14) 2000; 97 Westman, Cavallin, Muehlboeck, Zhang, Mecocci, Vellas, Tsolaki, Kloszewska, Soininen, Spenger, Lovestone, Simmons, Wahlund (CR54) 2011; 6 Barnes, Ridgway, Bartlett, Henley, Lehmann, Hobbs, Clarkson, MacManus, Ourselin, Fox (CR1) 2010; 53 Eriksson, Johansson, Kettaneh-Wold, Trygg, Wiksröm, Wold (CR12) 2006 Glenner, Wong (CR22) 1984; 120 Liu, Paajanen, Zhang, Westman, Wahlund, Simmons, Tunnard, Sobow, Mecocci, Tsolaki, Vellas, Muehlboeck, Evans, Spenger, Lovestone, Soininen (CR32) 2010; 31 Liu, Zhang, Shen (CR34) 2012; 60 Masters, Simms, Weinman, Multhaup, McDonald, Beyreuther (CR35) 1985; 82 Brookmeyer, Johnson, Ziegler-Graham, Arrighi (CR3) 2007; 3 Li, Wang, Gui, Zheng, Liu, Du (CR29) 2011; 27 Fischl, Salat, van der Kouwe, Makris, Segonne, Quinn, Dale (CR18) 2004; 23 Fjell, Westlye, Amlien, Espeseth, Reinvang, Raz, Agartz, Salat, Greve, Fischl, Dale, Walhovd (CR20) 2009; 19 Liu, Paajanen, Westman, Wahlund, Simmons, Tunnard, Sobow, Proitsi, Powell, Mecocci, Tsolaki, Vellas, Muehlboeck, Evans, Spenger, Lovestone, Soininen (CR30) 2010; 21 Cuingnet, Gerardin, Tessieras, Auzias, Lehericy, Habert, Chupin, Benali, Colliot (CR7) 2011; 56 Westman, Wahlund, Foy, Poppe, Cooper, Murphy, Spenger, Lovestone, Simmons (CR53) 2010; 22 Ries, Carlsson, Rowley, Sager, Gleason, Asthana, Johnson (CR43) 2008; 56 Chu, Hsu, Chou, Bandettini, Lin (CR5) 2012; 60 Oberg, Spenger, Wang, Andersson, Westman, Skoglund, Sunnemark, Norinder, Klason, Wahlund, Lindberg (CR40) 2008; 29 Liu, Paajanen, Westman, Zhang, Wahlund, Simmons, Tunnard, Sobow, Proitsi, Powell, Mecocci, Tsolaki, Vellas, Muehlboeck, Evans, Spenger, Lovestone, Soininen (CR31) 2010; 30 CR49 McEvoy, Fennema-Notestine, Roddey, Hagler, Holland, Karow, Pung, Brewer, Dale (CR36) 2009; 251 Dale, Fischl, Sereno (CR9) 1999; 9 Fischl, Sereno, Tootell, Dale (CR15) 1999; 8 Westman, Spenger, Wahlund, Lavebratt (CR51) 2007; 26 McKhann, Knopman, Chertkow, Hyman, Jack, Kawas, Klunk, Koroshetz, Manly, Mayeux, Mohs, Morris, Rossor, Scheltens, Carrillo, Thies, Weintraub, Phelps (CR39) 2011; 7 Dubois, Feldman, Jacova, DeKosky, Barberger-Gateau, Cummings, Delacourte, Galasko, Gauthier, Jicha, Meguro, O’Brien, Pasquier, Robert, Rossor, Salloway, Stern, Visser, Scheltens (CR11) 2007; 6 Rantalainen, Cloarec, Beckonert, Wilson, Jackson, Tonge, Rowlinson, Rayner, Nickson, Wilkinson, Mills, Trygg, Nicholson, Holmes (CR42) 2006; 5 Zhang, Wang, Zhou, Yuan, Shen (CR61) 2011; 55 McEvoy, Holland, Hagler, Fennema-Notestine, Brewer, Dale (CR37) 2011; 259 Segonne, Pacheco, Fischl (CR45) 2007; 26 Westman, Wahlund, Foy, Poppe, Cooper, Murphy, Spenger, Lovestone, Simmons (CR57) 2011; 26 Levine, Kovacevic, Nica, Cheung, Gao, Schwartz, Black (CR28) 2008; 70 Braak, Braak (CR2) 1991; 82 Westman, Simmons, Muehlboeck, Mecocci, Vellas, Tsolaki, Kloszewska, Soininen, Weiner, Lovestone, Spenger, Wahlund (CR55) 2011; 58 McIntosh, Lobaugh (CR38) 2004; 23 Juottonen, Laakso, Partanen, Soininen (CR27) 1999; 20 Westman, Muehlboeck, Simmons (CR58) 2012; 62 Segonne, Dale, Busa, Glessner, Salat, Hahn, Fischl (CR44) 2004; 22 Trygg, Wold (CR48) 2002; 16 Liu, Paajanen, Zhang, Westman, Wahlund, Simmons, Tunnard, Sobow, Mecocci, Tsolaki, Vellas, Muehlboeck, Evans, Spenger, Lovestone, Soininen (CR33) 2011; 32 Fischl, van der Kouwe, Destrieux, Halgren, Segonne, Salat, Busa, Seidman, Goldstein, Kennedy, Caviness, Makris, Rosen, Dale (CR19) 2004; 14 Simmons, Westman, Muehlboeck, Mecocci, Vellas, Tsolaki, Kloszewska, Wahlund, Soininen, Lovestone, Evans (CR200) 2011; 26 Bylesjo, Eriksson, Kusano, Moritz, Trygg (CR4) 2007; 52 Hanley, McNeil (CR24) 1983; 148 Desikan, Ségonne, Fischl, Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman, Albert, Killiany (CR10) 2006; 31 Fox, Warrington, Freeborough, Hartikainen, Kennedy, Stevens, Rossor (CR21) 1996; 119 Walhovd, Westlye, Amlien, Espeseth, Reinvang, Raz, Agartz, Salat, Greve, Fischl, Dale, Fjell (CR50) 2011; 32 Westman, Simmons, Zhang, Muehlboeck, Tunnard, Liu, Collins, Evans, Mecocci, Vellas, Tsolaki, Kloszewska, Soininen, Lovestone, Spenger, Wahlund (CR56) 2011; 54 Jack, Petersen, O’Brien, Tangalos (CR25) 1992; 42 Simmons, Westman, Muehlboeck, Mecocci, Vellas, Tsolaki, Kloszewska, Wahlund, Soininen, Lovestone, Evans, Spenger (CR100) 2009; 1180 Wimo, Winblad, Jönsson (CR60) 2007; 3 Jack, Petersen, Xu, Waring, O’Brien, Tangalos, Smith, Ivnik, Kokmen (CR26) 1997; 49 Sled, Zijdenbos, Evans (CR46) 1998; 17 Westman, Spenger, Oberg, Reyer, Pahnke, Wahlund (CR52) 2009; 10 Wiklund, Johansson, Sjostrom, Mellerowicz, Edlund, Shockcor, Gottfries, Moritz, Trygg (CR59) 2008; 80 E Westman (246_CR55) 2011; 58 246_CR200 AM Dale (246_CR9) 1999; 9 H Braak (246_CR2) 1991; 82 NC Fox (246_CR21) 1996; 119 S Wiklund (246_CR59) 2008; 80 B Levine (246_CR28) 2008; 70 E Westman (246_CR51) 2007; 26 E Westman (246_CR53) 2010; 22 CR Jack Jr (246_CR26) 1997; 49 LK McEvoy (246_CR36) 2009; 251 Y Liu (246_CR33) 2011; 32 J Trygg (246_CR48) 2002; 16 RS Desikan (246_CR10) 2006; 31 F Segonne (246_CR44) 2004; 22 J Barnes (246_CR1) 2010; 53 AM Dale (246_CR8) 1993; 5 E Westman (246_CR57) 2011; 26 A Simmons (246_CR100) 2009; 1180 D Zhang (246_CR61) 2011; 55 Y Cui (246_CR6) 2011; 6 B Fischl (246_CR19) 2004; 14 KB Walhovd (246_CR50) 2011; 32 B Fischl (246_CR14) 2000; 97 B Fischl (246_CR15) 1999; 8 M Bylesjo (246_CR4) 2007; 52 GM McKhann (246_CR39) 2011; 7 F Segonne (246_CR45) 2007; 26 A Wimo (246_CR60) 2007; 3 Y Liu (246_CR31) 2010; 30 L Eriksson (246_CR12) 2006 ST Farias (246_CR13) 2011; 33 AM Fjell (246_CR20) 2009; 19 J Hanley (246_CR24) 1983; 148 B Fischl (246_CR16) 2001; 20 ML Ries (246_CR43) 2008; 56 B Fischl (246_CR18) 2004; 23 JT O’Brien (246_CR41) 2007; 80 M Liu (246_CR34) 2012; 60 AR McIntosh (246_CR38) 2004; 23 K Juottonen (246_CR27) 1999; 20 C Chu (246_CR5) 2012; 60 C Li (246_CR29) 2011; 27 CR Jack Jr (246_CR25) 1992; 42 GG Glenner (246_CR22) 1984; 120 Y Liu (246_CR32) 2010; 31 J Oberg (246_CR40) 2008; 29 M Thambisetty (246_CR47) 2010; 67 246_CR49 E Westman (246_CR58) 2012; 62 M Rantalainen (246_CR42) 2006; 5 E Westman (246_CR52) 2009; 10 B Dubois (246_CR11) 2007; 6 B Fischl (246_CR17) 2002; 33 M Goedert (246_CR23) 1991; 1 CL Masters (246_CR35) 1985; 82 LK McEvoy (246_CR37) 2011; 259 Y Liu (246_CR30) 2010; 21 R Brookmeyer (246_CR3) 2007; 3 E Westman (246_CR56) 2011; 54 JG Sled (246_CR46) 1998; 17 R Cuingnet (246_CR7) 2011; 56 E Westman (246_CR54) 2011; 6 |
References_xml | – volume: 33 start-page: 341 year: 2002 end-page: 355 ident: CR17 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 42 start-page: 183 year: 1992 end-page: 188 ident: CR25 article-title: MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease publication-title: Neurology doi: 10.1212/WNL.42.1.183 – ident: CR49 – volume: 55 start-page: 856 year: 2011 end-page: 867 ident: CR61 article-title: Multimodal classification of Alzheimer’s disease and mild cognitive impairment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.008 – volume: 119 start-page: 2001 issue: Pt 6 year: 1996 end-page: 2007 ident: CR21 article-title: Presymptomatic hippocampal atrophy in Alzheimer’s disease. A longitudinal MRI study publication-title: Brain doi: 10.1093/brain/119.6.2001 – volume: 70 start-page: 771 year: 2008 end-page: 778 ident: CR28 article-title: The Toronto traumatic brain injury study: injury severity and quantified MRI publication-title: Neurology doi: 10.1212/01.wnl.0000304108.32283.aa – volume: 52 start-page: 1181 year: 2007 end-page: 1191 ident: CR4 article-title: Data integration in plant biology: the O2PLS method for combined modeling of transcript and metabolite data publication-title: Plant J doi: 10.1111/j.1365-313X.2007.03293.x – volume: 29 start-page: 1423 year: 2008 end-page: 1433 ident: CR40 article-title: Age related changes in brain metabolites observed by 1H MRS in APP/PS1 mice publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2007.03.002 – volume: 82 start-page: 239 year: 1991 end-page: 259 ident: CR2 article-title: Neuropathological stageing of Alzheimer-related changes publication-title: Acta Neuropathol doi: 10.1007/BF00308809 – volume: 3 start-page: 186 year: 2007 end-page: 191 ident: CR3 article-title: Forecasting the global burden of Alzheimer’s disease publication-title: Alzheimer’s Dement doi: 10.1016/j.jalz.2007.04.381 – volume: 1 start-page: 279 year: 1991 end-page: 286 ident: CR23 article-title: Tau proteins and neurofibrillary degeneration publication-title: Brain Pathol doi: 10.1111/j.1750-3639.1991.tb00671.x – volume: 31 start-page: 968 year: 2006 end-page: 980 ident: CR10 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 32 start-page: 916 year: 2011 end-page: 932 ident: CR50 article-title: Consistent neuroanatomical age-related volume differences across multiple samples publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2009.05.013 – volume: 27 start-page: 281 issue: 2 year: 2011 end-page: 290 ident: CR29 article-title: Alterations of whole-brain cortical area and thickness in mild cognitive impairment and Alzheimer’s disease publication-title: J Alzheimer’s Dis – year: 2006 ident: CR12 publication-title: Multi- and megavariate data analysis (Part I-Basics and principals and applications) – volume: 259 start-page: 834 year: 2011 end-page: 843 ident: CR37 article-title: Mild cognitive impairment: baseline and longitudinal structural MR imaging measures improve predictive prognosis publication-title: Radiology doi: 10.1148/radiol.11101975 – volume: 26 start-page: 518 year: 2007 end-page: 529 ident: CR45 article-title: Geometrically accurate topology-correction of cortical surfaces using nonseparating loops publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2006.887364 – volume: 32 start-page: 1198 year: 2011 end-page: 1206 ident: CR33 article-title: Combination analysis of neuropsychological tests and structural MRI measures in differentiating AD, MCI and control groups: The AddNeuroMed study publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2009.07.008 – volume: 8 start-page: 272 year: 1999 end-page: 284 ident: CR15 article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface publication-title: Hum Brain Mapp doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 – volume: 33 start-page: 1758 issue: 8 year: 2011 end-page: 1768 ident: CR13 article-title: Maximal brain size remains an important predictor of cognition in old age, independent of current brain pathology publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2011.03.017 – volume: 60 start-page: 1106 year: 2012 end-page: 1116 ident: CR34 article-title: Ensemble sparse classification of Alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.055 – volume: 62 start-page: 229 year: 2012 end-page: 238 ident: CR58 article-title: Combining MRI and CSF measures for classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.04.056 – volume: 49 start-page: 786 year: 1997 end-page: 794 ident: CR26 article-title: Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease publication-title: Neurology doi: 10.1212/WNL.49.3.786 – volume: 10 start-page: 33 year: 2009 ident: CR52 article-title: In vivo 1H-magnetic resonance spectroscopy can detect metabolic changes in APP/PS1 mice after donepezil treatment publication-title: BMC Neurosci doi: 10.1186/1471-2202-10-33 – volume: 6 start-page: e21896 year: 2011 ident: CR6 article-title: Identification of conversion from mild cognitive impairment to Alzheimer’s disease using multivariate predictors publication-title: PLoS ONE doi: 10.1371/journal.pone.0021896 – volume: 5 start-page: 162 year: 1993 end-page: 176 ident: CR8 article-title: Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach publication-title: J Cogn Neurosci doi: 10.1162/jocn.1993.5.2.162 – volume: 23 start-page: S69 issue: Suppl 1 year: 2004 end-page: S84 ident: CR18 article-title: Sequence-independent segmentation of magnetic resonance images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.016 – volume: 58 start-page: 818 year: 2011 end-page: 828 ident: CR55 article-title: AddNeuroMed and ADNI: similar patterns of Alzheimer’s atrophy and automated MRI classification accuracy in Europe and North America publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.065 – volume: 3 start-page: 81 year: 2007 end-page: 91 ident: CR60 article-title: An estimate of the total worldwide societal costs of dementia in 2005 publication-title: Alzheimer’s Dement doi: 10.1016/j.jalz.2007.02.001 – volume: 82 start-page: 4245 year: 1985 end-page: 4249 ident: CR35 article-title: Amyloid plaque core protein in Alzheimer disease and Down syndrome publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.82.12.4245 – volume: 97 start-page: 11050 year: 2000 end-page: 11055 ident: CR14 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.200033797 – volume: 20 start-page: 70 year: 2001 end-page: 80 ident: CR16 article-title: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex publication-title: IEEE Trans Med Imaging doi: 10.1109/42.906426 – volume: 148 start-page: 839 year: 1983 end-page: 843 ident: CR24 article-title: A method of comparing the areas under receiver operating characteristic curves derived from the same cases publication-title: Radiology – volume: 67 start-page: 739 year: 2010 end-page: 748 ident: CR47 article-title: Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease publication-title: Arch Gen Psychiatry doi: 10.1001/archgenpsychiatry.2010.78 – volume: 22 start-page: 171 year: 2010 end-page: 181 ident: CR53 article-title: Combining MRI and MRS to distinguish between Alzheimer’s disease and healthy controls publication-title: J Alzheimer’s Dis – volume: 80 start-page: 115 year: 2008 end-page: 122 ident: CR59 article-title: Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models publication-title: Anal Chem doi: 10.1021/ac0713510 – volume: 7 start-page: 263 year: 2011 end-page: 269 ident: CR39 article-title: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimer’s Dement doi: 10.1016/j.jalz.2011.03.005 – volume: 120 start-page: 885 year: 1984 end-page: 890 ident: CR22 article-title: Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein publication-title: Biochem Biophys Res Commun doi: 10.1016/S0006-291X(84)80190-4 – volume: 20 start-page: 139 year: 1999 end-page: 144 ident: CR27 article-title: Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease publication-title: AJNR Am J Neuroradiol – volume: 251 start-page: 195 issue: 1 year: 2009 end-page: 205 ident: CR36 article-title: Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment publication-title: Radiology doi: 10.1148/radiol.2511080924 – volume: 6 start-page: 734 year: 2007 end-page: 746 ident: CR11 article-title: Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria publication-title: Lancet Neurol doi: 10.1016/S1474-4422(07)70178-3 – volume: 80 start-page: S71 issue: Spec No 2 year: 2007 end-page: S77 ident: CR41 article-title: Role of imaging techniques in the diagnosis of dementia publication-title: Br J Radiol doi: 10.1259/bjr/33117326 – volume: 56 start-page: 766 year: 2011 end-page: 781 ident: CR7 article-title: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.013 – volume: 31 start-page: 1375 year: 2010 end-page: 1385 ident: CR32 article-title: Analysis of regional MRI volumes and thicknesses as predictors of conversion from mild cognitive impairment to Alzheimer’s disease publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2010.01.022 – volume: 1180 start-page: 47 year: 2009 end-page: 55 ident: CR100 article-title: MRI measures of Alzheimer's disease and the AddNeuroMed study publication-title: Ann NY Acad Sci doi: 10.1111/j.1749-6632.2009.05063.x – volume: 16 start-page: 119 year: 2002 end-page: 128 ident: CR48 article-title: Orthogonal projections to latent structures (O-PLS) publication-title: J Chemom doi: 10.1002/cem.695 – volume: 26 start-page: 307 year: 2011 end-page: 319 ident: CR57 article-title: Magnetic resonance imaging and magnetic resonance spectroscopy for detection of early Alzheimer’s disease publication-title: J Alzheimer’s Dis – volume: 17 start-page: 87 year: 1998 end-page: 97 ident: CR46 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans Med Imaging doi: 10.1109/42.668698 – volume: 14 start-page: 11 year: 2004 end-page: 22 ident: CR19 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb Cortex doi: 10.1093/cercor/bhg087 – volume: 54 start-page: 1178 year: 2011 end-page: 1187 ident: CR56 article-title: Multivariate analysis of MRI data for Alzheimer’s disease, mild cognitive impairment and healthy controls publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.044 – volume: 9 start-page: 179 year: 1999 end-page: 194 ident: CR9 article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction publication-title: Neuroimage doi: 10.1006/nimg.1998.0395 – volume: 23 start-page: S250 year: 2004 end-page: S263 ident: CR38 article-title: Partial least squares analysis of neuroimaging data: applications and advances publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.020 – volume: 5 start-page: 2642 year: 2006 end-page: 2655 ident: CR42 article-title: Statistically integrated metabonomic-proteomic studies on a human prostate cancer xenograft model in mice publication-title: J Proteome Res doi: 10.1021/pr060124w – volume: 26 start-page: 221 year: 2007 end-page: 228 ident: CR51 article-title: Carbamazepine treatment recovered low N-acetylaspartate + N-acetylaspartylglutamate (tNAA) levels in the megencephaly mouse BALB/cByJ-Kv1.1mceph/mceph publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2006.12.012 – volume: 21 start-page: 947 year: 2010 end-page: 966 ident: CR30 article-title: Effect of APOE epsilon4 allele on cortical thicknesses and volumes: the AddNeuroMed study publication-title: J Alzheimer’s Dis – volume: 56 start-page: 920 year: 2008 end-page: 934 ident: CR43 article-title: Magnetic resonance imaging characterization of brain structure and function in mild cognitive impairment: a review publication-title: J Am Geriatr Soc doi: 10.1111/j.1532-5415.2008.01684.x – volume: 19 start-page: 2001 year: 2009 end-page: 2012 ident: CR20 article-title: High consistency of regional cortical thinning in aging across multiple samples publication-title: Cereb Cortex doi: 10.1093/cercor/bhn232 – volume: 6 start-page: e22506 year: 2011 ident: CR54 article-title: Sensitivity and specificity of medial temporal lobe visual ratings and multivariate regional MRI classification in Alzheimer’s disease publication-title: PLoS One doi: 10.1371/journal.pone.0022506 – volume: 53 start-page: 1244 year: 2010 end-page: 1255 ident: CR1 article-title: Head size, age and gender adjustment in MRI studies: a necessary nuisance? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.025 – volume: 30 start-page: 229 year: 2010 end-page: 237 ident: CR31 article-title: APOE epsilon2 allele is associated with larger regional cortical thicknesses and volumes publication-title: Dement Geriatr Cogn Disord – volume: 22 start-page: 1060 year: 2004 end-page: 1075 ident: CR44 article-title: A hybrid approach to the skull stripping problem in MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.03.032 – volume: 60 start-page: 59 year: 2012 end-page: 70 ident: CR5 article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.066 – volume: 26 start-page: 75 issue: 1 year: 2011 end-page: 82 ident: CR200 article-title: The AddNeuroMed framework for multi-centre MRI assessment of longitudinal changes in Alzheimer’s disease: experience from the first 24 months publication-title: Int J Geriatr Psychiatry – volume: 58 start-page: 818 year: 2011 ident: 246_CR55 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.065 – volume: 23 start-page: S250 year: 2004 ident: 246_CR38 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.020 – volume: 3 start-page: 186 year: 2007 ident: 246_CR3 publication-title: Alzheimer’s Dement doi: 10.1016/j.jalz.2007.04.381 – volume: 259 start-page: 834 year: 2011 ident: 246_CR37 publication-title: Radiology doi: 10.1148/radiol.11101975 – volume: 62 start-page: 229 year: 2012 ident: 246_CR58 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.04.056 – volume: 49 start-page: 786 year: 1997 ident: 246_CR26 publication-title: Neurology doi: 10.1212/WNL.49.3.786 – volume: 33 start-page: 1758 issue: 8 year: 2011 ident: 246_CR13 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2011.03.017 – volume: 29 start-page: 1423 year: 2008 ident: 246_CR40 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2007.03.002 – volume: 55 start-page: 856 year: 2011 ident: 246_CR61 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.008 – volume: 19 start-page: 2001 year: 2009 ident: 246_CR20 publication-title: Cereb Cortex doi: 10.1093/cercor/bhn232 – volume: 22 start-page: 1060 year: 2004 ident: 246_CR44 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.03.032 – ident: 246_CR200 doi: 10.1002/gps.2491 – volume: 148 start-page: 839 year: 1983 ident: 246_CR24 publication-title: Radiology doi: 10.1148/radiology.148.3.6878708 – volume: 26 start-page: 221 year: 2007 ident: 246_CR51 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2006.12.012 – volume: 67 start-page: 739 year: 2010 ident: 246_CR47 publication-title: Arch Gen Psychiatry doi: 10.1001/archgenpsychiatry.2010.78 – volume: 120 start-page: 885 year: 1984 ident: 246_CR22 publication-title: Biochem Biophys Res Commun doi: 10.1016/S0006-291X(84)80190-4 – volume: 60 start-page: 1106 year: 2012 ident: 246_CR34 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.055 – volume: 16 start-page: 119 year: 2002 ident: 246_CR48 publication-title: J Chemom doi: 10.1002/cem.695 – volume: 32 start-page: 916 year: 2011 ident: 246_CR50 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2009.05.013 – volume: 9 start-page: 179 year: 1999 ident: 246_CR9 publication-title: Neuroimage doi: 10.1006/nimg.1998.0395 – volume: 23 start-page: S69 issue: Suppl 1 year: 2004 ident: 246_CR18 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.016 – volume: 97 start-page: 11050 year: 2000 ident: 246_CR14 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.200033797 – volume: 56 start-page: 920 year: 2008 ident: 246_CR43 publication-title: J Am Geriatr Soc doi: 10.1111/j.1532-5415.2008.01684.x – volume: 17 start-page: 87 year: 1998 ident: 246_CR46 publication-title: IEEE Trans Med Imaging doi: 10.1109/42.668698 – volume: 26 start-page: 307 year: 2011 ident: 246_CR57 publication-title: J Alzheimer’s Dis doi: 10.3233/JAD-2011-0028 – volume: 31 start-page: 968 year: 2006 ident: 246_CR10 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 8 start-page: 272 year: 1999 ident: 246_CR15 publication-title: Hum Brain Mapp doi: 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4 – volume: 70 start-page: 771 year: 2008 ident: 246_CR28 publication-title: Neurology doi: 10.1212/01.wnl.0000304108.32283.aa – volume: 82 start-page: 239 year: 1991 ident: 246_CR2 publication-title: Acta Neuropathol doi: 10.1007/BF00308809 – volume: 6 start-page: 734 year: 2007 ident: 246_CR11 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(07)70178-3 – volume: 20 start-page: 139 year: 1999 ident: 246_CR27 publication-title: AJNR Am J Neuroradiol – volume: 6 start-page: e22506 year: 2011 ident: 246_CR54 publication-title: PLoS One doi: 10.1371/journal.pone.0022506 – volume: 27 start-page: 281 issue: 2 year: 2011 ident: 246_CR29 publication-title: J Alzheimer’s Dis doi: 10.3233/JAD-2011-110497 – volume: 14 start-page: 11 year: 2004 ident: 246_CR19 publication-title: Cereb Cortex doi: 10.1093/cercor/bhg087 – volume: 26 start-page: 518 year: 2007 ident: 246_CR45 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2006.887364 – volume: 60 start-page: 59 year: 2012 ident: 246_CR5 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.066 – volume: 32 start-page: 1198 year: 2011 ident: 246_CR33 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2009.07.008 – volume: 80 start-page: 115 year: 2008 ident: 246_CR59 publication-title: Anal Chem doi: 10.1021/ac0713510 – volume: 5 start-page: 2642 year: 2006 ident: 246_CR42 publication-title: J Proteome Res doi: 10.1021/pr060124w – volume: 6 start-page: e21896 year: 2011 ident: 246_CR6 publication-title: PLoS ONE doi: 10.1371/journal.pone.0021896 – volume: 54 start-page: 1178 year: 2011 ident: 246_CR56 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.044 – volume: 31 start-page: 1375 year: 2010 ident: 246_CR32 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2010.01.022 – volume: 21 start-page: 947 year: 2010 ident: 246_CR30 publication-title: J Alzheimer’s Dis doi: 10.3233/JAD-2010-100201 – volume: 1 start-page: 279 year: 1991 ident: 246_CR23 publication-title: Brain Pathol doi: 10.1111/j.1750-3639.1991.tb00671.x – volume: 251 start-page: 195 issue: 1 year: 2009 ident: 246_CR36 publication-title: Radiology doi: 10.1148/radiol.2511080924 – volume: 52 start-page: 1181 year: 2007 ident: 246_CR4 publication-title: Plant J doi: 10.1111/j.1365-313X.2007.03293.x – volume: 5 start-page: 162 year: 1993 ident: 246_CR8 publication-title: J Cogn Neurosci doi: 10.1162/jocn.1993.5.2.162 – volume: 119 start-page: 2001 issue: Pt 6 year: 1996 ident: 246_CR21 publication-title: Brain doi: 10.1093/brain/119.6.2001 – volume: 33 start-page: 341 year: 2002 ident: 246_CR17 publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 53 start-page: 1244 year: 2010 ident: 246_CR1 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.025 – volume: 30 start-page: 229 year: 2010 ident: 246_CR31 publication-title: Dement Geriatr Cogn Disord doi: 10.1159/000320136 – volume: 7 start-page: 263 year: 2011 ident: 246_CR39 publication-title: Alzheimer’s Dement doi: 10.1016/j.jalz.2011.03.005 – volume: 20 start-page: 70 year: 2001 ident: 246_CR16 publication-title: IEEE Trans Med Imaging doi: 10.1109/42.906426 – volume: 56 start-page: 766 year: 2011 ident: 246_CR7 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.013 – volume: 42 start-page: 183 year: 1992 ident: 246_CR25 publication-title: Neurology doi: 10.1212/WNL.42.1.183 – ident: 246_CR49 – volume: 82 start-page: 4245 year: 1985 ident: 246_CR35 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.82.12.4245 – volume: 10 start-page: 33 year: 2009 ident: 246_CR52 publication-title: BMC Neurosci doi: 10.1186/1471-2202-10-33 – volume: 3 start-page: 81 year: 2007 ident: 246_CR60 publication-title: Alzheimer’s Dement doi: 10.1016/j.jalz.2007.02.001 – volume: 1180 start-page: 47 year: 2009 ident: 246_CR100 publication-title: Ann NY Acad Sci doi: 10.1111/j.1749-6632.2009.05063.x – volume-title: Multi- and megavariate data analysis (Part I-Basics and principals and applications) year: 2006 ident: 246_CR12 – volume: 80 start-page: S71 issue: Spec No 2 year: 2007 ident: 246_CR41 publication-title: Br J Radiol doi: 10.1259/bjr/33117326 – volume: 22 start-page: 171 year: 2010 ident: 246_CR53 publication-title: J Alzheimer’s Dis doi: 10.3233/JAD-2010-100168 |
SSID | ssj0003977 |
Score | 2.4117317 |
Snippet | Automated structural magnetic resonance imaging (MRI) processing pipelines are gaining popularity for Alzheimer’s disease (AD) research. They generate regional... Automated structural magnetic resonance imaging (MRI) processing pipelines are gaining popularity for Alzheimer's disease (AD) research. They generate regional... |
SourceID | swepub pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9 |
SubjectTerms | Aged Aged, 80 and over Alzheimer Disease - pathology Biomedical and Life Sciences Biomedicine Brain Mapping Cerebral Cortex - pathology Cognitive Dysfunction - pathology Female Humans Image Interpretation, Computer-Assisted Least-Squares Analysis Longitudinal Studies Magnetic Resonance Imaging Male Multivariate Analysis Neurology Neurosciences Original Paper Psychiatry |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgLojwDbWUkBBLIwom9cXJCVUtVkMIBUWlvkV9pI7bZZXeLKvjzzDhOylLRWxQ7cZwZ259nxt8Q8gpARKOsLVkuC8nkpBSsMKljzjpYkZxUmUc7ZPUlPz6Rn6eTaTS4rWJY5TAnhonazS3ayN-nUhVILcPlh8UPhlmj0LsaU2jcJneQugxDutR03HBxBDcBRYZA21wNXs3-6BxgddhIZ1Aic3a5uS5dA5vXYyZHx-k_JKNhYTp6QO5HREn3exXYJrd895DcraLP_BH5_dWfBnsfrfRph2cWKdrskWjD00_nIUsRrXpT4YoChqXhUO5P2EQDDqUDawltO7o_-3Xm23O_fLOih71nh-rO0aqdOXowBCLBSxe6XaLZ8TE5Ofr47eCYxZQLzAJSWzObp4VvMPdYUQJUFLkWDjClNEJxlzojlbPGNZm0RjVqoguuNXc8NcI0Osu0eEK2unnnnxFqbCpNiatgaaVveCEB2mllrBRW6kwnhA8_vLaRjxzTYszqKyZllFENMqpRRvVlQt6Ojyx6Mo6bKu8MUqzjuFzVV1qUkJdjMYwodJPozs8voA4gOoBFAHUS8rQX-thahn5ZxaFEbajDWAHZujdLuvYssHaLichhy56Qd4Pi_PVZ_-_E6163NhqIt77Dla-Rn0eJ5zf39gW5l4U8Hmg72iFb6-WF3wU0tTZ7Ycj8AcZ5HaQ priority: 102 providerName: ProQuest |
Title | Regional Magnetic Resonance Imaging Measures for Multivariate Analysis in Alzheimer’s Disease and Mild Cognitive Impairment |
URI | https://link.springer.com/article/10.1007/s10548-012-0246-x https://www.ncbi.nlm.nih.gov/pubmed/22890700 https://www.proquest.com/docview/1478097304 https://www.proquest.com/docview/1273201240 https://pubmed.ncbi.nlm.nih.gov/PMC3536978 http://kipublications.ki.se/Default.aspx?queryparsed=id:125894525 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA66C-KLeN_qOkQQH5RCm6RN-ziOs65KF1kcGJ9Kbt0tznaXmVkRQfBv-Pf8JZ6TXtxxVfCppUmTtifp-c45yXcIeQIgopLG5GEqMhGKJOdhpmMbWmNBI1khmUM_ZHGQ7s_Em3ky7_Zxr_rV7n1I0v-pL2x2A3QNpi8LQa-kIQDH7QRNdxjEMzYefr-IaDx09KtrU9mHMv_UxKYyuoQwLy-UHKKlvzGLem20d5Pc6GAkHbdyv0WuuOY2uVZ0gfI75OuhO_JOPlqoowY3KlJ01CO7hqOvT3xqIlq0_sEVBeBK_U7cT2A5A_ikPVUJrRs6Xnw5dvWJW_749n1FX7YBHaoaS4t6YemkX38EzZ6peonexrtktjd9P9kPu0wLoQGAtg5NGmeuwpRjWQ4IkaeKW4CSQnMZ2dhqIa3RtmLCaFnJRGWRUpGNYs11pRhT_B7Zak4bt0OoNrHQOSq_3AhXRZkARKekNoIboZgKSNR_8tJ0NOSYDWNR_iJQRimVIKUSpVR-Dsiz4ZazloPjX5V3ezmW3XRcgX0jM-QlikRAHg_FMJEwOqIad3oOdQDIARoChBOQ-63Yh94YhmNlBCVyY0AMFZCke7OkqY89WTdPeAqWekCe90PnwmP9_SWetqNro4Pu0kc4cyXS8kj-4L-afUiuM5_NAz1Iu2RrvTx3jwBTrfWIXJVzOSLb41cf3k7h-GJ68O4Qrk7SycjPr5-VfCFn |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrQS8IG4WChiJQwJFJLE3Th4QKj20pc0KVa3Ut-Ar7YptdtndQoH_xG9kJldZKvrWtyh2nDgztr-Zsb8BeI4gIpfGJF4kYuGJXsK9WAfWs8biimSFDB35IdNB1N8XHw96B0vwuzkLQ9sqmzmxnKjt2JCP_G0gZEzUMr54P_nqUdYoiq42KTQqtdh2P76jyTZ7t7WO8n0Rhpsbe2t9r84q4BkEI3PPREHsckqvFSeIhnikuEXYJDSXvg2sFtIabfNQGC1z2VOxr5Rv_UBznaswVBzbvQLLgqMp04HlDxuDT7vt3E9wqsSt5dbeSDZx1OqwHloHaLqHWCIi73RxJTwHb8_v0mxDtf_QmpZL4eZNuFFjWLZaKd0tWHLFbbia1lH6O_Br1x2WHkaWqsOCTkkyihIQtYdjW8dlXiSWVs7JGUPUzMpjwN_QbEfkyxqeFDYs2Oro55EbHrvpqxlbr2JJTBWWpcORZWvN1idsdKKGU3J03oX9SxHHPegU48I9AKZNIHRC625ihMv9WCCYVFIbwY1QoeqC3_zwzNQM6JSIY5SdcTeTjDKUUUYyyk678Lp9ZFLRf1xUeaWRYlbPBLPsTG-78KwtxjFMgRlVuPEJ1kEMiUAMwVUX7ldCb98WUiRY-lgiF9ShrUD84IslxfCo5AnnPR4lMu7Cm0Zx_vqs_3fiZaVbCy-ob33BK5cRI5DkDy_u7VO41t9Ld7KdrcH2I7gelllEyHO1Ap359MQ9Riw310_qAcTg82WP2T-lFFwJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VIlW8oHKbFlgkDglk1d5de-0HhKqGqKGkQohKeXP3cmuROiFJocA_49cx46uEir71LcpufGRmdr859htCngGIyKUxqR-LRPgiSrmf6ND61ljYkayQzGEccrgf7x6I96NotEJ-t2dhsKyyXROrhdpODMbIt0IhE6SWCcRW3pRFfOz1306_-thBCjOtbTuNWkX23I_v4L7N3wx6IOvnjPXffd7Z9ZsOA74BYLLwTRwmLsdWW0kKyIjHiluAUEJzGdjQaiGt0TZnwmiZy0glgVKBDULNda4YUxyue41clzwK0cbkqHP2AgRWFYKtinxj2WZU62N74CeAE89gRMT-2fKeeAHoXqzX7JK2_xCcVptif53cbNAs3a7V7xZZceVtsjZs8vV3yK9P7qiKNdKhOirxvCTFfAGSfDg6OKk6JNFhHaacU8DPtDoQ_A0ceMDAtGVMoUVJt8c_j11x4mYv57RXZ5WoKi0dFmNLd9oiKLjoVBUzDHneJQdXIox7ZLWclO4BodqEQqe4A6dGuDxIBMBKJbUR3AjFlEeC9g_PTMOFji05xtk5izPKKAMZZSij7Mwjr7qfTGsikMsmb7ZSzJo1YZ6da7BHnnbDYM2YolGlm5zCHECTAMkAZnnkfi307m4Mc8IygBG5pA7dBGQKXx4pi-OKMZxHPE5l4pHXreL89Vj_f4kXtW4t3aD56gt8chlyA0n-8PK3fULWwFKzD4P9vQ1yg1XtRDCEtUlWF7NT9whA3UI_rqyHksOrNtc_8m1e2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+magnetic+resonance+imaging+measures+for+multivariate+analysis+in+Alzheimer%27s+disease+and+mild+cognitive+impairment&rft.jtitle=Brain+topography&rft.au=Westman%2C+Eric&rft.au=Aguilar%2C+Carlos&rft.au=Muehlboeck%2C+J-Sebastian&rft.au=Simmons%2C+Andrew&rft.date=2013-01-01&rft.eissn=1573-6792&rft.volume=26&rft.issue=1&rft.spage=9&rft_id=info:doi/10.1007%2Fs10548-012-0246-x&rft_id=info%3Apmid%2F22890700&rft.externalDocID=22890700 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-0267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-0267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-0267&client=summon |