Colloidal quantum dot solar cells
In recent years colloidal quantum dots solar cells have been the subject of extensive research. A promising alternative to existing silicon solar cells, quantum dot solar cells are among the candidates for next generation photovoltaic devices. Colloidal quantum dots are attractive in photovoltaics r...
Saved in:
Published in | Solar energy Vol. 85; no. 6; pp. 1264 - 1282 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.06.2011
Pergamon Press Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years colloidal quantum dots solar cells have been the subject of extensive research. A promising alternative to existing silicon solar cells, quantum dot solar cells are among the candidates for next generation photovoltaic devices. Colloidal quantum dots are attractive in photovoltaics research due to their solution processability which is useful for their integration into various solar cells. Here, we review the recent progresses in various quantum dot solar cells which are prepared from colloidal quantum dots. We discuss the preparation methods, working concepts, advantages and disadvantages of different device architectures. Major topics discussed in this review include integration of colloidal quantum dots in: Schottky solar cells, depleted heterojunction solar cells, extremely thin absorber solar cells, hybrid organic–inorganic solar cells, bulk heterojunction solar cells and quantum dot sensitized solar cells. The review is organized according to the working principle and the architecture of photovoltaic devices. |
---|---|
AbstractList | In recent years colloidal quantum dots solar cells have been the subject of extensive research. A promising alternative to existing silicon solar cells, quantum dot solar cells are among the candidates for next generation photovoltaic devices. Colloidal quantum dots are attractive in photovoltaics research due to their solution processability which is useful for their integration into various solar cells. Here, we review the recent progresses in various quantum dot solar cells which are prepared from colloidal quantum dots. We discuss the preparation methods, working concepts, advantages and disadvantages of different device architectures. Major topics discussed in this review include integration of colloidal quantum dots in: Schottky solar cells, depleted heterojunction solar cells, extremely thin absorber solar cells, hybrid organic-inorganic solar cells, bulk heterojunction solar cells and quantum dot sensitized solar cells. The review is organized according to the working principle and the architecture of photovoltaic devices. In recent years colloidal quantum dots solar cells have been the subject of extensive research. A promising alternative to existing silicon solar cells, quantum dot solar cells are among the candidates for next generation photovoltaic devices. Colloidal quantum dots are attractive in photovoltaics research due to their solution processability which is useful for their integration into various solar cells. Here, we review the recent progresses in various quantum dot solar cells which are prepared from colloidal quantum dots. We discuss the preparation methods, working concepts, advantages and disadvantages of different device architectures. Major topics discussed in this review include integration of colloidal quantum dots in: Schottky solar cells, depleted heterojunction solar cells, extremely thin absorber solar cells, hybrid organic-inorganic solar cells, bulk heterojunction solar cells and quantum dot sensitized solar cells. The review is organized according to the working principle and the architecture of photovoltaic devices. [PUBLICATION ABSTRACT] |
Author | Satoh, Norifusa Islam, Ashraful Singh, Surya P. Emin, Saim Han, Liyuan |
Author_xml | – sequence: 1 givenname: Saim surname: Emin fullname: Emin, Saim email: EMIN.Saim@nims.go.jp – sequence: 2 givenname: Surya P. surname: Singh fullname: Singh, Surya P. – sequence: 3 givenname: Liyuan surname: Han fullname: Han, Liyuan email: EMIN.Saim@nims.go.jp – sequence: 4 givenname: Norifusa surname: Satoh fullname: Satoh, Norifusa – sequence: 5 givenname: Ashraful surname: Islam fullname: Islam, Ashraful |
BookMark | eNqFkE1LAzEQhoNUsK3-BGH1opddJx_bpHgQKX5BwYuCt5BNUsiyTdpkV_Dfu2t76sGe5jDP8zLzTtDIB28RusRQYMCzu7pIobHexoIAxgWQAqA8QWPMOM4xKfkIjQGoyGFOvs7QJKUaAHMs-BhdLULTBGdUk2075dtunZnQZn2gipm2TZPO0elKNcle7OcUfT4_fSxe8-X7y9vicZnrEkSbV0YJBWzGVH8Sh1JYqjWpbMU4zGkJrKr4zHBlqBEMK2bnZFZppokSJaxoRafoZpe7iWHb2dTKtUvDBcrb0CUpBAUGDENP3v5LYs45poDZgF4foHXoou__kIIzygiFsofud5COIaVoV1K7VrUu-DYq10gMcuhZ1nLfsxx6lkAk_Nnlgb2Jbq3iz1HvYefZvtRv12-TdtZra1y0upUmuCMJv94Ymn4 |
CODEN | SRENA4 |
CitedBy_id | crossref_primary_10_1016_j_solener_2014_01_034 crossref_primary_10_3390_ijms242216332 crossref_primary_10_7567_JJAP_55_112301 crossref_primary_10_12989_anr_2013_1_3_153 crossref_primary_10_1016_j_solener_2011_06_015 crossref_primary_10_1016_j_solener_2019_02_001 crossref_primary_10_1088_1674_1056_27_1_018808 crossref_primary_10_1002_bio_2484 crossref_primary_10_1016_j_pmatsci_2013_04_001 crossref_primary_10_1039_C6MH00469E crossref_primary_10_1016_j_solener_2025_113249 crossref_primary_10_1016_j_jcis_2017_01_005 crossref_primary_10_1016_j_jallcom_2020_156661 crossref_primary_10_3390_nano12183194 crossref_primary_10_4028_www_scientific_net_AMR_832_557 crossref_primary_10_1039_C9TA10557C crossref_primary_10_1021_acs_jpcc_5b08692 crossref_primary_10_1016_j_solener_2015_03_036 crossref_primary_10_1088_1674_1056_24_4_047205 crossref_primary_10_1007_s11664_016_4844_3 crossref_primary_10_1140_epjd_s10053_020_00011_5 crossref_primary_10_3390_app10051743 crossref_primary_10_1021_jz200802j crossref_primary_10_1016_j_rser_2013_01_030 crossref_primary_10_1016_j_solener_2011_06_003 crossref_primary_10_1039_C6RA00357E crossref_primary_10_1088_0022_3727_47_29_295302 crossref_primary_10_1016_j_physe_2022_115469 crossref_primary_10_1039_c3cp52227j crossref_primary_10_1016_j_jallcom_2012_10_017 crossref_primary_10_7567_JJAP_54_070304 crossref_primary_10_1002_ejic_201700595 crossref_primary_10_1016_j_optmat_2021_111014 crossref_primary_10_1016_j_solener_2019_03_028 crossref_primary_10_1021_acs_jpcc_0c09226 crossref_primary_10_1007_s10853_014_8366_1 crossref_primary_10_1021_am5089605 crossref_primary_10_1088_1361_6528_ad86c6 crossref_primary_10_17776_csj_1515106 crossref_primary_10_1021_jp402287b crossref_primary_10_1021_acs_jpcc_8b09588 crossref_primary_10_1016_j_solener_2014_05_020 crossref_primary_10_1039_C3EE41981A crossref_primary_10_1016_j_spmi_2016_10_029 crossref_primary_10_1007_s11426_018_9270_y crossref_primary_10_1021_acs_jpcc_5b09528 crossref_primary_10_1016_j_cej_2023_145236 crossref_primary_10_1007_s10854_014_1979_y crossref_primary_10_1088_0957_4484_27_28_285401 crossref_primary_10_1515_msp_2016_0072 crossref_primary_10_1016_j_solener_2013_10_027 crossref_primary_10_1016_j_solmat_2015_01_004 crossref_primary_10_1016_j_solmat_2015_09_034 crossref_primary_10_1039_C4DT03063J crossref_primary_10_3390_nano3010022 crossref_primary_10_1016_j_ijleo_2021_168059 crossref_primary_10_1016_j_jpcs_2018_12_015 crossref_primary_10_1134_S2075113316040237 crossref_primary_10_1039_C6TA02415G crossref_primary_10_3390_ijms23031140 crossref_primary_10_1007_s10854_015_2682_3 crossref_primary_10_1109_JSEN_2015_2506661 crossref_primary_10_1063_1_4811786 crossref_primary_10_1039_c2jm31970e crossref_primary_10_1002_aenm_202102689 crossref_primary_10_4028_www_scientific_net_AMR_702_123 crossref_primary_10_1039_c2jm35620a crossref_primary_10_1016_j_solener_2013_10_040 crossref_primary_10_1088_2053_1591_aa9971 crossref_primary_10_1039_C7TA11388A crossref_primary_10_1039_D0NR02292F crossref_primary_10_1007_s11051_020_04787_w crossref_primary_10_1016_j_jcis_2015_06_038 crossref_primary_10_1016_j_solener_2015_02_024 crossref_primary_10_1016_j_jelechem_2014_12_016 crossref_primary_10_1063_1_4961425 crossref_primary_10_1117_1_OE_53_8_087107 crossref_primary_10_1016_j_mee_2022_111842 crossref_primary_10_1016_j_spmi_2015_12_002 crossref_primary_10_1021_acs_jpcc_8b07378 crossref_primary_10_1007_s10971_021_05539_5 crossref_primary_10_1007_s11664_024_11222_6 crossref_primary_10_1016_j_mssp_2014_04_028 crossref_primary_10_1016_j_apsusc_2014_05_015 crossref_primary_10_1016_j_solener_2019_05_070 crossref_primary_10_1016_j_solidstatesciences_2020_106176 crossref_primary_10_1016_j_spmi_2015_01_024 crossref_primary_10_1016_j_colsurfa_2024_136025 crossref_primary_10_1021_am3027986 crossref_primary_10_1039_C8CS00431E crossref_primary_10_1016_j_optmat_2019_109569 crossref_primary_10_1016_j_solener_2024_112818 crossref_primary_10_1007_s10800_019_01299_x crossref_primary_10_1007_s11172_016_1620_8 crossref_primary_10_1063_1_5005805 crossref_primary_10_1002_adfm_202213770 crossref_primary_10_1002_aelm_201800186 crossref_primary_10_1016_j_physb_2018_10_016 crossref_primary_10_1021_acs_chemmater_2c02651 crossref_primary_10_1016_j_optmat_2024_115101 crossref_primary_10_1016_j_colsurfb_2014_11_041 crossref_primary_10_1016_j_solener_2012_11_005 crossref_primary_10_1088_2040_8978_15_8_085303 crossref_primary_10_1039_C5RA02922H crossref_primary_10_1155_2015_358063 crossref_primary_10_1134_S0030400X17010313 crossref_primary_10_1016_j_solener_2011_10_033 crossref_primary_10_1016_j_jallcom_2015_06_132 crossref_primary_10_1088_0022_3727_46_2_024004 crossref_primary_10_1515_nanoph_2016_0111 crossref_primary_10_1021_acs_jpcc_5b01771 crossref_primary_10_1364_OE_25_00A101 crossref_primary_10_1002_aelm_201900262 crossref_primary_10_1021_acs_chemrev_6b00376 crossref_primary_10_1016_j_mssp_2019_104852 crossref_primary_10_1039_c2cp41760j crossref_primary_10_1007_s11051_017_3760_7 crossref_primary_10_1021_jz3004602 crossref_primary_10_1007_s10854_013_1205_3 crossref_primary_10_1016_j_cej_2023_146194 crossref_primary_10_1016_j_materresbull_2024_113072 crossref_primary_10_3139_146_110957 crossref_primary_10_1016_j_orgel_2013_09_033 crossref_primary_10_17776_csj_363334 crossref_primary_10_1016_j_solener_2015_08_035 crossref_primary_10_1039_C5RA07092A crossref_primary_10_1186_s11671_015_0844_0 crossref_primary_10_1007_s11082_021_03075_8 crossref_primary_10_3762_bjnano_15_114 crossref_primary_10_1016_j_solener_2012_02_006 crossref_primary_10_1021_acs_jpcc_0c06242 crossref_primary_10_1007_s11664_012_2371_4 crossref_primary_10_1016_j_solener_2018_06_030 crossref_primary_10_1007_s10825_023_02019_7 crossref_primary_10_1016_j_electacta_2014_02_145 crossref_primary_10_1134_S1063785015020236 crossref_primary_10_1007_s12274_022_4389_0 crossref_primary_10_1039_D3YA00179B crossref_primary_10_1016_j_rser_2014_05_023 crossref_primary_10_1021_acsami_4c00277 crossref_primary_10_1039_C9NJ05344A crossref_primary_10_1021_jp507181k crossref_primary_10_1021_acsomega_2c06759 crossref_primary_10_1039_D1CS00106J crossref_primary_10_1016_j_solener_2020_04_044 crossref_primary_10_1021_jp309967w crossref_primary_10_1021_jp306628m crossref_primary_10_1002_open_202200232 crossref_primary_10_1016_j_solener_2020_01_026 crossref_primary_10_1063_1_4816099 crossref_primary_10_1002_pssr_202000167 crossref_primary_10_1021_acs_jpcc_5b05447 crossref_primary_10_1016_j_jcis_2011_11_044 crossref_primary_10_1016_j_ijleo_2022_169600 crossref_primary_10_1088_1402_4896_ac831d crossref_primary_10_1016_j_jpcs_2018_06_021 crossref_primary_10_1021_acsmaterialslett_0c00379 crossref_primary_10_1002_smll_202002454 crossref_primary_10_1088_0957_4484_23_40_405401 crossref_primary_10_1016_j_solmat_2012_02_014 crossref_primary_10_1088_2053_1591_ac4f86 crossref_primary_10_1016_j_mser_2022_100714 crossref_primary_10_1557_jmr_2020_46 crossref_primary_10_1016_j_nanoen_2012_07_006 crossref_primary_10_1002_aenm_202101877 crossref_primary_10_1063_1_4831674 crossref_primary_10_1039_c3dt51149a crossref_primary_10_1002_ente_202400961 crossref_primary_10_1016_j_solener_2021_03_010 crossref_primary_10_1070_RCR4452 crossref_primary_10_1016_j_spmi_2015_07_007 crossref_primary_10_1038_srep37913 crossref_primary_10_1179_1753555712Y_0000000042 crossref_primary_10_1016_j_rser_2017_05_095 crossref_primary_10_1021_acs_jpcc_7b09371 crossref_primary_10_1070_RC2013v082n05ABEH004337 crossref_primary_10_1016_j_jlumin_2019_116881 crossref_primary_10_1016_j_electacta_2015_10_075 crossref_primary_10_1016_j_solener_2019_11_010 crossref_primary_10_1080_14786435_2014_952257 crossref_primary_10_1007_s10854_014_2072_2 crossref_primary_10_1021_acs_jpcc_6b04130 crossref_primary_10_1186_s11671_017_1926_y crossref_primary_10_1016_j_cplett_2018_02_035 crossref_primary_10_1364_JOT_80_000642 crossref_primary_10_1109_JSEN_2016_2546966 crossref_primary_10_1002_smll_201701822 crossref_primary_10_1117_1_JPE_8_044001 crossref_primary_10_1016_j_physe_2012_07_006 crossref_primary_10_1177_0954008320902232 crossref_primary_10_1016_j_spmi_2015_10_032 crossref_primary_10_1039_C5NR04107D crossref_primary_10_1103_PhysRevE_104_014149 crossref_primary_10_1021_acs_jpcc_4c01302 crossref_primary_10_1016_j_bios_2014_07_056 crossref_primary_10_1021_acssuschemeng_8b05589 crossref_primary_10_1016_j_jpowsour_2019_05_020 crossref_primary_10_1063_1_4961399 crossref_primary_10_1039_C5TC02101D crossref_primary_10_1007_s10909_020_02550_y crossref_primary_10_1016_j_trac_2020_115897 crossref_primary_10_1016_j_matpr_2021_08_226 crossref_primary_10_1016_j_spmi_2015_04_031 crossref_primary_10_1016_j_ceramint_2014_01_011 crossref_primary_10_1002_admt_202401983 crossref_primary_10_1039_C5NR01025J crossref_primary_10_1021_acsanm_1c00968 crossref_primary_10_1039_C8NR01842A crossref_primary_10_1016_j_solener_2020_08_059 crossref_primary_10_1007_s11082_023_04809_6 crossref_primary_10_1021_jz301528a crossref_primary_10_1109_TED_2018_2878465 crossref_primary_10_1016_j_matlet_2016_10_121 crossref_primary_10_3390_molecules28237702 crossref_primary_10_1016_j_jelechem_2016_04_048 crossref_primary_10_1155_2014_939423 crossref_primary_10_1021_acs_jpcc_7b12675 crossref_primary_10_1016_j_solener_2011_12_024 crossref_primary_10_1016_j_tsf_2015_11_049 |
Cites_doi | 10.1021/jp066952u 10.1149/1.2129316 10.1021/jp809797x 10.1021/jp046781y 10.1016/j.polymer.2008.08.041 10.1002/adma.200800326 10.1021/nn100335g 10.1021/ja101752d 10.1016/j.jphotochem.2009.07.002 10.1063/1.3463037 10.1021/jp806791s 10.1002/adfm.200800940 10.1016/j.solmat.2009.04.013 10.1016/j.solmat.2010.07.016 10.1021/nn800871j 10.1002/adfm.200801173 10.1088/0957-4484/19/42/424007 10.1021/ja0574973 10.1143/JJAP.45.L638 10.1038/40087 10.1038/35003535 10.1021/j100082a044 10.1021/ja909663r 10.1021/jp810727n 10.1039/b604734n 10.1021/nl0342895 10.1063/1.2757130 10.1143/JJAP.46.4616 10.1063/1.2911740 10.1016/j.solmat.2008.11.022 10.1021/cr900137k 10.1021/cr050149z 10.1063/1.3440384 10.1063/1.2831661 10.1246/cl.2007.88 10.1021/nn900324q 10.1021/jp7113434 10.1103/PhysRevLett.92.186601 10.1088/0957-4484/20/29/295204 10.1063/1.3459146 10.1246/cl.2010.654 10.1007/s11671-010-9705-z 10.1088/0022-3727/41/10/102002 10.1002/adma.200390065 10.1038/35104607 10.1021/nl902438d 10.1063/1.2135868 10.5229/JKES.2007.10.4.257 10.1021/ja070099a 10.1021/jp020453l 10.1021/nn800093v 10.1039/b201661c 10.1007/s11671-010-9592-3 10.1126/science.1173812 10.1016/j.tsf.2004.11.041 10.1021/cm034081k 10.1007/BF02708491 10.1021/jp065282p 10.1088/0957-4484/20/9/095202 10.1016/j.solmat.2006.10.016 10.1063/1.2823582 10.1088/0957-4484/17/18/035 10.1016/j.tsf.2009.06.039 10.1002/adma.200401848 10.1021/ja0777741 10.1088/0957-4484/19/04/045602 10.1021/nl900388a 10.1016/j.jphotochem.2005.12.012 10.1063/1.1736034 10.1021/ja9098577 10.1021/nn1001547 10.1063/1.2912340 10.1021/nn800336b 10.1021/nl071486l 10.1021/ja8079143 10.1557/JMR.2004.0252 10.1143/JJAP.49.042301 10.1002/adfm.201000628 10.1007/s00604-007-0806-z 10.1021/jp809269m 10.1021/jp8108682 10.1063/1.2768311 10.1002/anie.200804709 10.1021/la903618x 10.1016/j.elecom.2010.08.001 10.1002/adma.201001148 10.1021/jp904320d 10.1039/b817000b 10.1021/ja056494n 10.1021/nl802476m 10.1002/anie.200702506 10.1021/jp0741758 10.1016/S0379-6779(97)80852-1 10.1063/1.3189083 10.1021/la702127t 10.1063/1.3280370 10.1088/0268-1242/18/9/311 10.1038/nphys1393 10.1016/j.elecom.2009.12.032 10.1016/j.tsf.2005.11.093 10.1016/j.eurpolymj.2009.12.023 10.1021/nl061085q 10.1246/cl.2007.712 10.1021/cm901762h 10.1103/PhysRevB.67.115326 10.1063/1.2240296 10.1021/nl1013663 10.1002/pssb.200779546 10.1039/b913601k 10.1021/jp808562x 10.1016/j.solmat.2008.12.015 10.1063/1.3337100 10.1038/nphoton.2009.69 10.1021/ja027355y 10.1016/j.elecom.2009.10.003 10.1016/j.elecom.2009.09.035 10.1016/0009-2614(90)85339-E 10.1021/jp802572b 10.1021/jz900122u 10.1021/nl100250z 10.1063/1.3117221 10.1021/nl802353x 10.1016/j.elecom.2008.08.038 10.1016/j.jphotochem.2005.05.023 10.1063/1.3313948 10.1088/0268-1242/18/6/314 10.1021/ma9006285 10.1039/b923418g 10.1126/science.1069156 10.1063/1.2721373 10.1021/ja0782706 10.1002/adma.200903240 10.1016/j.tsf.2007.04.143 10.1063/1.3491245 10.1016/j.tsf.2007.03.043 10.1021/nl803760j 10.1016/j.solmat.2010.06.013 10.1021/cm802254u 10.1021/ja909172p 10.1088/0022-3727/43/1/012002 10.1063/1.114209 10.1103/PhysRevB.54.17628 10.1021/jp907758s 10.1016/j.solmat.2009.01.001 10.1021/jp103300v 10.1021/jp104197s 10.1021/ja1013695 10.1557/jmr.2007.0289 10.1016/j.solmat.2005.11.011 10.1002/(SICI)1521-4095(199908)11:11<923::AID-ADMA923>3.0.CO;2-T 10.1016/j.apsusc.2010.05.086 10.1021/nl903406s 10.1038/nnano.2008.206 10.1021/jp900302b 10.1016/j.mseb.2008.11.014 10.1021/nl070430o 10.1021/jp803310s 10.1021/la900247r 10.1021/nn901139d 10.1021/j100565a004 10.1063/1.2735674 10.1021/nl101322h 10.1021/ja903337c 10.1002/adfm.200900081 10.1126/science.272.5269.1744 10.1007/s11671-010-9632-z 10.5012/bkcs.2007.28.6.953 10.1021/nl8034338 10.1002/cphc.201000069 10.1021/la9713863 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd Copyright Pergamon Press Inc. Jun 2011 |
Copyright_xml | – notice: 2011 Elsevier Ltd – notice: Copyright Pergamon Press Inc. Jun 2011 |
DBID | AAYXX CITATION 7SP 7ST 8FD C1K FR3 KR7 L7M SOI 7SU 7TG 7U6 KL. |
DOI | 10.1016/j.solener.2011.02.005 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts Environmental Engineering Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management Environmental Engineering Abstracts Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Sustainability Science Abstracts |
DatabaseTitleList | Civil Engineering Abstracts Meteorological & Geoastrophysical Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Architecture |
EISSN | 1471-1257 |
EndPage | 1282 |
ExternalDocumentID | 2388745231 10_1016_j_solener_2011_02_005 S0038092X11000338 |
Genre | Feature |
GroupedDBID | --K --M -ET -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACGOD ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BELTK BKOJK BKOMP BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE J1W JARJE KOM LY6 M41 MAGPM MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SAC SDF SDG SDP SES SEW SPC SPCBC SSM SSR SSZ T5K TAE TN5 UKR VOH WH7 WUQ XOL XPP YNT ZMT ZY4 ~02 ~A~ ~G- ~KM ~S- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SP 7ST 8FD C1K EFKBS FR3 KR7 L7M SOI 7SU 7TG 7U6 KL. |
ID | FETCH-LOGICAL-c508t-bda8a0464a0167058e3cc2beb47093504bb76d7ad3d841a4e926bc4c2a850f3b3 |
IEDL.DBID | .~1 |
ISSN | 0038-092X |
IngestDate | Tue Aug 05 10:15:17 EDT 2025 Fri Jul 11 10:05:57 EDT 2025 Wed Aug 13 04:43:18 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Tue Jul 01 01:08:27 EDT 2025 Fri Feb 23 02:18:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Solar cell Colloidal quantum dot Sensitizer |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-bda8a0464a0167058e3cc2beb47093504bb76d7ad3d841a4e926bc4c2a850f3b3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 874342305 |
PQPubID | 9393 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_883040410 proquest_miscellaneous_1777130140 proquest_journals_874342305 crossref_citationtrail_10_1016_j_solener_2011_02_005 crossref_primary_10_1016_j_solener_2011_02_005 elsevier_sciencedirect_doi_10_1016_j_solener_2011_02_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-06-01 |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Solar energy |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Pergamon Press Inc |
Publisher_xml | – name: Elsevier Ltd – name: Pergamon Press Inc |
References | Yang, Chang (b0840) 2010 Yu, Qu, Guo, Peng (b0845) 2003; 15 Günes, Neugebauer, Sariciftci (b0235) 2007; 107 Park, Roy, Beaupré, Cho, Coates, Moon, Moses, Leclerc, Lee, Heeger (b0580) 2009; 3 Tang, Wang, Brzozowski, Aaron, Barkhouse, Debnath, Levina, Sargent (b0750) 2010; 22 Johnston, Pattanthyus-Abraham, Clifford, Myrskog, MacNeil, Levina, Sargent (b0315) 2008; 92 Yun, Feng, Wu, Yoshino (b0860) 2009; 93 Kniprath, Rabe, McLeskey, Wang, Kirstein (b0350) 2009; 518 Lee, Kang, Min, Sung, Han (b0395) 2008; 10 Wang, Yang, Qian, Zhang, Li (b0825) 2010; 10 Robel, Subramanian, Kuno, Kamat (b0620) 2006; 128 Chang, Lee (b0080) 2007; 91 Chakrapani, Tvrdy, Kamat (b0075) 2010; 132 Klem, MacNeil, Levina, Sargent (b0345) 2008; 20 Lokteva, Radychev, Witt, Borchert, Parisi, Kolny-Olesiak (b0490) 2010; 114 Talapin, Lee, Kovalenko, Shevchenko (b0740) 2010; 110 Kawazoe, Yasukawa, Hyodu, Kurita, Yanagi, Hosono (b0335) 1997; 389 Leschkies, Beatty, Kang, Norris, Aydil (b0445) 2009; 3 Palaniappan, Murphy, Khanam, Horvath, Alshareef, Quevedo-Lopez, Biewer, Park, Kim, Gnade, Stefan (b0575) 2009; 42 Giménez, Mora-Seró, Macor, Guijarro, Lana-Villarreal, Gómez, Diguna, Shen, Toyoda, Bisquert (b0225) 2009; 20 Grätzel (b0240) 2001; 414 Lee, Kim, Yook, Bang, Kim, Park (b0385) 2007; 28 Lee, Lee, Lee, Yi, Han, Cho (b0405) 2008; 92 Pijpers, Ulbricht, Tielrooij, Osherov, Golan, Delerue, Allan, Bonn (b0605) 2009; 5 Versavel, Haber (b0790) 2007; 515 Bolts, Wrighton (b0055) 1976; 80 Peter, Riley, Tull, Wijayantha (b0600) 2002 Sun, Marx, Greenham (b0710) 2003; 3 Ma, Luther, Zheng, Wu, Alivisatos (b0505) 2009; 9 Maria, Cyr, Klem, Levina, Sargeant (b0515) 2005; 87 Lan, Yang, Lin, Lin, Liao, Chang (b0375) 2009; 19 Huynh, Dittmer, Alivisatos (b0285) 2002; 295 Toyoda, Kobayashi, Shen (b0775) 2008; 516 Ernst, Belaidi, Könenkamp (b0185) 2003; 18 Itzhaik, Niitsoo, Page, Hodes (b0300) 2009; 113 Leventis, O’Mahony, Akhtar, Afzaal, O’Brien, Haque (b0450) 2010; 132 Tvrdy, Kamat (b0785) 2009; 113 Kongkanand, Tvrdy, Takechi, Kuno, Kamat (b0360) 2008; 130 Taretto, Rau (b0755) 2005 Hoppe, Sariciftci (b0255) 2004; 19 Shen, Lee (b0680) 2008; 19 Prabakar, Minkyu, Inyoung, Heeje (b0615) 2010; 43 Fan, Fang, Kim, Kim, Yu, Ko (b0190) 2010; 96 Jiang, Schaller, Lee, Pietryga, Klimov, Zakhidov (b0305) 2007; 22 Greenham, Peng, Alivisatos (b0220) 1997; 84 Shalom, Dor, Rühle, Grinis, Zaban (b0675) 2009; 113 Lee, Wang, Chen, Gamelin, Zakeeruddin, Gratzel, Nazeeruddin (b0415) 2009; 9 Chen, Li, Zhao, Lei, Zhang, Cole, Chu, Wang, Cui, Sun, Milne (b0115) 2010 Hyun, Zhong, Bartnik, Sun, Abruna, Wise, Goodreau, Matthews, Leslie, Borelli (b0295) 2008; 2 Lin, Chu, Li, Chuang, Chang, Su, Chang, Chu, Chen (b0460) 2009; 131 Sun, Greenham (b0720) 2006; 8 Emin, Sogoshi, Nakabayashi, Fujihara, Dushkin (b0170) 2009; 113 Koleilat, Levina, Shukla, Myrskog, Hinds, Pattantyus-Abraham, Sargent (b0355) 2008; 2 Barea, Shalom, Giménez, Hod, Mora-Séro, Zaban, Bisquert (b0035) 2010; 132 Wang, Zhu, Xu, Wang, Tao, Hark, Xiao, Li (b0820) 2010; 6 Kamat (b0330) 2008; 112 Mora-Seró, Giménez, Moehl, Fabregat-Santiago, Lana-Villareal, Gómez, Bisquert (b0525) 2008; 18 Debntah, Greiner, Kramer, Fuscher, Tang, Barkhouse, Wang, Levina, Lu, Sargent (b0145) 2010; 97 Hoyer, Könenkamp (b0260) 1995; 66 Niitsoo, Sarkar, Pejoux, Rühle, Cahen, Hodes (b0545) 2006; 181 Zhu, G., Su, F., Lv, T., Pan, L., Sun, Z., 2010. Au nanoparticles as interfacial layer for CdS quantum dot-sensitized solar cells. Nanoscale Res. Lett. 52. doi: 10.1007/s11671-010-9705-z. Sudhagar, Jung, Park, Lee, Sathyamoorthy, Kang, Ahn (b0700) 2009; 11 Bang, Kamat (b0030) 2009; 3 Emin, Sogoshi, Nakabayashi, Villeneuve, Dushkin (b0175) 2009; 207 Arango, Oertel, Xu, Bawendi, Bulović (b0015) 2009; 9 Arici, Sariciftci (b0025) 2004; vol. 3 Lee, Yum, Leventis, Zakeeruddin, Haque, Chen, Seok, Grätzel, Nazeeruddin (b0400) 2008; 112 Chen, Lo, Yang, Monbouqette, Yang (b0095) 2008; 3 Murphy, Beard, Norman, Ahrenkiel, Johnson, Yu, Mićić, Ellingson, Nozik (b0535) 2006; 128 Dayal, Kopidakis, Olson, Ginley, Rumbles (b0135) 2010; 10 Deng, Zhang, Huang, Li, Luo, Shen, Toyoda, Meng (b0155) 2010; 5 Hussain, Neppolian, Shim, Kim, Kim, Choi, Kim, Lee, Park (b0275) 2010; 49 Hodes (b0250) 2008; 112 Tachibana, Umekita, Otsuka, Kuwabata (b0735) 2008; 41 Wang, Yang, Shieh, Yeh, Juan, Zeng (b0815) 2010; 46 Vomeyer, Katsikas, Giersig, Popovic, Diesner, Chemseddine, Eychmüller, Weller (b0800) 1994; 98 Zhou, Riehle, Yuan, Schleiermacher, Niggemann, Urban, Krüger (b0875) 2010; 96 Schaller, Klimov (b0650) 2004; 92 Sukhovatkin, Hinds, Brzozowski, Sargent (b0705) 2009; 324 Chang, Rhee, Im, Lee, Kim, Seok, Nazeeruddin, Grätzel (b0085) 2010; 10 Chen, Paulose, Ruan, Mor, Varghese, Kouzoudis, Grimes (b0090) 2006; 177 Chen, Zhao, Song, Sun, Deng, Liu, Lei (b0105) 2009; 11 Beard, Knutsen, Yu, Luther, Song, Metzger, Ellingson, Nozik (b0045) 2007; 7 Ju, Graham, Zhai, Rodriguez, Breeze, Yang, Alers, Carter (b0320) 2010; 97 Lee, Chen, Moon, Sauvage, Sivula, Bessho, Gamelin, Comte, Zakeeruddin, Seok, Gratzel, Nazeeruddin (b0425) 2009; 25 Wang, Abrusci, Wong, Svensson, Anderson, Greenham (b0805) 2006; 6 Shiga, Takechi, Motohiro (b0690) 2006; 90 Greenham, Peng, Alivisatos (b0215) 1996; 54 Law, Beard, Choi, Luther, Hanna, Nozik (b0380) 2008; 8 Kamat (b0325) 2007; 111 Sambur, Parkinson (b0635) 2010; 132 Noone, Strein, Anderson, Wu, Jenekhe, Ginger (b0555) 2010; 10 Wang, Qu, Zeng, Zhang, Shi, Tan, Wang, Liu, Hou, Teng, Feng (b0810) 2008; 49 Han, Qin, Jiang, Liu, Wang, Chen, Cao (b0245) 2006; 17 Schaller, Sykora, Jeong, Klimov (b0655) 2006; 110 Emin, Loukanov, Wakasa, Nakabayashi, Kaneko (b0180) 2010; 39 Huang, Peng, Wang, Wang, Cao (b0265) 2008; 92 Peng, Manna, Yang, Wickham, Scher, Kadavanich, Alivisatos (b0595) 2000; 404 Plass, Serge, Krüger, Grätzel (b0610) 2002; 106 Vogel, Pohl, Weller (b0795) 1990; 174 Leschkies, Divakar, Basu, Enache-Pommer, Boercker, Carter, Kortshagen, Norris, Aydil (b0440) 2007; 7 Blackburn, Selmarten, Ellingson, Jones, Micic, Nozik (b0050) 2005; 109 Seo, Kim, Kim, Singh, Samoc, Cartwright, Prasad (b0665) 2009; 20 Dayal, Reese, Ferguson, Ginley, Rumbles, Kopidakis (b0130) 2010; 20 Service (b0670) 1996; 272 Diguna, Shen, Kobayashi, Toyoda (b0160) 2007; 91 Arenas, Mendoza, Cortina, Nicho, Hu (b0020) 2010; 94 Toyoda, Uehata, Suganuma, Tamura, Sato, Yamamoto, Kobayashi, Shen (b0770) 2007; 46 Carlson, Leschkies, Aydil, Zhu (b0070) 2008; 112 Chiba, Islam, Watanabe, Komiya, Koide, Han (b0120) 2006; 45 Lee, Chi, Liau (b0435) 2010; 22 Pathan, Lokhande (b0585) 2004; 27 Lee, Lee, Min, Park, Yi, Han (b0420) 2009; 156 Albero, Martínez-Ferrero, Ajuria, Waldauf, Pacios, Palomares (b0010) 2009; 11 Rühle, Shalom, Zaban (b0630) 2010; 11 Luther, Gao, Lloyd, Semonin, Beard, Nozik (b0500) 2010; 22 Wienke, Krunks, Lenzmann (b0830) 2003; 18 Sun, Sariciftci (b0715) 2005 Lee, Lo (b0430) 2009; 19 Lee, Huang, Chien (b0390) 2008; 20 Liu, Hensel, Fitzmorris, Li, Zhang (b0475) 2010; 1 Šimurda, Nĕmec, Formanánek, Nĕmcová, Malý (b0660) 2006 Clifford, Johnston, Levina, Sargent (b0125) 2007; 91 De Girolamo, Reiss, Pron (b0140) 2007; 111 Debnath, Tang, Barkhouse, Wang, Pattantyus-Abraham, Brzozowski, Levina, Sargent (b0150) 2010; 132 Dibbell, Watson (b0165) 2009; 113 Gao, Sun, Hu, Ai, Zhang, Feng, Li, Peng (b0210) 2009; 113 Luther, Law, Beard, Song, Reese, Ellingson, Nozik (b0495) 2008; 8 Sun, Yu, Pan, Gao, Chen, Peng (b0725) 2008; 130 Bredol, Matras, Szatkowski, Sanetra, Prodi-Schwab (b0060) 2009; 93 Yum, Choi, Kim, Kim, Sun (b0855) 2007; 10 Mozer, Wada, Jiang, Masaki, Yanagida, Mori (b0530) 2006; 89 Feng, Yun, Zhang, Feng (b0200) 2010; 96 Okazaki, Kojima, Tachibana, Kuwabata, Torimoto (b0560) 2007; 36 Levy-Clémént, Tena-Zaera, Ryan, Hodes (b0455) 2005; 17 Farrow, Kamat (b0195) 2009; 131 Zhang, Zhang, Huang, Huang, Luo, Meng, Li (b0870) 2010; 12 Pattantyus-Abraham, Kramer, Barkhouse, Wang, Konstantatos, Debnath, Levina, Raabe, Nazeeruddin, Grätzel, Sargent (b0590) 2010; 4 Jiang, Chen, Qiu, Yan, Nan, Xu, Yang, Chen (b0310) 2010 Huynh, Dittmer, Teclemariam, Milliron, Alivisatos, Barnham (b0290) 2003; 67 Günes, Fritz, Neugebauer, Sariciftci, Kumar, Scholes (b0230) 2007; 91 Cahen, Khan (b0065) 2003; 15 Liu, Holman, Kortshagen (b0470) 2009; 9 Sambur, Riha, Choi, Parkinson (b0640) 2010; 26 Shockley, Queisser (b0695) 1961; 32 Tomkiewicz (b0765) 1979; 126 Robel, Kuno, Kamat (b0625) 2007; 129 Könenkamp (b0365) 2008 Liu, Kortshagen (b0480) 2010; 5 Truong, Kim, Park (b0780) 2010 Thompson, Fréchet (b0760) 2008; 47 Baker, Kamat (b0040) 2009; 19 Olson, Gray, Carter (b0565) 2009; 93 Mann, Watson (b0510) 2007; 23 Klem, MacNeil, Cyr, Levina, Sargent (b0340) 2007; 90 Olson, Rodriguez, Yang, Alers, Carter (b0570) 2010; 96 Tachibana, Akiyama, Ohtsuka, Torimoto, Kuwabata (b0730) 2007; 36 Chen, Wu, Lei, Song, Deng, Sun (b0110) 2010; 256 Huynh, Peng, Alivisatos (b0280) 1999; 11 Nadarajah, Word, VanSant, Könenkamp (b0540) 2008; 245 Noone, Anderson, Horwitz, Munro, Kulkarni, Ginger (b0550) 2009; 3 Zaban, Mícíc, Gregg, Nozik (b0865) 1998; 14 Kumar, Scholes (b0370) 2008; 160 Tan, Zhu, Thein, Gao, Cheng, Zhang, Zhang, Su, Wang, Henderson, Hahm, Yang, Xu (b0745) 2009; 95 Acharya, Hewa-Kaskarage, Alabi, Nemitz, Khon, Ullrich, Anzenbacher, Zamkov (b0005) 2010; 114 Sapp, Elliott, Contado, Caramori, Bignozzi (b0645) 2002; 124 Chen, Song, Sun, Deng, Jiang, Lei, Huang, Liu (b0100) 2009; 94 Mishra, Fischer, Bäuerle (b0520) 2009; 48 Shen, Yamada, Tamura, Toyoda (b0685) 2010; 97 Lloyd, Lee, Davis, Fang, Fleming, Hsu, Kline, Toney (b0485) 2009; 113 Xin, Huang, Jiang, Li, Peng, Zhai, Wang (b0835) 2010; 46 Lee, Leventis, Moon, Chen, Ito, Haque, Torres, Nüesch, Geiger, Zakeeruddin, Grätzel, Nazeeruddin (b0410) 2009; 19 Gao, Li, Sun, Chen, Tang, Peng (b0205) 2009; 113 Lin, Lee, Chang, Shen, Yang (b0465) 2007; 90 Schaller (10.1016/j.solener.2011.02.005_b0655) 2006; 110 Okazaki (10.1016/j.solener.2011.02.005_b0560) 2007; 36 Emin (10.1016/j.solener.2011.02.005_b0170) 2009; 113 Han (10.1016/j.solener.2011.02.005_b0245) 2006; 17 Robel (10.1016/j.solener.2011.02.005_b0625) 2007; 129 Chen (10.1016/j.solener.2011.02.005_b0095) 2008; 3 Lee (10.1016/j.solener.2011.02.005_b0390) 2008; 20 Barea (10.1016/j.solener.2011.02.005_b0035) 2010; 132 Lee (10.1016/j.solener.2011.02.005_b0425) 2009; 25 Sun (10.1016/j.solener.2011.02.005_b0715) 2005 Leschkies (10.1016/j.solener.2011.02.005_b0445) 2009; 3 Tomkiewicz (10.1016/j.solener.2011.02.005_b0765) 1979; 126 Chang (10.1016/j.solener.2011.02.005_b0085) 2010; 10 Olson (10.1016/j.solener.2011.02.005_b0565) 2009; 93 Dayal (10.1016/j.solener.2011.02.005_b0135) 2010; 10 Emin (10.1016/j.solener.2011.02.005_b0180) 2010; 39 Mora-Seró (10.1016/j.solener.2011.02.005_b0525) 2008; 18 Emin (10.1016/j.solener.2011.02.005_b0175) 2009; 207 Sudhagar (10.1016/j.solener.2011.02.005_b0700) 2009; 11 Lee (10.1016/j.solener.2011.02.005_b0410) 2009; 19 Carlson (10.1016/j.solener.2011.02.005_b0070) 2008; 112 Lloyd (10.1016/j.solener.2011.02.005_b0485) 2009; 113 Sambur (10.1016/j.solener.2011.02.005_b0635) 2010; 132 Maria (10.1016/j.solener.2011.02.005_b0515) 2005; 87 Toyoda (10.1016/j.solener.2011.02.005_b0775) 2008; 516 Mishra (10.1016/j.solener.2011.02.005_b0520) 2009; 48 Giménez (10.1016/j.solener.2011.02.005_b0225) 2009; 20 Prabakar (10.1016/j.solener.2011.02.005_b0615) 2010; 43 Klem (10.1016/j.solener.2011.02.005_b0340) 2007; 90 Sapp (10.1016/j.solener.2011.02.005_b0645) 2002; 124 Shen (10.1016/j.solener.2011.02.005_b0685) 2010; 97 Mann (10.1016/j.solener.2011.02.005_b0510) 2007; 23 Plass (10.1016/j.solener.2011.02.005_b0610) 2002; 106 Farrow (10.1016/j.solener.2011.02.005_b0195) 2009; 131 Lee (10.1016/j.solener.2011.02.005_b0405) 2008; 92 Luther (10.1016/j.solener.2011.02.005_b0500) 2010; 22 Peter (10.1016/j.solener.2011.02.005_b0600) 2002 Dibbell (10.1016/j.solener.2011.02.005_b0165) 2009; 113 Chen (10.1016/j.solener.2011.02.005_b0100) 2009; 94 Zhou (10.1016/j.solener.2011.02.005_b0875) 2010; 96 Kamat (10.1016/j.solener.2011.02.005_b0330) 2008; 112 Zaban (10.1016/j.solener.2011.02.005_b0865) 1998; 14 Yum (10.1016/j.solener.2011.02.005_b0855) 2007; 10 Wang (10.1016/j.solener.2011.02.005_b0825) 2010; 10 Kumar (10.1016/j.solener.2011.02.005_b0370) 2008; 160 Deng (10.1016/j.solener.2011.02.005_b0155) 2010; 5 Klem (10.1016/j.solener.2011.02.005_b0345) 2008; 20 Xin (10.1016/j.solener.2011.02.005_b0835) 2010; 46 Arango (10.1016/j.solener.2011.02.005_b0015) 2009; 9 Grätzel (10.1016/j.solener.2011.02.005_b0240) 2001; 414 Schaller (10.1016/j.solener.2011.02.005_b0650) 2004; 92 Sukhovatkin (10.1016/j.solener.2011.02.005_b0705) 2009; 324 Wienke (10.1016/j.solener.2011.02.005_b0830) 2003; 18 Tan (10.1016/j.solener.2011.02.005_b0745) 2009; 95 Greenham (10.1016/j.solener.2011.02.005_b0220) 1997; 84 Service (10.1016/j.solener.2011.02.005_b0670) 1996; 272 Shen (10.1016/j.solener.2011.02.005_b0680) 2008; 19 Lin (10.1016/j.solener.2011.02.005_b0465) 2007; 90 Blackburn (10.1016/j.solener.2011.02.005_b0050) 2005; 109 Pijpers (10.1016/j.solener.2011.02.005_b0605) 2009; 5 Lee (10.1016/j.solener.2011.02.005_b0395) 2008; 10 Robel (10.1016/j.solener.2011.02.005_b0620) 2006; 128 Huynh (10.1016/j.solener.2011.02.005_b0290) 2003; 67 Kawazoe (10.1016/j.solener.2011.02.005_b0335) 1997; 389 Hyun (10.1016/j.solener.2011.02.005_b0295) 2008; 2 Noone (10.1016/j.solener.2011.02.005_b0550) 2009; 3 Chen (10.1016/j.solener.2011.02.005_b0090) 2006; 177 Pattantyus-Abraham (10.1016/j.solener.2011.02.005_b0590) 2010; 4 Arenas (10.1016/j.solener.2011.02.005_b0020) 2010; 94 Baker (10.1016/j.solener.2011.02.005_b0040) 2009; 19 Bredol (10.1016/j.solener.2011.02.005_b0060) 2009; 93 Ma (10.1016/j.solener.2011.02.005_b0505) 2009; 9 Lee (10.1016/j.solener.2011.02.005_b0400) 2008; 112 Debnath (10.1016/j.solener.2011.02.005_b0150) 2010; 132 Sambur (10.1016/j.solener.2011.02.005_b0640) 2010; 26 Thompson (10.1016/j.solener.2011.02.005_b0760) 2008; 47 Luther (10.1016/j.solener.2011.02.005_b0495) 2008; 8 Wang (10.1016/j.solener.2011.02.005_b0815) 2010; 46 Leschkies (10.1016/j.solener.2011.02.005_b0440) 2007; 7 Bolts (10.1016/j.solener.2011.02.005_b0055) 1976; 80 Cahen (10.1016/j.solener.2011.02.005_b0065) 2003; 15 Ernst (10.1016/j.solener.2011.02.005_b0185) 2003; 18 Shockley (10.1016/j.solener.2011.02.005_b0695) 1961; 32 Taretto (10.1016/j.solener.2011.02.005_b0755) 2005 Debntah (10.1016/j.solener.2011.02.005_b0145) 2010; 97 Shalom (10.1016/j.solener.2011.02.005_b0675) 2009; 113 Wang (10.1016/j.solener.2011.02.005_b0810) 2008; 49 Acharya (10.1016/j.solener.2011.02.005_b0005) 2010; 114 De Girolamo (10.1016/j.solener.2011.02.005_b0140) 2007; 111 Wang (10.1016/j.solener.2011.02.005_b0805) 2006; 6 Park (10.1016/j.solener.2011.02.005_b0580) 2009; 3 Gao (10.1016/j.solener.2011.02.005_b0210) 2009; 113 Lokteva (10.1016/j.solener.2011.02.005_b0490) 2010; 114 Lan (10.1016/j.solener.2011.02.005_b0375) 2009; 19 Palaniappan (10.1016/j.solener.2011.02.005_b0575) 2009; 42 Niitsoo (10.1016/j.solener.2011.02.005_b0545) 2006; 181 Tang (10.1016/j.solener.2011.02.005_b0750) 2010; 22 Koleilat (10.1016/j.solener.2011.02.005_b0355) 2008; 2 Versavel (10.1016/j.solener.2011.02.005_b0790) 2007; 515 Vomeyer (10.1016/j.solener.2011.02.005_b0800) 1994; 98 Chang (10.1016/j.solener.2011.02.005_b0080) 2007; 91 Law (10.1016/j.solener.2011.02.005_b0380) 2008; 8 Chen (10.1016/j.solener.2011.02.005_b0110) 2010; 256 Hussain (10.1016/j.solener.2011.02.005_b0275) 2010; 49 Günes (10.1016/j.solener.2011.02.005_b0235) 2007; 107 Albero (10.1016/j.solener.2011.02.005_b0010) 2009; 11 Bang (10.1016/j.solener.2011.02.005_b0030) 2009; 3 Nadarajah (10.1016/j.solener.2011.02.005_b0540) 2008; 245 Truong (10.1016/j.solener.2011.02.005_b0780) 2010 Huang (10.1016/j.solener.2011.02.005_b0265) 2008; 92 Diguna (10.1016/j.solener.2011.02.005_b0160) 2007; 91 Hoyer (10.1016/j.solener.2011.02.005_b0260) 1995; 66 Levy-Clémént (10.1016/j.solener.2011.02.005_b0455) 2005; 17 Johnston (10.1016/j.solener.2011.02.005_b0315) 2008; 92 Liu (10.1016/j.solener.2011.02.005_b0475) 2010; 1 Sun (10.1016/j.solener.2011.02.005_b0720) 2006; 8 Lee (10.1016/j.solener.2011.02.005_b0435) 2010; 22 Huynh (10.1016/j.solener.2011.02.005_b0285) 2002; 295 Hoppe (10.1016/j.solener.2011.02.005_b0255) 2004; 19 Chakrapani (10.1016/j.solener.2011.02.005_b0075) 2010; 132 10.1016/j.solener.2011.02.005_b0880 Huynh (10.1016/j.solener.2011.02.005_b0280) 1999; 11 Noone (10.1016/j.solener.2011.02.005_b0555) 2010; 10 Günes (10.1016/j.solener.2011.02.005_b0230) 2007; 91 Kongkanand (10.1016/j.solener.2011.02.005_b0360) 2008; 130 Könenkamp (10.1016/j.solener.2011.02.005_b0365) 2008 Yun (10.1016/j.solener.2011.02.005_b0860) 2009; 93 Arici (10.1016/j.solener.2011.02.005_b0025) 2004; vol. 3 Peng (10.1016/j.solener.2011.02.005_b0595) 2000; 404 Sun (10.1016/j.solener.2011.02.005_b0710) 2003; 3 Tvrdy (10.1016/j.solener.2011.02.005_b0785) 2009; 113 Yu (10.1016/j.solener.2011.02.005_b0845) 2003; 15 Šimurda (10.1016/j.solener.2011.02.005_b0660) 2006 Clifford (10.1016/j.solener.2011.02.005_b0125) 2007; 91 Chiba (10.1016/j.solener.2011.02.005_b0120) 2006; 45 Vogel (10.1016/j.solener.2011.02.005_b0795) 1990; 174 Lee (10.1016/j.solener.2011.02.005_b0430) 2009; 19 Kamat (10.1016/j.solener.2011.02.005_b0325) 2007; 111 Kniprath (10.1016/j.solener.2011.02.005_b0350) 2009; 518 Toyoda (10.1016/j.solener.2011.02.005_b0770) 2007; 46 Lee (10.1016/j.solener.2011.02.005_b0420) 2009; 156 Murphy (10.1016/j.solener.2011.02.005_b0535) 2006; 128 Jiang (10.1016/j.solener.2011.02.005_b0305) 2007; 22 Dayal (10.1016/j.solener.2011.02.005_b0130) 2010; 20 Chen (10.1016/j.solener.2011.02.005_b0105) 2009; 11 Lee (10.1016/j.solener.2011.02.005_b0385) 2007; 28 Seo (10.1016/j.solener.2011.02.005_b0665) 2009; 20 Feng (10.1016/j.solener.2011.02.005_b0200) 2010; 96 Jiang (10.1016/j.solener.2011.02.005_b0310) 2010 Beard (10.1016/j.solener.2011.02.005_b0045) 2007; 7 Tachibana (10.1016/j.solener.2011.02.005_b0735) 2008; 41 Liu (10.1016/j.solener.2011.02.005_b0470) 2009; 9 Hodes (10.1016/j.solener.2011.02.005_b0250) 2008; 112 Gao (10.1016/j.solener.2011.02.005_b0205) 2009; 113 Mozer (10.1016/j.solener.2011.02.005_b0530) 2006; 89 Ju (10.1016/j.solener.2011.02.005_b0320) 2010; 97 Pathan (10.1016/j.solener.2011.02.005_b0585) 2004; 27 Wang (10.1016/j.solener.2011.02.005_b0820) 2010; 6 Liu (10.1016/j.solener.2011.02.005_b0480) 2010; 5 Lin (10.1016/j.solener.2011.02.005_b0460) 2009; 131 Rühle (10.1016/j.solener.2011.02.005_b0630) 2010; 11 Lee (10.1016/j.solener.2011.02.005_b0415) 2009; 9 Shiga (10.1016/j.solener.2011.02.005_b0690) 2006; 90 Sun (10.1016/j.solener.2011.02.005_b0725) 2008; 130 Talapin (10.1016/j.solener.2011.02.005_b0740) 2010; 110 Olson (10.1016/j.solener.2011.02.005_b0570) 2010; 96 Greenham (10.1016/j.solener.2011.02.005_b0215) 1996; 54 Tachibana (10.1016/j.solener.2011.02.005_b0730) 2007; 36 Yang (10.1016/j.solener.2011.02.005_b0840) 2010 Fan (10.1016/j.solener.2011.02.005_b0190) 2010; 96 Zhang (10.1016/j.solener.2011.02.005_b0870) 2010; 12 Itzhaik (10.1016/j.solener.2011.02.005_b0300) 2009; 113 Chen (10.1016/j.solener.2011.02.005_b0115) 2010 Leventis (10.1016/j.solener.2011.02.005_b0450) 2010; 132 |
References_xml | – volume: 19 start-page: 2735 year: 2009 end-page: 2742 ident: b0410 article-title: PbS and CdS quantum dot-sensitized solid-state solar cells: “Old concepts, new results” publication-title: Adv. Funct. Mater. – volume: 128 start-page: 3241 year: 2006 end-page: 3247 ident: b0535 article-title: PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation publication-title: J. Am. Chem. Soc. – volume: 181 start-page: 306 year: 2006 end-page: 313 ident: b0545 article-title: Chemical bath deposited CdS/CdSe-sensitized porous TiO publication-title: J. Photochem. Photobiol. A – volume: 94 start-page: 153115 year: 2009 ident: b0100 article-title: An oleic acid-capped CdSe quantum-dot sensitized solar cell publication-title: Appl. Phys. Lett. – volume: 89 start-page: 043509 year: 2006 ident: b0530 article-title: Efficient dye-sensitized solar cells based on a 2-thiophen-2-yl-vinyl-conjugated ruthenium photosensitizer and conjugated polymer hole conductor publication-title: Appl. Phys. Lett. – volume: 20 start-page: 095202 year: 2009 ident: b0665 article-title: Enhacement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite device by post-treatment-driven ligand exchange publication-title: Nanotechnology – volume: 324 start-page: 1542 year: 2009 end-page: 1544 ident: b0705 article-title: Colloidal quantum-dot photodetectors exploiting multiexciton generation publication-title: Science – volume: 515 start-page: 7171 year: 2007 end-page: 7176 ident: b0790 article-title: Structural and optical properties of amorphous and crystalline antimony sulfide thin-films publication-title: Thin Solid Films – volume: 112 start-page: 11600 year: 2008 end-page: 11608 ident: b0400 article-title: CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity publication-title: J. Phys. Chem. C – volume: 132 start-page: 5952 year: 2010 end-page: 5953 ident: b0150 article-title: Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles publication-title: J. Am. Chem. Soc. – volume: 96 start-page: 093301 year: 2010 ident: b0200 article-title: Solution-processed bulk heterojunction photovoltaic devices based on poly(2-methoxy,5-octoxy)-1,4-phenylenevinylene-multiwalled carbon nanotubes/PbSe quantum dots publication-title: Appl. Phys. Lett. – volume: 114 start-page: 12496 year: 2010 end-page: 12504 ident: b0005 article-title: Synthesis of PbS/TiO publication-title: J. Phys. Chem. C – volume: 10 start-page: 1088 year: 2010 end-page: 1092 ident: b0825 article-title: Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation publication-title: Nano Lett. – volume: 111 start-page: 14681 year: 2007 end-page: 14688 ident: b0140 article-title: Supramolecularly assembled hybrid materials via molecular recognition between diaminopyrimidine-functionalized poly(hexylthiophene) and thymine-capped CdSe nanocrystals publication-title: J. Phys. Chem. C – volume: 22 start-page: 922 year: 2010 end-page: 927 ident: b0435 article-title: CdS/CdSe co-sensitized TiO publication-title: Chem. Mater. – volume: 14 start-page: 3153 year: 1998 end-page: 3156 ident: b0865 article-title: Photosensitization of nanoporous TiO publication-title: Langmuir – volume: 22 start-page: 2204 year: 2007 end-page: 2210 ident: b0305 article-title: PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron publication-title: J. Mater. Res. – volume: 245 start-page: 1834 year: 2008 end-page: 1837 ident: b0540 article-title: Nanowire-quantum-dot-polymer solar cells publication-title: Phys. Stat. Sol. – volume: 42 start-page: 3845 year: 2009 end-page: 3848 ident: b0575 article-title: Poly(3-hexylthiophene)−CdSe quantum dot bulk heterojunction solar cells: influence of the functional end-group of the polymer publication-title: Macromolecules – volume: 3 start-page: 543 year: 2008 end-page: 547 ident: b0095 article-title: Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene publication-title: Nat. Nanotechnol. – volume: 6 start-page: 1789 year: 2006 end-page: 1793 ident: b0805 article-title: Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles publication-title: Nano Lett. – volume: 3 start-page: 1467 year: 2009 end-page: 1476 ident: b0030 article-title: Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe publication-title: ACS Nano – volume: 11 start-page: 923 year: 1999 end-page: 926 ident: b0280 article-title: CdSe nanocrystals rods/poly(3-hexylthiophene) composite photovoltaic devices publication-title: Adv. Mater. – volume: 113 start-page: 4254 year: 2009 end-page: 4256 ident: b0300 article-title: Sb publication-title: J. Phys. Chem C – volume: 4 start-page: 3374 year: 2010 end-page: 3380 ident: b0590 article-title: Depleted-heterojunction colloidal quantum dot solar cells publication-title: ACS Nano – volume: 8 start-page: 3557 year: 2006 end-page: 3560 ident: b0720 article-title: Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibres publication-title: Phys. Chem. Chem. Phys. – volume: 174 start-page: 241 year: 1990 end-page: 245 ident: b0795 article-title: Sensitization of highly porous, polycrystalline TiO publication-title: Chem. Phys. Lett. – volume: 96 start-page: 063501 year: 2010 ident: b0190 article-title: Hierarchical nanostructured spherical carbon with hollow core/mesoporous shell as a highly efficient counter electrode in CdSe quantum-dot-sensitized solar cells publication-title: Appl. Phys. Lett. – volume: 131 start-page: 11124 year: 2009 end-page: 11131 ident: b0195 article-title: CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups publication-title: J. Am. Soc. – volume: 48 start-page: 2474 year: 2009 end-page: 2499 ident: b0520 article-title: Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 3638 year: 2009 ident: b0445 article-title: Solar cells based on junction between colloidal PbSe nanocrystals and thin ZnO films publication-title: ACS Nano – volume: 80 start-page: 2641 year: 1976 end-page: 2645 ident: b0055 article-title: Correlation of photocurrent–voltage curves with flat-band potential for stable photoelectrodes for the photoelectrolysis of water publication-title: J. Phys. Chem. – volume: 97 start-page: 023109 year: 2010 ident: b0145 article-title: Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts publication-title: Appl. Phys. Lett. – volume: 18 start-page: 475 year: 2003 ident: b0185 article-title: Solar cell with extremely thin absorber on highly structured substrate publication-title: Semicond. Sci. Technol. – volume: 132 start-page: 2743 year: 2010 end-page: 2750 ident: b0450 article-title: Transient optical studies of interfacial charge transfer at nanostructured metal oxides/PbS quantum dot/organic hole conductor heterojunctions publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1253 year: 2010 end-page: 1256 ident: b0480 article-title: A silicon nanocrystal Schottky junction solar cell produced from colloidal silicon nanocrystals publication-title: Nanoscale Res. – volume: 66 start-page: 349 year: 1995 end-page: 351 ident: b0260 article-title: Photoconduction in porous TiO publication-title: Appl. Phys. Lett. – volume: 36 start-page: 712 year: 2007 end-page: 713 ident: b0560 article-title: One-step preparation and photosensitivity of size-quantized cadmium chalcogenide nanoparticles deposited on porous zinc oxide film electrodes publication-title: Chem. Lett. – volume: 414 start-page: 338 year: 2001 end-page: 344 ident: b0240 article-title: Photoelectrochemical cell publication-title: Nature – volume: 207 start-page: 173 year: 2009 end-page: 180 ident: b0175 article-title: Growth kinetics of CdS quantum dots and synthesis of their polymer nano-composites in CTAB reverse micelles publication-title: J. Photochem. Photobiol. A – volume: 45 start-page: 638 year: 2006 end-page: 640 ident: b0120 article-title: Dye-sensitized solar cells with conversion efficiency of 11.1% publication-title: Jpn. J. Appl. Phys. – volume: 113 start-page: 3765 year: 2009 end-page: 3772 ident: b0785 article-title: Substrate driven photochemistry of CdSe quantum dot films: charge injection and irreversible transformations on oxide surfaces publication-title: J. Phys. Chem. A – volume: 19 start-page: 045602 year: 2008 ident: b0680 article-title: Assembly of CdS quantum dots onto mesoscopic TiO publication-title: Nanotechnology – volume: 92 start-page: 013308 year: 2008 ident: b0265 article-title: Impedance spectroscopy investigation of electron transport in solar cells based on blend film of polymer and nanocrystals publication-title: Appl. Phys. Lett. – volume: 41 start-page: 102002 year: 2008 ident: b0735 article-title: Performance improvement of CdS quantum dots sensitized TiO publication-title: J. Phys. D: Appl. Phys. – volume: 5 start-page: 986 year: 2010 end-page: 990 ident: b0155 article-title: Low-cost flexible nano-sulfide/carbon composite counter electrode for quantum-dot-sensitized solar cell publication-title: Nanoscale Res. Lett. – volume: 19 start-page: 604 year: 2009 end-page: 609 ident: b0430 article-title: Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe publication-title: Adv. Funct. Mater. – volume: 107 start-page: 1324 year: 2007 end-page: 1338 ident: b0235 article-title: Conjugated polymer-based organic solar cells publication-title: Chem. Rev. – volume: 91 start-page: 253117 year: 2007 ident: b0125 article-title: Schottky barriers to colloidal quantum dot films publication-title: Appl. Phys. Lett. – volume: 18 start-page: 876 year: 2003 end-page: 880 ident: b0830 article-title: In publication-title: Semicond. Sci. Technol. – volume: 8 start-page: 3904 year: 2008 end-page: 3910 ident: b0380 article-title: Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model publication-title: Nano Lett. – volume: 20 start-page: 2629 year: 2010 end-page: 2635 ident: b0130 article-title: The effect of nanoparticle shape on the photocarrier dynamics and photovoltaic device performance of ploy(3-hexylthiophene): CdSe nanoparticl bulk heterojunction solar cells publication-title: Adv. Funct. Mater. – start-page: 447 year: 2005 end-page: 451 ident: b0755 article-title: Influence of built-in voltage in optimized extremely thin absorber solar cells publication-title: Thin Solid Films – volume: 11 start-page: 2265 year: 2009 end-page: 2267 ident: b0105 article-title: Directly assembled CdSe quantum dots on TiO publication-title: Electrochem. Commun. – volume: 9 start-page: 449 year: 2009 end-page: 452 ident: b0470 article-title: Hybrid solar cells from P3HT and silicon nanocrystals publication-title: Nano Lett. – volume: 295 start-page: 2425 year: 2002 end-page: 2427 ident: b0285 article-title: Hybrid nanorod-polymer solar cells publication-title: Science – year: 2010 ident: b0780 article-title: Effect of CdSe/P3HT composition on electrical and structural properties of bulk hetero-junction solar cell active layer publication-title: Sol. Energy Mater. Sol. Cells – volume: 113 start-page: 3998 year: 2009 end-page: 4007 ident: b0170 article-title: Kinetics of photochromic induced energy transfer between manganese-doped zinc–selenide quantum dots and spiropyrans publication-title: J. Phys. Chem. C – volume: 9 start-page: 4221 year: 2009 end-page: 4227 ident: b0415 article-title: Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction processes publication-title: Nano Lett. – start-page: 393 year: 2008 end-page: 452 ident: b0365 article-title: Inorganic-extended junction devices publication-title: Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion – volume: 114 start-page: 12784 year: 2010 end-page: 12791 ident: b0490 article-title: Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine publication-title: J. Phys. Chem. C – volume: 27 start-page: 85 year: 2004 end-page: 111 ident: b0585 article-title: Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method publication-title: Bull. Mater. Sci. – volume: 93 start-page: 1208 year: 2009 end-page: 1213 ident: b0860 article-title: Efficient conjugated polymer-ZnSe and -PbSe nanocrystals hybrid photovoltaic cells through full solar spectrum utilization publication-title: Sol. Energy. Mater. Sol. Cells – volume: 109 start-page: 2625 year: 2005 end-page: 2631 ident: b0050 article-title: Electron and hole transfer from indium phosphide quantum dots publication-title: J. Phys. Chem. B – volume: 111 start-page: 2834 year: 2007 end-page: 2860 ident: b0325 article-title: Meeting the clean energy demand: nanostructure architectures for solar energy conversion publication-title: J. Phys. Chem. C – volume: 126 start-page: 1505 year: 1979 end-page: 1510 ident: b0765 article-title: The potential distribution at the TiO publication-title: J. Electrochem. Soc. – volume: 28 start-page: 953 year: 2007 end-page: 958 ident: b0385 article-title: Anchoring cadmium chalcogenide quantum dots (QDs) onto stable oxide semiconductors for QD sensitized solar cells publication-title: Bull. Korean Chem. Soc. – volume: 132 start-page: 1228 year: 2010 end-page: 1229 ident: b0075 article-title: Modulation of electron injection in CdSe–TiO publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2609 year: 2010 end-page: 2612 ident: b0085 article-title: High-performance nanostructured inorganic–organic heterojunction solar cells publication-title: Nano Lett. – volume: 272 start-page: 1744 year: 1996 end-page: 1745 ident: b0670 article-title: New solar cells seem to have power at the right price publication-title: Science – volume: 97 start-page: 123107 year: 2010 ident: b0685 article-title: CdSe quantum dot-sensitized solar cell employing TiO publication-title: Appl. Phys. Lett. – volume: 46 start-page: 2316 year: 2010 end-page: 2318 ident: b0835 article-title: Photoresponse of a single poly(p-phenylene vinylene)-CdSe bulk-heterojunction submicron fiber publication-title: Chem. Commun. – volume: 67 start-page: 115326 year: 2003 ident: b0290 article-title: Charge transport in hybrid nanorod-polymer composite photovoltaic cells publication-title: Phys. Rev. B – volume: 256 start-page: 7438 year: 2010 end-page: 7441 ident: b0110 article-title: Co-sensitized quantum dot solar cell based on ZnO nanowires publication-title: Appl. Surf. Sci. – volume: 17 start-page: 4736 year: 2006 end-page: 4742 ident: b0245 article-title: Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells publication-title: Nanotechnology – volume: 132 start-page: 6834 year: 2010 end-page: 6839 ident: b0035 article-title: Design of injection and recombination in quantum dot sensitized solar cells publication-title: J. Am. Chem. Soc. – volume: 129 start-page: 4136 year: 2007 end-page: 4137 ident: b0625 article-title: Size-dependent electron injection from excited CdSe quantum dots into TiO publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 860 year: 2009 end-page: 863 ident: b0015 article-title: Heterojunction photovoltaics using printed colloidal quantum dots as a photosensitive layer publication-title: Nano Lett. – volume: 110 start-page: 389 year: 2010 end-page: 458 ident: b0740 article-title: Prospects of colloidal nanocrystals for electronic and optoelectronic applications publication-title: Chem. Rev. – volume: 113 start-page: 7531 year: 2009 end-page: 7535 ident: b0205 article-title: CdTe quantum dots-sensitized TiO publication-title: J. Phys. Chem. C – volume: 98 start-page: 7665 year: 1994 ident: b0800 article-title: CdS Nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift publication-title: J. Phys. Chem. – volume: 26 start-page: 4839 year: 2010 end-page: 4847 ident: b0640 article-title: Influence of surface chemistry on the binding and electronic coupling of CdSe quantum dots to single crystal TiO publication-title: Langmuir – volume: 2 start-page: 833 year: 2008 end-page: 840 ident: b0355 article-title: Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots publication-title: ACS Nano – year: 2010 ident: b0840 article-title: CdHgTe and CdTe quantum dot solar cells displaying an energy conversion efficiency exceeding 2% publication-title: Sol. Energy Mater. Sol. Cells – volume: 91 start-page: 420 year: 2007 end-page: 423 ident: b0230 article-title: Hybrid solar cells using PbS nanoparticles publication-title: Sol. Energy Mater. Sol. Cells – volume: 20 start-page: 295204 year: 2009 ident: b0225 article-title: Improving the performance of colloidal quantum-dot-sensitized solar cells publication-title: Nanotechnology – volume: 11 start-page: 2220 year: 2009 end-page: 2224 ident: b0700 article-title: The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO publication-title: Electrochem. Commun. – volume: 20 start-page: 3433 year: 2008 end-page: 3439 ident: b0345 article-title: Solution processed photovoltaic devices with 2% infrared monochromatic power conversion efficiency: performance optimization and oxide formation publication-title: Adv. Mater. – volume: 91 start-page: 053503 year: 2007 ident: b0080 article-title: Chemical bath deposition of CdS quantum dots onto mesoscopic TiO publication-title: Appl. Phys. Lett. – volume: 96 start-page: 242103 year: 2010 ident: b0570 article-title: CdTe Schottky diodes from colloidal nanocrystals publication-title: Appl. Phys. Lett. – volume: 20 start-page: 6903 year: 2008 end-page: 6905 ident: b0390 article-title: Highly efficient CdSe-sensitized TiO publication-title: Chem. Mater. – volume: 113 start-page: 20481 year: 2009 end-page: 20485 ident: b0210 article-title: An efficient method to form heterojunction CdS/TiO publication-title: J. Phys. Chem. C – volume: 36 start-page: 88 year: 2007 end-page: 90 ident: b0730 article-title: CdS quantum dots sensitized TiO publication-title: Chem. Lett. – volume: 15 start-page: 2854 year: 2003 end-page: 2860 ident: b0845 article-title: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals publication-title: Chem. Mater. – volume: 10 start-page: 239 year: 2010 end-page: 242 ident: b0135 article-title: Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency publication-title: Nano Lett. – volume: 177 start-page: 177 year: 2006 end-page: 184 ident: b0090 article-title: Electrochemically synthesized CdS nanoparticle-modified TiO publication-title: J. Photochem. Photobiol. A – volume: 92 start-page: 151115 year: 2008 ident: b0315 article-title: Schottky-quantum dot photovoltaics for efficient infrared power conversion publication-title: Appl. Phys. Lett. – volume: 32 start-page: 510 year: 1961 end-page: 519 ident: b0695 article-title: Detailed balance limit of efficiency of publication-title: J. Appl. Phys. – volume: 87 start-page: 213112 year: 2005 ident: b0515 article-title: Solution-processed infrared photovoltaic devices with >10% monochromatic internal quantum efficiency publication-title: Appl. Phys. Lett. – volume: 47 start-page: 58 year: 2008 end-page: 77 ident: b0760 article-title: Polymer-fullerene composite solar cells publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 2349 year: 2009 end-page: 2355 ident: b0375 article-title: A single strategy for improving the energy conversion of multilayered CdTe quantum dot-sensitized solar cells publication-title: J. Mater. Chem. – volume: 9 start-page: 1699 year: 2009 end-page: 1703 ident: b0505 article-title: Photovoltaic devices employing ternary PbS publication-title: Nano Lett. – volume: 90 start-page: 1849 year: 2006 end-page: 1858 ident: b0690 article-title: Photovoltaic performance and stability of CdTe/polymeric hybrid solar cells using a C publication-title: Sol. Energy Mater. Sol. Cells – volume: 8 start-page: 3488 year: 2008 end-page: 3492 ident: b0495 article-title: Schottky solar cells based on colloidal nanocrystal films publication-title: Nano Lett. – reference: Zhu, G., Su, F., Lv, T., Pan, L., Sun, Z., 2010. Au nanoparticles as interfacial layer for CdS quantum dot-sensitized solar cells. Nanoscale Res. Lett. 52. doi: 10.1007/s11671-010-9705-z. – volume: 19 start-page: 805 year: 2009 end-page: 811 ident: b0040 article-title: Photosensitization of TiO publication-title: Adv. Funct. Mater. – year: 2010 ident: b0115 article-title: A quantum dot sensitized solar cell based on vertically aligned carbon nanotube template ZnO arrays publication-title: Electrochem. Commun. – volume: 49 start-page: 4647 year: 2008 end-page: 4651 ident: b0810 article-title: Synthesis of MDMO-PPV capped PbS quantum dots and their application to solar cells publication-title: Polymer – volume: vol. 3 start-page: 929 year: 2004 end-page: 944 ident: b0025 article-title: Hybrid solar cells publication-title: Encyclopedia of Nanoscience and Nanotechnology – volume: 404 start-page: 59 year: 2000 end-page: 61 ident: b0595 article-title: Shape control of CdSe nanocrystals publication-title: Nature – year: 2010 ident: b0310 article-title: Effects of molecular interface modification in CdS/polymer hybrid bulk heterojunction solar cells publication-title: Sol. Energy Mater. Sol. Cells – volume: 97 start-page: 043106 year: 2010 ident: b0320 article-title: High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature publication-title: Appl. Phys. Lett. – volume: 92 start-page: 153510 year: 2008 ident: b0405 article-title: Enhanced charge collection and reduced recombination of CdS/TiO publication-title: Appl. Phys. Lett. – volume: 3 start-page: 961 year: 2003 end-page: 963 ident: b0710 article-title: Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers publication-title: Nano Lett. – volume: 7 start-page: 2506 year: 2007 end-page: 2512 ident: b0045 article-title: Multiple exciton generation in colloidal silicon nanocrystals publication-title: Nano Lett. – volume: 43 start-page: 012002 year: 2010 ident: b0615 article-title: CdSe quantum dots co-sensitized TiO publication-title: J. Phys. D: Appl. Phys. – start-page: 1030 year: 2002 end-page: 1031 ident: b0600 article-title: Photosensitization of nanocrystalline TiO publication-title: Chem. Commun. – volume: 10 start-page: 1579 year: 2008 end-page: 1582 ident: b0395 article-title: Co-sensitization of vertically aligned TiO publication-title: Electrochem. Commun. – volume: 106 start-page: 7578 year: 2002 end-page: 7580 ident: b0610 article-title: Quantum dot sensitization of organic−inorganic hybrid solar cells publication-title: J. Phys. Chem. B – volume: 10 start-page: 2635 year: 2010 end-page: 2639 ident: b0555 article-title: Broadband absorbing bulk heterojunction photovoltaics using low-bandgap solution-processed quantum dots publication-title: Nano Lett. – volume: 130 start-page: 4007 year: 2008 end-page: 4015 ident: b0360 article-title: Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe−TiO publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 1512 year: 2005 end-page: 1515 ident: b0455 article-title: CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions publication-title: Adv. Mater. – volume: 10 start-page: 257 year: 2007 end-page: 261 ident: b0855 article-title: CdSe quantum dots sensitized TiO publication-title: J. Korean Electrochem. Soc. – volume: 11 start-page: 2290 year: 2010 end-page: 2304 ident: b0630 article-title: Quantum-dot-sensitized solar cells publication-title: Chem. Phys. Chem. – volume: 54 start-page: 17628 year: 1996 end-page: 17637 ident: b0215 article-title: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity publication-title: Phys. Rev. B – volume: 12 start-page: 327 year: 2010 end-page: 330 ident: b0870 article-title: Application of carbon counterelectrode on CdS quantum dot-sensitized solar cells (QDSSCs) publication-title: Electrochem. Commun. – volume: 18 start-page: 424007 year: 2008 ident: b0525 article-title: Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode publication-title: Nanotechnology – volume: 6 start-page: 3302 year: 2010 end-page: 3308 ident: b0820 article-title: Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: Synthesis and photoelectrochemical properties publication-title: ACS Nano – volume: 156 start-page: 48 year: 2009 end-page: 51 ident: b0420 article-title: Effect of single-walled carbon nanotubes in PbS/TiO2 quantum dots-sensitized solar cells publication-title: Mater. Sci. Eng. B – year: 2005 ident: b0715 article-title: Organic Photovoltaics: Mechanisms, Materials and Devices – volume: 2 start-page: 2206 year: 2008 ident: b0295 article-title: Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles publication-title: ACS Nano – volume: 110 start-page: 25332 year: 2006 end-page: 25338 ident: b0655 article-title: High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence publication-title: J. Phys. Chem. B – volume: 22 start-page: 1398 year: 2010 end-page: 1402 ident: b0750 article-title: Schottky quantum dot solar cells stable in air under solar illumination publication-title: Adv. Mater. – volume: 91 start-page: 023116 year: 2007 ident: b0160 article-title: High efficiency of CdSe quantum-dot-sensitized TiO publication-title: Appl. Phys. Lett. – volume: 19 start-page: 1924 year: 2004 end-page: 1945 ident: b0255 article-title: Organic solar cells: an overview publication-title: J. Mater. Res. – volume: 22 start-page: 3704 year: 2010 end-page: 3707 ident: b0500 article-title: Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell publication-title: Adv. Mater. – volume: 160 start-page: 315 year: 2008 end-page: 325 ident: b0370 article-title: Colloidal nanocrystal solar cells publication-title: Microchim. Acta – volume: 90 start-page: 143517 year: 2007 ident: b0465 article-title: Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition publication-title: Appl. Phys. Lett. – volume: 46 start-page: 634 year: 2010 end-page: 642 ident: b0815 article-title: Synthesis of new nanocrystal-polymer nanocomposite as the electron acceptor in polymer bulk heterojunction solar cells publication-title: Eur. Polym. J. – volume: 128 start-page: 2385 year: 2006 end-page: 2393 ident: b0620 article-title: Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO publication-title: J. Am. Chem. Soc. – volume: 84 start-page: 545 year: 1997 end-page: 546 ident: b0220 article-title: Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity publication-title: Synth. Metals – volume: 11 start-page: 9644 year: 2009 end-page: 9647 ident: b0010 article-title: Photo-induced electron recombination dynamics in CdSe/P3HT hybrid heterojunctions publication-title: Phys. Chem. Chem. Phys. – volume: 95 start-page: 063510 year: 2009 ident: b0745 article-title: Integration of planar and bulk heterojunctions in polymer/nanocrystal hybrid photovoltaic cells publication-title: Appl. Phys. Lett. – volume: 23 start-page: 10924 year: 2007 end-page: 10928 ident: b0510 article-title: Adsorption of CdSe nanoparticles to thiolated TiO publication-title: Langmuir – volume: 46 start-page: 4616 year: 2007 end-page: 4621 ident: b0770 article-title: Crystal growth of CdSe quantum dots adsorbed on nanoparticle, inverse opal, and nanotube TiO publication-title: Jpn. J. Appl. Phys. – start-page: 71 year: 2006 end-page: 75 ident: b0660 article-title: Morphology of CdSe films prepared by chemical bath deposition: The role of substrate publication-title: Thin Solid Films – volume: 39 start-page: 654 year: 2010 end-page: 656 ident: b0180 article-title: Photostability of water-dispersible CdTe quantum dots: capping ligands and oxygen publication-title: Chem. Lett. – volume: 3 start-page: 1345 year: 2009 end-page: 1352 ident: b0550 article-title: Absence of photoinduced charge transfer in blends of PbSe quantum dots and conjugated polymers publication-title: ACS Nano – volume: 113 start-page: 3895 year: 2009 end-page: 3898 ident: b0675 article-title: Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating publication-title: J. Phys. Chem. C – volume: 49 start-page: 042301 year: 2010 ident: b0275 article-title: Efficiency enhacement in bulk heterojunction polymer photovoltaic cells using ZrTiO4/Bi publication-title: Jpn. J. Appl. Phys. – volume: 518 start-page: 295 year: 2009 end-page: 298 ident: b0350 article-title: Hybrid photovoltaic cells with II–VI quantum dot sensitizers fabricated by layer-by-layer deposition of water-soluble components publication-title: Thin Solid Films – volume: 5 start-page: 811 year: 2009 end-page: 814 ident: b0605 article-title: Assessment of carrier-multiplication efficiency in bulk PbSe and PbS publication-title: Nat. Phys. – volume: 15 start-page: 271 year: 2003 end-page: 277 ident: b0065 article-title: Electron energetics at surfaces and interfaces: concepts and experiments publication-title: Adv. Mater. – volume: 124 start-page: 11215 year: 2002 end-page: 11222 ident: b0645 article-title: Substituted polypyridine complexes of cobalt (II/III) as efficient electron-transfer mediators in dye-sensitized solar cells publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 2130 year: 2010 end-page: 2131 ident: b0635 article-title: CdSe/ZnS core/shell quantum dot sensitization of low index TiO publication-title: J. Am. Chem. Soc. – volume: 93 start-page: 662 year: 2009 end-page: 666 ident: b0060 article-title: P3HT/ZnS: a new hybrid bulk heterojunction photovoltaic system with very high open circuit voltage publication-title: Sol. Energy Mater. Sol. Cells – volume: 113 start-page: 17608 year: 2009 end-page: 17612 ident: b0485 article-title: Improved efficiency in poly(3-hexylthiophene)/zinc oxide solar cells via lithium incorporation publication-title: J. Phys. Chem. C – volume: 112 start-page: 17778 year: 2008 end-page: 17787 ident: b0250 article-title: Coparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells publication-title: J. Phys. Chem. C – volume: 1 start-page: 155 year: 2010 end-page: 160 ident: b0475 article-title: Preparation and photoelectrochemical properties of CdSe/TiO publication-title: J. Phys. Chem. Lett. – volume: 25 start-page: 7602 year: 2009 end-page: 7608 ident: b0425 article-title: Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator publication-title: Langmuir – volume: 92 start-page: 186601 year: 2004 ident: b0650 article-title: High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion publication-title: Phys. Rev. Lett. – volume: 94 start-page: 29 year: 2010 end-page: 33 ident: b0020 article-title: Influence of poly3-octylthiophene (P3OT) film thickness and preparation method on photovoltaic performance of hybrid ITO/CdS/P3OT/Au solar cells publication-title: Sol. Energy Mater. Sol. Cells – volume: 131 start-page: 3644 year: 2009 end-page: 3649 ident: b0460 article-title: Interfacial nanostructuring on the performance of polymer/TiO publication-title: J. Am. Chem. Soc. – volume: 389 start-page: 939 year: 1997 end-page: 942 ident: b0335 publication-title: Nature – volume: 130 start-page: 1124 year: 2008 end-page: 1125 ident: b0725 article-title: CdS quantum dots sensitized TiO publication-title: J. Am. Chem. Soc. – volume: 516 start-page: 2426 year: 2008 end-page: 2431 ident: b0775 article-title: Correlation between crystal growth and photosensitization of nanostructured TiO publication-title: Thin Solid Films – volume: 93 start-page: 519 year: 2009 end-page: 523 ident: b0565 article-title: Optimizing hybrid photovoltaics through annealing and ligand choice publication-title: Sol. Energy Sol. Cells – volume: 113 start-page: 3139 year: 2009 end-page: 3149 ident: b0165 article-title: Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO publication-title: J. Phys. Chem. C – volume: 7 start-page: 1793 year: 2007 end-page: 1798 ident: b0440 article-title: Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices publication-title: Nano Lett. – volume: 96 start-page: 013304 year: 2010 ident: b0875 article-title: Improved efficiency of hybrid solar cells based on non-ligand-exchanged CdSe quantum dots and poly(3-hexylthiophene) publication-title: Appl. Phys. Lett. – volume: 90 start-page: 183113 year: 2007 ident: b0340 article-title: Efficient solution-processed infrared photovoltaic cell: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution publication-title: Appl. Phys. Lett. – volume: 3 start-page: 297 year: 2009 end-page: 303 ident: b0580 article-title: Bulk heterojunction solar cells with internal quantum efficiency approaching 100% publication-title: Nat. Photon. – volume: 112 start-page: 8419 year: 2008 end-page: 8423 ident: b0070 article-title: Valence band alignment at cadmium selenide quantum dot and zinc oxide (1 publication-title: J. Phys. Chem. C – volume: 112 start-page: 18737 year: 2008 end-page: 18753 ident: b0330 article-title: Quantum dot solar cells. Semiconductor nanocrystals as light harvester publication-title: J. Phys. Chem. C – volume: 111 start-page: 2834 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0325 article-title: Meeting the clean energy demand: nanostructure architectures for solar energy conversion publication-title: J. Phys. Chem. C doi: 10.1021/jp066952u – volume: 126 start-page: 1505 year: 1979 ident: 10.1016/j.solener.2011.02.005_b0765 article-title: The potential distribution at the TiO2 aqueous electrolyte interface publication-title: J. Electrochem. Soc. doi: 10.1149/1.2129316 – volume: 113 start-page: 3998 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0170 article-title: Kinetics of photochromic induced energy transfer between manganese-doped zinc–selenide quantum dots and spiropyrans publication-title: J. Phys. Chem. C doi: 10.1021/jp809797x – volume: 109 start-page: 2625 year: 2005 ident: 10.1016/j.solener.2011.02.005_b0050 article-title: Electron and hole transfer from indium phosphide quantum dots publication-title: J. Phys. Chem. B doi: 10.1021/jp046781y – volume: 49 start-page: 4647 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0810 article-title: Synthesis of MDMO-PPV capped PbS quantum dots and their application to solar cells publication-title: Polymer doi: 10.1016/j.polymer.2008.08.041 – volume: 20 start-page: 3433 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0345 article-title: Solution processed photovoltaic devices with 2% infrared monochromatic power conversion efficiency: performance optimization and oxide formation publication-title: Adv. Mater. doi: 10.1002/adma.200800326 – volume: 4 start-page: 3374 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0590 article-title: Depleted-heterojunction colloidal quantum dot solar cells publication-title: ACS Nano doi: 10.1021/nn100335g – volume: 132 start-page: 6834 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0035 article-title: Design of injection and recombination in quantum dot sensitized solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101752d – volume: 207 start-page: 173 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0175 article-title: Growth kinetics of CdS quantum dots and synthesis of their polymer nano-composites in CTAB reverse micelles publication-title: J. Photochem. Photobiol. A doi: 10.1016/j.jphotochem.2009.07.002 – volume: 97 start-page: 023109 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0145 article-title: Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts publication-title: Appl. Phys. Lett. doi: 10.1063/1.3463037 – volume: 112 start-page: 18737 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0330 article-title: Quantum dot solar cells. Semiconductor nanocrystals as light harvester publication-title: J. Phys. Chem. C doi: 10.1021/jp806791s – volume: 19 start-page: 604 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0430 article-title: Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200800940 – volume: 94 start-page: 29 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0020 article-title: Influence of poly3-octylthiophene (P3OT) film thickness and preparation method on photovoltaic performance of hybrid ITO/CdS/P3OT/Au solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2009.04.013 – year: 2010 ident: 10.1016/j.solener.2011.02.005_b0310 article-title: Effects of molecular interface modification in CdS/polymer hybrid bulk heterojunction solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2010.07.016 – volume: 3 start-page: 1345 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0550 article-title: Absence of photoinduced charge transfer in blends of PbSe quantum dots and conjugated polymers publication-title: ACS Nano doi: 10.1021/nn800871j – volume: 19 start-page: 805 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0040 article-title: Photosensitization of TiO2 nanotubes with CdS quantum dots: Particulate versus tubular support architectures publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200801173 – volume: 18 start-page: 424007 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0525 article-title: Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode publication-title: Nanotechnology doi: 10.1088/0957-4484/19/42/424007 – volume: 128 start-page: 3241 year: 2006 ident: 10.1016/j.solener.2011.02.005_b0535 article-title: PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0574973 – volume: 45 start-page: 638 year: 2006 ident: 10.1016/j.solener.2011.02.005_b0120 article-title: Dye-sensitized solar cells with conversion efficiency of 11.1% publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.45.L638 – volume: 389 start-page: 939 year: 1997 ident: 10.1016/j.solener.2011.02.005_b0335 article-title: P-type electrical conduction in transparent thin films of CuAlO2 publication-title: Nature doi: 10.1038/40087 – volume: 404 start-page: 59 year: 2000 ident: 10.1016/j.solener.2011.02.005_b0595 article-title: Shape control of CdSe nanocrystals publication-title: Nature doi: 10.1038/35003535 – volume: 98 start-page: 7665 year: 1994 ident: 10.1016/j.solener.2011.02.005_b0800 article-title: CdS Nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift publication-title: J. Phys. Chem. doi: 10.1021/j100082a044 – volume: 132 start-page: 1228 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0075 article-title: Modulation of electron injection in CdSe–TiO2 system through medium alkalinity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909663r – volume: 113 start-page: 7531 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0205 article-title: CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes publication-title: J. Phys. Chem. C doi: 10.1021/jp810727n – volume: 8 start-page: 3557 year: 2006 ident: 10.1016/j.solener.2011.02.005_b0720 article-title: Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibres publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b604734n – volume: 3 start-page: 961 year: 2003 ident: 10.1016/j.solener.2011.02.005_b0710 article-title: Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers publication-title: Nano Lett. doi: 10.1021/nl0342895 – volume: 91 start-page: 023116 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0160 article-title: High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.2757130 – volume: 46 start-page: 4616 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0770 article-title: Crystal growth of CdSe quantum dots adsorbed on nanoparticle, inverse opal, and nanotube TiO2 photoelectrodes characterized by photoacoustic spectroscopy publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.46.4616 – volume: 92 start-page: 153510 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0405 article-title: Enhanced charge collection and reduced recombination of CdS/TiO2 quantum-dots sensitized solar cells in the presence of single-walled carbon nanotubes publication-title: Appl. Phys. Lett. doi: 10.1063/1.2911740 – volume: 93 start-page: 519 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0565 article-title: Optimizing hybrid photovoltaics through annealing and ligand choice publication-title: Sol. Energy Sol. Cells doi: 10.1016/j.solmat.2008.11.022 – volume: 110 start-page: 389 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0740 article-title: Prospects of colloidal nanocrystals for electronic and optoelectronic applications publication-title: Chem. Rev. doi: 10.1021/cr900137k – volume: 107 start-page: 1324 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0235 article-title: Conjugated polymer-based organic solar cells publication-title: Chem. Rev. doi: 10.1021/cr050149z – volume: 96 start-page: 242103 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0570 article-title: CdTe Schottky diodes from colloidal nanocrystals publication-title: Appl. Phys. Lett. doi: 10.1063/1.3440384 – volume: 92 start-page: 013308 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0265 article-title: Impedance spectroscopy investigation of electron transport in solar cells based on blend film of polymer and nanocrystals publication-title: Appl. Phys. Lett. doi: 10.1063/1.2831661 – volume: 36 start-page: 88 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0730 article-title: CdS quantum dots sensitized TiO2 sandwich type photoelectrochemical solar cells publication-title: Chem. Lett. doi: 10.1246/cl.2007.88 – volume: 3 start-page: 1467 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0030 article-title: Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe publication-title: ACS Nano doi: 10.1021/nn900324q – volume: 112 start-page: 8419 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0070 article-title: Valence band alignment at cadmium selenide quantum dot and zinc oxide (100) interfaces publication-title: J. Phys. Chem. C doi: 10.1021/jp7113434 – volume: 92 start-page: 186601 year: 2004 ident: 10.1016/j.solener.2011.02.005_b0650 article-title: High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.186601 – volume: 20 start-page: 295204 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0225 article-title: Improving the performance of colloidal quantum-dot-sensitized solar cells publication-title: Nanotechnology doi: 10.1088/0957-4484/20/29/295204 – volume: 97 start-page: 043106 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0320 article-title: High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature publication-title: Appl. Phys. Lett. doi: 10.1063/1.3459146 – volume: 39 start-page: 654 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0180 article-title: Photostability of water-dispersible CdTe quantum dots: capping ligands and oxygen publication-title: Chem. Lett. doi: 10.1246/cl.2010.654 – ident: 10.1016/j.solener.2011.02.005_b0880 doi: 10.1007/s11671-010-9705-z – volume: 41 start-page: 102002 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0735 article-title: Performance improvement of CdS quantum dots sensitized TiO2 solar cells by introducing a dense TiO2 blocking layer publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/41/10/102002 – volume: 15 start-page: 271 year: 2003 ident: 10.1016/j.solener.2011.02.005_b0065 article-title: Electron energetics at surfaces and interfaces: concepts and experiments publication-title: Adv. Mater. doi: 10.1002/adma.200390065 – volume: 414 start-page: 338 year: 2001 ident: 10.1016/j.solener.2011.02.005_b0240 article-title: Photoelectrochemical cell publication-title: Nature doi: 10.1038/35104607 – volume: 9 start-page: 4221 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0415 article-title: Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction processes publication-title: Nano Lett. doi: 10.1021/nl902438d – volume: 87 start-page: 213112 year: 2005 ident: 10.1016/j.solener.2011.02.005_b0515 article-title: Solution-processed infrared photovoltaic devices with >10% monochromatic internal quantum efficiency publication-title: Appl. Phys. Lett. doi: 10.1063/1.2135868 – volume: 10 start-page: 257 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0855 article-title: CdSe quantum dots sensitized TiO2 electrodes for photovoltaic cells publication-title: J. Korean Electrochem. Soc. doi: 10.5229/JKES.2007.10.4.257 – volume: 129 start-page: 4136 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0625 article-title: Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja070099a – volume: 106 start-page: 7578 year: 2002 ident: 10.1016/j.solener.2011.02.005_b0610 article-title: Quantum dot sensitization of organic−inorganic hybrid solar cells publication-title: J. Phys. Chem. B doi: 10.1021/jp020453l – volume: 2 start-page: 833 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0355 article-title: Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots publication-title: ACS Nano doi: 10.1021/nn800093v – start-page: 1030 year: 2002 ident: 10.1016/j.solener.2011.02.005_b0600 article-title: Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots publication-title: Chem. Commun. doi: 10.1039/b201661c – volume: 5 start-page: 986 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0155 article-title: Low-cost flexible nano-sulfide/carbon composite counter electrode for quantum-dot-sensitized solar cell publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-010-9592-3 – volume: 324 start-page: 1542 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0705 article-title: Colloidal quantum-dot photodetectors exploiting multiexciton generation publication-title: Science doi: 10.1126/science.1173812 – start-page: 447 year: 2005 ident: 10.1016/j.solener.2011.02.005_b0755 article-title: Influence of built-in voltage in optimized extremely thin absorber solar cells publication-title: Thin Solid Films doi: 10.1016/j.tsf.2004.11.041 – volume: 15 start-page: 2854 year: 2003 ident: 10.1016/j.solener.2011.02.005_b0845 article-title: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals publication-title: Chem. Mater. doi: 10.1021/cm034081k – volume: 27 start-page: 85 year: 2004 ident: 10.1016/j.solener.2011.02.005_b0585 article-title: Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method publication-title: Bull. Mater. Sci. doi: 10.1007/BF02708491 – volume: 110 start-page: 25332 year: 2006 ident: 10.1016/j.solener.2011.02.005_b0655 article-title: High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence publication-title: J. Phys. Chem. B doi: 10.1021/jp065282p – volume: 20 start-page: 095202 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0665 article-title: Enhacement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite device by post-treatment-driven ligand exchange publication-title: Nanotechnology doi: 10.1088/0957-4484/20/9/095202 – start-page: 393 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0365 article-title: Inorganic-extended junction devices – volume: 91 start-page: 420 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0230 article-title: Hybrid solar cells using PbS nanoparticles publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2006.10.016 – volume: 91 start-page: 253117 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0125 article-title: Schottky barriers to colloidal quantum dot films publication-title: Appl. Phys. Lett. doi: 10.1063/1.2823582 – volume: vol. 3 start-page: 929 year: 2004 ident: 10.1016/j.solener.2011.02.005_b0025 article-title: Hybrid solar cells – volume: 17 start-page: 4736 year: 2006 ident: 10.1016/j.solener.2011.02.005_b0245 article-title: Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells publication-title: Nanotechnology doi: 10.1088/0957-4484/17/18/035 – volume: 518 start-page: 295 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0350 article-title: Hybrid photovoltaic cells with II–VI quantum dot sensitizers fabricated by layer-by-layer deposition of water-soluble components publication-title: Thin Solid Films doi: 10.1016/j.tsf.2009.06.039 – volume: 17 start-page: 1512 year: 2005 ident: 10.1016/j.solener.2011.02.005_b0455 article-title: CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions publication-title: Adv. Mater. doi: 10.1002/adma.200401848 – volume: 130 start-page: 1124 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0725 article-title: CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0777741 – volume: 19 start-page: 045602 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0680 article-title: Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications publication-title: Nanotechnology doi: 10.1088/0957-4484/19/04/045602 – volume: 9 start-page: 1699 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0505 article-title: Photovoltaic devices employing ternary PbSxSe1-x nanocrystals publication-title: Nano Lett. doi: 10.1021/nl900388a – volume: 181 start-page: 306 year: 2006 ident: 10.1016/j.solener.2011.02.005_b0545 article-title: Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells publication-title: J. Photochem. Photobiol. A doi: 10.1016/j.jphotochem.2005.12.012 – volume: 32 start-page: 510 year: 1961 ident: 10.1016/j.solener.2011.02.005_b0695 article-title: Detailed balance limit of efficiency of p–n junction solar cells publication-title: J. Appl. Phys. doi: 10.1063/1.1736034 – volume: 132 start-page: 2130 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0635 article-title: CdSe/ZnS core/shell quantum dot sensitization of low index TiO2 single crystal surfaces publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9098577 – volume: 6 start-page: 3302 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0820 article-title: Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: Synthesis and photoelectrochemical properties publication-title: ACS Nano doi: 10.1021/nn1001547 – volume: 92 start-page: 151115 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0315 article-title: Schottky-quantum dot photovoltaics for efficient infrared power conversion publication-title: Appl. Phys. Lett. doi: 10.1063/1.2912340 – volume: 2 start-page: 2206 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0295 article-title: Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles publication-title: ACS Nano doi: 10.1021/nn800336b – volume: 7 start-page: 2506 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0045 article-title: Multiple exciton generation in colloidal silicon nanocrystals publication-title: Nano Lett. doi: 10.1021/nl071486l – volume: 131 start-page: 3644 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0460 article-title: Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8079143 – volume: 19 start-page: 1924 year: 2004 ident: 10.1016/j.solener.2011.02.005_b0255 article-title: Organic solar cells: an overview publication-title: J. Mater. Res. doi: 10.1557/JMR.2004.0252 – volume: 49 start-page: 042301 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0275 article-title: Efficiency enhacement in bulk heterojunction polymer photovoltaic cells using ZrTiO4/Bi2O3 metal-oxide nanocomposites publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.49.042301 – volume: 20 start-page: 2629 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0130 article-title: The effect of nanoparticle shape on the photocarrier dynamics and photovoltaic device performance of ploy(3-hexylthiophene): CdSe nanoparticl bulk heterojunction solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201000628 – volume: 160 start-page: 315 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0370 article-title: Colloidal nanocrystal solar cells publication-title: Microchim. Acta doi: 10.1007/s00604-007-0806-z – volume: 113 start-page: 3139 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0165 article-title: Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO2 nanoparticles publication-title: J. Phys. Chem. C doi: 10.1021/jp809269m – volume: 113 start-page: 3895 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0675 article-title: Core/CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating publication-title: J. Phys. Chem. C doi: 10.1021/jp8108682 – volume: 91 start-page: 053503 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0080 article-title: Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.2768311 – volume: 48 start-page: 2474 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0520 article-title: Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200804709 – volume: 26 start-page: 4839 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0640 article-title: Influence of surface chemistry on the binding and electronic coupling of CdSe quantum dots to single crystal TiO2 surfaces publication-title: Langmuir doi: 10.1021/la903618x – year: 2010 ident: 10.1016/j.solener.2011.02.005_b0115 article-title: A quantum dot sensitized solar cell based on vertically aligned carbon nanotube template ZnO arrays publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.08.001 – volume: 22 start-page: 3704 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0500 article-title: Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell publication-title: Adv. Mater. doi: 10.1002/adma.201001148 – volume: 113 start-page: 20481 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0210 article-title: An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films publication-title: J. Phys. Chem. C doi: 10.1021/jp904320d – volume: 19 start-page: 2349 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0375 article-title: A single strategy for improving the energy conversion of multilayered CdTe quantum dot-sensitized solar cells publication-title: J. Mater. Chem. doi: 10.1039/b817000b – volume: 128 start-page: 2385 year: 2006 ident: 10.1016/j.solener.2011.02.005_b0620 article-title: Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films publication-title: J. Am. Chem. Soc. doi: 10.1021/ja056494n – volume: 8 start-page: 3488 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0495 article-title: Schottky solar cells based on colloidal nanocrystal films publication-title: Nano Lett. doi: 10.1021/nl802476m – volume: 47 start-page: 58 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0760 article-title: Polymer-fullerene composite solar cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200702506 – volume: 111 start-page: 14681 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0140 article-title: Supramolecularly assembled hybrid materials via molecular recognition between diaminopyrimidine-functionalized poly(hexylthiophene) and thymine-capped CdSe nanocrystals publication-title: J. Phys. Chem. C doi: 10.1021/jp0741758 – volume: 84 start-page: 545 year: 1997 ident: 10.1016/j.solener.2011.02.005_b0220 article-title: Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity publication-title: Synth. Metals doi: 10.1016/S0379-6779(97)80852-1 – volume: 95 start-page: 063510 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0745 article-title: Integration of planar and bulk heterojunctions in polymer/nanocrystal hybrid photovoltaic cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.3189083 – volume: 23 start-page: 10924 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0510 article-title: Adsorption of CdSe nanoparticles to thiolated TiO2 surfaces: influence of intralayer disulfide formation on CdSe surface coverage publication-title: Langmuir doi: 10.1021/la702127t – volume: 96 start-page: 013304 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0875 article-title: Improved efficiency of hybrid solar cells based on non-ligand-exchanged CdSe quantum dots and poly(3-hexylthiophene) publication-title: Appl. Phys. Lett. doi: 10.1063/1.3280370 – volume: 18 start-page: 876 year: 2003 ident: 10.1016/j.solener.2011.02.005_b0830 article-title: Inx(OH)ySz as recombination barrier in TiO2/inorganic absorber heterojunctions publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/18/9/311 – volume: 5 start-page: 811 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0605 article-title: Assessment of carrier-multiplication efficiency in bulk PbSe and PbS publication-title: Nat. Phys. doi: 10.1038/nphys1393 – volume: 12 start-page: 327 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0870 article-title: Application of carbon counterelectrode on CdS quantum dot-sensitized solar cells (QDSSCs) publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.12.032 – start-page: 71 year: 2006 ident: 10.1016/j.solener.2011.02.005_b0660 article-title: Morphology of CdSe films prepared by chemical bath deposition: The role of substrate publication-title: Thin Solid Films doi: 10.1016/j.tsf.2005.11.093 – volume: 46 start-page: 634 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0815 article-title: Synthesis of new nanocrystal-polymer nanocomposite as the electron acceptor in polymer bulk heterojunction solar cells publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2009.12.023 – volume: 6 start-page: 1789 year: 2006 ident: 10.1016/j.solener.2011.02.005_b0805 article-title: Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles publication-title: Nano Lett. doi: 10.1021/nl061085q – volume: 36 start-page: 712 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0560 article-title: One-step preparation and photosensitivity of size-quantized cadmium chalcogenide nanoparticles deposited on porous zinc oxide film electrodes publication-title: Chem. Lett. doi: 10.1246/cl.2007.712 – volume: 22 start-page: 922 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0435 article-title: CdS/CdSe co-sensitized TiO2 photoelectrodes for efficient hydrogen generation in a photoelectrochemical cell publication-title: Chem. Mater. doi: 10.1021/cm901762h – volume: 67 start-page: 115326 year: 2003 ident: 10.1016/j.solener.2011.02.005_b0290 article-title: Charge transport in hybrid nanorod-polymer composite photovoltaic cells publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.115326 – volume: 89 start-page: 043509 year: 2006 ident: 10.1016/j.solener.2011.02.005_b0530 article-title: Efficient dye-sensitized solar cells based on a 2-thiophen-2-yl-vinyl-conjugated ruthenium photosensitizer and conjugated polymer hole conductor publication-title: Appl. Phys. Lett. doi: 10.1063/1.2240296 – volume: 10 start-page: 2635 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0555 article-title: Broadband absorbing bulk heterojunction photovoltaics using low-bandgap solution-processed quantum dots publication-title: Nano Lett. doi: 10.1021/nl1013663 – volume: 245 start-page: 1834 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0540 article-title: Nanowire-quantum-dot-polymer solar cells publication-title: Phys. Stat. Sol. doi: 10.1002/pssb.200779546 – volume: 11 start-page: 9644 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0010 article-title: Photo-induced electron recombination dynamics in CdSe/P3HT hybrid heterojunctions publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b913601k – volume: 113 start-page: 3765 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0785 article-title: Substrate driven photochemistry of CdSe quantum dot films: charge injection and irreversible transformations on oxide surfaces publication-title: J. Phys. Chem. A doi: 10.1021/jp808562x – volume: 93 start-page: 662 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0060 article-title: P3HT/ZnS: a new hybrid bulk heterojunction photovoltaic system with very high open circuit voltage publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2008.12.015 – volume: 96 start-page: 093301 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0200 article-title: Solution-processed bulk heterojunction photovoltaic devices based on poly(2-methoxy,5-octoxy)-1,4-phenylenevinylene-multiwalled carbon nanotubes/PbSe quantum dots publication-title: Appl. Phys. Lett. doi: 10.1063/1.3337100 – volume: 3 start-page: 297 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0580 article-title: Bulk heterojunction solar cells with internal quantum efficiency approaching 100% publication-title: Nat. Photon. doi: 10.1038/nphoton.2009.69 – volume: 124 start-page: 11215 year: 2002 ident: 10.1016/j.solener.2011.02.005_b0645 article-title: Substituted polypyridine complexes of cobalt (II/III) as efficient electron-transfer mediators in dye-sensitized solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja027355y – volume: 11 start-page: 2265 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0105 article-title: Directly assembled CdSe quantum dots on TiO2 aqueous solution by adjusting pH value for quantum dot sensitized solar cells publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.10.003 – volume: 11 start-page: 2220 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0700 article-title: The performance of coupled (CdS:CdSe) quantum dot-sensitized TiO2 nanofibrous solar cells publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.09.035 – year: 2005 ident: 10.1016/j.solener.2011.02.005_b0715 – volume: 174 start-page: 241 year: 1990 ident: 10.1016/j.solener.2011.02.005_b0795 article-title: Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(90)85339-E – volume: 112 start-page: 11600 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0400 article-title: CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity publication-title: J. Phys. Chem. C doi: 10.1021/jp802572b – volume: 1 start-page: 155 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0475 article-title: Preparation and photoelectrochemical properties of CdSe/TiO2 hybrid mesoporous structures publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz900122u – volume: 10 start-page: 1088 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0825 article-title: Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation publication-title: Nano Lett. doi: 10.1021/nl100250z – volume: 94 start-page: 153115 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0100 article-title: An oleic acid-capped CdSe quantum-dot sensitized solar cell publication-title: Appl. Phys. Lett. doi: 10.1063/1.3117221 – volume: 8 start-page: 3904 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0380 article-title: Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model publication-title: Nano Lett. doi: 10.1021/nl802353x – volume: 10 start-page: 1579 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0395 article-title: Co-sensitization of vertically aligned TiO2 nanotubes with two different sizes of CdSe quantum dots for broad spectrum publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2008.08.038 – volume: 177 start-page: 177 year: 2006 ident: 10.1016/j.solener.2011.02.005_b0090 article-title: Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes; preparation, characterization, and application to photoelectrochemical cells publication-title: J. Photochem. Photobiol. A doi: 10.1016/j.jphotochem.2005.05.023 – volume: 96 start-page: 063501 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0190 article-title: Hierarchical nanostructured spherical carbon with hollow core/mesoporous shell as a highly efficient counter electrode in CdSe quantum-dot-sensitized solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.3313948 – volume: 18 start-page: 475 year: 2003 ident: 10.1016/j.solener.2011.02.005_b0185 article-title: Solar cell with extremely thin absorber on highly structured substrate publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/18/6/314 – volume: 42 start-page: 3845 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0575 article-title: Poly(3-hexylthiophene)−CdSe quantum dot bulk heterojunction solar cells: influence of the functional end-group of the polymer publication-title: Macromolecules doi: 10.1021/ma9006285 – volume: 46 start-page: 2316 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0835 article-title: Photoresponse of a single poly(p-phenylene vinylene)-CdSe bulk-heterojunction submicron fiber publication-title: Chem. Commun. doi: 10.1039/b923418g – volume: 295 start-page: 2425 year: 2002 ident: 10.1016/j.solener.2011.02.005_b0285 article-title: Hybrid nanorod-polymer solar cells publication-title: Science doi: 10.1126/science.1069156 – volume: 90 start-page: 143517 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0465 article-title: Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition publication-title: Appl. Phys. Lett. doi: 10.1063/1.2721373 – volume: 130 start-page: 4007 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0360 article-title: Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe−TiO2 architecture publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0782706 – volume: 22 start-page: 1398 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0750 article-title: Schottky quantum dot solar cells stable in air under solar illumination publication-title: Adv. Mater. doi: 10.1002/adma.200903240 – volume: 516 start-page: 2426 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0775 article-title: Correlation between crystal growth and photosensitization of nanostructured TiO2 electrodes using supporting Ti substrates by self-assembled CdSe quantum dots publication-title: Thin Solid Films doi: 10.1016/j.tsf.2007.04.143 – volume: 97 start-page: 123107 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0685 article-title: CdSe quantum dot-sensitized solar cell employing TiO2 nanotube working-electrode and Cu2S counter-electrode publication-title: Appl. Phys. Lett. doi: 10.1063/1.3491245 – volume: 515 start-page: 7171 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0790 article-title: Structural and optical properties of amorphous and crystalline antimony sulfide thin-films publication-title: Thin Solid Films doi: 10.1016/j.tsf.2007.03.043 – volume: 9 start-page: 860 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0015 article-title: Heterojunction photovoltaics using printed colloidal quantum dots as a photosensitive layer publication-title: Nano Lett. doi: 10.1021/nl803760j – year: 2010 ident: 10.1016/j.solener.2011.02.005_b0840 article-title: CdHgTe and CdTe quantum dot solar cells displaying an energy conversion efficiency exceeding 2% publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2010.06.013 – volume: 20 start-page: 6903 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0390 article-title: Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications publication-title: Chem. Mater. doi: 10.1021/cm802254u – volume: 132 start-page: 2743 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0450 article-title: Transient optical studies of interfacial charge transfer at nanostructured metal oxides/PbS quantum dot/organic hole conductor heterojunctions publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909172p – volume: 43 start-page: 012002 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0615 article-title: CdSe quantum dots co-sensitized TiO2 photoelectrodes: particle size dependent properties publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/43/1/012002 – volume: 66 start-page: 349 year: 1995 ident: 10.1016/j.solener.2011.02.005_b0260 article-title: Photoconduction in porous TiO2 sensitized by PbS quantum dots publication-title: Appl. Phys. Lett. doi: 10.1063/1.114209 – volume: 54 start-page: 17628 year: 1996 ident: 10.1016/j.solener.2011.02.005_b0215 article-title: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.17628 – volume: 113 start-page: 17608 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0485 article-title: Improved efficiency in poly(3-hexylthiophene)/zinc oxide solar cells via lithium incorporation publication-title: J. Phys. Chem. C doi: 10.1021/jp907758s – volume: 93 start-page: 1208 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0860 article-title: Efficient conjugated polymer-ZnSe and -PbSe nanocrystals hybrid photovoltaic cells through full solar spectrum utilization publication-title: Sol. Energy. Mater. Sol. Cells doi: 10.1016/j.solmat.2009.01.001 – volume: 114 start-page: 12784 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0490 article-title: Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine publication-title: J. Phys. Chem. C doi: 10.1021/jp103300v – volume: 114 start-page: 12496 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0005 article-title: Synthesis of PbS/TiO2 colloidal heterostructures for photovoltaic applications publication-title: J. Phys. Chem. C doi: 10.1021/jp104197s – volume: 132 start-page: 5952 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0150 article-title: Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1013695 – volume: 22 start-page: 2204 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0305 article-title: PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron publication-title: J. Mater. Res. doi: 10.1557/jmr.2007.0289 – volume: 90 start-page: 1849 year: 2006 ident: 10.1016/j.solener.2011.02.005_b0690 article-title: Photovoltaic performance and stability of CdTe/polymeric hybrid solar cells using a C60 buffer layer publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2005.11.011 – volume: 11 start-page: 923 year: 1999 ident: 10.1016/j.solener.2011.02.005_b0280 article-title: CdSe nanocrystals rods/poly(3-hexylthiophene) composite photovoltaic devices publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(199908)11:11<923::AID-ADMA923>3.0.CO;2-T – volume: 256 start-page: 7438 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0110 article-title: Co-sensitized quantum dot solar cell based on ZnO nanowires publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.05.086 – volume: 10 start-page: 239 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0135 article-title: Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency publication-title: Nano Lett. doi: 10.1021/nl903406s – volume: 3 start-page: 543 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0095 article-title: Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.206 – volume: 113 start-page: 4254 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0300 article-title: Sb2S3-sensitized nanoporous TiO2 solar cells publication-title: J. Phys. Chem C doi: 10.1021/jp900302b – volume: 156 start-page: 48 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0420 article-title: Effect of single-walled carbon nanotubes in PbS/TiO2 quantum dots-sensitized solar cells publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2008.11.014 – volume: 7 start-page: 1793 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0440 article-title: Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices publication-title: Nano Lett. doi: 10.1021/nl070430o – volume: 112 start-page: 17778 year: 2008 ident: 10.1016/j.solener.2011.02.005_b0250 article-title: Coparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells publication-title: J. Phys. Chem. C doi: 10.1021/jp803310s – volume: 25 start-page: 7602 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0425 article-title: Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator publication-title: Langmuir doi: 10.1021/la900247r – volume: 3 start-page: 3638 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0445 article-title: Solar cells based on junction between colloidal PbSe nanocrystals and thin ZnO films publication-title: ACS Nano doi: 10.1021/nn901139d – volume: 80 start-page: 2641 year: 1976 ident: 10.1016/j.solener.2011.02.005_b0055 article-title: Correlation of photocurrent–voltage curves with flat-band potential for stable photoelectrodes for the photoelectrolysis of water publication-title: J. Phys. Chem. doi: 10.1021/j100565a004 – volume: 90 start-page: 183113 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0340 article-title: Efficient solution-processed infrared photovoltaic cell: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution publication-title: Appl. Phys. Lett. doi: 10.1063/1.2735674 – year: 2010 ident: 10.1016/j.solener.2011.02.005_b0780 article-title: Effect of CdSe/P3HT composition on electrical and structural properties of bulk hetero-junction solar cell active layer publication-title: Sol. Energy Mater. Sol. Cells – volume: 10 start-page: 2609 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0085 article-title: High-performance nanostructured inorganic–organic heterojunction solar cells publication-title: Nano Lett. doi: 10.1021/nl101322h – volume: 131 start-page: 11124 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0195 article-title: CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups publication-title: J. Am. Soc. doi: 10.1021/ja903337c – volume: 19 start-page: 2735 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0410 article-title: PbS and CdS quantum dot-sensitized solid-state solar cells: “Old concepts, new results” publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200900081 – volume: 272 start-page: 1744 year: 1996 ident: 10.1016/j.solener.2011.02.005_b0670 article-title: New solar cells seem to have power at the right price publication-title: Science doi: 10.1126/science.272.5269.1744 – volume: 5 start-page: 1253 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0480 article-title: A silicon nanocrystal Schottky junction solar cell produced from colloidal silicon nanocrystals publication-title: Nanoscale Res. doi: 10.1007/s11671-010-9632-z – volume: 28 start-page: 953 year: 2007 ident: 10.1016/j.solener.2011.02.005_b0385 article-title: Anchoring cadmium chalcogenide quantum dots (QDs) onto stable oxide semiconductors for QD sensitized solar cells publication-title: Bull. Korean Chem. Soc. doi: 10.5012/bkcs.2007.28.6.953 – volume: 9 start-page: 449 year: 2009 ident: 10.1016/j.solener.2011.02.005_b0470 article-title: Hybrid solar cells from P3HT and silicon nanocrystals publication-title: Nano Lett. doi: 10.1021/nl8034338 – volume: 11 start-page: 2290 year: 2010 ident: 10.1016/j.solener.2011.02.005_b0630 article-title: Quantum-dot-sensitized solar cells publication-title: Chem. Phys. Chem. doi: 10.1002/cphc.201000069 – volume: 14 start-page: 3153 year: 1998 ident: 10.1016/j.solener.2011.02.005_b0865 article-title: Photosensitization of nanoporous TiO2 electrodes with InP quantum dots publication-title: Langmuir doi: 10.1021/la9713863 |
SSID | ssj0017187 |
Score | 2.4690418 |
Snippet | In recent years colloidal quantum dots solar cells have been the subject of extensive research. A promising alternative to existing silicon solar cells,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1264 |
SubjectTerms | Architecture Colloidal quantum dot Colloids Devices Electricity generation Heterojunctions Photovoltaic cells Photovoltaics Quantum dots Sensitizer Solar cell Solar cells Solar energy |
Title | Colloidal quantum dot solar cells |
URI | https://dx.doi.org/10.1016/j.solener.2011.02.005 https://www.proquest.com/docview/874342305 https://www.proquest.com/docview/1777130140 https://www.proquest.com/docview/883040410 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG6IXvRg_BkRJSPxOui6buuOhEhQIydJuDXt2iUQBBR29W_3Pdbhj4SQeF3bpPvavr7vte8rIfdppBOaZ7FvA2N8npjQB67CfWoMV4pbplPMHX4ZxoMRfxpH4xrpVbkweK3S2f7Spm-stfvScWh2lpMJ5viGgqZsjKJnFJgWZrDzBGd5-3N7zSMA21vqZoZ4zM_G31k8nSmQ2BmKOzslT5TujHbtT38s9Wb76Z-SE-c3et2ya2ekZufn5PiHmuAFaWEQYDExUO29AMCKNw8op7dC8uphgH51SUb9h9fewHcvIPgZOE5rXxslFB4-KswWoJGwYZYxbTVP8ACTcq2T2CTKhEbwAKBNWawznjElIpqHOrwiB_PF3F4TL88NcCFrgkwzHjOlU5Mz8L8M-HiwT6Z1wqv_lpmTB8dXKmayugc2lQ4uiXBJyiTAVSftbbNlqY-xr4GoQJW_BlqCDd_XtFENgnQrbSUFuEDgEmJpa1sKSwRhVXO7KFYySBKg4kgl68TbUUeIEMwZD-jN__vXIEdlxBljNLfkYP1R2DtwWda6uZmTTXLYfXweDL8AFNDrVw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOiKcYzyJxLUvTtE2PCIEGGzuBtFuUNKk0BNtg2__Hpul4SAiJa5NI6ZfG8WfHXwHO88RkrCzS0EXWhiKzcYhcRYTMWqG1cNzkVDt8P0i7j-JumAwbcFXXwtC1Sm_7K5v-Ya39k45HszMdjajGN5Ys50MSPWPItFagRepUSRNal7e97mCZTEDzW0lnxpTp58PPQp7OE_LYZ9J39mKepN6Z_HZE_TDWHyfQzSZseNcxuKxmtwUNN96G9S-CgjtwRnGAychit9cFYrZ4CZB1BjPirwHF6Ge78Hhz_XDVDf1PEMICfad5aKyWmvKPmgoGWCJdXBTcOCMyymEyYUyW2kzb2EoRIbo5T00hCq5lwsrYxHvQHE_Gbh-CsrRIh5yNCsNFyrXJbcnRBbPo5uFRmbdB1O-tCq8QTj-qeFb1VbAn5eFSBJdiXCFcbbhYDptWEhl_DZA1qOrbWis0438NPawXQfnNNlMSvSD0Cqn1bNmKu4Rg1WM3WcxUlGXIxolNtiH4pY-UMVo0EbGD_8_vFFa7D_d91b8d9A5hrQpAU8jmCJrzt4U7Rg9mbk78F_oOKuTuCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colloidal+quantum+dot+solar+cells&rft.jtitle=Solar+energy&rft.au=Emin%2C+Saim&rft.au=Singh%2C+Surya+P.&rft.au=Han%2C+Liyuan&rft.au=Satoh%2C+Norifusa&rft.date=2011-06-01&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=85&rft.issue=6&rft.spage=1264&rft.epage=1282&rft_id=info:doi/10.1016%2Fj.solener.2011.02.005&rft.externalDocID=S0038092X11000338 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon |