The Antioxidant Guaiacol Exerts Fungicidal Activity Against Fungal Growth and Deoxynivalenol Production in Fusarium graminearum
The main component of creosote obtained from dry wood distillation—guaiacol—is a natural antioxidant that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism of guaiacol against phytopathogens remains unclear. In this study, we found that guai...
Saved in:
Published in | Frontiers in microbiology Vol. 12; p. 762844 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
15.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The main component of creosote obtained from dry wood distillation—guaiacol—is a natural antioxidant that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism of guaiacol against phytopathogens remains unclear. In this study, we found that guaiacol exerts inhibitory effects against mycelial growth, conidial formation and germination, and deoxynivalenol (DON) biosynthesis in
Fusarium graminearum
in a dose-dependent manner. The median effective concentration (EC
50
) value of guaiacol for the standard
F. graminearum
strain PH-1 was 1.838 mM. Guaiacol strongly inhibited conidial production and germination. The antifungal effects of guaiacol may be attributed to its capability to cause damage to the cell membrane by disrupting Ca
2+
transport channels. In addition, the decreased malondialdehyde (MDA) levels and catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activity by guaiacol treatment indicate that guaiacol displays activity against DON production by modulating the oxidative response in
F. graminearum.
Taken together, this study revealed the potentials of antioxidant in inhibiting mycotoxins in
F. graminearum
. |
---|---|
AbstractList | The main component of creosote obtained from dry wood distillation—guaiacol—is a natural antioxidant that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism of guaiacol against phytopathogens remains unclear. In this study, we found that guaiacol exerts inhibitory effects against mycelial growth, conidial formation and germination, and deoxynivalenol (DON) biosynthesis in Fusarium graminearum in a dose-dependent manner. The median effective concentration (EC50) value of guaiacol for the standard F. graminearum strain PH-1 was 1.838 mM. Guaiacol strongly inhibited conidial production and germination. The antifungal effects of guaiacol may be attributed to its capability to cause damage to the cell membrane by disrupting Ca2+ transport channels. In addition, the decreased malondialdehyde (MDA) levels and catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activity by guaiacol treatment indicate that guaiacol displays activity against DON production by modulating the oxidative response in F. graminearum. Taken together, this study revealed the potentials of antioxidant in inhibiting mycotoxins in F. graminearum. The main component of creosote obtained from dry wood distillation—guaiacol—is a natural antioxidant that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism of guaiacol against phytopathogens remains unclear. In this study, we found that guaiacol exerts inhibitory effects against mycelial growth, conidial formation and germination, and deoxynivalenol (DON) biosynthesis in Fusarium graminearum in a dose-dependent manner. The median effective concentration (EC 50 ) value of guaiacol for the standard F. graminearum strain PH-1 was 1.838 mM. Guaiacol strongly inhibited conidial production and germination. The antifungal effects of guaiacol may be attributed to its capability to cause damage to the cell membrane by disrupting Ca 2+ transport channels. In addition, the decreased malondialdehyde (MDA) levels and catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activity by guaiacol treatment indicate that guaiacol displays activity against DON production by modulating the oxidative response in F. graminearum. Taken together, this study revealed the potentials of antioxidant in inhibiting mycotoxins in F. graminearum . The main component of creosote obtained from dry wood distillation-guaiacol-is a natural antioxidant that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism of guaiacol against phytopathogens remains unclear. In this study, we found that guaiacol exerts inhibitory effects against mycelial growth, conidial formation and germination, and deoxynivalenol (DON) biosynthesis in Fusarium graminearum in a dose-dependent manner. The median effective concentration (EC50) value of guaiacol for the standard F. graminearum strain PH-1 was 1.838 mM. Guaiacol strongly inhibited conidial production and germination. The antifungal effects of guaiacol may be attributed to its capability to cause damage to the cell membrane by disrupting Ca2+ transport channels. In addition, the decreased malondialdehyde (MDA) levels and catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activity by guaiacol treatment indicate that guaiacol displays activity against DON production by modulating the oxidative response in F. graminearum. Taken together, this study revealed the potentials of antioxidant in inhibiting mycotoxins in F. graminearum.The main component of creosote obtained from dry wood distillation-guaiacol-is a natural antioxidant that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism of guaiacol against phytopathogens remains unclear. In this study, we found that guaiacol exerts inhibitory effects against mycelial growth, conidial formation and germination, and deoxynivalenol (DON) biosynthesis in Fusarium graminearum in a dose-dependent manner. The median effective concentration (EC50) value of guaiacol for the standard F. graminearum strain PH-1 was 1.838 mM. Guaiacol strongly inhibited conidial production and germination. The antifungal effects of guaiacol may be attributed to its capability to cause damage to the cell membrane by disrupting Ca2+ transport channels. In addition, the decreased malondialdehyde (MDA) levels and catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activity by guaiacol treatment indicate that guaiacol displays activity against DON production by modulating the oxidative response in F. graminearum. Taken together, this study revealed the potentials of antioxidant in inhibiting mycotoxins in F. graminearum. |
Author | Mohamed, Sherif Ramzy Zhang, Yao Xu, Jianhong Liu, Xin Gao, Tao Shi, Jianrong |
AuthorAffiliation | 7 Department of Food Toxicology and Contaminant, National Research Centre of Egypt , Giza , Egypt 5 School of Food Science And Engineering, Jiangsu Ocean University , Lianyungang , China 4 Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences , Nanjing , China 6 School of Food and Biological Engineering, Jiangsu University , Zhenjiang , China 1 Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences , Nanjing , China 2 Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences , Nanjing , China 3 Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural |
AuthorAffiliation_xml | – name: 4 Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences , Nanjing , China – name: 3 Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences , Nanjing , China – name: 2 Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences , Nanjing , China – name: 1 Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences , Nanjing , China – name: 5 School of Food Science And Engineering, Jiangsu Ocean University , Lianyungang , China – name: 7 Department of Food Toxicology and Contaminant, National Research Centre of Egypt , Giza , Egypt – name: 6 School of Food and Biological Engineering, Jiangsu University , Zhenjiang , China |
Author_xml | – sequence: 1 givenname: Tao surname: Gao fullname: Gao, Tao – sequence: 2 givenname: Yao surname: Zhang fullname: Zhang, Yao – sequence: 3 givenname: Jianrong surname: Shi fullname: Shi, Jianrong – sequence: 4 givenname: Sherif Ramzy surname: Mohamed fullname: Mohamed, Sherif Ramzy – sequence: 5 givenname: Jianhong surname: Xu fullname: Xu, Jianhong – sequence: 6 givenname: Xin surname: Liu fullname: Liu, Xin |
BookMark | eNp1ks1qGzEUhYeS0qRpHqA7Lbuxo__RbAomTZxAoF2k0J24o9HYCjNSKmkce9VXr2yn0BSqhSTuOedDiPO-OvHB26r6SPCcMdVc9qMz7ZxiSua1pIrzN9UZkZLPGKY_Tv66n1YXKT3isjimZX9XnTKuZK0aflb9elhbtPDZha3rwGe0nMCBCQO63tqYE7qZ_MqZog1oYbLbuLxDixU4n_JBK_NlDM95jcB36IsN2513GxisL4xvMXRTSQWPnC_2BNFNI1pFGJ23EKfxQ_W2hyHZi5fzvPp-c_1wdTu7_7q8u1rcz4zAKs9aLKTipsXYMtP1ohdMmVYyY0UnKG2IZFQQJihue-gIbRShUqi-FgKAS8LOq7sjtwvwqJ-iGyHudACnD4MQVxpidmawujZd0zAiWlO3vIFGcdkwTltgtZRgobA-H1lPUzvazlifIwyvoK8V79Z6FTZaScZlLQrg0wsghp-TTVmPLhk7DOBtmJKmEtcM11yxYq2PVhNDStH22rgM-x8tZDdogvW-DfrQBr1vgz62oSTJP8k_D_x_5jevwLv3 |
CitedBy_id | crossref_primary_10_1039_D3RA08346B crossref_primary_10_1016_j_fm_2024_104557 crossref_primary_10_1016_j_jenvman_2024_123334 crossref_primary_10_1134_S1070363224100220 crossref_primary_10_3389_fmicb_2023_1161244 crossref_primary_10_1111_1751_7915_14242 crossref_primary_10_3390_foods11223616 crossref_primary_10_1007_s10812_024_01662_7 crossref_primary_10_3390_molecules29153523 crossref_primary_10_5650_jos_ess22389 crossref_primary_10_1016_j_pestbp_2024_106007 crossref_primary_10_3390_microbiolres14010029 crossref_primary_10_1016_j_fbio_2023_102414 crossref_primary_10_1099_jmm_0_001980 crossref_primary_10_55230_mabjournal_v53i6_2 crossref_primary_10_3390_molecules27206834 crossref_primary_10_3389_fmicb_2024_1359947 crossref_primary_10_1016_j_foodres_2024_115180 crossref_primary_10_3390_ijms23042352 crossref_primary_10_18016_ksutarimdoga_vi_1457700 crossref_primary_10_1016_j_jwpe_2024_106243 crossref_primary_10_1007_s12649_023_02060_4 crossref_primary_10_1016_j_heliyon_2025_e42251 crossref_primary_10_1016_j_foodres_2025_115756 crossref_primary_10_1007_s10343_023_00931_3 crossref_primary_10_1016_j_prmcm_2023_100262 crossref_primary_10_1007_s44187_024_00162_z crossref_primary_10_1016_j_pestbp_2022_105287 |
Cites_doi | 10.3390/toxins6030830 10.1099/mic.0.029546-0 10.1101/cshperspect.a004168 10.1016/j.fgb.2007.03.001 10.3390/toxins2040367 10.3390/pathogens9050340 10.1007/s10658-014-0435-4 10.1016/j.scitotenv.2020.138359 10.1111/j.1364-3703.2011.00783.x 10.1016/j.ab.2016.10.021 10.1371/journal.pone.0158077 10.1111/jcmm.15153 10.3390/toxins10070270 10.1016/j.sajb.2019.07.013 10.1146/annurev-phyto-082718-100318 10.1172/jci.insight.99694 10.1111/1462-2920.12711 10.1007/s001289900064 10.1016/j.ijfoodmicro.2016.04.020 10.1128/AEM.00218-12 10.3390/toxins6051615 10.3390/molecules21060770 10.1007/s00430-009-0111-z 10.1111/nph.13158 10.1016/j.ibiod.2016.10.026 10.1016/j.mycres.2009.02.010 10.1016/j.ceca.2017.06.001 10.1021/ef0502397 10.1080/19476337.2019.1586776 10.1002/ps.5675 10.1099/jmm.0.000107 10.3389/fmicb.2015.01234 10.1111/jam.13626 10.3390/agronomy9070352 10.1016/j.fbr.2017.07.001 10.1016/j.molcata.2012.11.024 10.1016/j.bbrc.2016.07.117 10.1016/j.fgb.2008.07.023 10.1016/j.foodcont.2019.01.009 10.1161/CIRCRESAHA.110.234914 10.3389/fmicb.2016.00566 10.1016/j.jhazmat.2020.122908 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Gao, Zhang, Shi, Mohamed, Xu and Liu. Copyright © 2021 Gao, Zhang, Shi, Mohamed, Xu and Liu. 2021 Gao, Zhang, Shi, Mohamed, Xu and Liu |
Copyright_xml | – notice: Copyright © 2021 Gao, Zhang, Shi, Mohamed, Xu and Liu. – notice: Copyright © 2021 Gao, Zhang, Shi, Mohamed, Xu and Liu. 2021 Gao, Zhang, Shi, Mohamed, Xu and Liu |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fmicb.2021.762844 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_7cd99315bc7b49a98469342ba3766aea PMC8634675 10_3389_fmicb_2021_762844 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM 7X8 5PM |
ID | FETCH-LOGICAL-c508t-b05684cb00e3cdf5f538cb63ce5d52291632513520bfad129812658f755aa4613 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:24:05 EDT 2025 Thu Aug 21 14:06:20 EDT 2025 Fri Jul 11 16:45:36 EDT 2025 Tue Jul 01 04:33:51 EDT 2025 Thu Apr 24 23:03:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-b05684cb00e3cdf5f538cb63ce5d52291632513520bfad129812658f755aa4613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Andrea Patriarca, University of Buenos Aires, Argentina; M. Carmen Limon, Seville University, Spain This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology Edited by: Evandro L. de Souza, Federal University of Paraíba, Brazil |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2021.762844 |
PMID | 34867894 |
PQID | 2607307483 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7cd99315bc7b49a98469342ba3766aea pubmedcentral_primary_oai_pubmedcentral_nih_gov_8634675 proquest_miscellaneous_2607307483 crossref_citationtrail_10_3389_fmicb_2021_762844 crossref_primary_10_3389_fmicb_2021_762844 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-15 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in microbiology |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Duran (B13) 2010; 2 Ponts (B28) 2015; 6 Kakhlon (B24) 2018; 3 Rampersad (B31) 2020; 9 Forrer (B14) 2014; 6 Gao (B17); 21 Ghuman (B19) 2019; 126 Hiscox (B23) 2017; 31 Brini (B6) 2017; 483 Harris (B22) 2009; 46 Brini (B5) 2011; 3 Chen (B8) 2019; 57 Thomulka (B37) 1996; 56 Bruce (B7) 2018; 69 Atanasova-Penichon (B3) 2016; 7 Gao (B16); 11 Giraldo (B20) 2019; 9 Starkey (B35) 2007; 44 De Souza Araújo (B9) 2018; 124 Boutigny (B4) 2009; 113 Gardiner (B18) 2009; 155 Adedeji (B2) 2017; 116 Sevastos (B33) 2013; 78 Dean (B10) 2012; 13 Acharyya (B1) 2015; 64 Li (B25) 2009; 198 Pinton (B27) 2014; 6 Shanahan (B34) 2011; 109 Yang (B40) 2012; 78 Tsikas (B38) 2017; 524 Ponzilacqua (B29) 2019; 100 Gao (B15) 2020; 725 Yang (B39) 2013 Zhang (B41) 2015; 17 Dong (B11) 2016; 230 Duan (B12) 2020; 398 Zhi (B43) 2020; 24 Zhao (B42) 2018; 10 Mohan (B26) 2006; 20 Gu (B21) 2015; 206 Romero-Cortes (B32) 2019; 17 Qiu (B30) 2014; 139 Sun (B36) 2019; 76 |
References_xml | – volume: 6 start-page: 830 year: 2014 ident: B14 article-title: Fusarium head blight control and prevention of mycotoxin contamination in wheat with botanicals and tannic acid. publication-title: Toxins doi: 10.3390/toxins6030830 – volume: 155 start-page: 3149 year: 2009 ident: B18 article-title: Low pH regulates the production of deoxynivalenol by Fusarium graminearum. publication-title: Microbiology doi: 10.1099/mic.0.029546-0 – volume: 3 year: 2011 ident: B5 article-title: The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a004168 – volume: 44 start-page: 1191 year: 2007 ident: B35 article-title: Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2007.03.001 – volume: 2 start-page: 367 year: 2010 ident: B13 article-title: Role of the osmotic stress regulatory pathway in morphogenesis and secondary metabolism in filamentous fungi. publication-title: Toxins doi: 10.3390/toxins2040367 – volume: 9 year: 2020 ident: B31 article-title: Pathogenomics and management of Fusarium diseases in plants. publication-title: Pathogens doi: 10.3390/pathogens9050340 – volume: 139 start-page: 811 year: 2014 ident: B30 article-title: Molecular characterization of the Fusarium graminearum species complex in Eastern China. publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-014-0435-4 – volume: 725 year: 2020 ident: B15 article-title: Wheat straw vinegar: a more cost-effective solution than chemical fungicides for sustainable wheat plant protection. publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138359 – volume: 13 start-page: 414 year: 2012 ident: B10 article-title: The Top 10 fungal pathogens in molecular plant pathology. publication-title: Mol. Plant Pathol. doi: 10.1111/j.1364-3703.2011.00783.x – volume: 524 start-page: 13 year: 2017 ident: B38 article-title: Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. publication-title: Anal. Biochem. doi: 10.1016/j.ab.2016.10.021 – volume: 11 ident: B16 article-title: Fusarium graminearum pyruvate dehydrogenase kinase 1 (FgPDK1) is critical for conidiation, mycelium growth, and pathogenicity. publication-title: PLoS One doi: 10.1371/journal.pone.0158077 – volume: 24 start-page: 5122 year: 2020 ident: B43 article-title: Guaiacol suppresses osteoclastogenesis by blocking interactions of RANK with TRAF6 and C-Src and inhibiting NF−κB, MAPK and AKT pathways. publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.15153 – volume: 10 year: 2018 ident: B42 article-title: The antioxidant gallic acid inhibits aflatoxin formation in Aspergillus flavus by modulating transcription factors FarB and CreA. publication-title: Toxins doi: 10.3390/toxins10070270 – volume: 126 start-page: 232 year: 2019 ident: B19 article-title: Antioxidant, anti-inflammatory and wound healing properties of medicinal plant extracts used to treat wounds and dermatological disorders. publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2019.07.013 – volume: 57 start-page: 15 year: 2019 ident: B8 article-title: Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management. publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-082718-100318 – volume: 3 year: 2018 ident: B24 article-title: Guaiacol as a drug candidate for treating adult polyglucosan body disease. publication-title: JCI Insight doi: 10.1172/jci.insight.99694 – volume: 17 start-page: 2735 year: 2015 ident: B41 article-title: A small molecule species specifically inhibits Fusarium myosin I. publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12711 – volume: 78 year: 2013 ident: B33 article-title: Effect of carbendazim resistance on fitness parameters of Fusarium graminearum. publication-title: Commun. Agric. Appl. Biol. Sci. – volume: 56 start-page: 446 year: 1996 ident: B37 article-title: Evaluating median effective concentrations of chemicals with bioluminescent bacteria. publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/s001289900064 – volume: 230 start-page: 58 year: 2016 ident: B11 article-title: Effect of environmental factors on Fusarium population and associated trichothecenes in wheat grain grown in Jiangsu province, China. publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2016.04.020 – volume: 78 start-page: 5845 year: 2012 ident: B40 article-title: Expression of the laccase gene from a white rot fungus in Pichia pastoris can enhance the resistance of this yeast to H2O2-Mediated oxidative stress by stimulating the glutathione-based antioxidative system. publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00218-12 – volume: 6 start-page: 1615 year: 2014 ident: B27 article-title: Effect of deoxynivalenol and other type B trichothecenes on the intestine: a review. publication-title: Toxins doi: 10.3390/toxins6051615 – volume: 21 ident: B17 article-title: The fungicidal activity of thymol against Fusarium graminearum via inducing lipid peroxidation and disrupting ergosterol biosynthesis. publication-title: Molecules doi: 10.3390/molecules21060770 – volume: 198 start-page: 113 year: 2009 ident: B25 article-title: Influence of Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone on mast cells. publication-title: Med. Microbiol. Immunol. doi: 10.1007/s00430-009-0111-z – volume: 206 start-page: 315 year: 2015 ident: B21 article-title: The transmembrane protein FgSho1 regulates fungal development and pathogenicity via the MAPK module Ste50-Ste11-Ste7 in Fusarium graminearum. publication-title: N. Phytol. doi: 10.1111/nph.13158 – volume: 116 start-page: 155 year: 2017 ident: B2 article-title: Quantifications of phytochemicals and biocide actions of Lawsonia inermis linn. Extracts against wood termites and fungi. publication-title: Int. Biodeterior. Biodegradation doi: 10.1016/j.ibiod.2016.10.026 – volume: 113 start-page: 746 year: 2009 ident: B4 article-title: Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. publication-title: Mycol. Res. doi: 10.1016/j.mycres.2009.02.010 – volume: 69 start-page: 28 year: 2018 ident: B7 article-title: Metabolic regulation of the PMCA: role in cell death and survival. publication-title: Cell Calcium doi: 10.1016/j.ceca.2017.06.001 – volume: 20 start-page: 848 year: 2006 ident: B26 article-title: Pyrolysis of wood/biomass for bio-oil: a critical review. publication-title: Energy Fuels doi: 10.1021/ef0502397 – volume: 17 start-page: 375 year: 2019 ident: B32 article-title: Antifungal activity of vanilla juice and vanillin against Alternaria alternata. publication-title: CYTA J. Food doi: 10.1080/19476337.2019.1586776 – volume: 76 start-page: 1549 year: 2019 ident: B36 article-title: Resistance risk assessment for Fusarium graminearum to pydiflumetofen, a new succinate dehydrogenase inhibitor. publication-title: Pest Manag. Sci. doi: 10.1002/ps.5675 – volume: 64 start-page: 901 year: 2015 ident: B1 article-title: Intracellular and membrane-damaging activities of methyl gallate isolated from Terminalia chebula against multidrug-resistant Shigella spp. publication-title: J. Med. Microbiol. doi: 10.1099/jmm.0.000107 – volume: 6 year: 2015 ident: B28 article-title: Mycotoxins are a component of Fusarium graminearum stress-response system. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.01234 – volume: 124 start-page: 85 year: 2018 ident: B9 article-title: Antibacterial and antifungal activities of pyroligneous acid from wood of Eucalyptus urograndis and Mimosa tenuiflora. publication-title: J. Appl. Microbiol. doi: 10.1111/jam.13626 – volume: 9 year: 2019 ident: B20 article-title: Worldwide research trends on wheat and barley: a bibliometric comparative analysis. publication-title: Agronomy doi: 10.3390/agronomy9070352 – volume: 31 start-page: 169 year: 2017 ident: B23 article-title: Armed and dangerous – Chemical warfare in wood decay communities. publication-title: Fungal Biol. Rev. doi: 10.1016/j.fbr.2017.07.001 – start-page: 61 year: 2013 ident: B39 article-title: Green and efficient synthesis route of catechol from guaiacol. publication-title: J. Mol. Catal. A Chem. doi: 10.1016/j.molcata.2012.11.024 – volume: 483 start-page: 1116 year: 2017 ident: B6 article-title: The plasma membrane calcium pumps: focus on the role in (neuro) pathology. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.07.117 – volume: 46 start-page: S82 year: 2009 ident: B22 article-title: Morphology and development in Aspergillus nidulans: a complex puzzle. publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2008.07.023 – volume: 100 start-page: 24 year: 2019 ident: B29 article-title: Effects of medicinal herb and Brazilian traditional plant extracts on in vitro mycotoxin decontamination. publication-title: Food Control doi: 10.1016/j.foodcont.2019.01.009 – volume: 109 start-page: 697 year: 2011 ident: B34 article-title: Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.110.234914 – volume: 7 year: 2016 ident: B3 article-title: Antioxidant secondary metabolites in cereals: potential involvement in resistance to Fusarium and Mycotoxin accumulation. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00566 – volume: 398 year: 2020 ident: B12 article-title: Quinone outside inhibitors affect DON biosynthesis, mitochondrial structure and toxisome formation in Fusarium graminearum. publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122908 |
SSID | ssj0000402000 |
Score | 2.4686897 |
Snippet | The main component of creosote obtained from dry wood distillation—guaiacol—is a natural antioxidant that has been widely used in pharmaceutical and food... The main component of creosote obtained from dry wood distillation-guaiacol-is a natural antioxidant that has been widely used in pharmaceutical and food... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 762844 |
SubjectTerms | antioxidant deoxynivalenol Fusarium graminearum guaiacol intracellular Ca2 Microbiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxRBEG0kIOQixkRcjdJCTsLo7vTHzBxXzRoCEQ8Gcmv60wyYXtmdhc0pfz2veyZh56IXr9M9X_2qpl7RNa8IOZFlsLwMdWEaxwoudSh03biCB1PaUss65OLxi-_y7JKfX4mrnVZfqSaslwfuF-5TZR1C6EwYWxne6AbxsmG8NBqeIbXP1AgxbyeZyt_glBZNh21MZGENYGqtQT5Yzj7C_2vOR4Eo6_WPSOa4RHIn5iyek2cDWaTz_iEPyBMfX5CnffvI20NyB4zpPJUrbluHFaLAu00y1PR061fdmi7gya3FGK5h-zYRdP5Lt6CEeQzHvyEN766pjo5-9cvtbWxhej7iGj96LVjgRtuI6Wtk1Zsbmqq5wEz1anNzRC4Xpz-_nBVDQ4XCgod1hQHbqbmFp3lmXRABXztrJLNeOPAwMEUGugNKNjVBOzABRH8wlFAJoTVH4H9J9uIy-leEaun1lHlpWMW5Ll1dMW6T9ljFvJhJOyHTh9VVdlAbT00vfitkHQkQlQFRCRDVAzIhHx5P-dNLbfxt8ucE2ePEpJKdD8B21GA76l-2MyHvHwBX8Kq0VaKjX27WqkwvAnZVswmpRpYwuuN4JLbXWZ-7lgzhR7z-H4_4huynt05_P87EMdnrVhv_FjSoM--yxd8DdI0IgQ priority: 102 providerName: Directory of Open Access Journals |
Title | The Antioxidant Guaiacol Exerts Fungicidal Activity Against Fungal Growth and Deoxynivalenol Production in Fusarium graminearum |
URI | https://www.proquest.com/docview/2607307483 https://pubmed.ncbi.nlm.nih.gov/PMC8634675 https://doaj.org/article/7cd99315bc7b49a98469342ba3766aea |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pa9swFMdF1zHYZewny34UDXYauMSWLNuHMbKtaRl07LBAbkI_W0OrdI4DyWn_-r6ynTJD2WmXHCzZsfXV0_u8WHmPkPci84Znvkx0ZVnChfKJKiubcK8zkylR-m7z-Pl3cbbg35b58oDsy1sNA7i-M7SL9aQWzdXx9tfuEwz-Y4w44W-hQG00Qr0sPYZpl5zfI_fhmIpY0OB8oP1uYY6x0nR4t3n3mSPv1CXxH5HneN_kX45o_pg8GgiSznrJn5ADF56SB31Nyd0z8hvC01ncw7itLYaNYhLUMTc1Pdm6pl3TOcy7NmjDNUxfO4LOLlQNTuzacPwUsXl7SVWw9KtbbXehxnx0Adf40SeIhZi0Dui-Rqi9uaZxixdwVTWb6-dkMT_5-eUsGaosJAZw1iYaCFRyA_NzzFifeyyBRgtmXG4BZ8BHBgYCp021VxZ4ACQAtvgiz5XioIEX5DCsgntJqBJOTZkTmhWcq8yWBeMmJiQrmMtTYSZkuh9daYYU5LESxpVEKBIFkZ0gMgoie0Em5MPtKTd9_o1_df4cJbvtGFNndwdWzYUcLFEWxoLJ0lybQvNKVQCwivFMKyy1Qjk1Ie_2gkuYWnx_ooJbbdYyiw8C5CrZhBSjmTD6xnFLqC-7pN2lYPBJ-av_cYuvycP41PEvkWn-hhy2zca9BRu1-qj7TQGfp8v0qJv9fwAfpBLI |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Antioxidant+Guaiacol+Exerts+Fungicidal+Activity+Against+Fungal+Growth+and+Deoxynivalenol+Production+in+Fusarium+graminearum&rft.jtitle=Frontiers+in+microbiology&rft.au=Tao+Gao&rft.au=Tao+Gao&rft.au=Tao+Gao&rft.au=Tao+Gao&rft.date=2021-11-15&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=12&rft_id=info:doi/10.3389%2Ffmicb.2021.762844&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7cd99315bc7b49a98469342ba3766aea |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |