Human Being Detection from UWB NLOS Signals: Accuracy and Generality of Advanced Machine Learning Models

This paper studies the problem of detecting human beings in non-line-of-sight (NLOS) conditions using an ultra-wideband radar. We perform an extensive measurement campaign in realistic environments, considering different body orientations, the obstacles’ materials, and radar–obstacle distances. We e...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 4; p. 1656
Main Authors Moro, Gianluca, Di Luca, Federico, Dardari, Davide, Frisoni, Giacomo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.02.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22041656

Cover

Loading…
Abstract This paper studies the problem of detecting human beings in non-line-of-sight (NLOS) conditions using an ultra-wideband radar. We perform an extensive measurement campaign in realistic environments, considering different body orientations, the obstacles’ materials, and radar–obstacle distances. We examine two main scenarios according to the radar position: (i) placed on top of a mobile cart; (ii) handheld at different heights. We empirically analyze and compare several input representations and machine learning (ML) methods—supervised and unsupervised, symbolic and non-symbolic—according to both their accuracy in detecting NLOS human beings and their adaptability to unseen cases. Our study proves the effectiveness and flexibility of modern ML techniques, avoiding environment-specific configurations and benefiting from knowledge transference. Unlike traditional TLC approaches, ML allows for generalization, overcoming limits due to unknown or only partially known observation models and insufficient labeled data, which usually occur in emergencies or in the presence of time/cost constraints.
AbstractList This paper studies the problem of detecting human beings in non-line-of-sight (NLOS) conditions using an ultra-wideband radar. We perform an extensive measurement campaign in realistic environments, considering different body orientations, the obstacles' materials, and radar-obstacle distances. We examine two main scenarios according to the radar position: (i) placed on top of a mobile cart; (ii) handheld at different heights. We empirically analyze and compare several input representations and machine learning (ML) methods-supervised and unsupervised, symbolic and non-symbolic-according to both their accuracy in detecting NLOS human beings and their adaptability to unseen cases. Our study proves the effectiveness and flexibility of modern ML techniques, avoiding environment-specific configurations and benefiting from knowledge transference. Unlike traditional TLC approaches, ML allows for generalization, overcoming limits due to unknown or only partially known observation models and insufficient labeled data, which usually occur in emergencies or in the presence of time/cost constraints.
This paper studies the problem of detecting human beings in non-line-of-sight (NLOS) conditions using an ultra-wideband radar. We perform an extensive measurement campaign in realistic environments, considering different body orientations, the obstacles' materials, and radar-obstacle distances. We examine two main scenarios according to the radar position: (i) placed on top of a mobile cart; (ii) handheld at different heights. We empirically analyze and compare several input representations and machine learning (ML) methods-supervised and unsupervised, symbolic and non-symbolic-according to both their accuracy in detecting NLOS human beings and their adaptability to unseen cases. Our study proves the effectiveness and flexibility of modern ML techniques, avoiding environment-specific configurations and benefiting from knowledge transference. Unlike traditional TLC approaches, ML allows for generalization, overcoming limits due to unknown or only partially known observation models and insufficient labeled data, which usually occur in emergencies or in the presence of time/cost constraints.This paper studies the problem of detecting human beings in non-line-of-sight (NLOS) conditions using an ultra-wideband radar. We perform an extensive measurement campaign in realistic environments, considering different body orientations, the obstacles' materials, and radar-obstacle distances. We examine two main scenarios according to the radar position: (i) placed on top of a mobile cart; (ii) handheld at different heights. We empirically analyze and compare several input representations and machine learning (ML) methods-supervised and unsupervised, symbolic and non-symbolic-according to both their accuracy in detecting NLOS human beings and their adaptability to unseen cases. Our study proves the effectiveness and flexibility of modern ML techniques, avoiding environment-specific configurations and benefiting from knowledge transference. Unlike traditional TLC approaches, ML allows for generalization, overcoming limits due to unknown or only partially known observation models and insufficient labeled data, which usually occur in emergencies or in the presence of time/cost constraints.
Audience Academic
Author Dardari, Davide
Moro, Gianluca
Frisoni, Giacomo
Di Luca, Federico
AuthorAffiliation 2 Department of Electrical, Electronic, and Information Engineering (DEI), University of Bologna, 47521 Cesena, Italy; federico.diluca@studio.unibo.it (F.D.L.); davide.dardari@unibo.it (D.D.)
1 Department of Computer Science and Engineering (DISI), University of Bologna, 47521 Cesena, Italy; giacomo.frisoni@unibo.it
AuthorAffiliation_xml – name: 1 Department of Computer Science and Engineering (DISI), University of Bologna, 47521 Cesena, Italy; giacomo.frisoni@unibo.it
– name: 2 Department of Electrical, Electronic, and Information Engineering (DEI), University of Bologna, 47521 Cesena, Italy; federico.diluca@studio.unibo.it (F.D.L.); davide.dardari@unibo.it (D.D.)
Author_xml – sequence: 1
  givenname: Gianluca
  orcidid: 0000-0002-3663-7877
  surname: Moro
  fullname: Moro, Gianluca
– sequence: 2
  givenname: Federico
  orcidid: 0000-0003-0568-6227
  surname: Di Luca
  fullname: Di Luca, Federico
– sequence: 3
  givenname: Davide
  orcidid: 0000-0002-5994-1310
  surname: Dardari
  fullname: Dardari, Davide
– sequence: 4
  givenname: Giacomo
  orcidid: 0000-0002-9845-0231
  surname: Frisoni
  fullname: Frisoni, Giacomo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35214558$$D View this record in MEDLINE/PubMed
BookMark eNptkk1PGzEQhq2KqkDaQ_9AZamX9hDw1-7aPVQKtAWkUA4U9Wg59jgx2rWpdxcp_74OoRGgygePxo_fmbHfQ7QXUwSE3lNyxLkixz1jRNC6ql-hAyqYmMqS2HsS76PDvr8lhHHO5Ru0zytGRVXJA7Q6HzsT8QmEuMTfYAA7hBSxz6nDN79P8M_51TW-Dsto2v4Lnlk7ZmPX2ESHzyBCNm0Y1jh5PHP3Jlpw-NLYVYiA52By3KheJgdt_xa99kUD3j3uE3Tz4_uv0_Pp_Ors4nQ2n9qKyGG6oNZIzoUnoq5VCcARQ5kBJRyn3taLmnFmlQLFDbVKOlmZhpOGClFCyifoYqvrkrnVdzl0Jq91MkE_JFJeapOHYFvQkpBKmAXIyjeCC66sUQsGQikvpHdN0fq61bobFx04C3EoAz8TfX4Sw0ov072WslGsrorAp0eBnP6M0A-6C72FtjUR0thrVpf_qDgv5Sfo4wv0No158-wPFOdENnWhjrbU0pQBQvSp1LVlOeiCLa7woeRnjaRMMaE2Fz48HWHX-z8HFODzFrA59X0Gv0Mo0Rt36Z27Cnv8grVhMBvDlC5C-58bfwErNc2G
CitedBy_id crossref_primary_10_3390_s23167093
crossref_primary_10_1016_j_compeleceng_2024_109873
crossref_primary_10_1016_j_sciaf_2025_e02564
crossref_primary_10_1049_rsn2_12525
crossref_primary_10_1515_freq_2022_0237
crossref_primary_10_3390_electronics12214499
crossref_primary_10_3390_s22218353
crossref_primary_10_1016_j_iot_2024_101458
Cites_doi 10.3390/s21020402
10.1109/TKDE.2009.191
10.1109/MAES.2006.1624185
10.5220/0005702302700277
10.24963/ijcai.2019/378
10.11591/eei.v8i3.1511
10.1002/wics.101
10.1109/ACCESS.2021.3130956
10.1109/TAP.2011.2164214
10.5220/0006922101420153
10.3390/s19010057
10.1504/IJUWBCS.2011.044603
10.1016/j.neunet.2014.09.003
10.1109/LGRS.2012.2190707
10.3390/s20236828
10.5220/0006001100430054
10.1038/s41467-020-17591-w
10.1109/TSP.2018.2869123
10.1109/ACCESS.2018.2877730
10.1109/TSP.2021.3095725
10.3390/electronics9101714
10.1145/2939672.2939785
10.1162/neco.1989.1.2.270
10.1109/TMTT.2013.2252185
10.1109/TSP.2009.2012893
10.1109/JSTSP.2013.2281780
10.2528/PIER09120302
10.5220/0008119504160425
10.1109/GLOCOM.2017.8255027
10.21437/Interspeech.2013-130
10.1109/JSTARS.2013.2259801
10.1162/neco.1997.9.8.1735
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22041656
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_80054abe85f743439ca9b2e499f48fd7
PMC8879265
A781292496
35214558
10_3390_s22041656
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c508t-b1ca8334f04669334ed0a12ae94d31fc6b6232c99e93a1c98d85a7307144d8513
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:29:45 EDT 2025
Thu Aug 21 18:32:52 EDT 2025
Thu Jul 10 17:07:52 EDT 2025
Fri Jul 25 19:39:53 EDT 2025
Tue Jun 10 21:15:30 EDT 2025
Wed Feb 19 02:27:39 EST 2025
Tue Jul 01 02:41:45 EDT 2025
Thu Apr 24 22:57:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords transfer learning
non-line-of-sight (NLOS)
machine learning
ultra-wideband (UWB)
human detection
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-b1ca8334f04669334ed0a12ae94d31fc6b6232c99e93a1c98d85a7307144d8513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9845-0231
0000-0002-5994-1310
0000-0003-0568-6227
0000-0002-3663-7877
OpenAccessLink https://doaj.org/article/80054abe85f743439ca9b2e499f48fd7
PMID 35214558
PQID 2633330876
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_80054abe85f743439ca9b2e499f48fd7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8879265
proquest_miscellaneous_2633853374
proquest_journals_2633330876
gale_infotracacademiconefile_A781292496
pubmed_primary_35214558
crossref_primary_10_3390_s22041656
crossref_citationtrail_10_3390_s22041656
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220220
PublicationDateYYYYMMDD 2022-02-20
PublicationDate_xml – month: 2
  year: 2022
  text: 20220220
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lazaro (ref_36) 2010; 100
Rosli (ref_14) 2019; 8
Williams (ref_29) 1989; 1
ref_33
ref_32
Domeniconi (ref_38) 2014; Volume 553
Mousavi (ref_41) 2020; 11
ref_31
ref_30
Li (ref_5) 2012; 9
Gao (ref_12) 2018; 66
ref_19
Abdi (ref_34) 2010; 2
ref_17
Maaten (ref_35) 2008; 9
ref_16
Hochreiter (ref_28) 1997; 9
Schmidhuber (ref_27) 2015; 61
Yarovoy (ref_3) 2006; 21
Li (ref_8) 2013; 7
Moro (ref_40) 2018; Volume 1
Patel (ref_11) 2009; 57
ref_25
Domeniconi (ref_39) 2017; Volume 1
ref_24
ref_23
ref_22
ref_21
ref_43
Kilic (ref_10) 2013; 8
ref_20
ref_2
Renaudin (ref_15) 2019; Volume 2498
ref_26
Casadei (ref_9) 2011; 2
Hua (ref_13) 2021; 69
Li (ref_18) 2018; 6
Schleicher (ref_6) 2013; 61
Pan (ref_37) 2009; 22
Salmi (ref_1) 2011; 59
ref_4
Frisoni (ref_42) 2021; 9
ref_7
References_xml – ident: ref_16
  doi: 10.3390/s21020402
– volume: 22
  start-page: 1345
  year: 2009
  ident: ref_37
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 21
  start-page: 10
  year: 2006
  ident: ref_3
  article-title: UWB radar for human being detection
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2006.1624185
– ident: ref_23
  doi: 10.5220/0005702302700277
– ident: ref_26
– ident: ref_32
  doi: 10.24963/ijcai.2019/378
– volume: 8
  start-page: 933
  year: 2019
  ident: ref_14
  article-title: On the analysis of received signal strength indicator from ESP8266
  publication-title: Bull. Electr. Eng. Inform.
  doi: 10.11591/eei.v8i3.1511
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_35
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 433
  year: 2010
  ident: ref_34
  article-title: Principal component analysis
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.101
– volume: 9
  start-page: 160721
  year: 2021
  ident: ref_42
  article-title: A Survey on Event Extraction for Natural Language Understanding: Riding the Biomedical Literature Wave
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3130956
– volume: Volume 1
  start-page: 50
  year: 2017
  ident: ref_39
  article-title: On Deep Learning in Cross-Domain Sentiment Classification
  publication-title: Proceedings of the 9th International Joint Conference on Knowledge DiscoveryIC3K 2017
– volume: 59
  start-page: 4257
  year: 2011
  ident: ref_1
  article-title: Propagation parameter estimation, modeling and measurements for ultrawideband MIMO radar
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2011.2164214
– ident: ref_30
  doi: 10.5220/0006922101420153
– ident: ref_19
  doi: 10.3390/s19010057
– volume: 2
  start-page: 116
  year: 2011
  ident: ref_9
  article-title: Experimental study in breath detection and human target ranging in the presence of obstacles using ultra-wideband signals
  publication-title: Int. J. Ultra Wideband Commun. Syst.
  doi: 10.1504/IJUWBCS.2011.044603
– volume: 61
  start-page: 85
  year: 2015
  ident: ref_27
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 9
  start-page: 1079
  year: 2012
  ident: ref_5
  article-title: Through-wall detection of human being’s movement by UWB radar
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2012.2190707
– ident: ref_7
  doi: 10.3390/s20236828
– ident: ref_22
  doi: 10.5220/0006001100430054
– volume: 11
  start-page: 1
  year: 2020
  ident: ref_41
  article-title: Earthquake transformer—An attentive deep-learning model for simultaneous earthquake detection and phase picking
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17591-w
– volume: Volume 2498
  start-page: 133
  year: 2019
  ident: ref_15
  article-title: Impact of NLOS identification on UWB-based localization systems
  publication-title: Proceedings of the Tenth International Conference on Indoor Positioning and Indoor Navigation—Work-in-Progress Papers (IPIN-WiP 2019) Co-Located with the Tenth International Conference on Indoor Positioning and Indoor Navigation (IPIN 2019)
– ident: ref_25
– ident: ref_4
– volume: Volume 553
  start-page: 50
  year: 2014
  ident: ref_38
  article-title: Iterative Refining of Category Profiles for Nearest Centroid Cross-Domain Text Classification
  publication-title: Proceedings of the 6th International Joint Conference on Knowledge Discovery (IC3K 2014)
– volume: 66
  start-page: 5577
  year: 2018
  ident: ref_12
  article-title: Adaptive Subspace Tests for Multichannel Signal Detection in Auto-Regressive Disturbance
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2869123
– volume: 6
  start-page: 65837
  year: 2018
  ident: ref_18
  article-title: Through wall human detection under small samples based on deep learning algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2877730
– ident: ref_33
– ident: ref_2
– volume: 69
  start-page: 4326
  year: 2021
  ident: ref_13
  article-title: Target Detection Within Nonhomogeneous Clutter Via Total Bregman Divergence-Based Matrix Information Geometry Detectors
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2021.3095725
– ident: ref_20
  doi: 10.3390/electronics9101714
– ident: ref_24
  doi: 10.1145/2939672.2939785
– volume: 1
  start-page: 270
  year: 1989
  ident: ref_29
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.2.270
– volume: 61
  start-page: 2076
  year: 2013
  ident: ref_6
  article-title: IR-UWB radar demonstrator for ultra-fine movement detection and vital-sign monitoring
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2013.2252185
– volume: 57
  start-page: 1655
  year: 2009
  ident: ref_11
  article-title: Optimal noise benefits in Neyman-Pearson and inequality-constrained statistical signal detection
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2012893
– volume: 8
  start-page: 43
  year: 2013
  ident: ref_10
  article-title: Device-free person detection and ranging in UWB networks
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2013.2281780
– volume: 100
  start-page: 265
  year: 2010
  ident: ref_36
  article-title: Analysis of vital signs monitoring using an IR-UWB radar
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER09120302
– ident: ref_21
  doi: 10.5220/0008119504160425
– ident: ref_17
  doi: 10.1109/GLOCOM.2017.8255027
– ident: ref_31
  doi: 10.21437/Interspeech.2013-130
– ident: ref_43
– volume: 7
  start-page: 783
  year: 2013
  ident: ref_8
  article-title: Advanced signal processing for vital sign extraction with applications in UWB radar detection of trapped victims in complex environments
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2013.2259801
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_28
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: Volume 1
  start-page: 127
  year: 2018
  ident: ref_40
  article-title: Cross-domain & In-domain Sentiment Analysis with Memory-based Deep Neural Networks
  publication-title: Proceedings of the IC3K 2018
SSID ssj0023338
Score 2.4245925
Snippet This paper studies the problem of detecting human beings in non-line-of-sight (NLOS) conditions using an ultra-wideband radar. We perform an extensive...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1656
SubjectTerms Accuracy
Algorithms
Antennas
Datasets
Deep learning
False alarms
human detection
Human subjects
Humans
Investigations
Machine Learning
Methods
Neural networks
non-line-of-sight (NLOS)
Radar
Radar systems
Respiration
Spectrum allocation
Time
transfer learning
ultra-wideband (UWB)
Wavelet transforms
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeDelIIOQ4BI1sR3H5oJ2gapCtBzKir1Fjh_bSlVS9nHov2cm8aYbgcjJSZzEyXjsb5yZbwh5x5wwAaN7MluGVASjUx1knkrFneM5y63HpYHTM3kyE9_mxTwuuK2iW-V2TOwGatdaXCM_YpLDhgRqn65_p5g1Cv-uxhQad8k9pC5Dl65yfmtwwQWqZxPiYNofrRjLBLLNjOagjqr_7wF5Z0Yae0vuTD_Hj8jDiBvppBf0Y3LHN0_Igx02wafkoluQp1MPe_SLX3dOVg3FABI6-zWlZ99_nNPzywUyJn-kE2s3S2NvqGkcjeTTgMhpG-gk-gXQ087T0tNIwrqgmDntavWMzI6__vx8ksZECqkF_LVO69waxbkIYAxLDQXvMpMz47UAeQQrawBBzGrtNTe51cqpwoDql2BtQTHnz8le0zZ-n9CCW5lxoVytlOAZ3DaU0nnmsoIJq2VCPmw_bWUjyzgmu7iqwNpAKVSDFBLydqh63VNr_KvSFOUzVEA27O5Au1xUUbkqhcDT1F4VocRIWW2NrpkHYy4IFVyZkPco3Qp1FhpjTQw9gFdC9qtqUgLMQUMUHne47QBVVOZVddv1EvJmOA1qiP9WTOPbTV8HkA8vRUJe9P1laDNgXKSDVwkpRz1p9FLjM83lRUf1DVOAZrI4-H-zXpL7DKMyMNI-OyR76-XGvwKstK5fdwrxB_cGEkU
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKucAB8W5KQQYhwSWQ2I4fSAjtAlWF2HIoK3qLHD-2lVZZug-J_ntmkmy0ET1yS-JRHp6ZzDeJ5xtCXjMvbMTqnsypmIpoTWqizFOpufc8Z7kL-GlgcipPpuLbeXG-R7Y9NrsJXN2Y2mE_qely_u7P1fUncPiPmHFCyv5-xVgmkEXmFrkNAUmhf05E_zOBcUjDWlKhofggFDWM_f--l3cC03DR5E4UOr5P7nXwkY5afT8ge6F-SO7ukAo-IhfNd3k6DrBHv4R1s9aqplhHQqe_xvT0-48zenY5wwn4QEfObZbWXVNbe9pxUAMwp4tIR93yADppFlwG2nGxzig2UJuvHpPp8defn0_Srp9C6gCGrdMqd1ZzLiLkxNLARvCZzZkNRoBaopMVYCHmjAmG29wZ7XVh4Q2gIOmCzZw_Ifv1og4HhBbcyYwL7SutBc_gtFFJH5jPCiackQl5u53a0nVk49jzYl5C0oFaKHstJORVL_q7Zdi4SWiM-ukFkBS7ObBYzsrOx0qN-NNWQRdRYcGscdZULEBOF4WOXiXkDWq3RGOCm3G2q0CAR0ISrHKkAO1gPgqXO9oaQLk1yZJJMCQkUIThl_0weCP-YrF1WGxaGQBAXImEPG3tpb9ngLrICq8TogaWNHio4Uh9edEwfkMkMEwWh_9jFp6ROwxLOLAsPzsi--vlJjwHYLWuXjRu8xdwWyCf
  priority: 102
  providerName: Scholars Portal
Title Human Being Detection from UWB NLOS Signals: Accuracy and Generality of Advanced Machine Learning Models
URI https://www.ncbi.nlm.nih.gov/pubmed/35214558
https://www.proquest.com/docview/2633330876
https://www.proquest.com/docview/2633853374
https://pubmed.ncbi.nlm.nih.gov/PMC8879265
https://doaj.org/article/80054abe85f743439ca9b2e499f48fd7
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgucABLe-wS2UQElyiTWzHsbm1sGWFaEEsFb1Fjh-7K61StG0P_HtmEjdqBBIXLpETW4njmbG_SWY-E_KaOWECZvdktgypCEanOsg8lYo7x3OWW4-fBmZzebYQn5bFcm-rL4wJ6-iBu4E7UQgqTO1VEUrMgtTW6Jp5AOpBqODaPHJY83bOVHS1OHheHY8QB6f-ZM1YJpBnZrD6tCT9f07Fe2vRME5yb-GZHpL7ETHScdfTB-SWbx6Se3s8go_IZfspnk48nNEPftOGVzUUU0fo4seEzj9_OafnVxfIlfyOjq3d3hj7i5rG0Ug7DVicrgIdx4gAOmtjLD2N9KsXFPdMu14_Jovp6ff3Z2ncQiG1gLw2aZ1bozgXAdxgqaHgXWZyZrwWIIlgZQ3wh1mtveYmt1o5VRgw-hL8LCjm_Ak5aFaNf0Zowa3MuFCuVkrwDG4bSuk8c1nBhNUyIW93Q1vZyC-O21xcV-BnoBSqXgoJedU3_dmRavyt0QTl0zdAHuz2AmhHFbWj-pd2JOQNSrdCa4XOWBOTDuCVkPeqGpcAcNAFhccd7xSgima8rpgERULORKh-2VeDAeJfFdP41bZrA5iHlyIhTzt96fsM6BaJ4FVCyoEmDV5qWNNcXbYk3zD5ayaL5_9jFI7IXYZZG5iJnx2Tg83N1r8ALLWpR-R2uSzhqKYfR-TO5HT-9duoNSU4zoT6DWRLHus
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcgAOiDeGAgsCwcWqvbu2d5EQSihVSpNwaKPmZtb7SCtVdslDqH-K38iM7aSJQNzqkx8re-yZ2ZnxznxDyFtmhfZY3ROZzIfCaxUqn8ZhKrm1PGaxcfhrYDBMeyPxbZyMt8jvZS0MplUu58R6oraVwX_kuyzlsCGA2ueLnyF2jcLV1WULjUYsDt3lLwjZZp8O9oC_7xjb_3r8pRe2XQVCA87IPCxioyXnwkNkmEI4L5yNdMy0UwKI8yYtwCNgRimnuI6NklYmGvQgg9ADdmMO971BboLhjVCjsvFVgAcEyga9iHMV7c4YiwSi22zYvLo1wN8GYM0CbmZnrpm7_Xvkbuun0k4jWPfJlisfkDtr6IUPyWm9AEC7Do7onpvXSV0lxYIVOjrp0mH_-xE9OpsgQvNH2jFmMdXmkurS0hbsGiIAWnnaafMQ6KDO7HS0BX2dUOzUdj57REbX8okfk-2yKt1TQhNu0ogLaQspBY_gtj5LrWM2SpgwKg3Ih-WnzU2Lao7NNc5ziG6QC_mKCwF5sxp60UB5_GtQF_mzGoDo2_WJajrJW2XOJTq6unAy8RlW5iqjVcEcBI9eSG-zgLxH7uY4RwAxRrelDvBKiLaVdzJwqzDwhcftLAUgbyePWX4l6gF5vboMao9rObp01aIZA54Wz0RAnjTysqIZfGqEn5cByTYkaeOlNq-UZ6c1tDiYHMXS5Nn_yXpFbvWOB_28fzA8fE5uM6wIwSr_aIdsz6cL9wL8tHnxslYOSn5ctzb-AagPTWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VIiF4QNwYCiwIBC9W7N21vYuEUEKIWtoGpBI1b2a9R1qpckoOof41fh0zPtJEIN6aJydeOWPP7Z35hpDXzArtsbsnMpkPhdcqVD6Nw1Rya3nMYuPw1cDhMN0diS_jZLxFfre9MFhW2drEylDbqcF35B2WcvgggFrHN2UR3_qDj-c_Q5wghTut7TiNWkT23cUvSN_mH_b6wOs3jA0-f_-0GzYTBkIDgckiLGKjJefCQ5aYQmovnI10zLRTAgj1Ji0gOmBGKae4jo2SViYadCKDNAQOYw7XvUauZxwOQZey8WWyB8TKGsmIcxV15oxFApFuNvxfNSbgb2ew5g03KzXXXN_gDrndxKy0WwvZXbLlynvk1hqS4X1yUm0G0J6Db7TvFlWBV0mxeYWOjnt0ePD1iB6dThCt-T3tGrOcaXNBdWlpA3wN2QCdetptahLoYVXl6WgDADuhOLXtbP6AjK7kET8k2-W0dI8JTbhJIy6kLaQUPILL-iy1jtkoYcKoNCDv2kebmwbhHAdtnOWQ6SAX8hUXAvJqtfS8hvX416Ie8me1AJG4qx-ms0neKHYuMejVhZOJz7BLVxmtCuYgkfRCepsF5C1yN0d7AcQY3bQ9wC0h8lbezSDEwiQY_m6nFYC8MSTz_FLsA_JydRpMAO7r6NJNl_UaiLp4JgLyqJaXFc0QXyMUvQxItiFJGze1eaY8PalgxsH9KJYmT_5P1gtyA_QwP9gb7j8lNxk2h2DDf7RDthezpXsGIduieF7pBiU_rloZ_wBK1FGW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Being+Detection+from+UWB+NLOS+Signals%3A+Accuracy+and+Generality+of+Advanced+Machine+Learning+Models&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Gianluca+Moro&rft.au=Federico+Di+Luca&rft.au=Davide+Dardari&rft.au=Giacomo+Frisoni&rft.date=2022-02-20&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=4&rft.spage=1656&rft_id=info:doi/10.3390%2Fs22041656&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_80054abe85f743439ca9b2e499f48fd7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon