Metabolic Flux Analysis of Plastidic Isoprenoid Biosynthesis in Poplar Leaves Emitting and Nonemitting Isoprene
The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope ¹³C-labeling technique, we analyzed the carbon fluxes...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 165; no. 1; pp. 37 - 51 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Plant Biologists
01.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope ¹³C-labeling technique, we analyzed the carbon fluxes through the pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus × canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO₂]. Isoprene biosynthesis was by far (99%) the main carbon sink of pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-Dxylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-D-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties. |
---|---|
AbstractList | The plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus × canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-d-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties. Isoprene biosynthesis demands a huge carbon flux through the plastidic isoprenoid pathway, and the concentration of its immediate precursor modulates this flux . The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus×canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-D-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus×canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-D-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties. The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope ¹³C-labeling technique, we analyzed the carbon fluxes through the pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus × canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO₂]. Isoprene biosynthesis was by far (99%) the main carbon sink of pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-Dxylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-D-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties. Isoprene biosynthesis demands a huge carbon flux through the plastidic isoprenoid pathway, and the concentration of its immediate precursor modulates this flux . The plastidic 2-C-methyl- d -erythritol-4-phosphate ( MEP ) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13 C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting ( NE ) gray poplar ( Populus × canescens ). We assessed the dependence on temperature, light intensity, and atmospheric [CO 2 ]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy- d -xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy- d -xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties. The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus×canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-D-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties. |
Author | Rodríguez-Concepción, Manuel Gershenzon, Jonathan Brüggemann, Nicolas Rosenkranz, Maaria Wright, Louwrance Peter Niinemets, Ülo Bi, Zhen Schnitzler, Jörg-Peter Ghirardo, Andrea Pulido, Pablo |
Author_xml | – sequence: 1 givenname: Andrea surname: Ghirardo fullname: Ghirardo, Andrea – sequence: 2 givenname: Louwrance Peter surname: Wright fullname: Wright, Louwrance Peter – sequence: 3 givenname: Zhen surname: Bi fullname: Bi, Zhen – sequence: 4 givenname: Maaria surname: Rosenkranz fullname: Rosenkranz, Maaria – sequence: 5 givenname: Pablo surname: Pulido fullname: Pulido, Pablo – sequence: 6 givenname: Manuel surname: Rodríguez-Concepción fullname: Rodríguez-Concepción, Manuel – sequence: 7 givenname: Ülo surname: Niinemets fullname: Niinemets, Ülo – sequence: 8 givenname: Nicolas surname: Brüggemann fullname: Brüggemann, Nicolas – sequence: 9 givenname: Jonathan surname: Gershenzon fullname: Gershenzon, Jonathan – sequence: 10 givenname: Jörg-Peter surname: Schnitzler fullname: Schnitzler, Jörg-Peter |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24590857$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1vEzEQxS1URNPCkSPIRy5bZvyRXV-Q2qqFSgF6gLPl9TqtK8de1k5F_nscJakACXF6tuY3T0_zTshRTNER8hrhDBHE-3GsKs4YnwN2z8gMJWcNk6I7IjOA-oauU8fkJOcHAECO4gU5ZkIq6GQ7I-mzK6ZPwVt6HdY_6Xk0YZN9pmlJb4PJxQ91dJPTOLmY_EAvfMqbWO7dFvKR3qYxmIkunHl0mV6tfCk-3lETB_qlJj389w7uJXm-NCG7V3s9Jd-vr75dfmoWXz_eXJ4vGiuhK40Vg-uYwblt5xIMqoFL1_b9EhlYZgRvAQa2dP3AkGFrOw52UA6VMrI3wvJT8mHnO677lRusi2UyQY-TX5lpo5Px-s9J9Pf6Lj1qAcikktXg3d5gSj_WLhe98tm6EEx0aZ01214TFHD4L4qSocKaXFT07e-xnvIcCqkA3wF2SjlPbqmtL6b4tE3pg0bQ29r1OFYVeld73Wr-2joY_4t_s-MfcknTEyw4KlBc8F_UhrnY |
CitedBy_id | crossref_primary_10_1111_nph_13380 crossref_primary_10_1111_nph_18035 crossref_primary_10_3389_fpls_2015_00611 crossref_primary_10_1371_journal_pone_0161534 crossref_primary_10_1016_j_pbi_2015_04_001 crossref_primary_10_3390_ijms18091923 crossref_primary_10_1093_jxb_eru443 crossref_primary_10_1007_s42994_021_00054_1 crossref_primary_10_1016_j_cpb_2021_100203 crossref_primary_10_1093_plphys_kiad110 crossref_primary_10_1186_s12870_015_0542_1 crossref_primary_10_3390_ijpb15010013 crossref_primary_10_1093_treephys_tpx083 crossref_primary_10_1038_s41598_021_98750_x crossref_primary_10_1093_treephys_tpad087 crossref_primary_10_1021_acsinfecdis_7b00176 crossref_primary_10_1042_BCJ20200480 crossref_primary_10_1093_treephys_tpw032 crossref_primary_10_3389_fpls_2018_01733 crossref_primary_10_1073_pnas_1912327117 crossref_primary_10_1016_j_tplants_2018_09_012 crossref_primary_10_3390_ijms23073836 crossref_primary_10_1186_s13007_022_00946_3 crossref_primary_10_3389_fpls_2018_00766 crossref_primary_10_3389_fpls_2020_546295 crossref_primary_10_1016_j_xplc_2022_100512 crossref_primary_10_1111_tpj_14071 crossref_primary_10_1021_acssynbio_9b00455 crossref_primary_10_1111_pbi_12343 crossref_primary_10_1016_j_marchem_2016_12_005 crossref_primary_10_1016_j_plipres_2018_04_004 crossref_primary_10_1111_pce_13629 crossref_primary_10_1111_pce_12930 crossref_primary_10_3389_fpls_2021_637976 crossref_primary_10_3389_fpls_2022_968780 crossref_primary_10_1111_pce_12785 crossref_primary_10_1186_s13068_020_01707_x crossref_primary_10_5194_bg_19_4945_2022 crossref_primary_10_1093_treephys_tpae142 crossref_primary_10_3389_fpls_2020_549913 crossref_primary_10_1016_j_foodchem_2024_139277 crossref_primary_10_1111_pce_12660 crossref_primary_10_1016_j_plipres_2016_04_002 crossref_primary_10_1111_gcbb_12423 crossref_primary_10_1111_pce_12582 crossref_primary_10_1111_nph_17736 crossref_primary_10_3390_antiox10050684 crossref_primary_10_1111_nph_13258 crossref_primary_10_1093_jxb_erz397 crossref_primary_10_5194_bg_15_5047_2018 crossref_primary_10_1128_AEM_02920_14 crossref_primary_10_1042_BJ20140984 crossref_primary_10_1074_jbc_REV119_006132 crossref_primary_10_1093_jxb_erab463 crossref_primary_10_1111_tpj_15453 crossref_primary_10_1007_s10863_015_9625_9 crossref_primary_10_3390_plants12020333 crossref_primary_10_1016_j_bbalip_2020_158664 crossref_primary_10_1111_pce_12901 crossref_primary_10_3390_plants9070830 crossref_primary_10_1016_j_envexpbot_2015_04_007 crossref_primary_10_3390_ijms25084181 crossref_primary_10_1016_j_molp_2014_12_007 crossref_primary_10_1111_pce_12797 crossref_primary_10_3389_fpls_2017_02244 crossref_primary_10_1186_s13007_021_00731_8 crossref_primary_10_1111_pce_12350 crossref_primary_10_3390_app9245389 crossref_primary_10_1007_s00442_021_04905_y crossref_primary_10_1007_s00442_021_04907_w crossref_primary_10_1016_j_plantsci_2021_110960 crossref_primary_10_1007_s10725_020_00661_w crossref_primary_10_1093_aobpla_plx045 crossref_primary_10_1111_gcbb_12454 crossref_primary_10_1111_pce_14131 crossref_primary_10_5194_acp_16_2901_2016 crossref_primary_10_1186_s13765_022_00718_6 crossref_primary_10_1111_gcb_14935 crossref_primary_10_1111_pbi_14345 crossref_primary_10_1016_j_envexpbot_2015_04_010 crossref_primary_10_3390_app13179680 crossref_primary_10_1111_pce_12759 crossref_primary_10_1111_ppl_13619 crossref_primary_10_1111_pce_12878 crossref_primary_10_1111_pce_12643 crossref_primary_10_1016_j_plantsci_2024_111983 crossref_primary_10_3390_ijms161025516 crossref_primary_10_3390_ijms242015329 crossref_primary_10_1093_jxb_ery441 crossref_primary_10_1016_j_plipres_2024_101287 crossref_primary_10_1128_msystems_00092_23 crossref_primary_10_1371_journal_pgen_1005824 crossref_primary_10_3389_fpls_2017_01281 |
Cites_doi | 10.1104/pp.106.092759 10.1111/j.1365-3040.2004.01250.x 10.1104/pp.103.037374 10.1093/mp/sss015 10.1046/j.1365-313x.2000.00764.x 10.1111/j.1365-3040.1993.tb00907.x 10.1371/journal.pone.0032387 10.1016/j.phytochem.2010.02.016 10.1146/annurev.arplant.52.1.407 10.1074/jbc.M302526200 10.1038/nature01312 10.1074/jbc.M208659200 10.1104/pp.102.012294 10.1126/science.1137786 10.1007/s11103-008-9441-2 10.1111/nph.12325 10.1111/nph.12200 10.1111/j.1365-3040.2004.01314.x 10.1073/pnas.0407360102 10.1016/j.tplants.2009.12.006 10.1111/nph.12477 10.1046/j.1365-3040.1999.00505.x 10.1029/2010GL046520 10.1111/j.1365-3040.2012.02584.x 10.1104/pp.108.133512 10.1111/j.1365-313X.2007.03157.x 10.1111/j.1365-3040.2007.01668.x 10.1104/pp.109.151647 10.1371/journal.pone.0017393 10.1016/j.tibtech.2007.12.003 10.5194/acp-12-1021-2012 10.1515/znc-1998-11-1208 10.1073/pnas.95.5.2100 10.1111/j.1467-7652.2004.00091.x 10.1073/pnas.1031755100 10.1104/pp.010497 10.1093/treephys/22.14.1011 10.1111/pce.12190 10.1104/pp.105.066373 10.1093/treephys/tpt018 10.1111/j.1365-3040.2011.02322.x 10.1074/jbc.M113.464636 10.1046/j.1469-8137.2002.00516.x 10.1038/nchembio836 10.1111/nph.12145 10.1021/ac052027c 10.1111/j.1438-8677.2008.00146.x 10.1104/pp.110.162081 10.1111/nph.12391 10.1021/jo061466o 10.1104/pp.104.039537 10.1074/jbc.M100854200 10.1007/s11120-010-9528-x 10.1093/aob/mcm240 10.1111/j.1469-8137.2011.03979.x 10.1105/tpc.104.028860 10.1038/nchembio.2007.5 10.1111/j.1469-8137.2012.04204.x 10.1111/j.1365-3040.2009.01980.x 10.1111/j.1365-2486.2012.02789.x 10.1093/treephys/tpp009 10.1023/A:1006300616544 10.1016/j.phytochem.2007.04.021 10.1046/j.1365-3040.2000.00536.x 10.1007/s11101-005-3130-4 10.1038/374769a0 10.1016/j.cell.2012.04.038 10.1111/j.1365-3040.2009.02104.x 10.1038/nchembio.158 10.1007/s00425-002-0825-2 10.1038/nbt1251 10.1111/j.1438-8677.2009.00284.x 10.1021/pr401124z 10.5194/acp-8-4605-2008 10.1093/jxb/ert318 10.1104/pp.104.043737 10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2 10.1104/pp.109.141978 10.1016/S0003-9861(03)00233-9 10.1111/j.1469-8137.2007.02094.x 10.1104/pp.106.086355 10.1016/j.ab.2012.11.031 10.1034/j.1399-3054.2002.1150203.x 10.1007/s11103-010-9654-z 10.1007/s00425-005-0022-1 10.1002/rcm.258 10.1016/j.ab.2013.05.028 10.1105/tpc.113.113001 10.1016/j.tplants.2010.02.003 10.1105/tpc.108.063248 10.1007/s00442-011-1947-7 |
ContentType | Journal Article |
Copyright | 2014 American Society of Plant Biologists 2014 American Society of Plant Biologists. All Rights Reserved. 2014 |
Copyright_xml | – notice: 2014 American Society of Plant Biologists – notice: 2014 American Society of Plant Biologists. All Rights Reserved. 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1104/pp.114.236018 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 51 |
ExternalDocumentID | PMC4012595 24590857 10_1104_pp_114_236018 43190934 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2WC 2~F 4.4 5VS 5WD 85S 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN ABBHK ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABVGC ABXSQ ABXVV ABXZS ACBTR ACGOD ACHIC ACNCT ACPRK ACUFI ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADXHL ADYHW AEEJZ AENEX AEUPB AFAZZ AFFZL AFGWE AFRAH AGORE AGUYK AHMBA AHXOZ AICQM AJBYB AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX AQVQM ATGXG BAWUL BCRHZ BEYMZ BTFSW CBGCD CS3 DATOO DIK DU5 E3Z EBS ECGQY EJD F5P FLUFQ FOEOM H13 IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN MV1 NOMLY NU- OBOKY OJZSN OK1 OWPYF P0- P2P Q2X RHI ROX RPB RWL RXW SA0 TAE TN5 TR2 W8F WH7 WOQ XSW YBU YKV YNT YSK YZZ ZCA ZCN ~02 ~KM AAYXX CITATION 53G 7X2 7X7 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 AAWDT AAYJJ ABIME ABPIB ABUWG ABZEO ACFRR ACIPB ACUTJ ACVCV ACZBC AEUYN AFFDN AFKRA AFYAG AGMDO AHGBF AIDAL AIDBO AJDVS ANFBD APJGH AQDSO AS~ ATCPS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C1A CCPQU CGR CUY CVF D1J DWQXO ECM EIF FYUFA GNUQQ GTFYD GUQSH HCIFZ HMCUK HTVGU LK8 LU7 M0K M1P M2O M2P M2Q M7P MVM NPM PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO QZG S0X TCN UBC UKHRP UKR WHG XOL Y6R ZCG 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c508t-c4de82a16c7650a19d35e7bbf120c2a43700d2febd21217c830cd9e199a5ba4c3 |
ISSN | 0032-0889 1532-2548 |
IngestDate | Thu Aug 21 14:11:26 EDT 2025 Thu Jul 10 18:00:46 EDT 2025 Fri Jul 11 10:00:12 EDT 2025 Mon Jul 21 06:07:01 EDT 2025 Thu Apr 24 23:11:02 EDT 2025 Tue Jul 01 03:08:04 EDT 2025 Fri May 30 11:59:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c508t-c4de82a16c7650a19d35e7bbf120c2a43700d2febd21217c830cd9e199a5ba4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Jörg-Peter Schnitzler (jp.schnitzler@helmholtz-muenchen.de). www.plantphysiol.org/cgi/doi/10.1104/pp.114.236018 |
OpenAccessLink | http://www.plantphysiol.org/content/plantphysiol/165/1/37.full.pdf |
PMID | 24590857 |
PQID | 1521911204 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4012595 proquest_miscellaneous_2000109030 proquest_miscellaneous_1521911204 pubmed_primary_24590857 crossref_citationtrail_10_1104_pp_114_236018 crossref_primary_10_1104_pp_114_236018 jstor_primary_43190934 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2014 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | Sharkey (2021052607425876700_b75) 2001; 52 Kreuzwieser (2021052607425876700_b41) 2002; 156 Beisel (2021052607425876700_b11) 2010; 152 Rasulov (2021052607425876700_b65) 2009; 151 Banerjee (2021052607425876700_b4) 2013; 288 Trowbridge (2021052607425876700_b80) 2012; 7 Arneth (2021052607425876700_b3) 2008; 8 Cinege (2021052607425876700_b18) 2009; 69 Wolfertz (2021052607425876700_b90) 2004; 135 Moses (2021052607425876700_b55) 2013; 200 Monson (2021052607425876700_b54) 2012; 195 Way (2021052607425876700_b86) 2011; 166 Cazzonelli (2021052607425876700_b16) 2010; 15 Chang (2021052607425876700_b17) 2006; 2 Dudareva (2021052607425876700_b21) 2005; 102 Estévez (2021052607425876700_b25) 2001; 276 2021052607425876700_b57 Rios-Estepa (2021052607425876700_b66) 2007; 68 Sharkey (2021052607425876700_b73) 1995; 374 Rasulov (2021052607425876700_b63) 2009; 149 Thulasiram (2021052607425876700_b79) 2007; 316 Behnke (2021052607425876700_b10) 2010; 104 Bick (2021052607425876700_b12) 2003; 415 Behnke (2021052607425876700_b9) 2009; 29 Gershenzon (2021052607425876700_b28) 2007; 3 Behnke (2021052607425876700_b5) 2007; 51 Ghirardo (2021052607425876700_b31) 2010; 71 Behnke (2021052607425876700_b6) 2013; 33 Dudareva (2021052607425876700_b22) 2013; 198 Hemmerlin (2021052607425876700_b35) 2003; 278 Vranová (2021052607425876700_b84) 2012; 5 Way (2021052607425876700_b85) 2013; 200 Werner (2021052607425876700_b88) 2001; 15 Coplen (2021052607425876700_b19) 2006; 78 Velikova (2021052607425876700_b82) 2005; 28 Sun (2021052607425876700_b78) 2013; 198 Zeidler (2021052607425876700_b93) 1997; 53 Laule (2021052607425876700_b43) 2003; 100 Loivamäki (2021052607425876700_b47) 2007; 143 Rasulov (2021052607425876700_b62) 2013; 37 Rosenstiel (2021052607425876700_b68) 2003; 421 Weise (2021052607425876700_b87) 2013; 435 Loreto (2021052607425876700_b51) 2001; 127 Pulido (2021052607425876700_b61) 2013; 25 Kasahara (2021052607425876700_b39) 2002; 277 Muñoz-Bertomeu (2021052607425876700_b56) 2006; 142 Archibald (2021052607425876700_b2) 2011; 38 Vickers (2021052607425876700_b83) 2009; 5 Ryan (2021052607425876700_b69) 2014; 201 Brüggemann (2021052607425876700_b14) 2002; 22 Affek (2021052607425876700_b1) 2003; 131 Loreto (2021052607425876700_b50) 2010; 15 Giuliano (2021052607425876700_b32) 2008; 26 Peñuelas (2021052607425876700_b59) 2005; 28 Ehlting (2021052607425876700_b23) 2007; 30 Illarionova (2021052607425876700_b36) 2006; 71 Xiao (2021052607425876700_b92) 2012; 149 Ivanova (2021052607425876700_b37) 2009; 11 Velikova (2021052607425876700_b81) Niinemets (2021052607425876700_b58) 1999; 22 2021052607425876700_b33 Loreto (2021052607425876700_b49) 2004; 135 Gerber (2021052607425876700_b27) 2009; 21 Ghirardo (2021052607425876700_b30) 2010; 33 Karl (2021052607425876700_b38) 2002; 215 Schnitzler (2021052607425876700_b72) 2005; 222 Behnke (2021052607425876700_b7) 2012; 194 Behnke (2021052607425876700_b8) 2010; 74 Li (2021052607425876700_b45) 2013; 36 Schnitzler (2021052607425876700_b70) 2004; 135 Brüggemann (2021052607425876700_b15) 2002; 115 Brilli (2021052607425876700_b13) 2007; 175 Enfissi (2021052607425876700_b24) 2005; 3 Schnitzler (2021052607425876700_b71) 2010; 12 Sun (2021052607425876700_b76) 2013; 64 Delwiche (2021052607425876700_b20) 1993; 650 Lois (2021052607425876700_b46) 2000; 22 Guevara-García (2021052607425876700_b34) 2005; 17 Sharkey (2021052607425876700_b74) 2008; 101 Poisson (2021052607425876700_b60) 2000; 36 Fuentes (2021052607425876700_b26) 2000; 81 Ghirardo (2021052607425876700_b29) 2011; 6 Lange (2021052607425876700_b42) 1998; 95 Kiendler-Scharr (2021052607425876700_b40) 2012; 12 Rasulov (2021052607425876700_b64) 2010; 154 Zhou (2021052607425876700_b94) 2013; 440 2021052607425876700_b44 Kaling (2021052607425876700_b95) 2014 Wiberley (2021052607425876700_b89) 2009; 32 Sun (2021052607425876700_b77) 2012; 18 Mayrhofer (2021052607425876700_b52) 2005; 139 Mongélard (2021052607425876700_b53) 2011; 34 Loreto (2021052607425876700_b48) 2000; 23 Rodríguez-Concepción (2021052607425876700_b67) 2006; 5 Wu (2021052607425876700_b91) 2006; 24 |
References_xml | – volume: 143 start-page: 540 year: 2007 ident: 2021052607425876700_b47 article-title: Circadian rhythms of isoprene biosynthesis in grey poplar leaves publication-title: Plant Physiol doi: 10.1104/pp.106.092759 – volume: 28 start-page: 278 year: 2005 ident: 2021052607425876700_b59 article-title: Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2004.01250.x – volume: 135 start-page: 152 year: 2004 ident: 2021052607425876700_b70 article-title: Contribution of different carbon sources to isoprene biosynthesis in poplar leaves publication-title: Plant Physiol doi: 10.1104/pp.103.037374 – volume: 5 start-page: 318 year: 2012 ident: 2021052607425876700_b84 article-title: Structure and dynamics of the isoprenoid pathway network publication-title: Mol Plant doi: 10.1093/mp/sss015 – volume: 22 start-page: 503 year: 2000 ident: 2021052607425876700_b46 article-title: Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-d-xylulose 5-phosphate synthase publication-title: Plant J doi: 10.1046/j.1365-313x.2000.00764.x – volume: 650 start-page: 587 year: 1993 ident: 2021052607425876700_b20 article-title: Rapid appearance of 13C in biogenic isoprene when 13CO2 is fed to intact leaves publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.1993.tb00907.x – volume: 7 start-page: e32387 year: 2012 ident: 2021052607425876700_b80 article-title: Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations publication-title: PLoS ONE doi: 10.1371/journal.pone.0032387 – volume: 71 start-page: 918 year: 2010 ident: 2021052607425876700_b31 article-title: Analysis of 1-deoxy-d-xylulose 5-phosphate synthase activity in grey poplar leaves using isotope ratio mass spectrometry publication-title: Phytochemistry doi: 10.1016/j.phytochem.2010.02.016 – volume: 52 start-page: 407 year: 2001 ident: 2021052607425876700_b75 article-title: Isoprene emission from plants publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.arplant.52.1.407 – volume: 278 start-page: 26666 year: 2003 ident: 2021052607425876700_b35 article-title: Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells publication-title: J Biol Chem doi: 10.1074/jbc.M302526200 – volume: 421 start-page: 256 year: 2003 ident: 2021052607425876700_b68 article-title: Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem publication-title: Nature doi: 10.1038/nature01312 – volume: 277 start-page: 45188 year: 2002 ident: 2021052607425876700_b39 article-title: Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis publication-title: J Biol Chem doi: 10.1074/jbc.M208659200 – volume: 131 start-page: 1727 year: 2003 ident: 2021052607425876700_b1 article-title: Natural abundance carbon isotope composition of isoprene reflects incomplete coupling between isoprene synthesis and photosynthetic carbon flow publication-title: Plant Physiol doi: 10.1104/pp.102.012294 – volume: 316 start-page: 73 year: 2007 ident: 2021052607425876700_b79 article-title: Chimeras of two isoprenoid synthases catalyze all four coupling reactions in isoprenoid biosynthesis publication-title: Science doi: 10.1126/science.1137786 – volume: 69 start-page: 593 year: 2009 ident: 2021052607425876700_b18 article-title: Regulation of isoprene synthase promoter by environmental and internal factors publication-title: Plant Mol Biol doi: 10.1007/s11103-008-9441-2 – volume: 200 start-page: 27 year: 2013 ident: 2021052607425876700_b55 article-title: Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro publication-title: New Phytol doi: 10.1111/nph.12325 – volume: 198 start-page: 788 year: 2013 ident: 2021052607425876700_b78 article-title: Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides) publication-title: New Phytol doi: 10.1111/nph.12200 – ident: 2021052607425876700_b33 – volume: 28 start-page: 318 year: 2005 ident: 2021052607425876700_b82 article-title: On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2004.01314.x – volume: 102 start-page: 933 year: 2005 ident: 2021052607425876700_b21 article-title: The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0407360102 – volume: 15 start-page: 154 year: 2010 ident: 2021052607425876700_b50 article-title: Abiotic stresses and induced BVOCs publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2009.12.006 – volume: 201 start-page: 205 year: 2014 ident: 2021052607425876700_b69 article-title: Isoprene emission protects photosynthesis but reduces plant productivity during drought in transgenic tobacco (Nicotiana tabacum) plants publication-title: New Phytol doi: 10.1111/nph.12477 – volume: 22 start-page: 1319 year: 1999 ident: 2021052607425876700_b58 article-title: A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1999.00505.x – volume: 38 year: 2011 ident: 2021052607425876700_b2 article-title: Impacts of HOx regeneration and recycling in the oxidation of isoprene: consequences for the composition of past, present and future atmospheres publication-title: Geophys Res Lett doi: 10.1029/2010GL046520 – volume: 36 start-page: 429 year: 2013 ident: 2021052607425876700_b45 article-title: Metabolic profiling of the methylerythritol phosphate pathway reveals the source of post-illumination isoprene burst from leaves publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2012.02584.x – volume: 149 start-page: 1609 year: 2009 ident: 2021052607425876700_b63 article-title: Postillumination isoprene emission: in vivo measurements of dimethylallyldiphosphate pool size and isoprene synthase kinetics in aspen leaves publication-title: Plant Physiol doi: 10.1104/pp.108.133512 – volume: 51 start-page: 485 year: 2007 ident: 2021052607425876700_b5 article-title: Transgenic, non-isoprene emitting poplars don’t like it hot publication-title: Plant J doi: 10.1111/j.1365-313X.2007.03157.x – volume: 30 start-page: 796 year: 2007 ident: 2021052607425876700_b23 article-title: Interaction of nitrogen nutrition and salinity in grey poplar (Populus tremula × alba) publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2007.01668.x – volume: 152 start-page: 2188 year: 2010 ident: 2021052607425876700_b11 article-title: Continuous turnover of carotenes and chlorophyll a in mature leaves of Arabidopsis revealed by 14CO2 pulse-chase labeling publication-title: Plant Physiol doi: 10.1104/pp.109.151647 – volume: 6 start-page: e17393 year: 2011 ident: 2021052607425876700_b29 article-title: Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants publication-title: PLoS ONE doi: 10.1371/journal.pone.0017393 – volume: 26 start-page: 139 year: 2008 ident: 2021052607425876700_b32 article-title: Metabolic engineering of carotenoid biosynthesis in plants publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2007.12.003 – volume: 12 start-page: 1021 year: 2012 ident: 2021052607425876700_b40 article-title: Isoprene in poplar emissions: effects on new particle formation and OH concentrations publication-title: Atmos Chem Phys doi: 10.5194/acp-12-1021-2012 – volume: 53 start-page: 980 year: 1997 ident: 2021052607425876700_b93 article-title: Is isoprene emitted by plants synthesized via the novel isopentenyl pyrophosphate pathway? publication-title: Z Naturforsch C doi: 10.1515/znc-1998-11-1208 – volume: 95 start-page: 2100 year: 1998 ident: 2021052607425876700_b42 article-title: A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.5.2100 – volume: 3 start-page: 17 year: 2005 ident: 2021052607425876700_b24 article-title: Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato publication-title: Plant Biotechnol J doi: 10.1111/j.1467-7652.2004.00091.x – volume: 100 start-page: 6866 year: 2003 ident: 2021052607425876700_b43 article-title: Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1031755100 – volume: 127 start-page: 1781 year: 2001 ident: 2021052607425876700_b51 article-title: Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes publication-title: Plant Physiol doi: 10.1104/pp.010497 – volume: 22 start-page: 1011 year: 2002 ident: 2021052607425876700_b14 article-title: Relationship of isopentenyl diphosphate (IDP) isomerase activity to isoprene emission of oak leaves publication-title: Tree Physiol doi: 10.1093/treephys/22.14.1011 – volume: 37 start-page: 724 year: 2013 ident: 2021052607425876700_b62 article-title: Competition between isoprene emission and pigments synthesis during leaf development in aspen publication-title: Plant Cell Environ doi: 10.1111/pce.12190 – volume: 139 start-page: 474 year: 2005 ident: 2021052607425876700_b52 article-title: Diurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves publication-title: Plant Physiol doi: 10.1104/pp.105.066373 – volume: 33 start-page: 562 year: 2013 ident: 2021052607425876700_b6 article-title: Isoprene function in two contrasting poplars under salt and sunflecks publication-title: Tree Physiol doi: 10.1093/treephys/tpt018 – volume: 34 start-page: 1241 year: 2011 ident: 2021052607425876700_b53 article-title: Measurement of carbon flux through the MEP pathway for isoprenoid synthesis by 31P-NMR spectroscopy after specific inhibition of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate reductase: effect of light and temperature publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2011.02322.x – volume: 288 start-page: 16926 year: 2013 ident: 2021052607425876700_b4 article-title: Feedback inhibition of deoxy-d-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway publication-title: J Biol Chem doi: 10.1074/jbc.M113.464636 – volume: 156 start-page: 171 year: 2002 ident: 2021052607425876700_b41 article-title: Xylem-transported glucose as an additional carbon source for leaf isoprene formation in Quercus robur publication-title: New Phytol doi: 10.1046/j.1469-8137.2002.00516.x – volume: 2 start-page: 674 year: 2006 ident: 2021052607425876700_b17 article-title: Production of isoprenoid pharmaceuticals by engineered microbes publication-title: Nat Chem Biol doi: 10.1038/nchembio836 – ident: 2021052607425876700_b57 – volume: 198 start-page: 16 year: 2013 ident: 2021052607425876700_b22 article-title: Biosynthesis, function and metabolic engineering of plant volatile organic compounds publication-title: New Phytol doi: 10.1111/nph.12145 – volume: 78 start-page: 2439 year: 2006 ident: 2021052607425876700_b19 article-title: New guidelines for δ13C measurements publication-title: Anal Chem doi: 10.1021/ac052027c – volume: 11 start-page: 625 year: 2009 ident: 2021052607425876700_b37 article-title: Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol publication-title: Plant Biol (Stuttg) doi: 10.1111/j.1438-8677.2008.00146.x – volume: 154 start-page: 1558 year: 2010 ident: 2021052607425876700_b64 article-title: Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis publication-title: Plant Physiol doi: 10.1104/pp.110.162081 – volume: 200 start-page: 534 year: 2013 ident: 2021052607425876700_b85 article-title: Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene- and non-isoprene-emitting poplars publication-title: New Phytol doi: 10.1111/nph.12391 – volume: 71 start-page: 8824 year: 2006 ident: 2021052607425876700_b36 article-title: Nonmevalonate terpene biosynthesis enzymes as antiinfective drug targets: substrate synthesis and high-throughput screening methods publication-title: J Org Chem doi: 10.1021/jo061466o – volume: 135 start-page: 1903 year: 2004 ident: 2021052607425876700_b49 article-title: 13C labeling reveals chloroplastic and extrachloroplastic pools of dimethylallyl pyrophosphate and their contribution to isoprene formation publication-title: Plant Physiol doi: 10.1104/pp.104.039537 – volume: 276 start-page: 22901 year: 2001 ident: 2021052607425876700_b25 article-title: 1-Deoxy-d-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants publication-title: J Biol Chem doi: 10.1074/jbc.M100854200 – volume: 104 start-page: 5 year: 2010 ident: 2021052607425876700_b10 article-title: Isoprene emission protects photosynthesis in sunfleck exposed grey poplar publication-title: Photosynth Res doi: 10.1007/s11120-010-9528-x – ident: 2021052607425876700_b44 – volume: 101 start-page: 5 year: 2008 ident: 2021052607425876700_b74 article-title: Isoprene emission from plants: why and how publication-title: Ann Bot (Lond) doi: 10.1093/aob/mcm240 – volume: 194 start-page: 70 year: 2012 ident: 2021052607425876700_b7 article-title: Isoprene emission-free poplars: a chance to reduce the impact from poplar plantations on the atmosphere publication-title: New Phytol doi: 10.1111/j.1469-8137.2011.03979.x – volume: 17 start-page: 628 year: 2005 ident: 2021052607425876700_b34 article-title: Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-d-erythritol 4-phosphate pathway publication-title: Plant Cell doi: 10.1105/tpc.104.028860 – volume: 3 start-page: 408 year: 2007 ident: 2021052607425876700_b28 article-title: The function of terpene natural products in the natural world publication-title: Nat Chem Biol doi: 10.1038/nchembio.2007.5 – volume: 195 start-page: 541 year: 2012 ident: 2021052607425876700_b54 article-title: Modeling the isoprene emission rate from leaves publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04204.x – volume: 32 start-page: 939 year: 2009 ident: 2021052607425876700_b89 article-title: Regulation of isoprene emission from poplar leaves throughout a day publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2009.01980.x – volume: 18 start-page: 3423 year: 2012 ident: 2021052607425876700_b77 article-title: Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO2 concentration publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2012.02789.x – volume: 29 start-page: 725 year: 2009 ident: 2021052607425876700_b9 article-title: RNAi-mediated suppression of isoprene biosynthesis in hybrid poplar impacts ozone tolerance publication-title: Tree Physiol doi: 10.1093/treephys/tpp009 – volume: 36 start-page: 157 year: 2000 ident: 2021052607425876700_b60 article-title: Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results publication-title: J Atmos Chem doi: 10.1023/A:1006300616544 – volume: 68 start-page: 2351 year: 2007 ident: 2021052607425876700_b66 article-title: Experimental and mathematical approaches to modeling plant metabolic networks publication-title: Phytochemistry doi: 10.1016/j.phytochem.2007.04.021 – year: 2014 ident: 2021052607425876700_b95 article-title: UV-SI: UV-B mediated metabolic rearrangements in poplar revealed by non-targeted metabolomics publication-title: Plant Cell Environ – volume: 23 start-page: 229 year: 2000 ident: 2021052607425876700_b48 article-title: Incomplete 13C labelling of α-pinene content of Quercus ilex leaves and appearance of unlabelled C in α-pinene emission in the dark publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.2000.00536.x – volume: 5 start-page: 1 year: 2006 ident: 2021052607425876700_b67 article-title: Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells publication-title: Phytochem Rev doi: 10.1007/s11101-005-3130-4 – volume: 374 start-page: 769 year: 1995 ident: 2021052607425876700_b73 article-title: Why plants emits isoprene publication-title: Nature doi: 10.1038/374769a0 – volume: 149 start-page: 1525 year: 2012 ident: 2021052607425876700_b92 article-title: Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes publication-title: Cell doi: 10.1016/j.cell.2012.04.038 – volume: 33 start-page: 781 year: 2010 ident: 2021052607425876700_b30 article-title: Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR-MS analysis publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2009.02104.x – volume: 5 start-page: 283 year: 2009 ident: 2021052607425876700_b83 article-title: A unified mechanism of action for volatile isoprenoids in plant abiotic stress publication-title: Nat Chem Biol doi: 10.1038/nchembio.158 – volume: 215 start-page: 894 year: 2002 ident: 2021052607425876700_b38 article-title: On-line analysis of the 13CO2 labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors publication-title: Planta doi: 10.1007/s00425-002-0825-2 – volume: 24 start-page: 1441 year: 2006 ident: 2021052607425876700_b91 article-title: Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants publication-title: Nat Biotechnol doi: 10.1038/nbt1251 – volume: 12 start-page: 302 year: 2010 ident: 2021052607425876700_b71 article-title: Poplar volatiles: biosynthesis, regulation and (eco)physiology of isoprene and stress-induced isoprenoids publication-title: Plant Biol (Stuttg) doi: 10.1111/j.1438-8677.2009.00284.x – volume-title: J Proteome Res ident: 2021052607425876700_b81 article-title: The genetic manipulation of isoprene emissions in poplar plants remodels the chloroplast proteome doi: 10.1021/pr401124z – volume: 8 start-page: 4605 year: 2008 ident: 2021052607425876700_b3 article-title: Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)? publication-title: Atmos Chem Phys doi: 10.5194/acp-8-4605-2008 – volume: 64 start-page: 5509 year: 2013 ident: 2021052607425876700_b76 article-title: Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen publication-title: J Exp Bot doi: 10.1093/jxb/ert318 – volume: 135 start-page: 1939 year: 2004 ident: 2021052607425876700_b90 article-title: Rapid regulation of the methylerythritol 4-phosphate pathway during isoprene synthesis publication-title: Plant Physiol doi: 10.1104/pp.104.043737 – volume: 81 start-page: 1537 year: 2000 ident: 2021052607425876700_b26 article-title: Biogenic hydrocarbons in the atmospheric boundary layer: a review publication-title: Bull Am Meteorol Soc doi: 10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2 – volume: 151 start-page: 448 year: 2009 ident: 2021052607425876700_b65 article-title: Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen publication-title: Plant Physiol doi: 10.1104/pp.109.141978 – volume: 415 start-page: 146 year: 2003 ident: 2021052607425876700_b12 article-title: Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane publication-title: Arch Biochem Biophys doi: 10.1016/S0003-9861(03)00233-9 – volume: 175 start-page: 244 year: 2007 ident: 2021052607425876700_b13 article-title: Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings publication-title: New Phytol doi: 10.1111/j.1469-8137.2007.02094.x – volume: 142 start-page: 890 year: 2006 ident: 2021052607425876700_b56 article-title: Up-regulation of 1-deoxy-d-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender publication-title: Plant Physiol doi: 10.1104/pp.106.086355 – volume: 435 start-page: 27 year: 2013 ident: 2021052607425876700_b87 article-title: Measuring dimethylallyl diphosphate available for isoprene synthesis publication-title: Anal Biochem doi: 10.1016/j.ab.2012.11.031 – volume: 115 start-page: 190 year: 2002 ident: 2021052607425876700_b15 article-title: Diurnal variation of dimethylallyl diphosphate concentrations in oak (Quercus robur) leaves publication-title: Physiol Plant doi: 10.1034/j.1399-3054.2002.1150203.x – volume: 74 start-page: 61 year: 2010 ident: 2021052607425876700_b8 article-title: RNAi-mediated suppression of isoprene emission in poplar transiently impacts phenolic metabolism under high temperature and high light intensities: a transcriptomic and metabolomic analysis publication-title: Plant Mol Biol doi: 10.1007/s11103-010-9654-z – volume: 222 start-page: 777 year: 2005 ident: 2021052607425876700_b72 article-title: Biochemical properties of isoprene synthase in poplar (Populus × canescens) publication-title: Planta doi: 10.1007/s00425-005-0022-1 – volume: 15 start-page: 501 year: 2001 ident: 2021052607425876700_b88 article-title: Referencing strategies and techniques in stable isotope ratio analysis publication-title: Rapid Commun Mass Spectrom doi: 10.1002/rcm.258 – volume: 440 start-page: 130 year: 2013 ident: 2021052607425876700_b94 article-title: Isopentenyl diphosphate and dimethylallyl diphosphate/isopentenyl diphosphate ratio measured with recombinant isopentenyl diphosphate isomerase and isoprene synthase publication-title: Anal Biochem doi: 10.1016/j.ab.2013.05.028 – volume: 25 start-page: 4183 year: 2013 ident: 2021052607425876700_b61 article-title: Arabidopsis J-protein J20 delivers the first enzyme of the plastidial isoprenoid pathway to protein quality control publication-title: Plant Cell doi: 10.1105/tpc.113.113001 – volume: 15 start-page: 266 year: 2010 ident: 2021052607425876700_b16 article-title: Source to sink: regulation of carotenoid biosynthesis in plants publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2010.02.003 – volume: 21 start-page: 285 year: 2009 ident: 2021052607425876700_b27 article-title: The plastidial 2-C-methyl-d-erythritol 4-phosphate pathway provides the isoprenyl moiety for protein geranylgeranylation in tobacco BY-2 cells publication-title: Plant Cell doi: 10.1105/tpc.108.063248 – volume: 166 start-page: 273 year: 2011 ident: 2021052607425876700_b86 article-title: Enhanced isoprene-related tolerance of heat- and light-stressed photosynthesis at low, but not high, CO2 concentrations publication-title: Oecologia doi: 10.1007/s00442-011-1947-7 |
SSID | ssj0001314 |
Score | 2.4662623 |
Snippet | The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential... The plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential... Isoprene biosynthesis demands a huge carbon flux through the plastidic isoprenoid pathway, and the concentration of its immediate precursor modulates this flux... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 37 |
SubjectTerms | BIOCHEMISTRY AND METABOLISM Biosynthesis Butadienes Carbon Carbon - metabolism Carbon Dioxide - metabolism Carbon Isotopes Down-Regulation - radiation effects Erythritol - analogs & derivatives Erythritol - metabolism Hemiterpenes - biosynthesis Hemiterpenes - metabolism isoprene Isotope Labeling Leaves Light metabolic flux analysis Metabolic Flux Analysis - methods Metabolism Models, Biological Organophosphorus Compounds - metabolism Pentanes Pigments Pigments, Biological - metabolism Plant cells Plant Leaves - metabolism Plant Leaves - radiation effects Plants Plastids Plastids - enzymology Plastids - metabolism Plastids - radiation effects Pollutant emissions Populus - metabolism Populus - radiation effects Sugar Phosphates - metabolism Temperature Terpenoids Transferases - metabolism |
Title | Metabolic Flux Analysis of Plastidic Isoprenoid Biosynthesis in Poplar Leaves Emitting and Nonemitting Isoprene |
URI | https://www.jstor.org/stable/43190934 https://www.ncbi.nlm.nih.gov/pubmed/24590857 https://www.proquest.com/docview/1521911204 https://www.proquest.com/docview/2000109030 https://pubmed.ncbi.nlm.nih.gov/PMC4012595 |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWwoEL4lW6vGQkxIkUO3E2yZFFLS3QikMrVVyi2HG0ESVZNVn18Y_4l8zEiZOUBRUu0W4yayuZbz0zzsw3hLzmGUeifOUIlQWOkEw4ySwIHB1ypP_whdtsZR8czvaOxacT_2Qy-TnIWlrVcltdra0r-R-twjnQK1bJ_oNm7aBwAj6DfuEIGobjjXR8oGvQIdJU756uLkYEI1_BK67zFC7tV9jopCjzFBtPVpcFuHwolMPqVy4xCfWLTpB7dudHbpKgcS_9sCx0970dYZQ0hM2OarMvYlicwFOdY_FwlSaD3YWPixyi8bS0uZO9Fei3BcrV-VlTuTBKFp43eQbfFsNatUoX30H0ylQZJSZF2u5acNHnCNqF1nUgODVrr15zrludTSuJEQzNWmvIYlqrbVhrf7cHTGAT4yVSIm-7HkSfYW_4upf91-yhzVJs4iMm4uUSa7dj8_Nb5LYLEUkTve9_tkafew2NvL0FS-cq3o1mH7k_JgN2XWxzPUV34PMc3Sf32mCFvjfIe0AmunhI7sxLCCguH5HSwo8i_GgHP1pm1MKP9vCjQ_jRvKAGftTAj3bwowA_OoBfN4J-TI53d44-7Dlt_w5HgdtfO0qkOnQTPlMBxAEJj1LP14GUGXeZchPhBYylbqZlCv4TD1ToMZVGmkdR4stEKG-TbBQw3RahWai5LwOZCSlElopwpsDUhkzNIhFlgZySt91jjVVLbo89Vk7jtUqckjdWfGlYXf4kuNnoyEqBvx2xyBNT8qpTWgwLMr5lSwpdrqoYHWLwIFz2Fxmsj8OMaI9NyROjaDuDK_wI205MSTCCgBVAQvjxlSJfNMTwArxNP_Kf3vTunpG7_X_zOdmoz1b6BfjYtXzZoPsX8RbTfA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+Flux+Analysis+of+Plastidic+Isoprenoid+Biosynthesis+in+Poplar+Leaves+Emitting+and+Nonemitting+Isoprene&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Ghirardo%2C+Andrea&rft.au=Wright%2C+Louwrance+Peter&rft.au=Bi%2C+Zhen&rft.au=Rosenkranz%2C+Maaria&rft.date=2014-05-01&rft.issn=1532-2548&rft.eissn=1532-2548&rft.volume=165&rft.issue=1&rft.spage=37&rft.epage=51&rft_id=info:doi/10.1104%2Fpp.114.236018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1104_pp_114_236018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |