Human Being Detection from UWB NLOS Signals: Accuracy and Generality of Advanced Machine Learning Models
This paper studies the problem of detecting human beings in non-line-of-sight (NLOS) conditions using an ultra-wideband radar. We perform an extensive measurement campaign in realistic environments, considering different body orientations, the obstacles’ materials, and radar–obstacle distances. We e...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 4; p. 1656 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
20.02.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s22041656 |
Cover
Loading…
Abstract | This paper studies the problem of detecting human beings in non-line-of-sight (NLOS) conditions using an ultra-wideband radar. We perform an extensive measurement campaign in realistic environments, considering different body orientations, the obstacles’ materials, and radar–obstacle distances. We examine two main scenarios according to the radar position: (i) placed on top of a mobile cart; (ii) handheld at different heights. We empirically analyze and compare several input representations and machine learning (ML) methods—supervised and unsupervised, symbolic and non-symbolic—according to both their accuracy in detecting NLOS human beings and their adaptability to unseen cases. Our study proves the effectiveness and flexibility of modern ML techniques, avoiding environment-specific configurations and benefiting from knowledge transference. Unlike traditional TLC approaches, ML allows for generalization, overcoming limits due to unknown or only partially known observation models and insufficient labeled data, which usually occur in emergencies or in the presence of time/cost constraints. |
---|---|
AbstractList | This paper studies the problem of detecting human beings in non-line-of-sight (NLOS) conditions using an ultra-wideband radar. We perform an extensive measurement campaign in realistic environments, considering different body orientations, the obstacles' materials, and radar-obstacle distances. We examine two main scenarios according to the radar position: (i) placed on top of a mobile cart; (ii) handheld at different heights. We empirically analyze and compare several input representations and machine learning (ML) methods-supervised and unsupervised, symbolic and non-symbolic-according to both their accuracy in detecting NLOS human beings and their adaptability to unseen cases. Our study proves the effectiveness and flexibility of modern ML techniques, avoiding environment-specific configurations and benefiting from knowledge transference. Unlike traditional TLC approaches, ML allows for generalization, overcoming limits due to unknown or only partially known observation models and insufficient labeled data, which usually occur in emergencies or in the presence of time/cost constraints. This paper studies the problem of detecting human beings in non-line-of-sight (NLOS) conditions using an ultra-wideband radar. We perform an extensive measurement campaign in realistic environments, considering different body orientations, the obstacles' materials, and radar-obstacle distances. We examine two main scenarios according to the radar position: (i) placed on top of a mobile cart; (ii) handheld at different heights. We empirically analyze and compare several input representations and machine learning (ML) methods-supervised and unsupervised, symbolic and non-symbolic-according to both their accuracy in detecting NLOS human beings and their adaptability to unseen cases. Our study proves the effectiveness and flexibility of modern ML techniques, avoiding environment-specific configurations and benefiting from knowledge transference. Unlike traditional TLC approaches, ML allows for generalization, overcoming limits due to unknown or only partially known observation models and insufficient labeled data, which usually occur in emergencies or in the presence of time/cost constraints.This paper studies the problem of detecting human beings in non-line-of-sight (NLOS) conditions using an ultra-wideband radar. We perform an extensive measurement campaign in realistic environments, considering different body orientations, the obstacles' materials, and radar-obstacle distances. We examine two main scenarios according to the radar position: (i) placed on top of a mobile cart; (ii) handheld at different heights. We empirically analyze and compare several input representations and machine learning (ML) methods-supervised and unsupervised, symbolic and non-symbolic-according to both their accuracy in detecting NLOS human beings and their adaptability to unseen cases. Our study proves the effectiveness and flexibility of modern ML techniques, avoiding environment-specific configurations and benefiting from knowledge transference. Unlike traditional TLC approaches, ML allows for generalization, overcoming limits due to unknown or only partially known observation models and insufficient labeled data, which usually occur in emergencies or in the presence of time/cost constraints. |
Audience | Academic |
Author | Dardari, Davide Moro, Gianluca Frisoni, Giacomo Di Luca, Federico |
AuthorAffiliation | 2 Department of Electrical, Electronic, and Information Engineering (DEI), University of Bologna, 47521 Cesena, Italy; federico.diluca@studio.unibo.it (F.D.L.); davide.dardari@unibo.it (D.D.) 1 Department of Computer Science and Engineering (DISI), University of Bologna, 47521 Cesena, Italy; giacomo.frisoni@unibo.it |
AuthorAffiliation_xml | – name: 1 Department of Computer Science and Engineering (DISI), University of Bologna, 47521 Cesena, Italy; giacomo.frisoni@unibo.it – name: 2 Department of Electrical, Electronic, and Information Engineering (DEI), University of Bologna, 47521 Cesena, Italy; federico.diluca@studio.unibo.it (F.D.L.); davide.dardari@unibo.it (D.D.) |
Author_xml | – sequence: 1 givenname: Gianluca orcidid: 0000-0002-3663-7877 surname: Moro fullname: Moro, Gianluca – sequence: 2 givenname: Federico orcidid: 0000-0003-0568-6227 surname: Di Luca fullname: Di Luca, Federico – sequence: 3 givenname: Davide orcidid: 0000-0002-5994-1310 surname: Dardari fullname: Dardari, Davide – sequence: 4 givenname: Giacomo orcidid: 0000-0002-9845-0231 surname: Frisoni fullname: Frisoni, Giacomo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35214558$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1PGzEQhq2KqkDaQ_9AZamX9hDw1-7aPVQKtAWkUA4U9Wg59jgx2rWpdxcp_74OoRGgygePxo_fmbHfQ7QXUwSE3lNyxLkixz1jRNC6ql-hAyqYmMqS2HsS76PDvr8lhHHO5Ru0zytGRVXJA7Q6HzsT8QmEuMTfYAA7hBSxz6nDN79P8M_51TW-Dsto2v4Lnlk7ZmPX2ESHzyBCNm0Y1jh5PHP3Jlpw-NLYVYiA52By3KheJgdt_xa99kUD3j3uE3Tz4_uv0_Pp_Ors4nQ2n9qKyGG6oNZIzoUnoq5VCcARQ5kBJRyn3taLmnFmlQLFDbVKOlmZhpOGClFCyifoYqvrkrnVdzl0Jq91MkE_JFJeapOHYFvQkpBKmAXIyjeCC66sUQsGQikvpHdN0fq61bobFx04C3EoAz8TfX4Sw0ov072WslGsrorAp0eBnP6M0A-6C72FtjUR0thrVpf_qDgv5Sfo4wv0No158-wPFOdENnWhjrbU0pQBQvSp1LVlOeiCLa7woeRnjaRMMaE2Fz48HWHX-z8HFODzFrA59X0Gv0Mo0Rt36Z27Cnv8grVhMBvDlC5C-58bfwErNc2G |
CitedBy_id | crossref_primary_10_3390_s23167093 crossref_primary_10_1016_j_compeleceng_2024_109873 crossref_primary_10_1016_j_sciaf_2025_e02564 crossref_primary_10_1049_rsn2_12525 crossref_primary_10_1515_freq_2022_0237 crossref_primary_10_3390_electronics12214499 crossref_primary_10_3390_s22218353 crossref_primary_10_1016_j_iot_2024_101458 |
Cites_doi | 10.3390/s21020402 10.1109/TKDE.2009.191 10.1109/MAES.2006.1624185 10.5220/0005702302700277 10.24963/ijcai.2019/378 10.11591/eei.v8i3.1511 10.1002/wics.101 10.1109/ACCESS.2021.3130956 10.1109/TAP.2011.2164214 10.5220/0006922101420153 10.3390/s19010057 10.1504/IJUWBCS.2011.044603 10.1016/j.neunet.2014.09.003 10.1109/LGRS.2012.2190707 10.3390/s20236828 10.5220/0006001100430054 10.1038/s41467-020-17591-w 10.1109/TSP.2018.2869123 10.1109/ACCESS.2018.2877730 10.1109/TSP.2021.3095725 10.3390/electronics9101714 10.1145/2939672.2939785 10.1162/neco.1989.1.2.270 10.1109/TMTT.2013.2252185 10.1109/TSP.2009.2012893 10.1109/JSTSP.2013.2281780 10.2528/PIER09120302 10.5220/0008119504160425 10.1109/GLOCOM.2017.8255027 10.21437/Interspeech.2013-130 10.1109/JSTARS.2013.2259801 10.1162/neco.1997.9.8.1735 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22041656 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_80054abe85f743439ca9b2e499f48fd7 PMC8879265 A781292496 35214558 10_3390_s22041656 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c508t-b1ca8334f04669334ed0a12ae94d31fc6b6232c99e93a1c98d85a7307144d8513 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:29:45 EDT 2025 Thu Aug 21 18:32:52 EDT 2025 Thu Jul 10 17:07:52 EDT 2025 Fri Jul 25 19:39:53 EDT 2025 Tue Jun 10 21:15:30 EDT 2025 Wed Feb 19 02:27:39 EST 2025 Tue Jul 01 02:41:45 EDT 2025 Thu Apr 24 22:57:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | transfer learning non-line-of-sight (NLOS) machine learning ultra-wideband (UWB) human detection |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-b1ca8334f04669334ed0a12ae94d31fc6b6232c99e93a1c98d85a7307144d8513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9845-0231 0000-0002-5994-1310 0000-0003-0568-6227 0000-0002-3663-7877 |
OpenAccessLink | https://doaj.org/article/80054abe85f743439ca9b2e499f48fd7 |
PMID | 35214558 |
PQID | 2633330876 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_80054abe85f743439ca9b2e499f48fd7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8879265 proquest_miscellaneous_2633853374 proquest_journals_2633330876 gale_infotracacademiconefile_A781292496 pubmed_primary_35214558 crossref_primary_10_3390_s22041656 crossref_citationtrail_10_3390_s22041656 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220220 |
PublicationDateYYYYMMDD | 2022-02-20 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220220 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Lazaro (ref_36) 2010; 100 Rosli (ref_14) 2019; 8 Williams (ref_29) 1989; 1 ref_33 ref_32 Domeniconi (ref_38) 2014; Volume 553 Mousavi (ref_41) 2020; 11 ref_31 ref_30 Li (ref_5) 2012; 9 Gao (ref_12) 2018; 66 ref_19 Abdi (ref_34) 2010; 2 ref_17 Maaten (ref_35) 2008; 9 ref_16 Hochreiter (ref_28) 1997; 9 Schmidhuber (ref_27) 2015; 61 Yarovoy (ref_3) 2006; 21 Li (ref_8) 2013; 7 Moro (ref_40) 2018; Volume 1 Patel (ref_11) 2009; 57 ref_25 Domeniconi (ref_39) 2017; Volume 1 ref_24 ref_23 ref_22 ref_21 ref_43 Kilic (ref_10) 2013; 8 ref_20 ref_2 Renaudin (ref_15) 2019; Volume 2498 ref_26 Casadei (ref_9) 2011; 2 Hua (ref_13) 2021; 69 Li (ref_18) 2018; 6 Schleicher (ref_6) 2013; 61 Pan (ref_37) 2009; 22 Salmi (ref_1) 2011; 59 ref_4 Frisoni (ref_42) 2021; 9 ref_7 |
References_xml | – ident: ref_16 doi: 10.3390/s21020402 – volume: 22 start-page: 1345 year: 2009 ident: ref_37 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 21 start-page: 10 year: 2006 ident: ref_3 article-title: UWB radar for human being detection publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/MAES.2006.1624185 – ident: ref_23 doi: 10.5220/0005702302700277 – ident: ref_26 – ident: ref_32 doi: 10.24963/ijcai.2019/378 – volume: 8 start-page: 933 year: 2019 ident: ref_14 article-title: On the analysis of received signal strength indicator from ESP8266 publication-title: Bull. Electr. Eng. Inform. doi: 10.11591/eei.v8i3.1511 – volume: 9 start-page: 2579 year: 2008 ident: ref_35 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 2 start-page: 433 year: 2010 ident: ref_34 article-title: Principal component analysis publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.101 – volume: 9 start-page: 160721 year: 2021 ident: ref_42 article-title: A Survey on Event Extraction for Natural Language Understanding: Riding the Biomedical Literature Wave publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3130956 – volume: Volume 1 start-page: 50 year: 2017 ident: ref_39 article-title: On Deep Learning in Cross-Domain Sentiment Classification publication-title: Proceedings of the 9th International Joint Conference on Knowledge DiscoveryIC3K 2017 – volume: 59 start-page: 4257 year: 2011 ident: ref_1 article-title: Propagation parameter estimation, modeling and measurements for ultrawideband MIMO radar publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2011.2164214 – ident: ref_30 doi: 10.5220/0006922101420153 – ident: ref_19 doi: 10.3390/s19010057 – volume: 2 start-page: 116 year: 2011 ident: ref_9 article-title: Experimental study in breath detection and human target ranging in the presence of obstacles using ultra-wideband signals publication-title: Int. J. Ultra Wideband Commun. Syst. doi: 10.1504/IJUWBCS.2011.044603 – volume: 61 start-page: 85 year: 2015 ident: ref_27 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 9 start-page: 1079 year: 2012 ident: ref_5 article-title: Through-wall detection of human being’s movement by UWB radar publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2012.2190707 – ident: ref_7 doi: 10.3390/s20236828 – ident: ref_22 doi: 10.5220/0006001100430054 – volume: 11 start-page: 1 year: 2020 ident: ref_41 article-title: Earthquake transformer—An attentive deep-learning model for simultaneous earthquake detection and phase picking publication-title: Nat. Commun. doi: 10.1038/s41467-020-17591-w – volume: Volume 2498 start-page: 133 year: 2019 ident: ref_15 article-title: Impact of NLOS identification on UWB-based localization systems publication-title: Proceedings of the Tenth International Conference on Indoor Positioning and Indoor Navigation—Work-in-Progress Papers (IPIN-WiP 2019) Co-Located with the Tenth International Conference on Indoor Positioning and Indoor Navigation (IPIN 2019) – ident: ref_25 – ident: ref_4 – volume: Volume 553 start-page: 50 year: 2014 ident: ref_38 article-title: Iterative Refining of Category Profiles for Nearest Centroid Cross-Domain Text Classification publication-title: Proceedings of the 6th International Joint Conference on Knowledge Discovery (IC3K 2014) – volume: 66 start-page: 5577 year: 2018 ident: ref_12 article-title: Adaptive Subspace Tests for Multichannel Signal Detection in Auto-Regressive Disturbance publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2018.2869123 – volume: 6 start-page: 65837 year: 2018 ident: ref_18 article-title: Through wall human detection under small samples based on deep learning algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2877730 – ident: ref_33 – ident: ref_2 – volume: 69 start-page: 4326 year: 2021 ident: ref_13 article-title: Target Detection Within Nonhomogeneous Clutter Via Total Bregman Divergence-Based Matrix Information Geometry Detectors publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2021.3095725 – ident: ref_20 doi: 10.3390/electronics9101714 – ident: ref_24 doi: 10.1145/2939672.2939785 – volume: 1 start-page: 270 year: 1989 ident: ref_29 article-title: A learning algorithm for continually running fully recurrent neural networks publication-title: Neural Comput. doi: 10.1162/neco.1989.1.2.270 – volume: 61 start-page: 2076 year: 2013 ident: ref_6 article-title: IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2013.2252185 – volume: 57 start-page: 1655 year: 2009 ident: ref_11 article-title: Optimal noise benefits in Neyman-Pearson and inequality-constrained statistical signal detection publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2012893 – volume: 8 start-page: 43 year: 2013 ident: ref_10 article-title: Device-free person detection and ranging in UWB networks publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2013.2281780 – volume: 100 start-page: 265 year: 2010 ident: ref_36 article-title: Analysis of vital signs monitoring using an IR-UWB radar publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER09120302 – ident: ref_21 doi: 10.5220/0008119504160425 – ident: ref_17 doi: 10.1109/GLOCOM.2017.8255027 – ident: ref_31 doi: 10.21437/Interspeech.2013-130 – ident: ref_43 – volume: 7 start-page: 783 year: 2013 ident: ref_8 article-title: Advanced signal processing for vital sign extraction with applications in UWB radar detection of trapped victims in complex environments publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2013.2259801 – volume: 9 start-page: 1735 year: 1997 ident: ref_28 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: Volume 1 start-page: 127 year: 2018 ident: ref_40 article-title: Cross-domain & In-domain Sentiment Analysis with Memory-based Deep Neural Networks publication-title: Proceedings of the IC3K 2018 |
SSID | ssj0023338 |
Score | 2.4245925 |
Snippet | This paper studies the problem of detecting human beings in non-line-of-sight (NLOS) conditions using an ultra-wideband radar. We perform an extensive... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1656 |
SubjectTerms | Accuracy Algorithms Antennas Datasets Deep learning False alarms human detection Human subjects Humans Investigations Machine Learning Methods Neural networks non-line-of-sight (NLOS) Radar Radar systems Respiration Spectrum allocation Time transfer learning ultra-wideband (UWB) Wavelet transforms |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeDelIIOQ4BI1sR3H5oJ2gapCtBzKir1Fjh_bSlVS9nHov2cm8aYbgcjJSZzEyXjsb5yZbwh5x5wwAaN7MluGVASjUx1knkrFneM5y63HpYHTM3kyE9_mxTwuuK2iW-V2TOwGatdaXCM_YpLDhgRqn65_p5g1Cv-uxhQad8k9pC5Dl65yfmtwwQWqZxPiYNofrRjLBLLNjOagjqr_7wF5Z0Yae0vuTD_Hj8jDiBvppBf0Y3LHN0_Igx02wafkoluQp1MPe_SLX3dOVg3FABI6-zWlZ99_nNPzywUyJn-kE2s3S2NvqGkcjeTTgMhpG-gk-gXQ087T0tNIwrqgmDntavWMzI6__vx8ksZECqkF_LVO69waxbkIYAxLDQXvMpMz47UAeQQrawBBzGrtNTe51cqpwoDql2BtQTHnz8le0zZ-n9CCW5lxoVytlOAZ3DaU0nnmsoIJq2VCPmw_bWUjyzgmu7iqwNpAKVSDFBLydqh63VNr_KvSFOUzVEA27O5Au1xUUbkqhcDT1F4VocRIWW2NrpkHYy4IFVyZkPco3Qp1FhpjTQw9gFdC9qtqUgLMQUMUHne47QBVVOZVddv1EvJmOA1qiP9WTOPbTV8HkA8vRUJe9P1laDNgXKSDVwkpRz1p9FLjM83lRUf1DVOAZrI4-H-zXpL7DKMyMNI-OyR76-XGvwKstK5fdwrxB_cGEkU priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKucAB8W5KQQYhwSWQ2I4fSAjtAlWF2HIoK3qLHD-2lVZZug-J_ntmkmy0ET1yS-JRHp6ZzDeJ5xtCXjMvbMTqnsypmIpoTWqizFOpufc8Z7kL-GlgcipPpuLbeXG-R7Y9NrsJXN2Y2mE_qely_u7P1fUncPiPmHFCyv5-xVgmkEXmFrkNAUmhf05E_zOBcUjDWlKhofggFDWM_f--l3cC03DR5E4UOr5P7nXwkY5afT8ge6F-SO7ukAo-IhfNd3k6DrBHv4R1s9aqplhHQqe_xvT0-48zenY5wwn4QEfObZbWXVNbe9pxUAMwp4tIR93yADppFlwG2nGxzig2UJuvHpPp8defn0_Srp9C6gCGrdMqd1ZzLiLkxNLARvCZzZkNRoBaopMVYCHmjAmG29wZ7XVh4Q2gIOmCzZw_Ifv1og4HhBbcyYwL7SutBc_gtFFJH5jPCiackQl5u53a0nVk49jzYl5C0oFaKHstJORVL_q7Zdi4SWiM-ukFkBS7ObBYzsrOx0qN-NNWQRdRYcGscdZULEBOF4WOXiXkDWq3RGOCm3G2q0CAR0ISrHKkAO1gPgqXO9oaQLk1yZJJMCQkUIThl_0weCP-YrF1WGxaGQBAXImEPG3tpb9ngLrICq8TogaWNHio4Uh9edEwfkMkMEwWh_9jFp6ROwxLOLAsPzsi--vlJjwHYLWuXjRu8xdwWyCf priority: 102 providerName: Scholars Portal |
Title | Human Being Detection from UWB NLOS Signals: Accuracy and Generality of Advanced Machine Learning Models |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35214558 https://www.proquest.com/docview/2633330876 https://www.proquest.com/docview/2633853374 https://pubmed.ncbi.nlm.nih.gov/PMC8879265 https://doaj.org/article/80054abe85f743439ca9b2e499f48fd7 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgucABLe-wS2UQElyiTWzHsbm1sGWFaEEsFb1Fjh-7K61StG0P_HtmEjdqBBIXLpETW4njmbG_SWY-E_KaOWECZvdktgypCEanOsg8lYo7x3OWW4-fBmZzebYQn5bFcm-rL4wJ6-iBu4E7UQgqTO1VEUrMgtTW6Jp5AOpBqODaPHJY83bOVHS1OHheHY8QB6f-ZM1YJpBnZrD6tCT9f07Fe2vRME5yb-GZHpL7ETHScdfTB-SWbx6Se3s8go_IZfspnk48nNEPftOGVzUUU0fo4seEzj9_OafnVxfIlfyOjq3d3hj7i5rG0Ug7DVicrgIdx4gAOmtjLD2N9KsXFPdMu14_Jovp6ff3Z2ncQiG1gLw2aZ1bozgXAdxgqaHgXWZyZrwWIIlgZQ3wh1mtveYmt1o5VRgw-hL8LCjm_Ak5aFaNf0Zowa3MuFCuVkrwDG4bSuk8c1nBhNUyIW93Q1vZyC-O21xcV-BnoBSqXgoJedU3_dmRavyt0QTl0zdAHuz2AmhHFbWj-pd2JOQNSrdCa4XOWBOTDuCVkPeqGpcAcNAFhccd7xSgima8rpgERULORKh-2VeDAeJfFdP41bZrA5iHlyIhTzt96fsM6BaJ4FVCyoEmDV5qWNNcXbYk3zD5ayaL5_9jFI7IXYZZG5iJnx2Tg83N1r8ALLWpR-R2uSzhqKYfR-TO5HT-9duoNSU4zoT6DWRLHus |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgAOiDeGAgsCwcWqvbu2d5EQSihVSpNwaKPmZtb7SCtVdslDqH-K38iM7aSJQNzqkx8re-yZ2ZnxznxDyFtmhfZY3ROZzIfCaxUqn8ZhKrm1PGaxcfhrYDBMeyPxbZyMt8jvZS0MplUu58R6oraVwX_kuyzlsCGA2ueLnyF2jcLV1WULjUYsDt3lLwjZZp8O9oC_7xjb_3r8pRe2XQVCA87IPCxioyXnwkNkmEI4L5yNdMy0UwKI8yYtwCNgRimnuI6NklYmGvQgg9ADdmMO971BboLhjVCjsvFVgAcEyga9iHMV7c4YiwSi22zYvLo1wN8GYM0CbmZnrpm7_Xvkbuun0k4jWPfJlisfkDtr6IUPyWm9AEC7Do7onpvXSV0lxYIVOjrp0mH_-xE9OpsgQvNH2jFmMdXmkurS0hbsGiIAWnnaafMQ6KDO7HS0BX2dUOzUdj57REbX8okfk-2yKt1TQhNu0ogLaQspBY_gtj5LrWM2SpgwKg3Ih-WnzU2Lao7NNc5ziG6QC_mKCwF5sxp60UB5_GtQF_mzGoDo2_WJajrJW2XOJTq6unAy8RlW5iqjVcEcBI9eSG-zgLxH7uY4RwAxRrelDvBKiLaVdzJwqzDwhcftLAUgbyePWX4l6gF5vboMao9rObp01aIZA54Wz0RAnjTysqIZfGqEn5cByTYkaeOlNq-UZ6c1tDiYHMXS5Nn_yXpFbvWOB_28fzA8fE5uM6wIwSr_aIdsz6cL9wL8tHnxslYOSn5ctzb-AagPTWA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VIiF4QNwYCiwIBC9W7N21vYuEUEKIWtoGpBI1b2a9R1qpckoOof41fh0zPtJEIN6aJydeOWPP7Z35hpDXzArtsbsnMpkPhdcqVD6Nw1Rya3nMYuPw1cDhMN0diS_jZLxFfre9MFhW2drEylDbqcF35B2WcvgggFrHN2UR3_qDj-c_Q5wghTut7TiNWkT23cUvSN_mH_b6wOs3jA0-f_-0GzYTBkIDgckiLGKjJefCQ5aYQmovnI10zLRTAgj1Ji0gOmBGKae4jo2SViYadCKDNAQOYw7XvUauZxwOQZey8WWyB8TKGsmIcxV15oxFApFuNvxfNSbgb2ew5g03KzXXXN_gDrndxKy0WwvZXbLlynvk1hqS4X1yUm0G0J6Db7TvFlWBV0mxeYWOjnt0ePD1iB6dThCt-T3tGrOcaXNBdWlpA3wN2QCdetptahLoYVXl6WgDADuhOLXtbP6AjK7kET8k2-W0dI8JTbhJIy6kLaQUPILL-iy1jtkoYcKoNCDv2kebmwbhHAdtnOWQ6SAX8hUXAvJqtfS8hvX416Ie8me1AJG4qx-ms0neKHYuMejVhZOJz7BLVxmtCuYgkfRCepsF5C1yN0d7AcQY3bQ9wC0h8lbezSDEwiQY_m6nFYC8MSTz_FLsA_JydRpMAO7r6NJNl_UaiLp4JgLyqJaXFc0QXyMUvQxItiFJGze1eaY8PalgxsH9KJYmT_5P1gtyA_QwP9gb7j8lNxk2h2DDf7RDthezpXsGIduieF7pBiU_rloZ_wBK1FGW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Being+Detection+from+UWB+NLOS+Signals%3A+Accuracy+and+Generality+of+Advanced+Machine+Learning+Models&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Gianluca+Moro&rft.au=Federico+Di+Luca&rft.au=Davide+Dardari&rft.au=Giacomo+Frisoni&rft.date=2022-02-20&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=4&rft.spage=1656&rft_id=info:doi/10.3390%2Fs22041656&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_80054abe85f743439ca9b2e499f48fd7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |