Metabolic Flux Analysis of Plastidic Isoprenoid Biosynthesis in Poplar Leaves Emitting and Nonemitting Isoprene

The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope ¹³C-labeling technique, we analyzed the carbon fluxes...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 165; no. 1; pp. 37 - 51
Main Authors Ghirardo, Andrea, Wright, Louwrance Peter, Bi, Zhen, Rosenkranz, Maaria, Pulido, Pablo, Rodríguez-Concepción, Manuel, Niinemets, Ülo, Brüggemann, Nicolas, Gershenzon, Jonathan, Schnitzler, Jörg-Peter
Format Journal Article
LanguageEnglish
Published United States American Society of Plant Biologists 01.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope ¹³C-labeling technique, we analyzed the carbon fluxes through the pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus × canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO₂]. Isoprene biosynthesis was by far (99%) the main carbon sink of pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-Dxylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-D-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.
AbstractList The plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus × canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-d-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.
Isoprene biosynthesis demands a huge carbon flux through the plastidic isoprenoid pathway, and the concentration of its immediate precursor modulates this flux .
The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus×canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-D-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus×canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-D-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.
The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope ¹³C-labeling technique, we analyzed the carbon fluxes through the pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus × canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO₂]. Isoprene biosynthesis was by far (99%) the main carbon sink of pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-Dxylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-D-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.
Isoprene biosynthesis demands a huge carbon flux through the plastidic isoprenoid pathway, and the concentration of its immediate precursor modulates this flux . The plastidic 2-C-methyl- d -erythritol-4-phosphate ( MEP ) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13 C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting ( NE ) gray poplar ( Populus × canescens ). We assessed the dependence on temperature, light intensity, and atmospheric [CO 2 ]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy- d -xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy- d -xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.
The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential isoprenoids. Its regulation, however, is still not well understood. Using the stable isotope 13C-labeling technique, we analyzed the carbon fluxes through the MEP pathway and into the major plastidic isoprenoid products in isoprene-emitting and transgenic isoprene-nonemitting (NE) gray poplar (Populus×canescens). We assessed the dependence on temperature, light intensity, and atmospheric [CO2]. Isoprene biosynthesis was by far (99%) the main carbon sink of MEP pathway intermediates in mature gray poplar leaves, and its production required severalfold higher carbon fluxes compared with NE leaves with almost zero isoprene emission. To compensate for the much lower demand for carbon, NE leaves drastically reduced the overall carbon flux within the MEP pathway. Feedback inhibition of 1-deoxy-D-xylulose-5-phosphate synthase activity by accumulated plastidic dimethylallyl diphosphate almost completely explained this reduction in carbon flux. Our data demonstrate that short-term biochemical feedback regulation of 1-deoxy-d-xylulose-5-phosphate synthase activity by plastidic dimethylallyl diphosphate is an important regulatory mechanism of the MEP pathway. Despite being relieved from the large carbon demand of isoprene biosynthesis, NE plants redirected only approximately 0.5% of this saved carbon toward essential nonvolatile isoprenoids, i.e. β-carotene and lutein, most probably to compensate for the absence of isoprene and its antioxidant properties.
Author Rodríguez-Concepción, Manuel
Gershenzon, Jonathan
Brüggemann, Nicolas
Rosenkranz, Maaria
Wright, Louwrance Peter
Niinemets, Ülo
Bi, Zhen
Schnitzler, Jörg-Peter
Ghirardo, Andrea
Pulido, Pablo
Author_xml – sequence: 1
  givenname: Andrea
  surname: Ghirardo
  fullname: Ghirardo, Andrea
– sequence: 2
  givenname: Louwrance Peter
  surname: Wright
  fullname: Wright, Louwrance Peter
– sequence: 3
  givenname: Zhen
  surname: Bi
  fullname: Bi, Zhen
– sequence: 4
  givenname: Maaria
  surname: Rosenkranz
  fullname: Rosenkranz, Maaria
– sequence: 5
  givenname: Pablo
  surname: Pulido
  fullname: Pulido, Pablo
– sequence: 6
  givenname: Manuel
  surname: Rodríguez-Concepción
  fullname: Rodríguez-Concepción, Manuel
– sequence: 7
  givenname: Ülo
  surname: Niinemets
  fullname: Niinemets, Ülo
– sequence: 8
  givenname: Nicolas
  surname: Brüggemann
  fullname: Brüggemann, Nicolas
– sequence: 9
  givenname: Jonathan
  surname: Gershenzon
  fullname: Gershenzon, Jonathan
– sequence: 10
  givenname: Jörg-Peter
  surname: Schnitzler
  fullname: Schnitzler, Jörg-Peter
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24590857$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1vEzEQxS1URNPCkSPIRy5bZvyRXV-Q2qqFSgF6gLPl9TqtK8de1k5F_nscJakACXF6tuY3T0_zTshRTNER8hrhDBHE-3GsKs4YnwN2z8gMJWcNk6I7IjOA-oauU8fkJOcHAECO4gU5ZkIq6GQ7I-mzK6ZPwVt6HdY_6Xk0YZN9pmlJb4PJxQ91dJPTOLmY_EAvfMqbWO7dFvKR3qYxmIkunHl0mV6tfCk-3lETB_qlJj389w7uJXm-NCG7V3s9Jd-vr75dfmoWXz_eXJ4vGiuhK40Vg-uYwblt5xIMqoFL1_b9EhlYZgRvAQa2dP3AkGFrOw52UA6VMrI3wvJT8mHnO677lRusi2UyQY-TX5lpo5Px-s9J9Pf6Lj1qAcikktXg3d5gSj_WLhe98tm6EEx0aZ01214TFHD4L4qSocKaXFT07e-xnvIcCqkA3wF2SjlPbqmtL6b4tE3pg0bQ29r1OFYVeld73Wr-2joY_4t_s-MfcknTEyw4KlBc8F_UhrnY
CitedBy_id crossref_primary_10_1111_nph_13380
crossref_primary_10_1111_nph_18035
crossref_primary_10_3389_fpls_2015_00611
crossref_primary_10_1371_journal_pone_0161534
crossref_primary_10_1016_j_pbi_2015_04_001
crossref_primary_10_3390_ijms18091923
crossref_primary_10_1093_jxb_eru443
crossref_primary_10_1007_s42994_021_00054_1
crossref_primary_10_1016_j_cpb_2021_100203
crossref_primary_10_1093_plphys_kiad110
crossref_primary_10_1186_s12870_015_0542_1
crossref_primary_10_3390_ijpb15010013
crossref_primary_10_1093_treephys_tpx083
crossref_primary_10_1038_s41598_021_98750_x
crossref_primary_10_1093_treephys_tpad087
crossref_primary_10_1021_acsinfecdis_7b00176
crossref_primary_10_1042_BCJ20200480
crossref_primary_10_1093_treephys_tpw032
crossref_primary_10_3389_fpls_2018_01733
crossref_primary_10_1073_pnas_1912327117
crossref_primary_10_1016_j_tplants_2018_09_012
crossref_primary_10_3390_ijms23073836
crossref_primary_10_1186_s13007_022_00946_3
crossref_primary_10_3389_fpls_2018_00766
crossref_primary_10_3389_fpls_2020_546295
crossref_primary_10_1016_j_xplc_2022_100512
crossref_primary_10_1111_tpj_14071
crossref_primary_10_1021_acssynbio_9b00455
crossref_primary_10_1111_pbi_12343
crossref_primary_10_1016_j_marchem_2016_12_005
crossref_primary_10_1016_j_plipres_2018_04_004
crossref_primary_10_1111_pce_13629
crossref_primary_10_1111_pce_12930
crossref_primary_10_3389_fpls_2021_637976
crossref_primary_10_3389_fpls_2022_968780
crossref_primary_10_1111_pce_12785
crossref_primary_10_1186_s13068_020_01707_x
crossref_primary_10_5194_bg_19_4945_2022
crossref_primary_10_1093_treephys_tpae142
crossref_primary_10_3389_fpls_2020_549913
crossref_primary_10_1016_j_foodchem_2024_139277
crossref_primary_10_1111_pce_12660
crossref_primary_10_1016_j_plipres_2016_04_002
crossref_primary_10_1111_gcbb_12423
crossref_primary_10_1111_pce_12582
crossref_primary_10_1111_nph_17736
crossref_primary_10_3390_antiox10050684
crossref_primary_10_1111_nph_13258
crossref_primary_10_1093_jxb_erz397
crossref_primary_10_5194_bg_15_5047_2018
crossref_primary_10_1128_AEM_02920_14
crossref_primary_10_1042_BJ20140984
crossref_primary_10_1074_jbc_REV119_006132
crossref_primary_10_1093_jxb_erab463
crossref_primary_10_1111_tpj_15453
crossref_primary_10_1007_s10863_015_9625_9
crossref_primary_10_3390_plants12020333
crossref_primary_10_1016_j_bbalip_2020_158664
crossref_primary_10_1111_pce_12901
crossref_primary_10_3390_plants9070830
crossref_primary_10_1016_j_envexpbot_2015_04_007
crossref_primary_10_3390_ijms25084181
crossref_primary_10_1016_j_molp_2014_12_007
crossref_primary_10_1111_pce_12797
crossref_primary_10_3389_fpls_2017_02244
crossref_primary_10_1186_s13007_021_00731_8
crossref_primary_10_1111_pce_12350
crossref_primary_10_3390_app9245389
crossref_primary_10_1007_s00442_021_04905_y
crossref_primary_10_1007_s00442_021_04907_w
crossref_primary_10_1016_j_plantsci_2021_110960
crossref_primary_10_1007_s10725_020_00661_w
crossref_primary_10_1093_aobpla_plx045
crossref_primary_10_1111_gcbb_12454
crossref_primary_10_1111_pce_14131
crossref_primary_10_5194_acp_16_2901_2016
crossref_primary_10_1186_s13765_022_00718_6
crossref_primary_10_1111_gcb_14935
crossref_primary_10_1111_pbi_14345
crossref_primary_10_1016_j_envexpbot_2015_04_010
crossref_primary_10_3390_app13179680
crossref_primary_10_1111_pce_12759
crossref_primary_10_1111_ppl_13619
crossref_primary_10_1111_pce_12878
crossref_primary_10_1111_pce_12643
crossref_primary_10_1016_j_plantsci_2024_111983
crossref_primary_10_3390_ijms161025516
crossref_primary_10_3390_ijms242015329
crossref_primary_10_1093_jxb_ery441
crossref_primary_10_1016_j_plipres_2024_101287
crossref_primary_10_1128_msystems_00092_23
crossref_primary_10_1371_journal_pgen_1005824
crossref_primary_10_3389_fpls_2017_01281
Cites_doi 10.1104/pp.106.092759
10.1111/j.1365-3040.2004.01250.x
10.1104/pp.103.037374
10.1093/mp/sss015
10.1046/j.1365-313x.2000.00764.x
10.1111/j.1365-3040.1993.tb00907.x
10.1371/journal.pone.0032387
10.1016/j.phytochem.2010.02.016
10.1146/annurev.arplant.52.1.407
10.1074/jbc.M302526200
10.1038/nature01312
10.1074/jbc.M208659200
10.1104/pp.102.012294
10.1126/science.1137786
10.1007/s11103-008-9441-2
10.1111/nph.12325
10.1111/nph.12200
10.1111/j.1365-3040.2004.01314.x
10.1073/pnas.0407360102
10.1016/j.tplants.2009.12.006
10.1111/nph.12477
10.1046/j.1365-3040.1999.00505.x
10.1029/2010GL046520
10.1111/j.1365-3040.2012.02584.x
10.1104/pp.108.133512
10.1111/j.1365-313X.2007.03157.x
10.1111/j.1365-3040.2007.01668.x
10.1104/pp.109.151647
10.1371/journal.pone.0017393
10.1016/j.tibtech.2007.12.003
10.5194/acp-12-1021-2012
10.1515/znc-1998-11-1208
10.1073/pnas.95.5.2100
10.1111/j.1467-7652.2004.00091.x
10.1073/pnas.1031755100
10.1104/pp.010497
10.1093/treephys/22.14.1011
10.1111/pce.12190
10.1104/pp.105.066373
10.1093/treephys/tpt018
10.1111/j.1365-3040.2011.02322.x
10.1074/jbc.M113.464636
10.1046/j.1469-8137.2002.00516.x
10.1038/nchembio836
10.1111/nph.12145
10.1021/ac052027c
10.1111/j.1438-8677.2008.00146.x
10.1104/pp.110.162081
10.1111/nph.12391
10.1021/jo061466o
10.1104/pp.104.039537
10.1074/jbc.M100854200
10.1007/s11120-010-9528-x
10.1093/aob/mcm240
10.1111/j.1469-8137.2011.03979.x
10.1105/tpc.104.028860
10.1038/nchembio.2007.5
10.1111/j.1469-8137.2012.04204.x
10.1111/j.1365-3040.2009.01980.x
10.1111/j.1365-2486.2012.02789.x
10.1093/treephys/tpp009
10.1023/A:1006300616544
10.1016/j.phytochem.2007.04.021
10.1046/j.1365-3040.2000.00536.x
10.1007/s11101-005-3130-4
10.1038/374769a0
10.1016/j.cell.2012.04.038
10.1111/j.1365-3040.2009.02104.x
10.1038/nchembio.158
10.1007/s00425-002-0825-2
10.1038/nbt1251
10.1111/j.1438-8677.2009.00284.x
10.1021/pr401124z
10.5194/acp-8-4605-2008
10.1093/jxb/ert318
10.1104/pp.104.043737
10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2
10.1104/pp.109.141978
10.1016/S0003-9861(03)00233-9
10.1111/j.1469-8137.2007.02094.x
10.1104/pp.106.086355
10.1016/j.ab.2012.11.031
10.1034/j.1399-3054.2002.1150203.x
10.1007/s11103-010-9654-z
10.1007/s00425-005-0022-1
10.1002/rcm.258
10.1016/j.ab.2013.05.028
10.1105/tpc.113.113001
10.1016/j.tplants.2010.02.003
10.1105/tpc.108.063248
10.1007/s00442-011-1947-7
ContentType Journal Article
Copyright 2014 American Society of Plant Biologists
2014 American Society of Plant Biologists. All Rights Reserved. 2014
Copyright_xml – notice: 2014 American Society of Plant Biologists
– notice: 2014 American Society of Plant Biologists. All Rights Reserved. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1104/pp.114.236018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1532-2548
EndPage 51
ExternalDocumentID PMC4012595
24590857
10_1104_pp_114_236018
43190934
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2WC
2~F
4.4
5VS
5WD
85S
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAXTN
ABBHK
ABDFA
ABEJV
ABGNP
ABJNI
ABMNT
ABPLY
ABPPZ
ABPTD
ABTLG
ABVGC
ABXSQ
ABXVV
ABXZS
ACBTR
ACGOD
ACHIC
ACNCT
ACPRK
ACUFI
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADXHL
ADYHW
AEEJZ
AENEX
AEUPB
AFAZZ
AFFZL
AFGWE
AFRAH
AGORE
AGUYK
AHMBA
AHXOZ
AICQM
AJBYB
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AQVQM
ATGXG
BAWUL
BCRHZ
BEYMZ
BTFSW
CBGCD
CS3
DATOO
DIK
DU5
E3Z
EBS
ECGQY
EJD
F5P
FLUFQ
FOEOM
H13
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
MV1
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
Q2X
RHI
ROX
RPB
RWL
RXW
SA0
TAE
TN5
TR2
W8F
WH7
WOQ
XSW
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCN
~02
~KM
AAYXX
CITATION
53G
7X2
7X7
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
AAWDT
AAYJJ
ABIME
ABPIB
ABUWG
ABZEO
ACFRR
ACIPB
ACUTJ
ACVCV
ACZBC
AEUYN
AFFDN
AFKRA
AFYAG
AGMDO
AHGBF
AIDAL
AIDBO
AJDVS
ANFBD
APJGH
AQDSO
AS~
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CGR
CUY
CVF
D1J
DWQXO
ECM
EIF
FYUFA
GNUQQ
GTFYD
GUQSH
HCIFZ
HMCUK
HTVGU
LK8
LU7
M0K
M1P
M2O
M2P
M2Q
M7P
MVM
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
QZG
S0X
TCN
UBC
UKHRP
UKR
WHG
XOL
Y6R
ZCG
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c508t-c4de82a16c7650a19d35e7bbf120c2a43700d2febd21217c830cd9e199a5ba4c3
ISSN 0032-0889
1532-2548
IngestDate Thu Aug 21 14:11:26 EDT 2025
Thu Jul 10 18:00:46 EDT 2025
Fri Jul 11 10:00:12 EDT 2025
Mon Jul 21 06:07:01 EDT 2025
Thu Apr 24 23:11:02 EDT 2025
Tue Jul 01 03:08:04 EDT 2025
Fri May 30 11:59:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c508t-c4de82a16c7650a19d35e7bbf120c2a43700d2febd21217c830cd9e199a5ba4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Jörg-Peter Schnitzler (jp.schnitzler@helmholtz-muenchen.de).
www.plantphysiol.org/cgi/doi/10.1104/pp.114.236018
OpenAccessLink http://www.plantphysiol.org/content/plantphysiol/165/1/37.full.pdf
PMID 24590857
PQID 1521911204
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4012595
proquest_miscellaneous_2000109030
proquest_miscellaneous_1521911204
pubmed_primary_24590857
crossref_citationtrail_10_1104_pp_114_236018
crossref_primary_10_1104_pp_114_236018
jstor_primary_43190934
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2014
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References Sharkey (2021052607425876700_b75) 2001; 52
Kreuzwieser (2021052607425876700_b41) 2002; 156
Beisel (2021052607425876700_b11) 2010; 152
Rasulov (2021052607425876700_b65) 2009; 151
Banerjee (2021052607425876700_b4) 2013; 288
Trowbridge (2021052607425876700_b80) 2012; 7
Arneth (2021052607425876700_b3) 2008; 8
Cinege (2021052607425876700_b18) 2009; 69
Wolfertz (2021052607425876700_b90) 2004; 135
Moses (2021052607425876700_b55) 2013; 200
Monson (2021052607425876700_b54) 2012; 195
Way (2021052607425876700_b86) 2011; 166
Cazzonelli (2021052607425876700_b16) 2010; 15
Chang (2021052607425876700_b17) 2006; 2
Dudareva (2021052607425876700_b21) 2005; 102
Estévez (2021052607425876700_b25) 2001; 276
2021052607425876700_b57
Rios-Estepa (2021052607425876700_b66) 2007; 68
Sharkey (2021052607425876700_b73) 1995; 374
Rasulov (2021052607425876700_b63) 2009; 149
Thulasiram (2021052607425876700_b79) 2007; 316
Behnke (2021052607425876700_b10) 2010; 104
Bick (2021052607425876700_b12) 2003; 415
Behnke (2021052607425876700_b9) 2009; 29
Gershenzon (2021052607425876700_b28) 2007; 3
Behnke (2021052607425876700_b5) 2007; 51
Ghirardo (2021052607425876700_b31) 2010; 71
Behnke (2021052607425876700_b6) 2013; 33
Dudareva (2021052607425876700_b22) 2013; 198
Hemmerlin (2021052607425876700_b35) 2003; 278
Vranová (2021052607425876700_b84) 2012; 5
Way (2021052607425876700_b85) 2013; 200
Werner (2021052607425876700_b88) 2001; 15
Coplen (2021052607425876700_b19) 2006; 78
Velikova (2021052607425876700_b82) 2005; 28
Sun (2021052607425876700_b78) 2013; 198
Zeidler (2021052607425876700_b93) 1997; 53
Laule (2021052607425876700_b43) 2003; 100
Loivamäki (2021052607425876700_b47) 2007; 143
Rasulov (2021052607425876700_b62) 2013; 37
Rosenstiel (2021052607425876700_b68) 2003; 421
Weise (2021052607425876700_b87) 2013; 435
Loreto (2021052607425876700_b51) 2001; 127
Pulido (2021052607425876700_b61) 2013; 25
Kasahara (2021052607425876700_b39) 2002; 277
Muñoz-Bertomeu (2021052607425876700_b56) 2006; 142
Archibald (2021052607425876700_b2) 2011; 38
Vickers (2021052607425876700_b83) 2009; 5
Ryan (2021052607425876700_b69) 2014; 201
Brüggemann (2021052607425876700_b14) 2002; 22
Affek (2021052607425876700_b1) 2003; 131
Loreto (2021052607425876700_b50) 2010; 15
Giuliano (2021052607425876700_b32) 2008; 26
Peñuelas (2021052607425876700_b59) 2005; 28
Ehlting (2021052607425876700_b23) 2007; 30
Illarionova (2021052607425876700_b36) 2006; 71
Xiao (2021052607425876700_b92) 2012; 149
Ivanova (2021052607425876700_b37) 2009; 11
Velikova (2021052607425876700_b81)
Niinemets (2021052607425876700_b58) 1999; 22
2021052607425876700_b33
Loreto (2021052607425876700_b49) 2004; 135
Gerber (2021052607425876700_b27) 2009; 21
Ghirardo (2021052607425876700_b30) 2010; 33
Karl (2021052607425876700_b38) 2002; 215
Schnitzler (2021052607425876700_b72) 2005; 222
Behnke (2021052607425876700_b7) 2012; 194
Behnke (2021052607425876700_b8) 2010; 74
Li (2021052607425876700_b45) 2013; 36
Schnitzler (2021052607425876700_b70) 2004; 135
Brüggemann (2021052607425876700_b15) 2002; 115
Brilli (2021052607425876700_b13) 2007; 175
Enfissi (2021052607425876700_b24) 2005; 3
Schnitzler (2021052607425876700_b71) 2010; 12
Sun (2021052607425876700_b76) 2013; 64
Delwiche (2021052607425876700_b20) 1993; 650
Lois (2021052607425876700_b46) 2000; 22
Guevara-García (2021052607425876700_b34) 2005; 17
Sharkey (2021052607425876700_b74) 2008; 101
Poisson (2021052607425876700_b60) 2000; 36
Fuentes (2021052607425876700_b26) 2000; 81
Ghirardo (2021052607425876700_b29) 2011; 6
Lange (2021052607425876700_b42) 1998; 95
Kiendler-Scharr (2021052607425876700_b40) 2012; 12
Rasulov (2021052607425876700_b64) 2010; 154
Zhou (2021052607425876700_b94) 2013; 440
2021052607425876700_b44
Kaling (2021052607425876700_b95) 2014
Wiberley (2021052607425876700_b89) 2009; 32
Sun (2021052607425876700_b77) 2012; 18
Mayrhofer (2021052607425876700_b52) 2005; 139
Mongélard (2021052607425876700_b53) 2011; 34
Loreto (2021052607425876700_b48) 2000; 23
Rodríguez-Concepción (2021052607425876700_b67) 2006; 5
Wu (2021052607425876700_b91) 2006; 24
References_xml – volume: 143
  start-page: 540
  year: 2007
  ident: 2021052607425876700_b47
  article-title: Circadian rhythms of isoprene biosynthesis in grey poplar leaves
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.092759
– volume: 28
  start-page: 278
  year: 2005
  ident: 2021052607425876700_b59
  article-title: Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2004.01250.x
– volume: 135
  start-page: 152
  year: 2004
  ident: 2021052607425876700_b70
  article-title: Contribution of different carbon sources to isoprene biosynthesis in poplar leaves
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.037374
– volume: 5
  start-page: 318
  year: 2012
  ident: 2021052607425876700_b84
  article-title: Structure and dynamics of the isoprenoid pathway network
  publication-title: Mol Plant
  doi: 10.1093/mp/sss015
– volume: 22
  start-page: 503
  year: 2000
  ident: 2021052607425876700_b46
  article-title: Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-d-xylulose 5-phosphate synthase
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.2000.00764.x
– volume: 650
  start-page: 587
  year: 1993
  ident: 2021052607425876700_b20
  article-title: Rapid appearance of 13C in biogenic isoprene when 13CO2 is fed to intact leaves
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.1993.tb00907.x
– volume: 7
  start-page: e32387
  year: 2012
  ident: 2021052607425876700_b80
  article-title: Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0032387
– volume: 71
  start-page: 918
  year: 2010
  ident: 2021052607425876700_b31
  article-title: Analysis of 1-deoxy-d-xylulose 5-phosphate synthase activity in grey poplar leaves using isotope ratio mass spectrometry
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2010.02.016
– volume: 52
  start-page: 407
  year: 2001
  ident: 2021052607425876700_b75
  article-title: Isoprene emission from plants
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.arplant.52.1.407
– volume: 278
  start-page: 26666
  year: 2003
  ident: 2021052607425876700_b35
  article-title: Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M302526200
– volume: 421
  start-page: 256
  year: 2003
  ident: 2021052607425876700_b68
  article-title: Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem
  publication-title: Nature
  doi: 10.1038/nature01312
– volume: 277
  start-page: 45188
  year: 2002
  ident: 2021052607425876700_b39
  article-title: Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M208659200
– volume: 131
  start-page: 1727
  year: 2003
  ident: 2021052607425876700_b1
  article-title: Natural abundance carbon isotope composition of isoprene reflects incomplete coupling between isoprene synthesis and photosynthetic carbon flow
  publication-title: Plant Physiol
  doi: 10.1104/pp.102.012294
– volume: 316
  start-page: 73
  year: 2007
  ident: 2021052607425876700_b79
  article-title: Chimeras of two isoprenoid synthases catalyze all four coupling reactions in isoprenoid biosynthesis
  publication-title: Science
  doi: 10.1126/science.1137786
– volume: 69
  start-page: 593
  year: 2009
  ident: 2021052607425876700_b18
  article-title: Regulation of isoprene synthase promoter by environmental and internal factors
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-008-9441-2
– volume: 200
  start-page: 27
  year: 2013
  ident: 2021052607425876700_b55
  article-title: Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro
  publication-title: New Phytol
  doi: 10.1111/nph.12325
– volume: 198
  start-page: 788
  year: 2013
  ident: 2021052607425876700_b78
  article-title: Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides)
  publication-title: New Phytol
  doi: 10.1111/nph.12200
– ident: 2021052607425876700_b33
– volume: 28
  start-page: 318
  year: 2005
  ident: 2021052607425876700_b82
  article-title: On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2004.01314.x
– volume: 102
  start-page: 933
  year: 2005
  ident: 2021052607425876700_b21
  article-title: The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0407360102
– volume: 15
  start-page: 154
  year: 2010
  ident: 2021052607425876700_b50
  article-title: Abiotic stresses and induced BVOCs
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2009.12.006
– volume: 201
  start-page: 205
  year: 2014
  ident: 2021052607425876700_b69
  article-title: Isoprene emission protects photosynthesis but reduces plant productivity during drought in transgenic tobacco (Nicotiana tabacum) plants
  publication-title: New Phytol
  doi: 10.1111/nph.12477
– volume: 22
  start-page: 1319
  year: 1999
  ident: 2021052607425876700_b58
  article-title: A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1999.00505.x
– volume: 38
  year: 2011
  ident: 2021052607425876700_b2
  article-title: Impacts of HOx regeneration and recycling in the oxidation of isoprene: consequences for the composition of past, present and future atmospheres
  publication-title: Geophys Res Lett
  doi: 10.1029/2010GL046520
– volume: 36
  start-page: 429
  year: 2013
  ident: 2021052607425876700_b45
  article-title: Metabolic profiling of the methylerythritol phosphate pathway reveals the source of post-illumination isoprene burst from leaves
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2012.02584.x
– volume: 149
  start-page: 1609
  year: 2009
  ident: 2021052607425876700_b63
  article-title: Postillumination isoprene emission: in vivo measurements of dimethylallyldiphosphate pool size and isoprene synthase kinetics in aspen leaves
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.133512
– volume: 51
  start-page: 485
  year: 2007
  ident: 2021052607425876700_b5
  article-title: Transgenic, non-isoprene emitting poplars don’t like it hot
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2007.03157.x
– volume: 30
  start-page: 796
  year: 2007
  ident: 2021052607425876700_b23
  article-title: Interaction of nitrogen nutrition and salinity in grey poplar (Populus tremula × alba)
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2007.01668.x
– volume: 152
  start-page: 2188
  year: 2010
  ident: 2021052607425876700_b11
  article-title: Continuous turnover of carotenes and chlorophyll a in mature leaves of Arabidopsis revealed by 14CO2 pulse-chase labeling
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.151647
– volume: 6
  start-page: e17393
  year: 2011
  ident: 2021052607425876700_b29
  article-title: Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0017393
– volume: 26
  start-page: 139
  year: 2008
  ident: 2021052607425876700_b32
  article-title: Metabolic engineering of carotenoid biosynthesis in plants
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2007.12.003
– volume: 12
  start-page: 1021
  year: 2012
  ident: 2021052607425876700_b40
  article-title: Isoprene in poplar emissions: effects on new particle formation and OH concentrations
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-12-1021-2012
– volume: 53
  start-page: 980
  year: 1997
  ident: 2021052607425876700_b93
  article-title: Is isoprene emitted by plants synthesized via the novel isopentenyl pyrophosphate pathway?
  publication-title: Z Naturforsch C
  doi: 10.1515/znc-1998-11-1208
– volume: 95
  start-page: 2100
  year: 1998
  ident: 2021052607425876700_b42
  article-title: A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.5.2100
– volume: 3
  start-page: 17
  year: 2005
  ident: 2021052607425876700_b24
  article-title: Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato
  publication-title: Plant Biotechnol J
  doi: 10.1111/j.1467-7652.2004.00091.x
– volume: 100
  start-page: 6866
  year: 2003
  ident: 2021052607425876700_b43
  article-title: Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1031755100
– volume: 127
  start-page: 1781
  year: 2001
  ident: 2021052607425876700_b51
  article-title: Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes
  publication-title: Plant Physiol
  doi: 10.1104/pp.010497
– volume: 22
  start-page: 1011
  year: 2002
  ident: 2021052607425876700_b14
  article-title: Relationship of isopentenyl diphosphate (IDP) isomerase activity to isoprene emission of oak leaves
  publication-title: Tree Physiol
  doi: 10.1093/treephys/22.14.1011
– volume: 37
  start-page: 724
  year: 2013
  ident: 2021052607425876700_b62
  article-title: Competition between isoprene emission and pigments synthesis during leaf development in aspen
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12190
– volume: 139
  start-page: 474
  year: 2005
  ident: 2021052607425876700_b52
  article-title: Diurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves
  publication-title: Plant Physiol
  doi: 10.1104/pp.105.066373
– volume: 33
  start-page: 562
  year: 2013
  ident: 2021052607425876700_b6
  article-title: Isoprene function in two contrasting poplars under salt and sunflecks
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpt018
– volume: 34
  start-page: 1241
  year: 2011
  ident: 2021052607425876700_b53
  article-title: Measurement of carbon flux through the MEP pathway for isoprenoid synthesis by 31P-NMR spectroscopy after specific inhibition of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate reductase: effect of light and temperature
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2011.02322.x
– volume: 288
  start-page: 16926
  year: 2013
  ident: 2021052607425876700_b4
  article-title: Feedback inhibition of deoxy-d-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M113.464636
– volume: 156
  start-page: 171
  year: 2002
  ident: 2021052607425876700_b41
  article-title: Xylem-transported glucose as an additional carbon source for leaf isoprene formation in Quercus robur
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2002.00516.x
– volume: 2
  start-page: 674
  year: 2006
  ident: 2021052607425876700_b17
  article-title: Production of isoprenoid pharmaceuticals by engineered microbes
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio836
– ident: 2021052607425876700_b57
– volume: 198
  start-page: 16
  year: 2013
  ident: 2021052607425876700_b22
  article-title: Biosynthesis, function and metabolic engineering of plant volatile organic compounds
  publication-title: New Phytol
  doi: 10.1111/nph.12145
– volume: 78
  start-page: 2439
  year: 2006
  ident: 2021052607425876700_b19
  article-title: New guidelines for δ13C measurements
  publication-title: Anal Chem
  doi: 10.1021/ac052027c
– volume: 11
  start-page: 625
  year: 2009
  ident: 2021052607425876700_b37
  article-title: Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol
  publication-title: Plant Biol (Stuttg)
  doi: 10.1111/j.1438-8677.2008.00146.x
– volume: 154
  start-page: 1558
  year: 2010
  ident: 2021052607425876700_b64
  article-title: Temperature response of isoprene emission in vivo reflects a combined effect of substrate limitations and isoprene synthase activity: a kinetic analysis
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.162081
– volume: 200
  start-page: 534
  year: 2013
  ident: 2021052607425876700_b85
  article-title: Increasing atmospheric CO2 reduces metabolic and physiological differences between isoprene- and non-isoprene-emitting poplars
  publication-title: New Phytol
  doi: 10.1111/nph.12391
– volume: 71
  start-page: 8824
  year: 2006
  ident: 2021052607425876700_b36
  article-title: Nonmevalonate terpene biosynthesis enzymes as antiinfective drug targets: substrate synthesis and high-throughput screening methods
  publication-title: J Org Chem
  doi: 10.1021/jo061466o
– volume: 135
  start-page: 1903
  year: 2004
  ident: 2021052607425876700_b49
  article-title: 13C labeling reveals chloroplastic and extrachloroplastic pools of dimethylallyl pyrophosphate and their contribution to isoprene formation
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.039537
– volume: 276
  start-page: 22901
  year: 2001
  ident: 2021052607425876700_b25
  article-title: 1-Deoxy-d-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M100854200
– volume: 104
  start-page: 5
  year: 2010
  ident: 2021052607425876700_b10
  article-title: Isoprene emission protects photosynthesis in sunfleck exposed grey poplar
  publication-title: Photosynth Res
  doi: 10.1007/s11120-010-9528-x
– ident: 2021052607425876700_b44
– volume: 101
  start-page: 5
  year: 2008
  ident: 2021052607425876700_b74
  article-title: Isoprene emission from plants: why and how
  publication-title: Ann Bot (Lond)
  doi: 10.1093/aob/mcm240
– volume: 194
  start-page: 70
  year: 2012
  ident: 2021052607425876700_b7
  article-title: Isoprene emission-free poplars: a chance to reduce the impact from poplar plantations on the atmosphere
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2011.03979.x
– volume: 17
  start-page: 628
  year: 2005
  ident: 2021052607425876700_b34
  article-title: Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-d-erythritol 4-phosphate pathway
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.028860
– volume: 3
  start-page: 408
  year: 2007
  ident: 2021052607425876700_b28
  article-title: The function of terpene natural products in the natural world
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2007.5
– volume: 195
  start-page: 541
  year: 2012
  ident: 2021052607425876700_b54
  article-title: Modeling the isoprene emission rate from leaves
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2012.04204.x
– volume: 32
  start-page: 939
  year: 2009
  ident: 2021052607425876700_b89
  article-title: Regulation of isoprene emission from poplar leaves throughout a day
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2009.01980.x
– volume: 18
  start-page: 3423
  year: 2012
  ident: 2021052607425876700_b77
  article-title: Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO2 concentration
  publication-title: Glob Change Biol
  doi: 10.1111/j.1365-2486.2012.02789.x
– volume: 29
  start-page: 725
  year: 2009
  ident: 2021052607425876700_b9
  article-title: RNAi-mediated suppression of isoprene biosynthesis in hybrid poplar impacts ozone tolerance
  publication-title: Tree Physiol
  doi: 10.1093/treephys/tpp009
– volume: 36
  start-page: 157
  year: 2000
  ident: 2021052607425876700_b60
  article-title: Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results
  publication-title: J Atmos Chem
  doi: 10.1023/A:1006300616544
– volume: 68
  start-page: 2351
  year: 2007
  ident: 2021052607425876700_b66
  article-title: Experimental and mathematical approaches to modeling plant metabolic networks
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2007.04.021
– year: 2014
  ident: 2021052607425876700_b95
  article-title: UV-SI: UV-B mediated metabolic rearrangements in poplar revealed by non-targeted metabolomics
  publication-title: Plant Cell Environ
– volume: 23
  start-page: 229
  year: 2000
  ident: 2021052607425876700_b48
  article-title: Incomplete 13C labelling of α-pinene content of Quercus ilex leaves and appearance of unlabelled C in α-pinene emission in the dark
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.2000.00536.x
– volume: 5
  start-page: 1
  year: 2006
  ident: 2021052607425876700_b67
  article-title: Early steps in isoprenoid biosynthesis: multilevel regulation of the supply of common precursors in plant cells
  publication-title: Phytochem Rev
  doi: 10.1007/s11101-005-3130-4
– volume: 374
  start-page: 769
  year: 1995
  ident: 2021052607425876700_b73
  article-title: Why plants emits isoprene
  publication-title: Nature
  doi: 10.1038/374769a0
– volume: 149
  start-page: 1525
  year: 2012
  ident: 2021052607425876700_b92
  article-title: Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.038
– volume: 33
  start-page: 781
  year: 2010
  ident: 2021052607425876700_b30
  article-title: Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR-MS analysis
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2009.02104.x
– volume: 5
  start-page: 283
  year: 2009
  ident: 2021052607425876700_b83
  article-title: A unified mechanism of action for volatile isoprenoids in plant abiotic stress
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.158
– volume: 215
  start-page: 894
  year: 2002
  ident: 2021052607425876700_b38
  article-title: On-line analysis of the 13CO2 labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors
  publication-title: Planta
  doi: 10.1007/s00425-002-0825-2
– volume: 24
  start-page: 1441
  year: 2006
  ident: 2021052607425876700_b91
  article-title: Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1251
– volume: 12
  start-page: 302
  year: 2010
  ident: 2021052607425876700_b71
  article-title: Poplar volatiles: biosynthesis, regulation and (eco)physiology of isoprene and stress-induced isoprenoids
  publication-title: Plant Biol (Stuttg)
  doi: 10.1111/j.1438-8677.2009.00284.x
– volume-title: J Proteome Res
  ident: 2021052607425876700_b81
  article-title: The genetic manipulation of isoprene emissions in poplar plants remodels the chloroplast proteome
  doi: 10.1021/pr401124z
– volume: 8
  start-page: 4605
  year: 2008
  ident: 2021052607425876700_b3
  article-title: Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)?
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-8-4605-2008
– volume: 64
  start-page: 5509
  year: 2013
  ident: 2021052607425876700_b76
  article-title: Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert318
– volume: 135
  start-page: 1939
  year: 2004
  ident: 2021052607425876700_b90
  article-title: Rapid regulation of the methylerythritol 4-phosphate pathway during isoprene synthesis
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.043737
– volume: 81
  start-page: 1537
  year: 2000
  ident: 2021052607425876700_b26
  article-title: Biogenic hydrocarbons in the atmospheric boundary layer: a review
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2
– volume: 151
  start-page: 448
  year: 2009
  ident: 2021052607425876700_b65
  article-title: Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.141978
– volume: 415
  start-page: 146
  year: 2003
  ident: 2021052607425876700_b12
  article-title: Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane
  publication-title: Arch Biochem Biophys
  doi: 10.1016/S0003-9861(03)00233-9
– volume: 175
  start-page: 244
  year: 2007
  ident: 2021052607425876700_b13
  article-title: Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2007.02094.x
– volume: 142
  start-page: 890
  year: 2006
  ident: 2021052607425876700_b56
  article-title: Up-regulation of 1-deoxy-d-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.086355
– volume: 435
  start-page: 27
  year: 2013
  ident: 2021052607425876700_b87
  article-title: Measuring dimethylallyl diphosphate available for isoprene synthesis
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2012.11.031
– volume: 115
  start-page: 190
  year: 2002
  ident: 2021052607425876700_b15
  article-title: Diurnal variation of dimethylallyl diphosphate concentrations in oak (Quercus robur) leaves
  publication-title: Physiol Plant
  doi: 10.1034/j.1399-3054.2002.1150203.x
– volume: 74
  start-page: 61
  year: 2010
  ident: 2021052607425876700_b8
  article-title: RNAi-mediated suppression of isoprene emission in poplar transiently impacts phenolic metabolism under high temperature and high light intensities: a transcriptomic and metabolomic analysis
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-010-9654-z
– volume: 222
  start-page: 777
  year: 2005
  ident: 2021052607425876700_b72
  article-title: Biochemical properties of isoprene synthase in poplar (Populus × canescens)
  publication-title: Planta
  doi: 10.1007/s00425-005-0022-1
– volume: 15
  start-page: 501
  year: 2001
  ident: 2021052607425876700_b88
  article-title: Referencing strategies and techniques in stable isotope ratio analysis
  publication-title: Rapid Commun Mass Spectrom
  doi: 10.1002/rcm.258
– volume: 440
  start-page: 130
  year: 2013
  ident: 2021052607425876700_b94
  article-title: Isopentenyl diphosphate and dimethylallyl diphosphate/isopentenyl diphosphate ratio measured with recombinant isopentenyl diphosphate isomerase and isoprene synthase
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2013.05.028
– volume: 25
  start-page: 4183
  year: 2013
  ident: 2021052607425876700_b61
  article-title: Arabidopsis J-protein J20 delivers the first enzyme of the plastidial isoprenoid pathway to protein quality control
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.113001
– volume: 15
  start-page: 266
  year: 2010
  ident: 2021052607425876700_b16
  article-title: Source to sink: regulation of carotenoid biosynthesis in plants
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2010.02.003
– volume: 21
  start-page: 285
  year: 2009
  ident: 2021052607425876700_b27
  article-title: The plastidial 2-C-methyl-d-erythritol 4-phosphate pathway provides the isoprenyl moiety for protein geranylgeranylation in tobacco BY-2 cells
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.063248
– volume: 166
  start-page: 273
  year: 2011
  ident: 2021052607425876700_b86
  article-title: Enhanced isoprene-related tolerance of heat- and light-stressed photosynthesis at low, but not high, CO2 concentrations
  publication-title: Oecologia
  doi: 10.1007/s00442-011-1947-7
SSID ssj0001314
Score 2.4662623
Snippet The plastidic 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential...
The plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway is one of the most important pathways in plants and produces a large variety of essential...
Isoprene biosynthesis demands a huge carbon flux through the plastidic isoprenoid pathway, and the concentration of its immediate precursor modulates this flux...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 37
SubjectTerms BIOCHEMISTRY AND METABOLISM
Biosynthesis
Butadienes
Carbon
Carbon - metabolism
Carbon Dioxide - metabolism
Carbon Isotopes
Down-Regulation - radiation effects
Erythritol - analogs & derivatives
Erythritol - metabolism
Hemiterpenes - biosynthesis
Hemiterpenes - metabolism
isoprene
Isotope Labeling
Leaves
Light
metabolic flux analysis
Metabolic Flux Analysis - methods
Metabolism
Models, Biological
Organophosphorus Compounds - metabolism
Pentanes
Pigments
Pigments, Biological - metabolism
Plant cells
Plant Leaves - metabolism
Plant Leaves - radiation effects
Plants
Plastids
Plastids - enzymology
Plastids - metabolism
Plastids - radiation effects
Pollutant emissions
Populus - metabolism
Populus - radiation effects
Sugar Phosphates - metabolism
Temperature
Terpenoids
Transferases - metabolism
Title Metabolic Flux Analysis of Plastidic Isoprenoid Biosynthesis in Poplar Leaves Emitting and Nonemitting Isoprene
URI https://www.jstor.org/stable/43190934
https://www.ncbi.nlm.nih.gov/pubmed/24590857
https://www.proquest.com/docview/1521911204
https://www.proquest.com/docview/2000109030
https://pubmed.ncbi.nlm.nih.gov/PMC4012595
Volume 165
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWwoEL4lW6vGQkxIkUO3E2yZFFLS3QikMrVVyi2HG0ESVZNVn18Y_4l8zEiZOUBRUu0W4yayuZbz0zzsw3hLzmGUeifOUIlQWOkEw4ySwIHB1ypP_whdtsZR8czvaOxacT_2Qy-TnIWlrVcltdra0r-R-twjnQK1bJ_oNm7aBwAj6DfuEIGobjjXR8oGvQIdJU756uLkYEI1_BK67zFC7tV9jopCjzFBtPVpcFuHwolMPqVy4xCfWLTpB7dudHbpKgcS_9sCx0970dYZQ0hM2OarMvYlicwFOdY_FwlSaD3YWPixyi8bS0uZO9Fei3BcrV-VlTuTBKFp43eQbfFsNatUoX30H0ylQZJSZF2u5acNHnCNqF1nUgODVrr15zrludTSuJEQzNWmvIYlqrbVhrf7cHTGAT4yVSIm-7HkSfYW_4upf91-yhzVJs4iMm4uUSa7dj8_Nb5LYLEUkTve9_tkafew2NvL0FS-cq3o1mH7k_JgN2XWxzPUV34PMc3Sf32mCFvjfIe0AmunhI7sxLCCguH5HSwo8i_GgHP1pm1MKP9vCjQ_jRvKAGftTAj3bwowA_OoBfN4J-TI53d44-7Dlt_w5HgdtfO0qkOnQTPlMBxAEJj1LP14GUGXeZchPhBYylbqZlCv4TD1ToMZVGmkdR4stEKG-TbBQw3RahWai5LwOZCSlElopwpsDUhkzNIhFlgZySt91jjVVLbo89Vk7jtUqckjdWfGlYXf4kuNnoyEqBvx2xyBNT8qpTWgwLMr5lSwpdrqoYHWLwIFz2Fxmsj8OMaI9NyROjaDuDK_wI205MSTCCgBVAQvjxlSJfNMTwArxNP_Kf3vTunpG7_X_zOdmoz1b6BfjYtXzZoPsX8RbTfA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+Flux+Analysis+of+Plastidic+Isoprenoid+Biosynthesis+in+Poplar+Leaves+Emitting+and+Nonemitting+Isoprene&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Ghirardo%2C+Andrea&rft.au=Wright%2C+Louwrance+Peter&rft.au=Bi%2C+Zhen&rft.au=Rosenkranz%2C+Maaria&rft.date=2014-05-01&rft.issn=1532-2548&rft.eissn=1532-2548&rft.volume=165&rft.issue=1&rft.spage=37&rft.epage=51&rft_id=info:doi/10.1104%2Fpp.114.236018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1104_pp_114_236018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon