Colloidal quantum dot solar cells

In recent years colloidal quantum dots solar cells have been the subject of extensive research. A promising alternative to existing silicon solar cells, quantum dot solar cells are among the candidates for next generation photovoltaic devices. Colloidal quantum dots are attractive in photovoltaics r...

Full description

Saved in:
Bibliographic Details
Published inSolar energy Vol. 85; no. 6; pp. 1264 - 1282
Main Authors Emin, Saim, Singh, Surya P., Han, Liyuan, Satoh, Norifusa, Islam, Ashraful
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.06.2011
Pergamon Press Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years colloidal quantum dots solar cells have been the subject of extensive research. A promising alternative to existing silicon solar cells, quantum dot solar cells are among the candidates for next generation photovoltaic devices. Colloidal quantum dots are attractive in photovoltaics research due to their solution processability which is useful for their integration into various solar cells. Here, we review the recent progresses in various quantum dot solar cells which are prepared from colloidal quantum dots. We discuss the preparation methods, working concepts, advantages and disadvantages of different device architectures. Major topics discussed in this review include integration of colloidal quantum dots in: Schottky solar cells, depleted heterojunction solar cells, extremely thin absorber solar cells, hybrid organic–inorganic solar cells, bulk heterojunction solar cells and quantum dot sensitized solar cells. The review is organized according to the working principle and the architecture of photovoltaic devices.
AbstractList In recent years colloidal quantum dots solar cells have been the subject of extensive research. A promising alternative to existing silicon solar cells, quantum dot solar cells are among the candidates for next generation photovoltaic devices. Colloidal quantum dots are attractive in photovoltaics research due to their solution processability which is useful for their integration into various solar cells. Here, we review the recent progresses in various quantum dot solar cells which are prepared from colloidal quantum dots. We discuss the preparation methods, working concepts, advantages and disadvantages of different device architectures. Major topics discussed in this review include integration of colloidal quantum dots in: Schottky solar cells, depleted heterojunction solar cells, extremely thin absorber solar cells, hybrid organic-inorganic solar cells, bulk heterojunction solar cells and quantum dot sensitized solar cells. The review is organized according to the working principle and the architecture of photovoltaic devices.
In recent years colloidal quantum dots solar cells have been the subject of extensive research. A promising alternative to existing silicon solar cells, quantum dot solar cells are among the candidates for next generation photovoltaic devices. Colloidal quantum dots are attractive in photovoltaics research due to their solution processability which is useful for their integration into various solar cells. Here, we review the recent progresses in various quantum dot solar cells which are prepared from colloidal quantum dots. We discuss the preparation methods, working concepts, advantages and disadvantages of different device architectures. Major topics discussed in this review include integration of colloidal quantum dots in: Schottky solar cells, depleted heterojunction solar cells, extremely thin absorber solar cells, hybrid organic-inorganic solar cells, bulk heterojunction solar cells and quantum dot sensitized solar cells. The review is organized according to the working principle and the architecture of photovoltaic devices. [PUBLICATION ABSTRACT]
Author Satoh, Norifusa
Islam, Ashraful
Singh, Surya P.
Emin, Saim
Han, Liyuan
Author_xml – sequence: 1
  givenname: Saim
  surname: Emin
  fullname: Emin, Saim
  email: EMIN.Saim@nims.go.jp
– sequence: 2
  givenname: Surya P.
  surname: Singh
  fullname: Singh, Surya P.
– sequence: 3
  givenname: Liyuan
  surname: Han
  fullname: Han, Liyuan
  email: EMIN.Saim@nims.go.jp
– sequence: 4
  givenname: Norifusa
  surname: Satoh
  fullname: Satoh, Norifusa
– sequence: 5
  givenname: Ashraful
  surname: Islam
  fullname: Islam, Ashraful
BookMark eNqFkE1LAzEQhoNUsK3-BGH1opddJx_bpHgQKX5BwYuCt5BNUsiyTdpkV_Dfu2t76sGe5jDP8zLzTtDIB28RusRQYMCzu7pIobHexoIAxgWQAqA8QWPMOM4xKfkIjQGoyGFOvs7QJKUaAHMs-BhdLULTBGdUk2075dtunZnQZn2gipm2TZPO0elKNcle7OcUfT4_fSxe8-X7y9vicZnrEkSbV0YJBWzGVH8Sh1JYqjWpbMU4zGkJrKr4zHBlqBEMK2bnZFZppokSJaxoRafoZpe7iWHb2dTKtUvDBcrb0CUpBAUGDENP3v5LYs45poDZgF4foHXoou__kIIzygiFsofud5COIaVoV1K7VrUu-DYq10gMcuhZ1nLfsxx6lkAk_Nnlgb2Jbq3iz1HvYefZvtRv12-TdtZra1y0upUmuCMJv94Ymn4
CODEN SRENA4
CitedBy_id crossref_primary_10_1016_j_solener_2014_01_034
crossref_primary_10_3390_ijms242216332
crossref_primary_10_7567_JJAP_55_112301
crossref_primary_10_12989_anr_2013_1_3_153
crossref_primary_10_1016_j_solener_2011_06_015
crossref_primary_10_1016_j_solener_2019_02_001
crossref_primary_10_1088_1674_1056_27_1_018808
crossref_primary_10_1002_bio_2484
crossref_primary_10_1016_j_pmatsci_2013_04_001
crossref_primary_10_1039_C6MH00469E
crossref_primary_10_1016_j_solener_2025_113249
crossref_primary_10_1016_j_jcis_2017_01_005
crossref_primary_10_1016_j_jallcom_2020_156661
crossref_primary_10_3390_nano12183194
crossref_primary_10_4028_www_scientific_net_AMR_832_557
crossref_primary_10_1039_C9TA10557C
crossref_primary_10_1021_acs_jpcc_5b08692
crossref_primary_10_1016_j_solener_2015_03_036
crossref_primary_10_1088_1674_1056_24_4_047205
crossref_primary_10_1007_s11664_016_4844_3
crossref_primary_10_1140_epjd_s10053_020_00011_5
crossref_primary_10_3390_app10051743
crossref_primary_10_1021_jz200802j
crossref_primary_10_1016_j_rser_2013_01_030
crossref_primary_10_1016_j_solener_2011_06_003
crossref_primary_10_1039_C6RA00357E
crossref_primary_10_1088_0022_3727_47_29_295302
crossref_primary_10_1016_j_physe_2022_115469
crossref_primary_10_1039_c3cp52227j
crossref_primary_10_1016_j_jallcom_2012_10_017
crossref_primary_10_7567_JJAP_54_070304
crossref_primary_10_1002_ejic_201700595
crossref_primary_10_1016_j_optmat_2021_111014
crossref_primary_10_1016_j_solener_2019_03_028
crossref_primary_10_1021_acs_jpcc_0c09226
crossref_primary_10_1007_s10853_014_8366_1
crossref_primary_10_1021_am5089605
crossref_primary_10_1088_1361_6528_ad86c6
crossref_primary_10_17776_csj_1515106
crossref_primary_10_1021_jp402287b
crossref_primary_10_1021_acs_jpcc_8b09588
crossref_primary_10_1016_j_solener_2014_05_020
crossref_primary_10_1039_C3EE41981A
crossref_primary_10_1016_j_spmi_2016_10_029
crossref_primary_10_1007_s11426_018_9270_y
crossref_primary_10_1021_acs_jpcc_5b09528
crossref_primary_10_1016_j_cej_2023_145236
crossref_primary_10_1007_s10854_014_1979_y
crossref_primary_10_1088_0957_4484_27_28_285401
crossref_primary_10_1515_msp_2016_0072
crossref_primary_10_1016_j_solener_2013_10_027
crossref_primary_10_1016_j_solmat_2015_01_004
crossref_primary_10_1016_j_solmat_2015_09_034
crossref_primary_10_1039_C4DT03063J
crossref_primary_10_3390_nano3010022
crossref_primary_10_1016_j_ijleo_2021_168059
crossref_primary_10_1016_j_jpcs_2018_12_015
crossref_primary_10_1134_S2075113316040237
crossref_primary_10_1039_C6TA02415G
crossref_primary_10_3390_ijms23031140
crossref_primary_10_1007_s10854_015_2682_3
crossref_primary_10_1109_JSEN_2015_2506661
crossref_primary_10_1063_1_4811786
crossref_primary_10_1039_c2jm31970e
crossref_primary_10_1002_aenm_202102689
crossref_primary_10_4028_www_scientific_net_AMR_702_123
crossref_primary_10_1039_c2jm35620a
crossref_primary_10_1016_j_solener_2013_10_040
crossref_primary_10_1088_2053_1591_aa9971
crossref_primary_10_1039_C7TA11388A
crossref_primary_10_1039_D0NR02292F
crossref_primary_10_1007_s11051_020_04787_w
crossref_primary_10_1016_j_jcis_2015_06_038
crossref_primary_10_1016_j_solener_2015_02_024
crossref_primary_10_1016_j_jelechem_2014_12_016
crossref_primary_10_1063_1_4961425
crossref_primary_10_1117_1_OE_53_8_087107
crossref_primary_10_1016_j_mee_2022_111842
crossref_primary_10_1016_j_spmi_2015_12_002
crossref_primary_10_1021_acs_jpcc_8b07378
crossref_primary_10_1007_s10971_021_05539_5
crossref_primary_10_1007_s11664_024_11222_6
crossref_primary_10_1016_j_mssp_2014_04_028
crossref_primary_10_1016_j_apsusc_2014_05_015
crossref_primary_10_1016_j_solener_2019_05_070
crossref_primary_10_1016_j_solidstatesciences_2020_106176
crossref_primary_10_1016_j_spmi_2015_01_024
crossref_primary_10_1016_j_colsurfa_2024_136025
crossref_primary_10_1021_am3027986
crossref_primary_10_1039_C8CS00431E
crossref_primary_10_1016_j_optmat_2019_109569
crossref_primary_10_1016_j_solener_2024_112818
crossref_primary_10_1007_s10800_019_01299_x
crossref_primary_10_1007_s11172_016_1620_8
crossref_primary_10_1063_1_5005805
crossref_primary_10_1002_adfm_202213770
crossref_primary_10_1002_aelm_201800186
crossref_primary_10_1016_j_physb_2018_10_016
crossref_primary_10_1021_acs_chemmater_2c02651
crossref_primary_10_1016_j_optmat_2024_115101
crossref_primary_10_1016_j_colsurfb_2014_11_041
crossref_primary_10_1016_j_solener_2012_11_005
crossref_primary_10_1088_2040_8978_15_8_085303
crossref_primary_10_1039_C5RA02922H
crossref_primary_10_1155_2015_358063
crossref_primary_10_1134_S0030400X17010313
crossref_primary_10_1016_j_solener_2011_10_033
crossref_primary_10_1016_j_jallcom_2015_06_132
crossref_primary_10_1088_0022_3727_46_2_024004
crossref_primary_10_1515_nanoph_2016_0111
crossref_primary_10_1021_acs_jpcc_5b01771
crossref_primary_10_1364_OE_25_00A101
crossref_primary_10_1002_aelm_201900262
crossref_primary_10_1021_acs_chemrev_6b00376
crossref_primary_10_1016_j_mssp_2019_104852
crossref_primary_10_1039_c2cp41760j
crossref_primary_10_1007_s11051_017_3760_7
crossref_primary_10_1021_jz3004602
crossref_primary_10_1007_s10854_013_1205_3
crossref_primary_10_1016_j_cej_2023_146194
crossref_primary_10_1016_j_materresbull_2024_113072
crossref_primary_10_3139_146_110957
crossref_primary_10_1016_j_orgel_2013_09_033
crossref_primary_10_17776_csj_363334
crossref_primary_10_1016_j_solener_2015_08_035
crossref_primary_10_1039_C5RA07092A
crossref_primary_10_1186_s11671_015_0844_0
crossref_primary_10_1007_s11082_021_03075_8
crossref_primary_10_3762_bjnano_15_114
crossref_primary_10_1016_j_solener_2012_02_006
crossref_primary_10_1021_acs_jpcc_0c06242
crossref_primary_10_1007_s11664_012_2371_4
crossref_primary_10_1016_j_solener_2018_06_030
crossref_primary_10_1007_s10825_023_02019_7
crossref_primary_10_1016_j_electacta_2014_02_145
crossref_primary_10_1134_S1063785015020236
crossref_primary_10_1007_s12274_022_4389_0
crossref_primary_10_1039_D3YA00179B
crossref_primary_10_1016_j_rser_2014_05_023
crossref_primary_10_1021_acsami_4c00277
crossref_primary_10_1039_C9NJ05344A
crossref_primary_10_1021_jp507181k
crossref_primary_10_1021_acsomega_2c06759
crossref_primary_10_1039_D1CS00106J
crossref_primary_10_1016_j_solener_2020_04_044
crossref_primary_10_1021_jp309967w
crossref_primary_10_1021_jp306628m
crossref_primary_10_1002_open_202200232
crossref_primary_10_1016_j_solener_2020_01_026
crossref_primary_10_1063_1_4816099
crossref_primary_10_1002_pssr_202000167
crossref_primary_10_1021_acs_jpcc_5b05447
crossref_primary_10_1016_j_jcis_2011_11_044
crossref_primary_10_1016_j_ijleo_2022_169600
crossref_primary_10_1088_1402_4896_ac831d
crossref_primary_10_1016_j_jpcs_2018_06_021
crossref_primary_10_1021_acsmaterialslett_0c00379
crossref_primary_10_1002_smll_202002454
crossref_primary_10_1088_0957_4484_23_40_405401
crossref_primary_10_1016_j_solmat_2012_02_014
crossref_primary_10_1088_2053_1591_ac4f86
crossref_primary_10_1016_j_mser_2022_100714
crossref_primary_10_1557_jmr_2020_46
crossref_primary_10_1016_j_nanoen_2012_07_006
crossref_primary_10_1002_aenm_202101877
crossref_primary_10_1063_1_4831674
crossref_primary_10_1039_c3dt51149a
crossref_primary_10_1002_ente_202400961
crossref_primary_10_1016_j_solener_2021_03_010
crossref_primary_10_1070_RCR4452
crossref_primary_10_1016_j_spmi_2015_07_007
crossref_primary_10_1038_srep37913
crossref_primary_10_1179_1753555712Y_0000000042
crossref_primary_10_1016_j_rser_2017_05_095
crossref_primary_10_1021_acs_jpcc_7b09371
crossref_primary_10_1070_RC2013v082n05ABEH004337
crossref_primary_10_1016_j_jlumin_2019_116881
crossref_primary_10_1016_j_electacta_2015_10_075
crossref_primary_10_1016_j_solener_2019_11_010
crossref_primary_10_1080_14786435_2014_952257
crossref_primary_10_1007_s10854_014_2072_2
crossref_primary_10_1021_acs_jpcc_6b04130
crossref_primary_10_1186_s11671_017_1926_y
crossref_primary_10_1016_j_cplett_2018_02_035
crossref_primary_10_1364_JOT_80_000642
crossref_primary_10_1109_JSEN_2016_2546966
crossref_primary_10_1002_smll_201701822
crossref_primary_10_1117_1_JPE_8_044001
crossref_primary_10_1016_j_physe_2012_07_006
crossref_primary_10_1177_0954008320902232
crossref_primary_10_1016_j_spmi_2015_10_032
crossref_primary_10_1039_C5NR04107D
crossref_primary_10_1103_PhysRevE_104_014149
crossref_primary_10_1021_acs_jpcc_4c01302
crossref_primary_10_1016_j_bios_2014_07_056
crossref_primary_10_1021_acssuschemeng_8b05589
crossref_primary_10_1016_j_jpowsour_2019_05_020
crossref_primary_10_1063_1_4961399
crossref_primary_10_1039_C5TC02101D
crossref_primary_10_1007_s10909_020_02550_y
crossref_primary_10_1016_j_trac_2020_115897
crossref_primary_10_1016_j_matpr_2021_08_226
crossref_primary_10_1016_j_spmi_2015_04_031
crossref_primary_10_1016_j_ceramint_2014_01_011
crossref_primary_10_1002_admt_202401983
crossref_primary_10_1039_C5NR01025J
crossref_primary_10_1021_acsanm_1c00968
crossref_primary_10_1039_C8NR01842A
crossref_primary_10_1016_j_solener_2020_08_059
crossref_primary_10_1007_s11082_023_04809_6
crossref_primary_10_1021_jz301528a
crossref_primary_10_1109_TED_2018_2878465
crossref_primary_10_1016_j_matlet_2016_10_121
crossref_primary_10_3390_molecules28237702
crossref_primary_10_1016_j_jelechem_2016_04_048
crossref_primary_10_1155_2014_939423
crossref_primary_10_1021_acs_jpcc_7b12675
crossref_primary_10_1016_j_solener_2011_12_024
crossref_primary_10_1016_j_tsf_2015_11_049
Cites_doi 10.1021/jp066952u
10.1149/1.2129316
10.1021/jp809797x
10.1021/jp046781y
10.1016/j.polymer.2008.08.041
10.1002/adma.200800326
10.1021/nn100335g
10.1021/ja101752d
10.1016/j.jphotochem.2009.07.002
10.1063/1.3463037
10.1021/jp806791s
10.1002/adfm.200800940
10.1016/j.solmat.2009.04.013
10.1016/j.solmat.2010.07.016
10.1021/nn800871j
10.1002/adfm.200801173
10.1088/0957-4484/19/42/424007
10.1021/ja0574973
10.1143/JJAP.45.L638
10.1038/40087
10.1038/35003535
10.1021/j100082a044
10.1021/ja909663r
10.1021/jp810727n
10.1039/b604734n
10.1021/nl0342895
10.1063/1.2757130
10.1143/JJAP.46.4616
10.1063/1.2911740
10.1016/j.solmat.2008.11.022
10.1021/cr900137k
10.1021/cr050149z
10.1063/1.3440384
10.1063/1.2831661
10.1246/cl.2007.88
10.1021/nn900324q
10.1021/jp7113434
10.1103/PhysRevLett.92.186601
10.1088/0957-4484/20/29/295204
10.1063/1.3459146
10.1246/cl.2010.654
10.1007/s11671-010-9705-z
10.1088/0022-3727/41/10/102002
10.1002/adma.200390065
10.1038/35104607
10.1021/nl902438d
10.1063/1.2135868
10.5229/JKES.2007.10.4.257
10.1021/ja070099a
10.1021/jp020453l
10.1021/nn800093v
10.1039/b201661c
10.1007/s11671-010-9592-3
10.1126/science.1173812
10.1016/j.tsf.2004.11.041
10.1021/cm034081k
10.1007/BF02708491
10.1021/jp065282p
10.1088/0957-4484/20/9/095202
10.1016/j.solmat.2006.10.016
10.1063/1.2823582
10.1088/0957-4484/17/18/035
10.1016/j.tsf.2009.06.039
10.1002/adma.200401848
10.1021/ja0777741
10.1088/0957-4484/19/04/045602
10.1021/nl900388a
10.1016/j.jphotochem.2005.12.012
10.1063/1.1736034
10.1021/ja9098577
10.1021/nn1001547
10.1063/1.2912340
10.1021/nn800336b
10.1021/nl071486l
10.1021/ja8079143
10.1557/JMR.2004.0252
10.1143/JJAP.49.042301
10.1002/adfm.201000628
10.1007/s00604-007-0806-z
10.1021/jp809269m
10.1021/jp8108682
10.1063/1.2768311
10.1002/anie.200804709
10.1021/la903618x
10.1016/j.elecom.2010.08.001
10.1002/adma.201001148
10.1021/jp904320d
10.1039/b817000b
10.1021/ja056494n
10.1021/nl802476m
10.1002/anie.200702506
10.1021/jp0741758
10.1016/S0379-6779(97)80852-1
10.1063/1.3189083
10.1021/la702127t
10.1063/1.3280370
10.1088/0268-1242/18/9/311
10.1038/nphys1393
10.1016/j.elecom.2009.12.032
10.1016/j.tsf.2005.11.093
10.1016/j.eurpolymj.2009.12.023
10.1021/nl061085q
10.1246/cl.2007.712
10.1021/cm901762h
10.1103/PhysRevB.67.115326
10.1063/1.2240296
10.1021/nl1013663
10.1002/pssb.200779546
10.1039/b913601k
10.1021/jp808562x
10.1016/j.solmat.2008.12.015
10.1063/1.3337100
10.1038/nphoton.2009.69
10.1021/ja027355y
10.1016/j.elecom.2009.10.003
10.1016/j.elecom.2009.09.035
10.1016/0009-2614(90)85339-E
10.1021/jp802572b
10.1021/jz900122u
10.1021/nl100250z
10.1063/1.3117221
10.1021/nl802353x
10.1016/j.elecom.2008.08.038
10.1016/j.jphotochem.2005.05.023
10.1063/1.3313948
10.1088/0268-1242/18/6/314
10.1021/ma9006285
10.1039/b923418g
10.1126/science.1069156
10.1063/1.2721373
10.1021/ja0782706
10.1002/adma.200903240
10.1016/j.tsf.2007.04.143
10.1063/1.3491245
10.1016/j.tsf.2007.03.043
10.1021/nl803760j
10.1016/j.solmat.2010.06.013
10.1021/cm802254u
10.1021/ja909172p
10.1088/0022-3727/43/1/012002
10.1063/1.114209
10.1103/PhysRevB.54.17628
10.1021/jp907758s
10.1016/j.solmat.2009.01.001
10.1021/jp103300v
10.1021/jp104197s
10.1021/ja1013695
10.1557/jmr.2007.0289
10.1016/j.solmat.2005.11.011
10.1002/(SICI)1521-4095(199908)11:11<923::AID-ADMA923>3.0.CO;2-T
10.1016/j.apsusc.2010.05.086
10.1021/nl903406s
10.1038/nnano.2008.206
10.1021/jp900302b
10.1016/j.mseb.2008.11.014
10.1021/nl070430o
10.1021/jp803310s
10.1021/la900247r
10.1021/nn901139d
10.1021/j100565a004
10.1063/1.2735674
10.1021/nl101322h
10.1021/ja903337c
10.1002/adfm.200900081
10.1126/science.272.5269.1744
10.1007/s11671-010-9632-z
10.5012/bkcs.2007.28.6.953
10.1021/nl8034338
10.1002/cphc.201000069
10.1021/la9713863
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Copyright Pergamon Press Inc. Jun 2011
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: Copyright Pergamon Press Inc. Jun 2011
DBID AAYXX
CITATION
7SP
7ST
8FD
C1K
FR3
KR7
L7M
SOI
7SU
7TG
7U6
KL.
DOI 10.1016/j.solener.2011.02.005
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
Environmental Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
Environmental Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Sustainability Science Abstracts
DatabaseTitleList Civil Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1471-1257
EndPage 1282
ExternalDocumentID 2388745231
10_1016_j_solener_2011_02_005
S0038092X11000338
Genre Feature
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
UKR
VOH
WH7
WUQ
XOL
XPP
YNT
ZMT
ZY4
~02
~A~
~G-
~KM
~S-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SP
7ST
8FD
C1K
EFKBS
FR3
KR7
L7M
SOI
7SU
7TG
7U6
KL.
ID FETCH-LOGICAL-c508t-bda8a0464a0167058e3cc2beb47093504bb76d7ad3d841a4e926bc4c2a850f3b3
IEDL.DBID .~1
ISSN 0038-092X
IngestDate Tue Aug 05 10:15:17 EDT 2025
Fri Jul 11 10:05:57 EDT 2025
Wed Aug 13 04:43:18 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Tue Jul 01 01:08:27 EDT 2025
Fri Feb 23 02:18:35 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Solar cell
Colloidal quantum dot
Sensitizer
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-bda8a0464a0167058e3cc2beb47093504bb76d7ad3d841a4e926bc4c2a850f3b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 874342305
PQPubID 9393
PageCount 19
ParticipantIDs proquest_miscellaneous_883040410
proquest_miscellaneous_1777130140
proquest_journals_874342305
crossref_citationtrail_10_1016_j_solener_2011_02_005
crossref_primary_10_1016_j_solener_2011_02_005
elsevier_sciencedirect_doi_10_1016_j_solener_2011_02_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-06-01
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Solar energy
PublicationYear 2011
Publisher Elsevier Ltd
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Pergamon Press Inc
References Yang, Chang (b0840) 2010
Yu, Qu, Guo, Peng (b0845) 2003; 15
Günes, Neugebauer, Sariciftci (b0235) 2007; 107
Park, Roy, Beaupré, Cho, Coates, Moon, Moses, Leclerc, Lee, Heeger (b0580) 2009; 3
Tang, Wang, Brzozowski, Aaron, Barkhouse, Debnath, Levina, Sargent (b0750) 2010; 22
Johnston, Pattanthyus-Abraham, Clifford, Myrskog, MacNeil, Levina, Sargent (b0315) 2008; 92
Yun, Feng, Wu, Yoshino (b0860) 2009; 93
Kniprath, Rabe, McLeskey, Wang, Kirstein (b0350) 2009; 518
Lee, Kang, Min, Sung, Han (b0395) 2008; 10
Wang, Yang, Qian, Zhang, Li (b0825) 2010; 10
Robel, Subramanian, Kuno, Kamat (b0620) 2006; 128
Chang, Lee (b0080) 2007; 91
Chakrapani, Tvrdy, Kamat (b0075) 2010; 132
Klem, MacNeil, Levina, Sargent (b0345) 2008; 20
Lokteva, Radychev, Witt, Borchert, Parisi, Kolny-Olesiak (b0490) 2010; 114
Talapin, Lee, Kovalenko, Shevchenko (b0740) 2010; 110
Kawazoe, Yasukawa, Hyodu, Kurita, Yanagi, Hosono (b0335) 1997; 389
Leschkies, Beatty, Kang, Norris, Aydil (b0445) 2009; 3
Palaniappan, Murphy, Khanam, Horvath, Alshareef, Quevedo-Lopez, Biewer, Park, Kim, Gnade, Stefan (b0575) 2009; 42
Giménez, Mora-Seró, Macor, Guijarro, Lana-Villarreal, Gómez, Diguna, Shen, Toyoda, Bisquert (b0225) 2009; 20
Grätzel (b0240) 2001; 414
Lee, Kim, Yook, Bang, Kim, Park (b0385) 2007; 28
Lee, Lee, Lee, Yi, Han, Cho (b0405) 2008; 92
Pijpers, Ulbricht, Tielrooij, Osherov, Golan, Delerue, Allan, Bonn (b0605) 2009; 5
Versavel, Haber (b0790) 2007; 515
Bolts, Wrighton (b0055) 1976; 80
Peter, Riley, Tull, Wijayantha (b0600) 2002
Sun, Marx, Greenham (b0710) 2003; 3
Ma, Luther, Zheng, Wu, Alivisatos (b0505) 2009; 9
Maria, Cyr, Klem, Levina, Sargeant (b0515) 2005; 87
Lan, Yang, Lin, Lin, Liao, Chang (b0375) 2009; 19
Huynh, Dittmer, Alivisatos (b0285) 2002; 295
Toyoda, Kobayashi, Shen (b0775) 2008; 516
Ernst, Belaidi, Könenkamp (b0185) 2003; 18
Itzhaik, Niitsoo, Page, Hodes (b0300) 2009; 113
Leventis, O’Mahony, Akhtar, Afzaal, O’Brien, Haque (b0450) 2010; 132
Tvrdy, Kamat (b0785) 2009; 113
Kongkanand, Tvrdy, Takechi, Kuno, Kamat (b0360) 2008; 130
Taretto, Rau (b0755) 2005
Hoppe, Sariciftci (b0255) 2004; 19
Shen, Lee (b0680) 2008; 19
Prabakar, Minkyu, Inyoung, Heeje (b0615) 2010; 43
Fan, Fang, Kim, Kim, Yu, Ko (b0190) 2010; 96
Jiang, Schaller, Lee, Pietryga, Klimov, Zakhidov (b0305) 2007; 22
Greenham, Peng, Alivisatos (b0220) 1997; 84
Shalom, Dor, Rühle, Grinis, Zaban (b0675) 2009; 113
Lee, Wang, Chen, Gamelin, Zakeeruddin, Gratzel, Nazeeruddin (b0415) 2009; 9
Chen, Li, Zhao, Lei, Zhang, Cole, Chu, Wang, Cui, Sun, Milne (b0115) 2010
Hyun, Zhong, Bartnik, Sun, Abruna, Wise, Goodreau, Matthews, Leslie, Borelli (b0295) 2008; 2
Lin, Chu, Li, Chuang, Chang, Su, Chang, Chu, Chen (b0460) 2009; 131
Sun, Greenham (b0720) 2006; 8
Emin, Sogoshi, Nakabayashi, Fujihara, Dushkin (b0170) 2009; 113
Koleilat, Levina, Shukla, Myrskog, Hinds, Pattantyus-Abraham, Sargent (b0355) 2008; 2
Barea, Shalom, Giménez, Hod, Mora-Séro, Zaban, Bisquert (b0035) 2010; 132
Wang, Zhu, Xu, Wang, Tao, Hark, Xiao, Li (b0820) 2010; 6
Kamat (b0330) 2008; 112
Mora-Seró, Giménez, Moehl, Fabregat-Santiago, Lana-Villareal, Gómez, Bisquert (b0525) 2008; 18
Debntah, Greiner, Kramer, Fuscher, Tang, Barkhouse, Wang, Levina, Lu, Sargent (b0145) 2010; 97
Hoyer, Könenkamp (b0260) 1995; 66
Niitsoo, Sarkar, Pejoux, Rühle, Cahen, Hodes (b0545) 2006; 181
Zhu, G., Su, F., Lv, T., Pan, L., Sun, Z., 2010. Au nanoparticles as interfacial layer for CdS quantum dot-sensitized solar cells. Nanoscale Res. Lett. 52. doi: 10.1007/s11671-010-9705-z.
Sudhagar, Jung, Park, Lee, Sathyamoorthy, Kang, Ahn (b0700) 2009; 11
Bang, Kamat (b0030) 2009; 3
Emin, Sogoshi, Nakabayashi, Villeneuve, Dushkin (b0175) 2009; 207
Arango, Oertel, Xu, Bawendi, Bulović (b0015) 2009; 9
Arici, Sariciftci (b0025) 2004; vol. 3
Lee, Yum, Leventis, Zakeeruddin, Haque, Chen, Seok, Grätzel, Nazeeruddin (b0400) 2008; 112
Chen, Lo, Yang, Monbouqette, Yang (b0095) 2008; 3
Murphy, Beard, Norman, Ahrenkiel, Johnson, Yu, Mićić, Ellingson, Nozik (b0535) 2006; 128
Dayal, Kopidakis, Olson, Ginley, Rumbles (b0135) 2010; 10
Deng, Zhang, Huang, Li, Luo, Shen, Toyoda, Meng (b0155) 2010; 5
Hussain, Neppolian, Shim, Kim, Kim, Choi, Kim, Lee, Park (b0275) 2010; 49
Hodes (b0250) 2008; 112
Tachibana, Umekita, Otsuka, Kuwabata (b0735) 2008; 41
Wang, Yang, Shieh, Yeh, Juan, Zeng (b0815) 2010; 46
Vomeyer, Katsikas, Giersig, Popovic, Diesner, Chemseddine, Eychmüller, Weller (b0800) 1994; 98
Zhou, Riehle, Yuan, Schleiermacher, Niggemann, Urban, Krüger (b0875) 2010; 96
Schaller, Klimov (b0650) 2004; 92
Sukhovatkin, Hinds, Brzozowski, Sargent (b0705) 2009; 324
Chang, Rhee, Im, Lee, Kim, Seok, Nazeeruddin, Grätzel (b0085) 2010; 10
Chen, Paulose, Ruan, Mor, Varghese, Kouzoudis, Grimes (b0090) 2006; 177
Chen, Zhao, Song, Sun, Deng, Liu, Lei (b0105) 2009; 11
Beard, Knutsen, Yu, Luther, Song, Metzger, Ellingson, Nozik (b0045) 2007; 7
Ju, Graham, Zhai, Rodriguez, Breeze, Yang, Alers, Carter (b0320) 2010; 97
Lee, Chen, Moon, Sauvage, Sivula, Bessho, Gamelin, Comte, Zakeeruddin, Seok, Gratzel, Nazeeruddin (b0425) 2009; 25
Wang, Abrusci, Wong, Svensson, Anderson, Greenham (b0805) 2006; 6
Shiga, Takechi, Motohiro (b0690) 2006; 90
Greenham, Peng, Alivisatos (b0215) 1996; 54
Law, Beard, Choi, Luther, Hanna, Nozik (b0380) 2008; 8
Kamat (b0325) 2007; 111
Sambur, Parkinson (b0635) 2010; 132
Noone, Strein, Anderson, Wu, Jenekhe, Ginger (b0555) 2010; 10
Wang, Qu, Zeng, Zhang, Shi, Tan, Wang, Liu, Hou, Teng, Feng (b0810) 2008; 49
Han, Qin, Jiang, Liu, Wang, Chen, Cao (b0245) 2006; 17
Schaller, Sykora, Jeong, Klimov (b0655) 2006; 110
Emin, Loukanov, Wakasa, Nakabayashi, Kaneko (b0180) 2010; 39
Huang, Peng, Wang, Wang, Cao (b0265) 2008; 92
Peng, Manna, Yang, Wickham, Scher, Kadavanich, Alivisatos (b0595) 2000; 404
Plass, Serge, Krüger, Grätzel (b0610) 2002; 106
Vogel, Pohl, Weller (b0795) 1990; 174
Leschkies, Divakar, Basu, Enache-Pommer, Boercker, Carter, Kortshagen, Norris, Aydil (b0440) 2007; 7
Blackburn, Selmarten, Ellingson, Jones, Micic, Nozik (b0050) 2005; 109
Seo, Kim, Kim, Singh, Samoc, Cartwright, Prasad (b0665) 2009; 20
Dayal, Reese, Ferguson, Ginley, Rumbles, Kopidakis (b0130) 2010; 20
Service (b0670) 1996; 272
Diguna, Shen, Kobayashi, Toyoda (b0160) 2007; 91
Arenas, Mendoza, Cortina, Nicho, Hu (b0020) 2010; 94
Toyoda, Uehata, Suganuma, Tamura, Sato, Yamamoto, Kobayashi, Shen (b0770) 2007; 46
Carlson, Leschkies, Aydil, Zhu (b0070) 2008; 112
Chiba, Islam, Watanabe, Komiya, Koide, Han (b0120) 2006; 45
Lee, Chi, Liau (b0435) 2010; 22
Pathan, Lokhande (b0585) 2004; 27
Lee, Lee, Min, Park, Yi, Han (b0420) 2009; 156
Albero, Martínez-Ferrero, Ajuria, Waldauf, Pacios, Palomares (b0010) 2009; 11
Rühle, Shalom, Zaban (b0630) 2010; 11
Luther, Gao, Lloyd, Semonin, Beard, Nozik (b0500) 2010; 22
Wienke, Krunks, Lenzmann (b0830) 2003; 18
Sun, Sariciftci (b0715) 2005
Lee, Lo (b0430) 2009; 19
Lee, Huang, Chien (b0390) 2008; 20
Liu, Hensel, Fitzmorris, Li, Zhang (b0475) 2010; 1
Šimurda, Nĕmec, Formanánek, Nĕmcová, Malý (b0660) 2006
Clifford, Johnston, Levina, Sargent (b0125) 2007; 91
De Girolamo, Reiss, Pron (b0140) 2007; 111
Debnath, Tang, Barkhouse, Wang, Pattantyus-Abraham, Brzozowski, Levina, Sargent (b0150) 2010; 132
Dibbell, Watson (b0165) 2009; 113
Gao, Sun, Hu, Ai, Zhang, Feng, Li, Peng (b0210) 2009; 113
Luther, Law, Beard, Song, Reese, Ellingson, Nozik (b0495) 2008; 8
Sun, Yu, Pan, Gao, Chen, Peng (b0725) 2008; 130
Bredol, Matras, Szatkowski, Sanetra, Prodi-Schwab (b0060) 2009; 93
Yum, Choi, Kim, Kim, Sun (b0855) 2007; 10
Mozer, Wada, Jiang, Masaki, Yanagida, Mori (b0530) 2006; 89
Feng, Yun, Zhang, Feng (b0200) 2010; 96
Okazaki, Kojima, Tachibana, Kuwabata, Torimoto (b0560) 2007; 36
Levy-Clémént, Tena-Zaera, Ryan, Hodes (b0455) 2005; 17
Farrow, Kamat (b0195) 2009; 131
Zhang, Zhang, Huang, Huang, Luo, Meng, Li (b0870) 2010; 12
Pattantyus-Abraham, Kramer, Barkhouse, Wang, Konstantatos, Debnath, Levina, Raabe, Nazeeruddin, Grätzel, Sargent (b0590) 2010; 4
Jiang, Chen, Qiu, Yan, Nan, Xu, Yang, Chen (b0310) 2010
Huynh, Dittmer, Teclemariam, Milliron, Alivisatos, Barnham (b0290) 2003; 67
Günes, Fritz, Neugebauer, Sariciftci, Kumar, Scholes (b0230) 2007; 91
Cahen, Khan (b0065) 2003; 15
Liu, Holman, Kortshagen (b0470) 2009; 9
Sambur, Riha, Choi, Parkinson (b0640) 2010; 26
Shockley, Queisser (b0695) 1961; 32
Tomkiewicz (b0765) 1979; 126
Robel, Kuno, Kamat (b0625) 2007; 129
Könenkamp (b0365) 2008
Liu, Kortshagen (b0480) 2010; 5
Truong, Kim, Park (b0780) 2010
Thompson, Fréchet (b0760) 2008; 47
Baker, Kamat (b0040) 2009; 19
Olson, Gray, Carter (b0565) 2009; 93
Mann, Watson (b0510) 2007; 23
Klem, MacNeil, Cyr, Levina, Sargent (b0340) 2007; 90
Olson, Rodriguez, Yang, Alers, Carter (b0570) 2010; 96
Tachibana, Akiyama, Ohtsuka, Torimoto, Kuwabata (b0730) 2007; 36
Chen, Wu, Lei, Song, Deng, Sun (b0110) 2010; 256
Huynh, Peng, Alivisatos (b0280) 1999; 11
Nadarajah, Word, VanSant, Könenkamp (b0540) 2008; 245
Noone, Anderson, Horwitz, Munro, Kulkarni, Ginger (b0550) 2009; 3
Zaban, Mícíc, Gregg, Nozik (b0865) 1998; 14
Kumar, Scholes (b0370) 2008; 160
Tan, Zhu, Thein, Gao, Cheng, Zhang, Zhang, Su, Wang, Henderson, Hahm, Yang, Xu (b0745) 2009; 95
Acharya, Hewa-Kaskarage, Alabi, Nemitz, Khon, Ullrich, Anzenbacher, Zamkov (b0005) 2010; 114
Sapp, Elliott, Contado, Caramori, Bignozzi (b0645) 2002; 124
Chen, Song, Sun, Deng, Jiang, Lei, Huang, Liu (b0100) 2009; 94
Mishra, Fischer, Bäuerle (b0520) 2009; 48
Shen, Yamada, Tamura, Toyoda (b0685) 2010; 97
Lloyd, Lee, Davis, Fang, Fleming, Hsu, Kline, Toney (b0485) 2009; 113
Xin, Huang, Jiang, Li, Peng, Zhai, Wang (b0835) 2010; 46
Lee, Leventis, Moon, Chen, Ito, Haque, Torres, Nüesch, Geiger, Zakeeruddin, Grätzel, Nazeeruddin (b0410) 2009; 19
Gao, Li, Sun, Chen, Tang, Peng (b0205) 2009; 113
Lin, Lee, Chang, Shen, Yang (b0465) 2007; 90
Schaller (10.1016/j.solener.2011.02.005_b0655) 2006; 110
Okazaki (10.1016/j.solener.2011.02.005_b0560) 2007; 36
Emin (10.1016/j.solener.2011.02.005_b0170) 2009; 113
Han (10.1016/j.solener.2011.02.005_b0245) 2006; 17
Robel (10.1016/j.solener.2011.02.005_b0625) 2007; 129
Chen (10.1016/j.solener.2011.02.005_b0095) 2008; 3
Lee (10.1016/j.solener.2011.02.005_b0390) 2008; 20
Barea (10.1016/j.solener.2011.02.005_b0035) 2010; 132
Lee (10.1016/j.solener.2011.02.005_b0425) 2009; 25
Sun (10.1016/j.solener.2011.02.005_b0715) 2005
Leschkies (10.1016/j.solener.2011.02.005_b0445) 2009; 3
Tomkiewicz (10.1016/j.solener.2011.02.005_b0765) 1979; 126
Chang (10.1016/j.solener.2011.02.005_b0085) 2010; 10
Olson (10.1016/j.solener.2011.02.005_b0565) 2009; 93
Dayal (10.1016/j.solener.2011.02.005_b0135) 2010; 10
Emin (10.1016/j.solener.2011.02.005_b0180) 2010; 39
Mora-Seró (10.1016/j.solener.2011.02.005_b0525) 2008; 18
Emin (10.1016/j.solener.2011.02.005_b0175) 2009; 207
Sudhagar (10.1016/j.solener.2011.02.005_b0700) 2009; 11
Lee (10.1016/j.solener.2011.02.005_b0410) 2009; 19
Carlson (10.1016/j.solener.2011.02.005_b0070) 2008; 112
Lloyd (10.1016/j.solener.2011.02.005_b0485) 2009; 113
Sambur (10.1016/j.solener.2011.02.005_b0635) 2010; 132
Maria (10.1016/j.solener.2011.02.005_b0515) 2005; 87
Toyoda (10.1016/j.solener.2011.02.005_b0775) 2008; 516
Mishra (10.1016/j.solener.2011.02.005_b0520) 2009; 48
Giménez (10.1016/j.solener.2011.02.005_b0225) 2009; 20
Prabakar (10.1016/j.solener.2011.02.005_b0615) 2010; 43
Klem (10.1016/j.solener.2011.02.005_b0340) 2007; 90
Sapp (10.1016/j.solener.2011.02.005_b0645) 2002; 124
Shen (10.1016/j.solener.2011.02.005_b0685) 2010; 97
Mann (10.1016/j.solener.2011.02.005_b0510) 2007; 23
Plass (10.1016/j.solener.2011.02.005_b0610) 2002; 106
Farrow (10.1016/j.solener.2011.02.005_b0195) 2009; 131
Lee (10.1016/j.solener.2011.02.005_b0405) 2008; 92
Luther (10.1016/j.solener.2011.02.005_b0500) 2010; 22
Peter (10.1016/j.solener.2011.02.005_b0600) 2002
Dibbell (10.1016/j.solener.2011.02.005_b0165) 2009; 113
Chen (10.1016/j.solener.2011.02.005_b0100) 2009; 94
Zhou (10.1016/j.solener.2011.02.005_b0875) 2010; 96
Kamat (10.1016/j.solener.2011.02.005_b0330) 2008; 112
Zaban (10.1016/j.solener.2011.02.005_b0865) 1998; 14
Yum (10.1016/j.solener.2011.02.005_b0855) 2007; 10
Wang (10.1016/j.solener.2011.02.005_b0825) 2010; 10
Kumar (10.1016/j.solener.2011.02.005_b0370) 2008; 160
Deng (10.1016/j.solener.2011.02.005_b0155) 2010; 5
Klem (10.1016/j.solener.2011.02.005_b0345) 2008; 20
Xin (10.1016/j.solener.2011.02.005_b0835) 2010; 46
Arango (10.1016/j.solener.2011.02.005_b0015) 2009; 9
Grätzel (10.1016/j.solener.2011.02.005_b0240) 2001; 414
Schaller (10.1016/j.solener.2011.02.005_b0650) 2004; 92
Sukhovatkin (10.1016/j.solener.2011.02.005_b0705) 2009; 324
Wienke (10.1016/j.solener.2011.02.005_b0830) 2003; 18
Tan (10.1016/j.solener.2011.02.005_b0745) 2009; 95
Greenham (10.1016/j.solener.2011.02.005_b0220) 1997; 84
Service (10.1016/j.solener.2011.02.005_b0670) 1996; 272
Shen (10.1016/j.solener.2011.02.005_b0680) 2008; 19
Lin (10.1016/j.solener.2011.02.005_b0465) 2007; 90
Blackburn (10.1016/j.solener.2011.02.005_b0050) 2005; 109
Pijpers (10.1016/j.solener.2011.02.005_b0605) 2009; 5
Lee (10.1016/j.solener.2011.02.005_b0395) 2008; 10
Robel (10.1016/j.solener.2011.02.005_b0620) 2006; 128
Huynh (10.1016/j.solener.2011.02.005_b0290) 2003; 67
Kawazoe (10.1016/j.solener.2011.02.005_b0335) 1997; 389
Hyun (10.1016/j.solener.2011.02.005_b0295) 2008; 2
Noone (10.1016/j.solener.2011.02.005_b0550) 2009; 3
Chen (10.1016/j.solener.2011.02.005_b0090) 2006; 177
Pattantyus-Abraham (10.1016/j.solener.2011.02.005_b0590) 2010; 4
Arenas (10.1016/j.solener.2011.02.005_b0020) 2010; 94
Baker (10.1016/j.solener.2011.02.005_b0040) 2009; 19
Bredol (10.1016/j.solener.2011.02.005_b0060) 2009; 93
Ma (10.1016/j.solener.2011.02.005_b0505) 2009; 9
Lee (10.1016/j.solener.2011.02.005_b0400) 2008; 112
Debnath (10.1016/j.solener.2011.02.005_b0150) 2010; 132
Sambur (10.1016/j.solener.2011.02.005_b0640) 2010; 26
Thompson (10.1016/j.solener.2011.02.005_b0760) 2008; 47
Luther (10.1016/j.solener.2011.02.005_b0495) 2008; 8
Wang (10.1016/j.solener.2011.02.005_b0815) 2010; 46
Leschkies (10.1016/j.solener.2011.02.005_b0440) 2007; 7
Bolts (10.1016/j.solener.2011.02.005_b0055) 1976; 80
Cahen (10.1016/j.solener.2011.02.005_b0065) 2003; 15
Ernst (10.1016/j.solener.2011.02.005_b0185) 2003; 18
Shockley (10.1016/j.solener.2011.02.005_b0695) 1961; 32
Taretto (10.1016/j.solener.2011.02.005_b0755) 2005
Debntah (10.1016/j.solener.2011.02.005_b0145) 2010; 97
Shalom (10.1016/j.solener.2011.02.005_b0675) 2009; 113
Wang (10.1016/j.solener.2011.02.005_b0810) 2008; 49
Acharya (10.1016/j.solener.2011.02.005_b0005) 2010; 114
De Girolamo (10.1016/j.solener.2011.02.005_b0140) 2007; 111
Wang (10.1016/j.solener.2011.02.005_b0805) 2006; 6
Park (10.1016/j.solener.2011.02.005_b0580) 2009; 3
Gao (10.1016/j.solener.2011.02.005_b0210) 2009; 113
Lokteva (10.1016/j.solener.2011.02.005_b0490) 2010; 114
Lan (10.1016/j.solener.2011.02.005_b0375) 2009; 19
Palaniappan (10.1016/j.solener.2011.02.005_b0575) 2009; 42
Niitsoo (10.1016/j.solener.2011.02.005_b0545) 2006; 181
Tang (10.1016/j.solener.2011.02.005_b0750) 2010; 22
Koleilat (10.1016/j.solener.2011.02.005_b0355) 2008; 2
Versavel (10.1016/j.solener.2011.02.005_b0790) 2007; 515
Vomeyer (10.1016/j.solener.2011.02.005_b0800) 1994; 98
Chang (10.1016/j.solener.2011.02.005_b0080) 2007; 91
Law (10.1016/j.solener.2011.02.005_b0380) 2008; 8
Chen (10.1016/j.solener.2011.02.005_b0110) 2010; 256
Hussain (10.1016/j.solener.2011.02.005_b0275) 2010; 49
Günes (10.1016/j.solener.2011.02.005_b0235) 2007; 107
Albero (10.1016/j.solener.2011.02.005_b0010) 2009; 11
Bang (10.1016/j.solener.2011.02.005_b0030) 2009; 3
Nadarajah (10.1016/j.solener.2011.02.005_b0540) 2008; 245
Truong (10.1016/j.solener.2011.02.005_b0780) 2010
Huang (10.1016/j.solener.2011.02.005_b0265) 2008; 92
Diguna (10.1016/j.solener.2011.02.005_b0160) 2007; 91
Hoyer (10.1016/j.solener.2011.02.005_b0260) 1995; 66
Levy-Clémént (10.1016/j.solener.2011.02.005_b0455) 2005; 17
Johnston (10.1016/j.solener.2011.02.005_b0315) 2008; 92
Liu (10.1016/j.solener.2011.02.005_b0475) 2010; 1
Sun (10.1016/j.solener.2011.02.005_b0720) 2006; 8
Lee (10.1016/j.solener.2011.02.005_b0435) 2010; 22
Huynh (10.1016/j.solener.2011.02.005_b0285) 2002; 295
Hoppe (10.1016/j.solener.2011.02.005_b0255) 2004; 19
Chakrapani (10.1016/j.solener.2011.02.005_b0075) 2010; 132
10.1016/j.solener.2011.02.005_b0880
Huynh (10.1016/j.solener.2011.02.005_b0280) 1999; 11
Noone (10.1016/j.solener.2011.02.005_b0555) 2010; 10
Günes (10.1016/j.solener.2011.02.005_b0230) 2007; 91
Kongkanand (10.1016/j.solener.2011.02.005_b0360) 2008; 130
Könenkamp (10.1016/j.solener.2011.02.005_b0365) 2008
Yun (10.1016/j.solener.2011.02.005_b0860) 2009; 93
Arici (10.1016/j.solener.2011.02.005_b0025) 2004; vol. 3
Peng (10.1016/j.solener.2011.02.005_b0595) 2000; 404
Sun (10.1016/j.solener.2011.02.005_b0710) 2003; 3
Tvrdy (10.1016/j.solener.2011.02.005_b0785) 2009; 113
Yu (10.1016/j.solener.2011.02.005_b0845) 2003; 15
Šimurda (10.1016/j.solener.2011.02.005_b0660) 2006
Clifford (10.1016/j.solener.2011.02.005_b0125) 2007; 91
Chiba (10.1016/j.solener.2011.02.005_b0120) 2006; 45
Vogel (10.1016/j.solener.2011.02.005_b0795) 1990; 174
Lee (10.1016/j.solener.2011.02.005_b0430) 2009; 19
Kamat (10.1016/j.solener.2011.02.005_b0325) 2007; 111
Kniprath (10.1016/j.solener.2011.02.005_b0350) 2009; 518
Toyoda (10.1016/j.solener.2011.02.005_b0770) 2007; 46
Lee (10.1016/j.solener.2011.02.005_b0420) 2009; 156
Murphy (10.1016/j.solener.2011.02.005_b0535) 2006; 128
Jiang (10.1016/j.solener.2011.02.005_b0305) 2007; 22
Dayal (10.1016/j.solener.2011.02.005_b0130) 2010; 20
Chen (10.1016/j.solener.2011.02.005_b0105) 2009; 11
Lee (10.1016/j.solener.2011.02.005_b0385) 2007; 28
Seo (10.1016/j.solener.2011.02.005_b0665) 2009; 20
Feng (10.1016/j.solener.2011.02.005_b0200) 2010; 96
Jiang (10.1016/j.solener.2011.02.005_b0310) 2010
Beard (10.1016/j.solener.2011.02.005_b0045) 2007; 7
Tachibana (10.1016/j.solener.2011.02.005_b0735) 2008; 41
Liu (10.1016/j.solener.2011.02.005_b0470) 2009; 9
Hodes (10.1016/j.solener.2011.02.005_b0250) 2008; 112
Gao (10.1016/j.solener.2011.02.005_b0205) 2009; 113
Mozer (10.1016/j.solener.2011.02.005_b0530) 2006; 89
Ju (10.1016/j.solener.2011.02.005_b0320) 2010; 97
Pathan (10.1016/j.solener.2011.02.005_b0585) 2004; 27
Wang (10.1016/j.solener.2011.02.005_b0820) 2010; 6
Liu (10.1016/j.solener.2011.02.005_b0480) 2010; 5
Lin (10.1016/j.solener.2011.02.005_b0460) 2009; 131
Rühle (10.1016/j.solener.2011.02.005_b0630) 2010; 11
Lee (10.1016/j.solener.2011.02.005_b0415) 2009; 9
Shiga (10.1016/j.solener.2011.02.005_b0690) 2006; 90
Sun (10.1016/j.solener.2011.02.005_b0725) 2008; 130
Talapin (10.1016/j.solener.2011.02.005_b0740) 2010; 110
Olson (10.1016/j.solener.2011.02.005_b0570) 2010; 96
Greenham (10.1016/j.solener.2011.02.005_b0215) 1996; 54
Tachibana (10.1016/j.solener.2011.02.005_b0730) 2007; 36
Yang (10.1016/j.solener.2011.02.005_b0840) 2010
Fan (10.1016/j.solener.2011.02.005_b0190) 2010; 96
Zhang (10.1016/j.solener.2011.02.005_b0870) 2010; 12
Itzhaik (10.1016/j.solener.2011.02.005_b0300) 2009; 113
Chen (10.1016/j.solener.2011.02.005_b0115) 2010
Leventis (10.1016/j.solener.2011.02.005_b0450) 2010; 132
References_xml – volume: 19
  start-page: 2735
  year: 2009
  end-page: 2742
  ident: b0410
  article-title: PbS and CdS quantum dot-sensitized solid-state solar cells: “Old concepts, new results”
  publication-title: Adv. Funct. Mater.
– volume: 128
  start-page: 3241
  year: 2006
  end-page: 3247
  ident: b0535
  article-title: PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation
  publication-title: J. Am. Chem. Soc.
– volume: 181
  start-page: 306
  year: 2006
  end-page: 313
  ident: b0545
  article-title: Chemical bath deposited CdS/CdSe-sensitized porous TiO
  publication-title: J. Photochem. Photobiol. A
– volume: 94
  start-page: 153115
  year: 2009
  ident: b0100
  article-title: An oleic acid-capped CdSe quantum-dot sensitized solar cell
  publication-title: Appl. Phys. Lett.
– volume: 89
  start-page: 043509
  year: 2006
  ident: b0530
  article-title: Efficient dye-sensitized solar cells based on a 2-thiophen-2-yl-vinyl-conjugated ruthenium photosensitizer and conjugated polymer hole conductor
  publication-title: Appl. Phys. Lett.
– volume: 20
  start-page: 095202
  year: 2009
  ident: b0665
  article-title: Enhacement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite device by post-treatment-driven ligand exchange
  publication-title: Nanotechnology
– volume: 324
  start-page: 1542
  year: 2009
  end-page: 1544
  ident: b0705
  article-title: Colloidal quantum-dot photodetectors exploiting multiexciton generation
  publication-title: Science
– volume: 515
  start-page: 7171
  year: 2007
  end-page: 7176
  ident: b0790
  article-title: Structural and optical properties of amorphous and crystalline antimony sulfide thin-films
  publication-title: Thin Solid Films
– volume: 112
  start-page: 11600
  year: 2008
  end-page: 11608
  ident: b0400
  article-title: CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity
  publication-title: J. Phys. Chem. C
– volume: 132
  start-page: 5952
  year: 2010
  end-page: 5953
  ident: b0150
  article-title: Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles
  publication-title: J. Am. Chem. Soc.
– volume: 96
  start-page: 093301
  year: 2010
  ident: b0200
  article-title: Solution-processed bulk heterojunction photovoltaic devices based on poly(2-methoxy,5-octoxy)-1,4-phenylenevinylene-multiwalled carbon nanotubes/PbSe quantum dots
  publication-title: Appl. Phys. Lett.
– volume: 114
  start-page: 12496
  year: 2010
  end-page: 12504
  ident: b0005
  article-title: Synthesis of PbS/TiO
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 1088
  year: 2010
  end-page: 1092
  ident: b0825
  article-title: Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation
  publication-title: Nano Lett.
– volume: 111
  start-page: 14681
  year: 2007
  end-page: 14688
  ident: b0140
  article-title: Supramolecularly assembled hybrid materials via molecular recognition between diaminopyrimidine-functionalized poly(hexylthiophene) and thymine-capped CdSe nanocrystals
  publication-title: J. Phys. Chem. C
– volume: 22
  start-page: 922
  year: 2010
  end-page: 927
  ident: b0435
  article-title: CdS/CdSe co-sensitized TiO
  publication-title: Chem. Mater.
– volume: 14
  start-page: 3153
  year: 1998
  end-page: 3156
  ident: b0865
  article-title: Photosensitization of nanoporous TiO
  publication-title: Langmuir
– volume: 22
  start-page: 2204
  year: 2007
  end-page: 2210
  ident: b0305
  article-title: PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron
  publication-title: J. Mater. Res.
– volume: 245
  start-page: 1834
  year: 2008
  end-page: 1837
  ident: b0540
  article-title: Nanowire-quantum-dot-polymer solar cells
  publication-title: Phys. Stat. Sol.
– volume: 42
  start-page: 3845
  year: 2009
  end-page: 3848
  ident: b0575
  article-title: Poly(3-hexylthiophene)−CdSe quantum dot bulk heterojunction solar cells: influence of the functional end-group of the polymer
  publication-title: Macromolecules
– volume: 3
  start-page: 543
  year: 2008
  end-page: 547
  ident: b0095
  article-title: Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 1789
  year: 2006
  end-page: 1793
  ident: b0805
  article-title: Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles
  publication-title: Nano Lett.
– volume: 3
  start-page: 1467
  year: 2009
  end-page: 1476
  ident: b0030
  article-title: Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe
  publication-title: ACS Nano
– volume: 11
  start-page: 923
  year: 1999
  end-page: 926
  ident: b0280
  article-title: CdSe nanocrystals rods/poly(3-hexylthiophene) composite photovoltaic devices
  publication-title: Adv. Mater.
– volume: 113
  start-page: 4254
  year: 2009
  end-page: 4256
  ident: b0300
  article-title: Sb
  publication-title: J. Phys. Chem C
– volume: 4
  start-page: 3374
  year: 2010
  end-page: 3380
  ident: b0590
  article-title: Depleted-heterojunction colloidal quantum dot solar cells
  publication-title: ACS Nano
– volume: 8
  start-page: 3557
  year: 2006
  end-page: 3560
  ident: b0720
  article-title: Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibres
  publication-title: Phys. Chem. Chem. Phys.
– volume: 174
  start-page: 241
  year: 1990
  end-page: 245
  ident: b0795
  article-title: Sensitization of highly porous, polycrystalline TiO
  publication-title: Chem. Phys. Lett.
– volume: 96
  start-page: 063501
  year: 2010
  ident: b0190
  article-title: Hierarchical nanostructured spherical carbon with hollow core/mesoporous shell as a highly efficient counter electrode in CdSe quantum-dot-sensitized solar cells
  publication-title: Appl. Phys. Lett.
– volume: 131
  start-page: 11124
  year: 2009
  end-page: 11131
  ident: b0195
  article-title: CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups
  publication-title: J. Am. Soc.
– volume: 48
  start-page: 2474
  year: 2009
  end-page: 2499
  ident: b0520
  article-title: Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 3638
  year: 2009
  ident: b0445
  article-title: Solar cells based on junction between colloidal PbSe nanocrystals and thin ZnO films
  publication-title: ACS Nano
– volume: 80
  start-page: 2641
  year: 1976
  end-page: 2645
  ident: b0055
  article-title: Correlation of photocurrent–voltage curves with flat-band potential for stable photoelectrodes for the photoelectrolysis of water
  publication-title: J. Phys. Chem.
– volume: 97
  start-page: 023109
  year: 2010
  ident: b0145
  article-title: Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts
  publication-title: Appl. Phys. Lett.
– volume: 18
  start-page: 475
  year: 2003
  ident: b0185
  article-title: Solar cell with extremely thin absorber on highly structured substrate
  publication-title: Semicond. Sci. Technol.
– volume: 132
  start-page: 2743
  year: 2010
  end-page: 2750
  ident: b0450
  article-title: Transient optical studies of interfacial charge transfer at nanostructured metal oxides/PbS quantum dot/organic hole conductor heterojunctions
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1253
  year: 2010
  end-page: 1256
  ident: b0480
  article-title: A silicon nanocrystal Schottky junction solar cell produced from colloidal silicon nanocrystals
  publication-title: Nanoscale Res.
– volume: 66
  start-page: 349
  year: 1995
  end-page: 351
  ident: b0260
  article-title: Photoconduction in porous TiO
  publication-title: Appl. Phys. Lett.
– volume: 36
  start-page: 712
  year: 2007
  end-page: 713
  ident: b0560
  article-title: One-step preparation and photosensitivity of size-quantized cadmium chalcogenide nanoparticles deposited on porous zinc oxide film electrodes
  publication-title: Chem. Lett.
– volume: 414
  start-page: 338
  year: 2001
  end-page: 344
  ident: b0240
  article-title: Photoelectrochemical cell
  publication-title: Nature
– volume: 207
  start-page: 173
  year: 2009
  end-page: 180
  ident: b0175
  article-title: Growth kinetics of CdS quantum dots and synthesis of their polymer nano-composites in CTAB reverse micelles
  publication-title: J. Photochem. Photobiol. A
– volume: 45
  start-page: 638
  year: 2006
  end-page: 640
  ident: b0120
  article-title: Dye-sensitized solar cells with conversion efficiency of 11.1%
  publication-title: Jpn. J. Appl. Phys.
– volume: 113
  start-page: 3765
  year: 2009
  end-page: 3772
  ident: b0785
  article-title: Substrate driven photochemistry of CdSe quantum dot films: charge injection and irreversible transformations on oxide surfaces
  publication-title: J. Phys. Chem. A
– volume: 19
  start-page: 045602
  year: 2008
  ident: b0680
  article-title: Assembly of CdS quantum dots onto mesoscopic TiO
  publication-title: Nanotechnology
– volume: 92
  start-page: 013308
  year: 2008
  ident: b0265
  article-title: Impedance spectroscopy investigation of electron transport in solar cells based on blend film of polymer and nanocrystals
  publication-title: Appl. Phys. Lett.
– volume: 41
  start-page: 102002
  year: 2008
  ident: b0735
  article-title: Performance improvement of CdS quantum dots sensitized TiO
  publication-title: J. Phys. D: Appl. Phys.
– volume: 5
  start-page: 986
  year: 2010
  end-page: 990
  ident: b0155
  article-title: Low-cost flexible nano-sulfide/carbon composite counter electrode for quantum-dot-sensitized solar cell
  publication-title: Nanoscale Res. Lett.
– volume: 19
  start-page: 604
  year: 2009
  end-page: 609
  ident: b0430
  article-title: Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe
  publication-title: Adv. Funct. Mater.
– volume: 107
  start-page: 1324
  year: 2007
  end-page: 1338
  ident: b0235
  article-title: Conjugated polymer-based organic solar cells
  publication-title: Chem. Rev.
– volume: 91
  start-page: 253117
  year: 2007
  ident: b0125
  article-title: Schottky barriers to colloidal quantum dot films
  publication-title: Appl. Phys. Lett.
– volume: 18
  start-page: 876
  year: 2003
  end-page: 880
  ident: b0830
  article-title: In
  publication-title: Semicond. Sci. Technol.
– volume: 8
  start-page: 3904
  year: 2008
  end-page: 3910
  ident: b0380
  article-title: Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model
  publication-title: Nano Lett.
– volume: 20
  start-page: 2629
  year: 2010
  end-page: 2635
  ident: b0130
  article-title: The effect of nanoparticle shape on the photocarrier dynamics and photovoltaic device performance of ploy(3-hexylthiophene): CdSe nanoparticl bulk heterojunction solar cells
  publication-title: Adv. Funct. Mater.
– start-page: 447
  year: 2005
  end-page: 451
  ident: b0755
  article-title: Influence of built-in voltage in optimized extremely thin absorber solar cells
  publication-title: Thin Solid Films
– volume: 11
  start-page: 2265
  year: 2009
  end-page: 2267
  ident: b0105
  article-title: Directly assembled CdSe quantum dots on TiO
  publication-title: Electrochem. Commun.
– volume: 9
  start-page: 449
  year: 2009
  end-page: 452
  ident: b0470
  article-title: Hybrid solar cells from P3HT and silicon nanocrystals
  publication-title: Nano Lett.
– volume: 295
  start-page: 2425
  year: 2002
  end-page: 2427
  ident: b0285
  article-title: Hybrid nanorod-polymer solar cells
  publication-title: Science
– year: 2010
  ident: b0780
  article-title: Effect of CdSe/P3HT composition on electrical and structural properties of bulk hetero-junction solar cell active layer
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 113
  start-page: 3998
  year: 2009
  end-page: 4007
  ident: b0170
  article-title: Kinetics of photochromic induced energy transfer between manganese-doped zinc–selenide quantum dots and spiropyrans
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 4221
  year: 2009
  end-page: 4227
  ident: b0415
  article-title: Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction processes
  publication-title: Nano Lett.
– start-page: 393
  year: 2008
  end-page: 452
  ident: b0365
  article-title: Inorganic-extended junction devices
  publication-title: Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion
– volume: 114
  start-page: 12784
  year: 2010
  end-page: 12791
  ident: b0490
  article-title: Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine
  publication-title: J. Phys. Chem. C
– volume: 27
  start-page: 85
  year: 2004
  end-page: 111
  ident: b0585
  article-title: Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method
  publication-title: Bull. Mater. Sci.
– volume: 93
  start-page: 1208
  year: 2009
  end-page: 1213
  ident: b0860
  article-title: Efficient conjugated polymer-ZnSe and -PbSe nanocrystals hybrid photovoltaic cells through full solar spectrum utilization
  publication-title: Sol. Energy. Mater. Sol. Cells
– volume: 109
  start-page: 2625
  year: 2005
  end-page: 2631
  ident: b0050
  article-title: Electron and hole transfer from indium phosphide quantum dots
  publication-title: J. Phys. Chem. B
– volume: 111
  start-page: 2834
  year: 2007
  end-page: 2860
  ident: b0325
  article-title: Meeting the clean energy demand: nanostructure architectures for solar energy conversion
  publication-title: J. Phys. Chem. C
– volume: 126
  start-page: 1505
  year: 1979
  end-page: 1510
  ident: b0765
  article-title: The potential distribution at the TiO
  publication-title: J. Electrochem. Soc.
– volume: 28
  start-page: 953
  year: 2007
  end-page: 958
  ident: b0385
  article-title: Anchoring cadmium chalcogenide quantum dots (QDs) onto stable oxide semiconductors for QD sensitized solar cells
  publication-title: Bull. Korean Chem. Soc.
– volume: 132
  start-page: 1228
  year: 2010
  end-page: 1229
  ident: b0075
  article-title: Modulation of electron injection in CdSe–TiO
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2609
  year: 2010
  end-page: 2612
  ident: b0085
  article-title: High-performance nanostructured inorganic–organic heterojunction solar cells
  publication-title: Nano Lett.
– volume: 272
  start-page: 1744
  year: 1996
  end-page: 1745
  ident: b0670
  article-title: New solar cells seem to have power at the right price
  publication-title: Science
– volume: 97
  start-page: 123107
  year: 2010
  ident: b0685
  article-title: CdSe quantum dot-sensitized solar cell employing TiO
  publication-title: Appl. Phys. Lett.
– volume: 46
  start-page: 2316
  year: 2010
  end-page: 2318
  ident: b0835
  article-title: Photoresponse of a single poly(p-phenylene vinylene)-CdSe bulk-heterojunction submicron fiber
  publication-title: Chem. Commun.
– volume: 67
  start-page: 115326
  year: 2003
  ident: b0290
  article-title: Charge transport in hybrid nanorod-polymer composite photovoltaic cells
  publication-title: Phys. Rev. B
– volume: 256
  start-page: 7438
  year: 2010
  end-page: 7441
  ident: b0110
  article-title: Co-sensitized quantum dot solar cell based on ZnO nanowires
  publication-title: Appl. Surf. Sci.
– volume: 17
  start-page: 4736
  year: 2006
  end-page: 4742
  ident: b0245
  article-title: Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells
  publication-title: Nanotechnology
– volume: 132
  start-page: 6834
  year: 2010
  end-page: 6839
  ident: b0035
  article-title: Design of injection and recombination in quantum dot sensitized solar cells
  publication-title: J. Am. Chem. Soc.
– volume: 129
  start-page: 4136
  year: 2007
  end-page: 4137
  ident: b0625
  article-title: Size-dependent electron injection from excited CdSe quantum dots into TiO
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 860
  year: 2009
  end-page: 863
  ident: b0015
  article-title: Heterojunction photovoltaics using printed colloidal quantum dots as a photosensitive layer
  publication-title: Nano Lett.
– volume: 110
  start-page: 389
  year: 2010
  end-page: 458
  ident: b0740
  article-title: Prospects of colloidal nanocrystals for electronic and optoelectronic applications
  publication-title: Chem. Rev.
– volume: 113
  start-page: 7531
  year: 2009
  end-page: 7535
  ident: b0205
  article-title: CdTe quantum dots-sensitized TiO
  publication-title: J. Phys. Chem. C
– volume: 98
  start-page: 7665
  year: 1994
  ident: b0800
  article-title: CdS Nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift
  publication-title: J. Phys. Chem.
– volume: 26
  start-page: 4839
  year: 2010
  end-page: 4847
  ident: b0640
  article-title: Influence of surface chemistry on the binding and electronic coupling of CdSe quantum dots to single crystal TiO
  publication-title: Langmuir
– volume: 2
  start-page: 833
  year: 2008
  end-page: 840
  ident: b0355
  article-title: Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots
  publication-title: ACS Nano
– year: 2010
  ident: b0840
  article-title: CdHgTe and CdTe quantum dot solar cells displaying an energy conversion efficiency exceeding 2%
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 91
  start-page: 420
  year: 2007
  end-page: 423
  ident: b0230
  article-title: Hybrid solar cells using PbS nanoparticles
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 20
  start-page: 295204
  year: 2009
  ident: b0225
  article-title: Improving the performance of colloidal quantum-dot-sensitized solar cells
  publication-title: Nanotechnology
– volume: 11
  start-page: 2220
  year: 2009
  end-page: 2224
  ident: b0700
  article-title: The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO
  publication-title: Electrochem. Commun.
– volume: 20
  start-page: 3433
  year: 2008
  end-page: 3439
  ident: b0345
  article-title: Solution processed photovoltaic devices with 2% infrared monochromatic power conversion efficiency: performance optimization and oxide formation
  publication-title: Adv. Mater.
– volume: 91
  start-page: 053503
  year: 2007
  ident: b0080
  article-title: Chemical bath deposition of CdS quantum dots onto mesoscopic TiO
  publication-title: Appl. Phys. Lett.
– volume: 96
  start-page: 242103
  year: 2010
  ident: b0570
  article-title: CdTe Schottky diodes from colloidal nanocrystals
  publication-title: Appl. Phys. Lett.
– volume: 20
  start-page: 6903
  year: 2008
  end-page: 6905
  ident: b0390
  article-title: Highly efficient CdSe-sensitized TiO
  publication-title: Chem. Mater.
– volume: 113
  start-page: 20481
  year: 2009
  end-page: 20485
  ident: b0210
  article-title: An efficient method to form heterojunction CdS/TiO
  publication-title: J. Phys. Chem. C
– volume: 36
  start-page: 88
  year: 2007
  end-page: 90
  ident: b0730
  article-title: CdS quantum dots sensitized TiO
  publication-title: Chem. Lett.
– volume: 15
  start-page: 2854
  year: 2003
  end-page: 2860
  ident: b0845
  article-title: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals
  publication-title: Chem. Mater.
– volume: 10
  start-page: 239
  year: 2010
  end-page: 242
  ident: b0135
  article-title: Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency
  publication-title: Nano Lett.
– volume: 177
  start-page: 177
  year: 2006
  end-page: 184
  ident: b0090
  article-title: Electrochemically synthesized CdS nanoparticle-modified TiO
  publication-title: J. Photochem. Photobiol. A
– volume: 92
  start-page: 151115
  year: 2008
  ident: b0315
  article-title: Schottky-quantum dot photovoltaics for efficient infrared power conversion
  publication-title: Appl. Phys. Lett.
– volume: 32
  start-page: 510
  year: 1961
  end-page: 519
  ident: b0695
  article-title: Detailed balance limit of efficiency of
  publication-title: J. Appl. Phys.
– volume: 87
  start-page: 213112
  year: 2005
  ident: b0515
  article-title: Solution-processed infrared photovoltaic devices with >10% monochromatic internal quantum efficiency
  publication-title: Appl. Phys. Lett.
– volume: 47
  start-page: 58
  year: 2008
  end-page: 77
  ident: b0760
  article-title: Polymer-fullerene composite solar cells
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 2349
  year: 2009
  end-page: 2355
  ident: b0375
  article-title: A single strategy for improving the energy conversion of multilayered CdTe quantum dot-sensitized solar cells
  publication-title: J. Mater. Chem.
– volume: 9
  start-page: 1699
  year: 2009
  end-page: 1703
  ident: b0505
  article-title: Photovoltaic devices employing ternary PbS
  publication-title: Nano Lett.
– volume: 90
  start-page: 1849
  year: 2006
  end-page: 1858
  ident: b0690
  article-title: Photovoltaic performance and stability of CdTe/polymeric hybrid solar cells using a C
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 8
  start-page: 3488
  year: 2008
  end-page: 3492
  ident: b0495
  article-title: Schottky solar cells based on colloidal nanocrystal films
  publication-title: Nano Lett.
– reference: Zhu, G., Su, F., Lv, T., Pan, L., Sun, Z., 2010. Au nanoparticles as interfacial layer for CdS quantum dot-sensitized solar cells. Nanoscale Res. Lett. 52. doi: 10.1007/s11671-010-9705-z.
– volume: 19
  start-page: 805
  year: 2009
  end-page: 811
  ident: b0040
  article-title: Photosensitization of TiO
  publication-title: Adv. Funct. Mater.
– year: 2010
  ident: b0115
  article-title: A quantum dot sensitized solar cell based on vertically aligned carbon nanotube template ZnO arrays
  publication-title: Electrochem. Commun.
– volume: 49
  start-page: 4647
  year: 2008
  end-page: 4651
  ident: b0810
  article-title: Synthesis of MDMO-PPV capped PbS quantum dots and their application to solar cells
  publication-title: Polymer
– volume: vol. 3
  start-page: 929
  year: 2004
  end-page: 944
  ident: b0025
  article-title: Hybrid solar cells
  publication-title: Encyclopedia of Nanoscience and Nanotechnology
– volume: 404
  start-page: 59
  year: 2000
  end-page: 61
  ident: b0595
  article-title: Shape control of CdSe nanocrystals
  publication-title: Nature
– year: 2010
  ident: b0310
  article-title: Effects of molecular interface modification in CdS/polymer hybrid bulk heterojunction solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 97
  start-page: 043106
  year: 2010
  ident: b0320
  article-title: High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature
  publication-title: Appl. Phys. Lett.
– volume: 92
  start-page: 153510
  year: 2008
  ident: b0405
  article-title: Enhanced charge collection and reduced recombination of CdS/TiO
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 961
  year: 2003
  end-page: 963
  ident: b0710
  article-title: Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers
  publication-title: Nano Lett.
– volume: 7
  start-page: 2506
  year: 2007
  end-page: 2512
  ident: b0045
  article-title: Multiple exciton generation in colloidal silicon nanocrystals
  publication-title: Nano Lett.
– volume: 43
  start-page: 012002
  year: 2010
  ident: b0615
  article-title: CdSe quantum dots co-sensitized TiO
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 1030
  year: 2002
  end-page: 1031
  ident: b0600
  article-title: Photosensitization of nanocrystalline TiO
  publication-title: Chem. Commun.
– volume: 10
  start-page: 1579
  year: 2008
  end-page: 1582
  ident: b0395
  article-title: Co-sensitization of vertically aligned TiO
  publication-title: Electrochem. Commun.
– volume: 106
  start-page: 7578
  year: 2002
  end-page: 7580
  ident: b0610
  article-title: Quantum dot sensitization of organic−inorganic hybrid solar cells
  publication-title: J. Phys. Chem. B
– volume: 10
  start-page: 2635
  year: 2010
  end-page: 2639
  ident: b0555
  article-title: Broadband absorbing bulk heterojunction photovoltaics using low-bandgap solution-processed quantum dots
  publication-title: Nano Lett.
– volume: 130
  start-page: 4007
  year: 2008
  end-page: 4015
  ident: b0360
  article-title: Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe−TiO
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 1512
  year: 2005
  end-page: 1515
  ident: b0455
  article-title: CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions
  publication-title: Adv. Mater.
– volume: 10
  start-page: 257
  year: 2007
  end-page: 261
  ident: b0855
  article-title: CdSe quantum dots sensitized TiO
  publication-title: J. Korean Electrochem. Soc.
– volume: 11
  start-page: 2290
  year: 2010
  end-page: 2304
  ident: b0630
  article-title: Quantum-dot-sensitized solar cells
  publication-title: Chem. Phys. Chem.
– volume: 54
  start-page: 17628
  year: 1996
  end-page: 17637
  ident: b0215
  article-title: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 327
  year: 2010
  end-page: 330
  ident: b0870
  article-title: Application of carbon counterelectrode on CdS quantum dot-sensitized solar cells (QDSSCs)
  publication-title: Electrochem. Commun.
– volume: 18
  start-page: 424007
  year: 2008
  ident: b0525
  article-title: Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode
  publication-title: Nanotechnology
– volume: 6
  start-page: 3302
  year: 2010
  end-page: 3308
  ident: b0820
  article-title: Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: Synthesis and photoelectrochemical properties
  publication-title: ACS Nano
– volume: 156
  start-page: 48
  year: 2009
  end-page: 51
  ident: b0420
  article-title: Effect of single-walled carbon nanotubes in PbS/TiO2 quantum dots-sensitized solar cells
  publication-title: Mater. Sci. Eng. B
– year: 2005
  ident: b0715
  article-title: Organic Photovoltaics: Mechanisms, Materials and Devices
– volume: 2
  start-page: 2206
  year: 2008
  ident: b0295
  article-title: Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles
  publication-title: ACS Nano
– volume: 110
  start-page: 25332
  year: 2006
  end-page: 25338
  ident: b0655
  article-title: High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence
  publication-title: J. Phys. Chem. B
– volume: 22
  start-page: 1398
  year: 2010
  end-page: 1402
  ident: b0750
  article-title: Schottky quantum dot solar cells stable in air under solar illumination
  publication-title: Adv. Mater.
– volume: 91
  start-page: 023116
  year: 2007
  ident: b0160
  article-title: High efficiency of CdSe quantum-dot-sensitized TiO
  publication-title: Appl. Phys. Lett.
– volume: 19
  start-page: 1924
  year: 2004
  end-page: 1945
  ident: b0255
  article-title: Organic solar cells: an overview
  publication-title: J. Mater. Res.
– volume: 22
  start-page: 3704
  year: 2010
  end-page: 3707
  ident: b0500
  article-title: Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell
  publication-title: Adv. Mater.
– volume: 160
  start-page: 315
  year: 2008
  end-page: 325
  ident: b0370
  article-title: Colloidal nanocrystal solar cells
  publication-title: Microchim. Acta
– volume: 90
  start-page: 143517
  year: 2007
  ident: b0465
  article-title: Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition
  publication-title: Appl. Phys. Lett.
– volume: 46
  start-page: 634
  year: 2010
  end-page: 642
  ident: b0815
  article-title: Synthesis of new nanocrystal-polymer nanocomposite as the electron acceptor in polymer bulk heterojunction solar cells
  publication-title: Eur. Polym. J.
– volume: 128
  start-page: 2385
  year: 2006
  end-page: 2393
  ident: b0620
  article-title: Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO
  publication-title: J. Am. Chem. Soc.
– volume: 84
  start-page: 545
  year: 1997
  end-page: 546
  ident: b0220
  article-title: Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity
  publication-title: Synth. Metals
– volume: 11
  start-page: 9644
  year: 2009
  end-page: 9647
  ident: b0010
  article-title: Photo-induced electron recombination dynamics in CdSe/P3HT hybrid heterojunctions
  publication-title: Phys. Chem. Chem. Phys.
– volume: 95
  start-page: 063510
  year: 2009
  ident: b0745
  article-title: Integration of planar and bulk heterojunctions in polymer/nanocrystal hybrid photovoltaic cells
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 10924
  year: 2007
  end-page: 10928
  ident: b0510
  article-title: Adsorption of CdSe nanoparticles to thiolated TiO
  publication-title: Langmuir
– volume: 46
  start-page: 4616
  year: 2007
  end-page: 4621
  ident: b0770
  article-title: Crystal growth of CdSe quantum dots adsorbed on nanoparticle, inverse opal, and nanotube TiO
  publication-title: Jpn. J. Appl. Phys.
– start-page: 71
  year: 2006
  end-page: 75
  ident: b0660
  article-title: Morphology of CdSe films prepared by chemical bath deposition: The role of substrate
  publication-title: Thin Solid Films
– volume: 39
  start-page: 654
  year: 2010
  end-page: 656
  ident: b0180
  article-title: Photostability of water-dispersible CdTe quantum dots: capping ligands and oxygen
  publication-title: Chem. Lett.
– volume: 3
  start-page: 1345
  year: 2009
  end-page: 1352
  ident: b0550
  article-title: Absence of photoinduced charge transfer in blends of PbSe quantum dots and conjugated polymers
  publication-title: ACS Nano
– volume: 113
  start-page: 3895
  year: 2009
  end-page: 3898
  ident: b0675
  article-title: Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating
  publication-title: J. Phys. Chem. C
– volume: 49
  start-page: 042301
  year: 2010
  ident: b0275
  article-title: Efficiency enhacement in bulk heterojunction polymer photovoltaic cells using ZrTiO4/Bi
  publication-title: Jpn. J. Appl. Phys.
– volume: 518
  start-page: 295
  year: 2009
  end-page: 298
  ident: b0350
  article-title: Hybrid photovoltaic cells with II–VI quantum dot sensitizers fabricated by layer-by-layer deposition of water-soluble components
  publication-title: Thin Solid Films
– volume: 5
  start-page: 811
  year: 2009
  end-page: 814
  ident: b0605
  article-title: Assessment of carrier-multiplication efficiency in bulk PbSe and PbS
  publication-title: Nat. Phys.
– volume: 15
  start-page: 271
  year: 2003
  end-page: 277
  ident: b0065
  article-title: Electron energetics at surfaces and interfaces: concepts and experiments
  publication-title: Adv. Mater.
– volume: 124
  start-page: 11215
  year: 2002
  end-page: 11222
  ident: b0645
  article-title: Substituted polypyridine complexes of cobalt (II/III) as efficient electron-transfer mediators in dye-sensitized solar cells
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 2130
  year: 2010
  end-page: 2131
  ident: b0635
  article-title: CdSe/ZnS core/shell quantum dot sensitization of low index TiO
  publication-title: J. Am. Chem. Soc.
– volume: 93
  start-page: 662
  year: 2009
  end-page: 666
  ident: b0060
  article-title: P3HT/ZnS: a new hybrid bulk heterojunction photovoltaic system with very high open circuit voltage
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 113
  start-page: 17608
  year: 2009
  end-page: 17612
  ident: b0485
  article-title: Improved efficiency in poly(3-hexylthiophene)/zinc oxide solar cells via lithium incorporation
  publication-title: J. Phys. Chem. C
– volume: 112
  start-page: 17778
  year: 2008
  end-page: 17787
  ident: b0250
  article-title: Coparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 155
  year: 2010
  end-page: 160
  ident: b0475
  article-title: Preparation and photoelectrochemical properties of CdSe/TiO
  publication-title: J. Phys. Chem. Lett.
– volume: 25
  start-page: 7602
  year: 2009
  end-page: 7608
  ident: b0425
  article-title: Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator
  publication-title: Langmuir
– volume: 92
  start-page: 186601
  year: 2004
  ident: b0650
  article-title: High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion
  publication-title: Phys. Rev. Lett.
– volume: 94
  start-page: 29
  year: 2010
  end-page: 33
  ident: b0020
  article-title: Influence of poly3-octylthiophene (P3OT) film thickness and preparation method on photovoltaic performance of hybrid ITO/CdS/P3OT/Au solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 131
  start-page: 3644
  year: 2009
  end-page: 3649
  ident: b0460
  article-title: Interfacial nanostructuring on the performance of polymer/TiO
  publication-title: J. Am. Chem. Soc.
– volume: 389
  start-page: 939
  year: 1997
  end-page: 942
  ident: b0335
  publication-title: Nature
– volume: 130
  start-page: 1124
  year: 2008
  end-page: 1125
  ident: b0725
  article-title: CdS quantum dots sensitized TiO
  publication-title: J. Am. Chem. Soc.
– volume: 516
  start-page: 2426
  year: 2008
  end-page: 2431
  ident: b0775
  article-title: Correlation between crystal growth and photosensitization of nanostructured TiO
  publication-title: Thin Solid Films
– volume: 93
  start-page: 519
  year: 2009
  end-page: 523
  ident: b0565
  article-title: Optimizing hybrid photovoltaics through annealing and ligand choice
  publication-title: Sol. Energy Sol. Cells
– volume: 113
  start-page: 3139
  year: 2009
  end-page: 3149
  ident: b0165
  article-title: Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 1793
  year: 2007
  end-page: 1798
  ident: b0440
  article-title: Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices
  publication-title: Nano Lett.
– volume: 96
  start-page: 013304
  year: 2010
  ident: b0875
  article-title: Improved efficiency of hybrid solar cells based on non-ligand-exchanged CdSe quantum dots and poly(3-hexylthiophene)
  publication-title: Appl. Phys. Lett.
– volume: 90
  start-page: 183113
  year: 2007
  ident: b0340
  article-title: Efficient solution-processed infrared photovoltaic cell: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 297
  year: 2009
  end-page: 303
  ident: b0580
  article-title: Bulk heterojunction solar cells with internal quantum efficiency approaching 100%
  publication-title: Nat. Photon.
– volume: 112
  start-page: 8419
  year: 2008
  end-page: 8423
  ident: b0070
  article-title: Valence band alignment at cadmium selenide quantum dot and zinc oxide (1
  publication-title: J. Phys. Chem. C
– volume: 112
  start-page: 18737
  year: 2008
  end-page: 18753
  ident: b0330
  article-title: Quantum dot solar cells. Semiconductor nanocrystals as light harvester
  publication-title: J. Phys. Chem. C
– volume: 111
  start-page: 2834
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0325
  article-title: Meeting the clean energy demand: nanostructure architectures for solar energy conversion
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp066952u
– volume: 126
  start-page: 1505
  year: 1979
  ident: 10.1016/j.solener.2011.02.005_b0765
  article-title: The potential distribution at the TiO2 aqueous electrolyte interface
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2129316
– volume: 113
  start-page: 3998
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0170
  article-title: Kinetics of photochromic induced energy transfer between manganese-doped zinc–selenide quantum dots and spiropyrans
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp809797x
– volume: 109
  start-page: 2625
  year: 2005
  ident: 10.1016/j.solener.2011.02.005_b0050
  article-title: Electron and hole transfer from indium phosphide quantum dots
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp046781y
– volume: 49
  start-page: 4647
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0810
  article-title: Synthesis of MDMO-PPV capped PbS quantum dots and their application to solar cells
  publication-title: Polymer
  doi: 10.1016/j.polymer.2008.08.041
– volume: 20
  start-page: 3433
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0345
  article-title: Solution processed photovoltaic devices with 2% infrared monochromatic power conversion efficiency: performance optimization and oxide formation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800326
– volume: 4
  start-page: 3374
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0590
  article-title: Depleted-heterojunction colloidal quantum dot solar cells
  publication-title: ACS Nano
  doi: 10.1021/nn100335g
– volume: 132
  start-page: 6834
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0035
  article-title: Design of injection and recombination in quantum dot sensitized solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101752d
– volume: 207
  start-page: 173
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0175
  article-title: Growth kinetics of CdS quantum dots and synthesis of their polymer nano-composites in CTAB reverse micelles
  publication-title: J. Photochem. Photobiol. A
  doi: 10.1016/j.jphotochem.2009.07.002
– volume: 97
  start-page: 023109
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0145
  article-title: Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3463037
– volume: 112
  start-page: 18737
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0330
  article-title: Quantum dot solar cells. Semiconductor nanocrystals as light harvester
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp806791s
– volume: 19
  start-page: 604
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0430
  article-title: Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200800940
– volume: 94
  start-page: 29
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0020
  article-title: Influence of poly3-octylthiophene (P3OT) film thickness and preparation method on photovoltaic performance of hybrid ITO/CdS/P3OT/Au solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2009.04.013
– year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0310
  article-title: Effects of molecular interface modification in CdS/polymer hybrid bulk heterojunction solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2010.07.016
– volume: 3
  start-page: 1345
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0550
  article-title: Absence of photoinduced charge transfer in blends of PbSe quantum dots and conjugated polymers
  publication-title: ACS Nano
  doi: 10.1021/nn800871j
– volume: 19
  start-page: 805
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0040
  article-title: Photosensitization of TiO2 nanotubes with CdS quantum dots: Particulate versus tubular support architectures
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200801173
– volume: 18
  start-page: 424007
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0525
  article-title: Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/42/424007
– volume: 128
  start-page: 3241
  year: 2006
  ident: 10.1016/j.solener.2011.02.005_b0535
  article-title: PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0574973
– volume: 45
  start-page: 638
  year: 2006
  ident: 10.1016/j.solener.2011.02.005_b0120
  article-title: Dye-sensitized solar cells with conversion efficiency of 11.1%
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.45.L638
– volume: 389
  start-page: 939
  year: 1997
  ident: 10.1016/j.solener.2011.02.005_b0335
  article-title: P-type electrical conduction in transparent thin films of CuAlO2
  publication-title: Nature
  doi: 10.1038/40087
– volume: 404
  start-page: 59
  year: 2000
  ident: 10.1016/j.solener.2011.02.005_b0595
  article-title: Shape control of CdSe nanocrystals
  publication-title: Nature
  doi: 10.1038/35003535
– volume: 98
  start-page: 7665
  year: 1994
  ident: 10.1016/j.solener.2011.02.005_b0800
  article-title: CdS Nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100082a044
– volume: 132
  start-page: 1228
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0075
  article-title: Modulation of electron injection in CdSe–TiO2 system through medium alkalinity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909663r
– volume: 113
  start-page: 7531
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0205
  article-title: CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp810727n
– volume: 8
  start-page: 3557
  year: 2006
  ident: 10.1016/j.solener.2011.02.005_b0720
  article-title: Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibres
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b604734n
– volume: 3
  start-page: 961
  year: 2003
  ident: 10.1016/j.solener.2011.02.005_b0710
  article-title: Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers
  publication-title: Nano Lett.
  doi: 10.1021/nl0342895
– volume: 91
  start-page: 023116
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0160
  article-title: High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2757130
– volume: 46
  start-page: 4616
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0770
  article-title: Crystal growth of CdSe quantum dots adsorbed on nanoparticle, inverse opal, and nanotube TiO2 photoelectrodes characterized by photoacoustic spectroscopy
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.46.4616
– volume: 92
  start-page: 153510
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0405
  article-title: Enhanced charge collection and reduced recombination of CdS/TiO2 quantum-dots sensitized solar cells in the presence of single-walled carbon nanotubes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2911740
– volume: 93
  start-page: 519
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0565
  article-title: Optimizing hybrid photovoltaics through annealing and ligand choice
  publication-title: Sol. Energy Sol. Cells
  doi: 10.1016/j.solmat.2008.11.022
– volume: 110
  start-page: 389
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0740
  article-title: Prospects of colloidal nanocrystals for electronic and optoelectronic applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr900137k
– volume: 107
  start-page: 1324
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0235
  article-title: Conjugated polymer-based organic solar cells
  publication-title: Chem. Rev.
  doi: 10.1021/cr050149z
– volume: 96
  start-page: 242103
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0570
  article-title: CdTe Schottky diodes from colloidal nanocrystals
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3440384
– volume: 92
  start-page: 013308
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0265
  article-title: Impedance spectroscopy investigation of electron transport in solar cells based on blend film of polymer and nanocrystals
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2831661
– volume: 36
  start-page: 88
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0730
  article-title: CdS quantum dots sensitized TiO2 sandwich type photoelectrochemical solar cells
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2007.88
– volume: 3
  start-page: 1467
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0030
  article-title: Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe
  publication-title: ACS Nano
  doi: 10.1021/nn900324q
– volume: 112
  start-page: 8419
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0070
  article-title: Valence band alignment at cadmium selenide quantum dot and zinc oxide (100) interfaces
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp7113434
– volume: 92
  start-page: 186601
  year: 2004
  ident: 10.1016/j.solener.2011.02.005_b0650
  article-title: High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.186601
– volume: 20
  start-page: 295204
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0225
  article-title: Improving the performance of colloidal quantum-dot-sensitized solar cells
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/29/295204
– volume: 97
  start-page: 043106
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0320
  article-title: High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3459146
– volume: 39
  start-page: 654
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0180
  article-title: Photostability of water-dispersible CdTe quantum dots: capping ligands and oxygen
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2010.654
– ident: 10.1016/j.solener.2011.02.005_b0880
  doi: 10.1007/s11671-010-9705-z
– volume: 41
  start-page: 102002
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0735
  article-title: Performance improvement of CdS quantum dots sensitized TiO2 solar cells by introducing a dense TiO2 blocking layer
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/41/10/102002
– volume: 15
  start-page: 271
  year: 2003
  ident: 10.1016/j.solener.2011.02.005_b0065
  article-title: Electron energetics at surfaces and interfaces: concepts and experiments
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200390065
– volume: 414
  start-page: 338
  year: 2001
  ident: 10.1016/j.solener.2011.02.005_b0240
  article-title: Photoelectrochemical cell
  publication-title: Nature
  doi: 10.1038/35104607
– volume: 9
  start-page: 4221
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0415
  article-title: Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction processes
  publication-title: Nano Lett.
  doi: 10.1021/nl902438d
– volume: 87
  start-page: 213112
  year: 2005
  ident: 10.1016/j.solener.2011.02.005_b0515
  article-title: Solution-processed infrared photovoltaic devices with >10% monochromatic internal quantum efficiency
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2135868
– volume: 10
  start-page: 257
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0855
  article-title: CdSe quantum dots sensitized TiO2 electrodes for photovoltaic cells
  publication-title: J. Korean Electrochem. Soc.
  doi: 10.5229/JKES.2007.10.4.257
– volume: 129
  start-page: 4136
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0625
  article-title: Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja070099a
– volume: 106
  start-page: 7578
  year: 2002
  ident: 10.1016/j.solener.2011.02.005_b0610
  article-title: Quantum dot sensitization of organic−inorganic hybrid solar cells
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp020453l
– volume: 2
  start-page: 833
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0355
  article-title: Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots
  publication-title: ACS Nano
  doi: 10.1021/nn800093v
– start-page: 1030
  year: 2002
  ident: 10.1016/j.solener.2011.02.005_b0600
  article-title: Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots
  publication-title: Chem. Commun.
  doi: 10.1039/b201661c
– volume: 5
  start-page: 986
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0155
  article-title: Low-cost flexible nano-sulfide/carbon composite counter electrode for quantum-dot-sensitized solar cell
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-010-9592-3
– volume: 324
  start-page: 1542
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0705
  article-title: Colloidal quantum-dot photodetectors exploiting multiexciton generation
  publication-title: Science
  doi: 10.1126/science.1173812
– start-page: 447
  year: 2005
  ident: 10.1016/j.solener.2011.02.005_b0755
  article-title: Influence of built-in voltage in optimized extremely thin absorber solar cells
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2004.11.041
– volume: 15
  start-page: 2854
  year: 2003
  ident: 10.1016/j.solener.2011.02.005_b0845
  article-title: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals
  publication-title: Chem. Mater.
  doi: 10.1021/cm034081k
– volume: 27
  start-page: 85
  year: 2004
  ident: 10.1016/j.solener.2011.02.005_b0585
  article-title: Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/BF02708491
– volume: 110
  start-page: 25332
  year: 2006
  ident: 10.1016/j.solener.2011.02.005_b0655
  article-title: High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp065282p
– volume: 20
  start-page: 095202
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0665
  article-title: Enhacement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite device by post-treatment-driven ligand exchange
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/9/095202
– start-page: 393
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0365
  article-title: Inorganic-extended junction devices
– volume: 91
  start-page: 420
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0230
  article-title: Hybrid solar cells using PbS nanoparticles
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2006.10.016
– volume: 91
  start-page: 253117
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0125
  article-title: Schottky barriers to colloidal quantum dot films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2823582
– volume: vol. 3
  start-page: 929
  year: 2004
  ident: 10.1016/j.solener.2011.02.005_b0025
  article-title: Hybrid solar cells
– volume: 17
  start-page: 4736
  year: 2006
  ident: 10.1016/j.solener.2011.02.005_b0245
  article-title: Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/18/035
– volume: 518
  start-page: 295
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0350
  article-title: Hybrid photovoltaic cells with II–VI quantum dot sensitizers fabricated by layer-by-layer deposition of water-soluble components
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2009.06.039
– volume: 17
  start-page: 1512
  year: 2005
  ident: 10.1016/j.solener.2011.02.005_b0455
  article-title: CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200401848
– volume: 130
  start-page: 1124
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0725
  article-title: CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0777741
– volume: 19
  start-page: 045602
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0680
  article-title: Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/04/045602
– volume: 9
  start-page: 1699
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0505
  article-title: Photovoltaic devices employing ternary PbSxSe1-x nanocrystals
  publication-title: Nano Lett.
  doi: 10.1021/nl900388a
– volume: 181
  start-page: 306
  year: 2006
  ident: 10.1016/j.solener.2011.02.005_b0545
  article-title: Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells
  publication-title: J. Photochem. Photobiol. A
  doi: 10.1016/j.jphotochem.2005.12.012
– volume: 32
  start-page: 510
  year: 1961
  ident: 10.1016/j.solener.2011.02.005_b0695
  article-title: Detailed balance limit of efficiency of p–n junction solar cells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1736034
– volume: 132
  start-page: 2130
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0635
  article-title: CdSe/ZnS core/shell quantum dot sensitization of low index TiO2 single crystal surfaces
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9098577
– volume: 6
  start-page: 3302
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0820
  article-title: Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: Synthesis and photoelectrochemical properties
  publication-title: ACS Nano
  doi: 10.1021/nn1001547
– volume: 92
  start-page: 151115
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0315
  article-title: Schottky-quantum dot photovoltaics for efficient infrared power conversion
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2912340
– volume: 2
  start-page: 2206
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0295
  article-title: Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/nn800336b
– volume: 7
  start-page: 2506
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0045
  article-title: Multiple exciton generation in colloidal silicon nanocrystals
  publication-title: Nano Lett.
  doi: 10.1021/nl071486l
– volume: 131
  start-page: 3644
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0460
  article-title: Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8079143
– volume: 19
  start-page: 1924
  year: 2004
  ident: 10.1016/j.solener.2011.02.005_b0255
  article-title: Organic solar cells: an overview
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2004.0252
– volume: 49
  start-page: 042301
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0275
  article-title: Efficiency enhacement in bulk heterojunction polymer photovoltaic cells using ZrTiO4/Bi2O3 metal-oxide nanocomposites
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.49.042301
– volume: 20
  start-page: 2629
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0130
  article-title: The effect of nanoparticle shape on the photocarrier dynamics and photovoltaic device performance of ploy(3-hexylthiophene): CdSe nanoparticl bulk heterojunction solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201000628
– volume: 160
  start-page: 315
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0370
  article-title: Colloidal nanocrystal solar cells
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-007-0806-z
– volume: 113
  start-page: 3139
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0165
  article-title: Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO2 nanoparticles
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp809269m
– volume: 113
  start-page: 3895
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0675
  article-title: Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8108682
– volume: 91
  start-page: 053503
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0080
  article-title: Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2768311
– volume: 48
  start-page: 2474
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0520
  article-title: Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200804709
– volume: 26
  start-page: 4839
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0640
  article-title: Influence of surface chemistry on the binding and electronic coupling of CdSe quantum dots to single crystal TiO2 surfaces
  publication-title: Langmuir
  doi: 10.1021/la903618x
– year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0115
  article-title: A quantum dot sensitized solar cell based on vertically aligned carbon nanotube template ZnO arrays
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.08.001
– volume: 22
  start-page: 3704
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0500
  article-title: Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001148
– volume: 113
  start-page: 20481
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0210
  article-title: An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp904320d
– volume: 19
  start-page: 2349
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0375
  article-title: A single strategy for improving the energy conversion of multilayered CdTe quantum dot-sensitized solar cells
  publication-title: J. Mater. Chem.
  doi: 10.1039/b817000b
– volume: 128
  start-page: 2385
  year: 2006
  ident: 10.1016/j.solener.2011.02.005_b0620
  article-title: Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056494n
– volume: 8
  start-page: 3488
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0495
  article-title: Schottky solar cells based on colloidal nanocrystal films
  publication-title: Nano Lett.
  doi: 10.1021/nl802476m
– volume: 47
  start-page: 58
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0760
  article-title: Polymer-fullerene composite solar cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200702506
– volume: 111
  start-page: 14681
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0140
  article-title: Supramolecularly assembled hybrid materials via molecular recognition between diaminopyrimidine-functionalized poly(hexylthiophene) and thymine-capped CdSe nanocrystals
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0741758
– volume: 84
  start-page: 545
  year: 1997
  ident: 10.1016/j.solener.2011.02.005_b0220
  article-title: Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity
  publication-title: Synth. Metals
  doi: 10.1016/S0379-6779(97)80852-1
– volume: 95
  start-page: 063510
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0745
  article-title: Integration of planar and bulk heterojunctions in polymer/nanocrystal hybrid photovoltaic cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3189083
– volume: 23
  start-page: 10924
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0510
  article-title: Adsorption of CdSe nanoparticles to thiolated TiO2 surfaces: influence of intralayer disulfide formation on CdSe surface coverage
  publication-title: Langmuir
  doi: 10.1021/la702127t
– volume: 96
  start-page: 013304
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0875
  article-title: Improved efficiency of hybrid solar cells based on non-ligand-exchanged CdSe quantum dots and poly(3-hexylthiophene)
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3280370
– volume: 18
  start-page: 876
  year: 2003
  ident: 10.1016/j.solener.2011.02.005_b0830
  article-title: Inx(OH)ySz as recombination barrier in TiO2/inorganic absorber heterojunctions
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/18/9/311
– volume: 5
  start-page: 811
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0605
  article-title: Assessment of carrier-multiplication efficiency in bulk PbSe and PbS
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1393
– volume: 12
  start-page: 327
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0870
  article-title: Application of carbon counterelectrode on CdS quantum dot-sensitized solar cells (QDSSCs)
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.12.032
– start-page: 71
  year: 2006
  ident: 10.1016/j.solener.2011.02.005_b0660
  article-title: Morphology of CdSe films prepared by chemical bath deposition: The role of substrate
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.11.093
– volume: 46
  start-page: 634
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0815
  article-title: Synthesis of new nanocrystal-polymer nanocomposite as the electron acceptor in polymer bulk heterojunction solar cells
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2009.12.023
– volume: 6
  start-page: 1789
  year: 2006
  ident: 10.1016/j.solener.2011.02.005_b0805
  article-title: Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles
  publication-title: Nano Lett.
  doi: 10.1021/nl061085q
– volume: 36
  start-page: 712
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0560
  article-title: One-step preparation and photosensitivity of size-quantized cadmium chalcogenide nanoparticles deposited on porous zinc oxide film electrodes
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2007.712
– volume: 22
  start-page: 922
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0435
  article-title: CdS/CdSe co-sensitized TiO2 photoelectrodes for efficient hydrogen generation in a photoelectrochemical cell
  publication-title: Chem. Mater.
  doi: 10.1021/cm901762h
– volume: 67
  start-page: 115326
  year: 2003
  ident: 10.1016/j.solener.2011.02.005_b0290
  article-title: Charge transport in hybrid nanorod-polymer composite photovoltaic cells
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.115326
– volume: 89
  start-page: 043509
  year: 2006
  ident: 10.1016/j.solener.2011.02.005_b0530
  article-title: Efficient dye-sensitized solar cells based on a 2-thiophen-2-yl-vinyl-conjugated ruthenium photosensitizer and conjugated polymer hole conductor
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2240296
– volume: 10
  start-page: 2635
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0555
  article-title: Broadband absorbing bulk heterojunction photovoltaics using low-bandgap solution-processed quantum dots
  publication-title: Nano Lett.
  doi: 10.1021/nl1013663
– volume: 245
  start-page: 1834
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0540
  article-title: Nanowire-quantum-dot-polymer solar cells
  publication-title: Phys. Stat. Sol.
  doi: 10.1002/pssb.200779546
– volume: 11
  start-page: 9644
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0010
  article-title: Photo-induced electron recombination dynamics in CdSe/P3HT hybrid heterojunctions
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b913601k
– volume: 113
  start-page: 3765
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0785
  article-title: Substrate driven photochemistry of CdSe quantum dot films: charge injection and irreversible transformations on oxide surfaces
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp808562x
– volume: 93
  start-page: 662
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0060
  article-title: P3HT/ZnS: a new hybrid bulk heterojunction photovoltaic system with very high open circuit voltage
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2008.12.015
– volume: 96
  start-page: 093301
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0200
  article-title: Solution-processed bulk heterojunction photovoltaic devices based on poly(2-methoxy,5-octoxy)-1,4-phenylenevinylene-multiwalled carbon nanotubes/PbSe quantum dots
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3337100
– volume: 3
  start-page: 297
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0580
  article-title: Bulk heterojunction solar cells with internal quantum efficiency approaching 100%
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2009.69
– volume: 124
  start-page: 11215
  year: 2002
  ident: 10.1016/j.solener.2011.02.005_b0645
  article-title: Substituted polypyridine complexes of cobalt (II/III) as efficient electron-transfer mediators in dye-sensitized solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja027355y
– volume: 11
  start-page: 2265
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0105
  article-title: Directly assembled CdSe quantum dots on TiO2 aqueous solution by adjusting pH value for quantum dot sensitized solar cells
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.10.003
– volume: 11
  start-page: 2220
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0700
  article-title: The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.09.035
– year: 2005
  ident: 10.1016/j.solener.2011.02.005_b0715
– volume: 174
  start-page: 241
  year: 1990
  ident: 10.1016/j.solener.2011.02.005_b0795
  article-title: Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(90)85339-E
– volume: 112
  start-page: 11600
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0400
  article-title: CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp802572b
– volume: 1
  start-page: 155
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0475
  article-title: Preparation and photoelectrochemical properties of CdSe/TiO2 hybrid mesoporous structures
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz900122u
– volume: 10
  start-page: 1088
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0825
  article-title: Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation
  publication-title: Nano Lett.
  doi: 10.1021/nl100250z
– volume: 94
  start-page: 153115
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0100
  article-title: An oleic acid-capped CdSe quantum-dot sensitized solar cell
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3117221
– volume: 8
  start-page: 3904
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0380
  article-title: Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model
  publication-title: Nano Lett.
  doi: 10.1021/nl802353x
– volume: 10
  start-page: 1579
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0395
  article-title: Co-sensitization of vertically aligned TiO2 nanotubes with two different sizes of CdSe quantum dots for broad spectrum
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2008.08.038
– volume: 177
  start-page: 177
  year: 2006
  ident: 10.1016/j.solener.2011.02.005_b0090
  article-title: Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes; preparation, characterization, and application to photoelectrochemical cells
  publication-title: J. Photochem. Photobiol. A
  doi: 10.1016/j.jphotochem.2005.05.023
– volume: 96
  start-page: 063501
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0190
  article-title: Hierarchical nanostructured spherical carbon with hollow core/mesoporous shell as a highly efficient counter electrode in CdSe quantum-dot-sensitized solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3313948
– volume: 18
  start-page: 475
  year: 2003
  ident: 10.1016/j.solener.2011.02.005_b0185
  article-title: Solar cell with extremely thin absorber on highly structured substrate
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/18/6/314
– volume: 42
  start-page: 3845
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0575
  article-title: Poly(3-hexylthiophene)−CdSe quantum dot bulk heterojunction solar cells: influence of the functional end-group of the polymer
  publication-title: Macromolecules
  doi: 10.1021/ma9006285
– volume: 46
  start-page: 2316
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0835
  article-title: Photoresponse of a single poly(p-phenylene vinylene)-CdSe bulk-heterojunction submicron fiber
  publication-title: Chem. Commun.
  doi: 10.1039/b923418g
– volume: 295
  start-page: 2425
  year: 2002
  ident: 10.1016/j.solener.2011.02.005_b0285
  article-title: Hybrid nanorod-polymer solar cells
  publication-title: Science
  doi: 10.1126/science.1069156
– volume: 90
  start-page: 143517
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0465
  article-title: Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2721373
– volume: 130
  start-page: 4007
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0360
  article-title: Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe−TiO2 architecture
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0782706
– volume: 22
  start-page: 1398
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0750
  article-title: Schottky quantum dot solar cells stable in air under solar illumination
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903240
– volume: 516
  start-page: 2426
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0775
  article-title: Correlation between crystal growth and photosensitization of nanostructured TiO2 electrodes using supporting Ti substrates by self-assembled CdSe quantum dots
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.04.143
– volume: 97
  start-page: 123107
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0685
  article-title: CdSe quantum dot-sensitized solar cell employing TiO2 nanotube working-electrode and Cu2S counter-electrode
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3491245
– volume: 515
  start-page: 7171
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0790
  article-title: Structural and optical properties of amorphous and crystalline antimony sulfide thin-films
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.03.043
– volume: 9
  start-page: 860
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0015
  article-title: Heterojunction photovoltaics using printed colloidal quantum dots as a photosensitive layer
  publication-title: Nano Lett.
  doi: 10.1021/nl803760j
– year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0840
  article-title: CdHgTe and CdTe quantum dot solar cells displaying an energy conversion efficiency exceeding 2%
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2010.06.013
– volume: 20
  start-page: 6903
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0390
  article-title: Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications
  publication-title: Chem. Mater.
  doi: 10.1021/cm802254u
– volume: 132
  start-page: 2743
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0450
  article-title: Transient optical studies of interfacial charge transfer at nanostructured metal oxides/PbS quantum dot/organic hole conductor heterojunctions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909172p
– volume: 43
  start-page: 012002
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0615
  article-title: CdSe quantum dots co-sensitized TiO2 photoelectrodes: particle size dependent properties
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/43/1/012002
– volume: 66
  start-page: 349
  year: 1995
  ident: 10.1016/j.solener.2011.02.005_b0260
  article-title: Photoconduction in porous TiO2 sensitized by PbS quantum dots
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.114209
– volume: 54
  start-page: 17628
  year: 1996
  ident: 10.1016/j.solener.2011.02.005_b0215
  article-title: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.17628
– volume: 113
  start-page: 17608
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0485
  article-title: Improved efficiency in poly(3-hexylthiophene)/zinc oxide solar cells via lithium incorporation
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp907758s
– volume: 93
  start-page: 1208
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0860
  article-title: Efficient conjugated polymer-ZnSe and -PbSe nanocrystals hybrid photovoltaic cells through full solar spectrum utilization
  publication-title: Sol. Energy. Mater. Sol. Cells
  doi: 10.1016/j.solmat.2009.01.001
– volume: 114
  start-page: 12784
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0490
  article-title: Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp103300v
– volume: 114
  start-page: 12496
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0005
  article-title: Synthesis of PbS/TiO2 colloidal heterostructures for photovoltaic applications
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp104197s
– volume: 132
  start-page: 5952
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0150
  article-title: Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1013695
– volume: 22
  start-page: 2204
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0305
  article-title: PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2007.0289
– volume: 90
  start-page: 1849
  year: 2006
  ident: 10.1016/j.solener.2011.02.005_b0690
  article-title: Photovoltaic performance and stability of CdTe/polymeric hybrid solar cells using a C60 buffer layer
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2005.11.011
– volume: 11
  start-page: 923
  year: 1999
  ident: 10.1016/j.solener.2011.02.005_b0280
  article-title: CdSe nanocrystals rods/poly(3-hexylthiophene) composite photovoltaic devices
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(199908)11:11<923::AID-ADMA923>3.0.CO;2-T
– volume: 256
  start-page: 7438
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0110
  article-title: Co-sensitized quantum dot solar cell based on ZnO nanowires
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.05.086
– volume: 10
  start-page: 239
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0135
  article-title: Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency
  publication-title: Nano Lett.
  doi: 10.1021/nl903406s
– volume: 3
  start-page: 543
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0095
  article-title: Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.206
– volume: 113
  start-page: 4254
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0300
  article-title: Sb2S3-sensitized nanoporous TiO2 solar cells
  publication-title: J. Phys. Chem C
  doi: 10.1021/jp900302b
– volume: 156
  start-page: 48
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0420
  article-title: Effect of single-walled carbon nanotubes in PbS/TiO2 quantum dots-sensitized solar cells
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2008.11.014
– volume: 7
  start-page: 1793
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0440
  article-title: Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices
  publication-title: Nano Lett.
  doi: 10.1021/nl070430o
– volume: 112
  start-page: 17778
  year: 2008
  ident: 10.1016/j.solener.2011.02.005_b0250
  article-title: Coparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp803310s
– volume: 25
  start-page: 7602
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0425
  article-title: Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator
  publication-title: Langmuir
  doi: 10.1021/la900247r
– volume: 3
  start-page: 3638
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0445
  article-title: Solar cells based on junction between colloidal PbSe nanocrystals and thin ZnO films
  publication-title: ACS Nano
  doi: 10.1021/nn901139d
– volume: 80
  start-page: 2641
  year: 1976
  ident: 10.1016/j.solener.2011.02.005_b0055
  article-title: Correlation of photocurrent–voltage curves with flat-band potential for stable photoelectrodes for the photoelectrolysis of water
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100565a004
– volume: 90
  start-page: 183113
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0340
  article-title: Efficient solution-processed infrared photovoltaic cell: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2735674
– year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0780
  article-title: Effect of CdSe/P3HT composition on electrical and structural properties of bulk hetero-junction solar cell active layer
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 10
  start-page: 2609
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0085
  article-title: High-performance nanostructured inorganic–organic heterojunction solar cells
  publication-title: Nano Lett.
  doi: 10.1021/nl101322h
– volume: 131
  start-page: 11124
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0195
  article-title: CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups
  publication-title: J. Am. Soc.
  doi: 10.1021/ja903337c
– volume: 19
  start-page: 2735
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0410
  article-title: PbS and CdS quantum dot-sensitized solid-state solar cells: “Old concepts, new results”
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200900081
– volume: 272
  start-page: 1744
  year: 1996
  ident: 10.1016/j.solener.2011.02.005_b0670
  article-title: New solar cells seem to have power at the right price
  publication-title: Science
  doi: 10.1126/science.272.5269.1744
– volume: 5
  start-page: 1253
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0480
  article-title: A silicon nanocrystal Schottky junction solar cell produced from colloidal silicon nanocrystals
  publication-title: Nanoscale Res.
  doi: 10.1007/s11671-010-9632-z
– volume: 28
  start-page: 953
  year: 2007
  ident: 10.1016/j.solener.2011.02.005_b0385
  article-title: Anchoring cadmium chalcogenide quantum dots (QDs) onto stable oxide semiconductors for QD sensitized solar cells
  publication-title: Bull. Korean Chem. Soc.
  doi: 10.5012/bkcs.2007.28.6.953
– volume: 9
  start-page: 449
  year: 2009
  ident: 10.1016/j.solener.2011.02.005_b0470
  article-title: Hybrid solar cells from P3HT and silicon nanocrystals
  publication-title: Nano Lett.
  doi: 10.1021/nl8034338
– volume: 11
  start-page: 2290
  year: 2010
  ident: 10.1016/j.solener.2011.02.005_b0630
  article-title: Quantum-dot-sensitized solar cells
  publication-title: Chem. Phys. Chem.
  doi: 10.1002/cphc.201000069
– volume: 14
  start-page: 3153
  year: 1998
  ident: 10.1016/j.solener.2011.02.005_b0865
  article-title: Photosensitization of nanoporous TiO2 electrodes with InP quantum dots
  publication-title: Langmuir
  doi: 10.1021/la9713863
SSID ssj0017187
Score 2.4690418
Snippet In recent years colloidal quantum dots solar cells have been the subject of extensive research. A promising alternative to existing silicon solar cells,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1264
SubjectTerms Architecture
Colloidal quantum dot
Colloids
Devices
Electricity generation
Heterojunctions
Photovoltaic cells
Photovoltaics
Quantum dots
Sensitizer
Solar cell
Solar cells
Solar energy
Title Colloidal quantum dot solar cells
URI https://dx.doi.org/10.1016/j.solener.2011.02.005
https://www.proquest.com/docview/874342305
https://www.proquest.com/docview/1777130140
https://www.proquest.com/docview/883040410
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG6IXvRg_BkRJSPxOui6buuOhEhQIydJuDXt2iUQBBR29W_3Pdbhj4SQeF3bpPvavr7vte8rIfdppBOaZ7FvA2N8npjQB67CfWoMV4pbplPMHX4ZxoMRfxpH4xrpVbkweK3S2f7Spm-stfvScWh2lpMJ5viGgqZsjKJnFJgWZrDzBGd5-3N7zSMA21vqZoZ4zM_G31k8nSmQ2BmKOzslT5TujHbtT38s9Wb76Z-SE-c3et2ya2ekZufn5PiHmuAFaWEQYDExUO29AMCKNw8op7dC8uphgH51SUb9h9fewHcvIPgZOE5rXxslFB4-KswWoJGwYZYxbTVP8ACTcq2T2CTKhEbwAKBNWawznjElIpqHOrwiB_PF3F4TL88NcCFrgkwzHjOlU5Mz8L8M-HiwT6Z1wqv_lpmTB8dXKmayugc2lQ4uiXBJyiTAVSftbbNlqY-xr4GoQJW_BlqCDd_XtFENgnQrbSUFuEDgEmJpa1sKSwRhVXO7KFYySBKg4kgl68TbUUeIEMwZD-jN__vXIEdlxBljNLfkYP1R2DtwWda6uZmTTXLYfXweDL8AFNDrVw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOiKcYzyJxLUvTtE2PCIEGGzuBtFuUNKk0BNtg2__Hpul4SAiJa5NI6ZfG8WfHXwHO88RkrCzS0EXWhiKzcYhcRYTMWqG1cNzkVDt8P0i7j-JumAwbcFXXwtC1Sm_7K5v-Ya39k45HszMdjajGN5Ys50MSPWPItFagRepUSRNal7e97mCZTEDzW0lnxpTp58PPQp7OE_LYZ9J39mKepN6Z_HZE_TDWHyfQzSZseNcxuKxmtwUNN96G9S-CgjtwRnGAychit9cFYrZ4CZB1BjPirwHF6Ge78Hhz_XDVDf1PEMICfad5aKyWmvKPmgoGWCJdXBTcOCMyymEyYUyW2kzb2EoRIbo5T00hCq5lwsrYxHvQHE_Gbh-CsrRIh5yNCsNFyrXJbcnRBbPo5uFRmbdB1O-tCq8QTj-qeFb1VbAn5eFSBJdiXCFcbbhYDptWEhl_DZA1qOrbWis0438NPawXQfnNNlMSvSD0Cqn1bNmKu4Rg1WM3WcxUlGXIxolNtiH4pY-UMVo0EbGD_8_vFFa7D_d91b8d9A5hrQpAU8jmCJrzt4U7Rg9mbk78F_oOKuTuCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colloidal+quantum+dot+solar+cells&rft.jtitle=Solar+energy&rft.au=Emin%2C+Saim&rft.au=Singh%2C+Surya+P.&rft.au=Han%2C+Liyuan&rft.au=Satoh%2C+Norifusa&rft.date=2011-06-01&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=85&rft.issue=6&rft.spage=1264&rft.epage=1282&rft_id=info:doi/10.1016%2Fj.solener.2011.02.005&rft.externalDocID=S0038092X11000338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon