The Antioxidant Guaiacol Exerts Fungicidal Activity Against Fungal Growth and Deoxynivalenol Production in Fusarium graminearum

The main component of creosote obtained from dry wood distillation—guaiacol—is a natural antioxidant that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism of guaiacol against phytopathogens remains unclear. In this study, we found that guai...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 12; p. 762844
Main Authors Gao, Tao, Zhang, Yao, Shi, Jianrong, Mohamed, Sherif Ramzy, Xu, Jianhong, Liu, Xin
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 15.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The main component of creosote obtained from dry wood distillation—guaiacol—is a natural antioxidant that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism of guaiacol against phytopathogens remains unclear. In this study, we found that guaiacol exerts inhibitory effects against mycelial growth, conidial formation and germination, and deoxynivalenol (DON) biosynthesis in Fusarium graminearum in a dose-dependent manner. The median effective concentration (EC 50 ) value of guaiacol for the standard F. graminearum strain PH-1 was 1.838 mM. Guaiacol strongly inhibited conidial production and germination. The antifungal effects of guaiacol may be attributed to its capability to cause damage to the cell membrane by disrupting Ca 2+ transport channels. In addition, the decreased malondialdehyde (MDA) levels and catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activity by guaiacol treatment indicate that guaiacol displays activity against DON production by modulating the oxidative response in F. graminearum. Taken together, this study revealed the potentials of antioxidant in inhibiting mycotoxins in F. graminearum .
AbstractList The main component of creosote obtained from dry wood distillation—guaiacol—is a natural antioxidant that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism of guaiacol against phytopathogens remains unclear. In this study, we found that guaiacol exerts inhibitory effects against mycelial growth, conidial formation and germination, and deoxynivalenol (DON) biosynthesis in Fusarium graminearum in a dose-dependent manner. The median effective concentration (EC50) value of guaiacol for the standard F. graminearum strain PH-1 was 1.838 mM. Guaiacol strongly inhibited conidial production and germination. The antifungal effects of guaiacol may be attributed to its capability to cause damage to the cell membrane by disrupting Ca2+ transport channels. In addition, the decreased malondialdehyde (MDA) levels and catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activity by guaiacol treatment indicate that guaiacol displays activity against DON production by modulating the oxidative response in F. graminearum. Taken together, this study revealed the potentials of antioxidant in inhibiting mycotoxins in F. graminearum.
The main component of creosote obtained from dry wood distillation—guaiacol—is a natural antioxidant that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism of guaiacol against phytopathogens remains unclear. In this study, we found that guaiacol exerts inhibitory effects against mycelial growth, conidial formation and germination, and deoxynivalenol (DON) biosynthesis in Fusarium graminearum in a dose-dependent manner. The median effective concentration (EC 50 ) value of guaiacol for the standard F. graminearum strain PH-1 was 1.838 mM. Guaiacol strongly inhibited conidial production and germination. The antifungal effects of guaiacol may be attributed to its capability to cause damage to the cell membrane by disrupting Ca 2+ transport channels. In addition, the decreased malondialdehyde (MDA) levels and catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activity by guaiacol treatment indicate that guaiacol displays activity against DON production by modulating the oxidative response in F. graminearum. Taken together, this study revealed the potentials of antioxidant in inhibiting mycotoxins in F. graminearum .
The main component of creosote obtained from dry wood distillation-guaiacol-is a natural antioxidant that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism of guaiacol against phytopathogens remains unclear. In this study, we found that guaiacol exerts inhibitory effects against mycelial growth, conidial formation and germination, and deoxynivalenol (DON) biosynthesis in Fusarium graminearum in a dose-dependent manner. The median effective concentration (EC50) value of guaiacol for the standard F. graminearum strain PH-1 was 1.838 mM. Guaiacol strongly inhibited conidial production and germination. The antifungal effects of guaiacol may be attributed to its capability to cause damage to the cell membrane by disrupting Ca2+ transport channels. In addition, the decreased malondialdehyde (MDA) levels and catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activity by guaiacol treatment indicate that guaiacol displays activity against DON production by modulating the oxidative response in F. graminearum. Taken together, this study revealed the potentials of antioxidant in inhibiting mycotoxins in F. graminearum.The main component of creosote obtained from dry wood distillation-guaiacol-is a natural antioxidant that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism of guaiacol against phytopathogens remains unclear. In this study, we found that guaiacol exerts inhibitory effects against mycelial growth, conidial formation and germination, and deoxynivalenol (DON) biosynthesis in Fusarium graminearum in a dose-dependent manner. The median effective concentration (EC50) value of guaiacol for the standard F. graminearum strain PH-1 was 1.838 mM. Guaiacol strongly inhibited conidial production and germination. The antifungal effects of guaiacol may be attributed to its capability to cause damage to the cell membrane by disrupting Ca2+ transport channels. In addition, the decreased malondialdehyde (MDA) levels and catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activity by guaiacol treatment indicate that guaiacol displays activity against DON production by modulating the oxidative response in F. graminearum. Taken together, this study revealed the potentials of antioxidant in inhibiting mycotoxins in F. graminearum.
Author Mohamed, Sherif Ramzy
Zhang, Yao
Xu, Jianhong
Liu, Xin
Gao, Tao
Shi, Jianrong
AuthorAffiliation 7 Department of Food Toxicology and Contaminant, National Research Centre of Egypt , Giza , Egypt
5 School of Food Science And Engineering, Jiangsu Ocean University , Lianyungang , China
4 Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences , Nanjing , China
6 School of Food and Biological Engineering, Jiangsu University , Zhenjiang , China
1 Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences , Nanjing , China
2 Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences , Nanjing , China
3 Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural
AuthorAffiliation_xml – name: 4 Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences , Nanjing , China
– name: 3 Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences , Nanjing , China
– name: 2 Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences , Nanjing , China
– name: 1 Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences , Nanjing , China
– name: 5 School of Food Science And Engineering, Jiangsu Ocean University , Lianyungang , China
– name: 7 Department of Food Toxicology and Contaminant, National Research Centre of Egypt , Giza , Egypt
– name: 6 School of Food and Biological Engineering, Jiangsu University , Zhenjiang , China
Author_xml – sequence: 1
  givenname: Tao
  surname: Gao
  fullname: Gao, Tao
– sequence: 2
  givenname: Yao
  surname: Zhang
  fullname: Zhang, Yao
– sequence: 3
  givenname: Jianrong
  surname: Shi
  fullname: Shi, Jianrong
– sequence: 4
  givenname: Sherif Ramzy
  surname: Mohamed
  fullname: Mohamed, Sherif Ramzy
– sequence: 5
  givenname: Jianhong
  surname: Xu
  fullname: Xu, Jianhong
– sequence: 6
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
BookMark eNp1ks1qGzEUhYeS0qRpHqA7Lbuxo__RbAomTZxAoF2k0J24o9HYCjNSKmkce9VXr2yn0BSqhSTuOedDiPO-OvHB26r6SPCcMdVc9qMz7ZxiSua1pIrzN9UZkZLPGKY_Tv66n1YXKT3isjimZX9XnTKuZK0aflb9elhbtPDZha3rwGe0nMCBCQO63tqYE7qZ_MqZog1oYbLbuLxDixU4n_JBK_NlDM95jcB36IsN2513GxisL4xvMXRTSQWPnC_2BNFNI1pFGJ23EKfxQ_W2hyHZi5fzvPp-c_1wdTu7_7q8u1rcz4zAKs9aLKTipsXYMtP1ohdMmVYyY0UnKG2IZFQQJihue-gIbRShUqi-FgKAS8LOq7sjtwvwqJ-iGyHudACnD4MQVxpidmawujZd0zAiWlO3vIFGcdkwTltgtZRgobA-H1lPUzvazlifIwyvoK8V79Z6FTZaScZlLQrg0wsghp-TTVmPLhk7DOBtmJKmEtcM11yxYq2PVhNDStH22rgM-x8tZDdogvW-DfrQBr1vgz62oSTJP8k_D_x_5jevwLv3
CitedBy_id crossref_primary_10_1039_D3RA08346B
crossref_primary_10_1016_j_fm_2024_104557
crossref_primary_10_1016_j_jenvman_2024_123334
crossref_primary_10_1134_S1070363224100220
crossref_primary_10_3389_fmicb_2023_1161244
crossref_primary_10_1111_1751_7915_14242
crossref_primary_10_3390_foods11223616
crossref_primary_10_1007_s10812_024_01662_7
crossref_primary_10_3390_molecules29153523
crossref_primary_10_5650_jos_ess22389
crossref_primary_10_1016_j_pestbp_2024_106007
crossref_primary_10_3390_microbiolres14010029
crossref_primary_10_1016_j_fbio_2023_102414
crossref_primary_10_1099_jmm_0_001980
crossref_primary_10_55230_mabjournal_v53i6_2
crossref_primary_10_3390_molecules27206834
crossref_primary_10_3389_fmicb_2024_1359947
crossref_primary_10_1016_j_foodres_2024_115180
crossref_primary_10_3390_ijms23042352
crossref_primary_10_18016_ksutarimdoga_vi_1457700
crossref_primary_10_1016_j_jwpe_2024_106243
crossref_primary_10_1007_s12649_023_02060_4
crossref_primary_10_1016_j_heliyon_2025_e42251
crossref_primary_10_1016_j_foodres_2025_115756
crossref_primary_10_1007_s10343_023_00931_3
crossref_primary_10_1016_j_prmcm_2023_100262
crossref_primary_10_1007_s44187_024_00162_z
crossref_primary_10_1016_j_pestbp_2022_105287
Cites_doi 10.3390/toxins6030830
10.1099/mic.0.029546-0
10.1101/cshperspect.a004168
10.1016/j.fgb.2007.03.001
10.3390/toxins2040367
10.3390/pathogens9050340
10.1007/s10658-014-0435-4
10.1016/j.scitotenv.2020.138359
10.1111/j.1364-3703.2011.00783.x
10.1016/j.ab.2016.10.021
10.1371/journal.pone.0158077
10.1111/jcmm.15153
10.3390/toxins10070270
10.1016/j.sajb.2019.07.013
10.1146/annurev-phyto-082718-100318
10.1172/jci.insight.99694
10.1111/1462-2920.12711
10.1007/s001289900064
10.1016/j.ijfoodmicro.2016.04.020
10.1128/AEM.00218-12
10.3390/toxins6051615
10.3390/molecules21060770
10.1007/s00430-009-0111-z
10.1111/nph.13158
10.1016/j.ibiod.2016.10.026
10.1016/j.mycres.2009.02.010
10.1016/j.ceca.2017.06.001
10.1021/ef0502397
10.1080/19476337.2019.1586776
10.1002/ps.5675
10.1099/jmm.0.000107
10.3389/fmicb.2015.01234
10.1111/jam.13626
10.3390/agronomy9070352
10.1016/j.fbr.2017.07.001
10.1016/j.molcata.2012.11.024
10.1016/j.bbrc.2016.07.117
10.1016/j.fgb.2008.07.023
10.1016/j.foodcont.2019.01.009
10.1161/CIRCRESAHA.110.234914
10.3389/fmicb.2016.00566
10.1016/j.jhazmat.2020.122908
ContentType Journal Article
Copyright Copyright © 2021 Gao, Zhang, Shi, Mohamed, Xu and Liu.
Copyright © 2021 Gao, Zhang, Shi, Mohamed, Xu and Liu. 2021 Gao, Zhang, Shi, Mohamed, Xu and Liu
Copyright_xml – notice: Copyright © 2021 Gao, Zhang, Shi, Mohamed, Xu and Liu.
– notice: Copyright © 2021 Gao, Zhang, Shi, Mohamed, Xu and Liu. 2021 Gao, Zhang, Shi, Mohamed, Xu and Liu
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fmicb.2021.762844
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_7cd99315bc7b49a98469342ba3766aea
PMC8634675
10_3389_fmicb_2021_762844
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c508t-b05684cb00e3cdf5f538cb63ce5d52291632513520bfad129812658f755aa4613
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:24:05 EDT 2025
Thu Aug 21 14:06:20 EDT 2025
Fri Jul 11 16:45:36 EDT 2025
Tue Jul 01 04:33:51 EDT 2025
Thu Apr 24 23:03:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-b05684cb00e3cdf5f538cb63ce5d52291632513520bfad129812658f755aa4613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Andrea Patriarca, University of Buenos Aires, Argentina; M. Carmen Limon, Seville University, Spain
This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology
Edited by: Evandro L. de Souza, Federal University of Paraíba, Brazil
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2021.762844
PMID 34867894
PQID 2607307483
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_7cd99315bc7b49a98469342ba3766aea
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8634675
proquest_miscellaneous_2607307483
crossref_citationtrail_10_3389_fmicb_2021_762844
crossref_primary_10_3389_fmicb_2021_762844
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-15
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Frontiers in microbiology
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Duran (B13) 2010; 2
Ponts (B28) 2015; 6
Kakhlon (B24) 2018; 3
Rampersad (B31) 2020; 9
Forrer (B14) 2014; 6
Gao (B17); 21
Ghuman (B19) 2019; 126
Hiscox (B23) 2017; 31
Brini (B6) 2017; 483
Harris (B22) 2009; 46
Brini (B5) 2011; 3
Chen (B8) 2019; 57
Thomulka (B37) 1996; 56
Bruce (B7) 2018; 69
Atanasova-Penichon (B3) 2016; 7
Gao (B16); 11
Giraldo (B20) 2019; 9
Starkey (B35) 2007; 44
De Souza Araújo (B9) 2018; 124
Boutigny (B4) 2009; 113
Gardiner (B18) 2009; 155
Adedeji (B2) 2017; 116
Sevastos (B33) 2013; 78
Dean (B10) 2012; 13
Acharyya (B1) 2015; 64
Li (B25) 2009; 198
Pinton (B27) 2014; 6
Shanahan (B34) 2011; 109
Yang (B40) 2012; 78
Tsikas (B38) 2017; 524
Ponzilacqua (B29) 2019; 100
Gao (B15) 2020; 725
Yang (B39) 2013
Zhang (B41) 2015; 17
Dong (B11) 2016; 230
Duan (B12) 2020; 398
Zhi (B43) 2020; 24
Zhao (B42) 2018; 10
Mohan (B26) 2006; 20
Gu (B21) 2015; 206
Romero-Cortes (B32) 2019; 17
Qiu (B30) 2014; 139
Sun (B36) 2019; 76
References_xml – volume: 6
  start-page: 830
  year: 2014
  ident: B14
  article-title: Fusarium head blight control and prevention of mycotoxin contamination in wheat with botanicals and tannic acid.
  publication-title: Toxins
  doi: 10.3390/toxins6030830
– volume: 155
  start-page: 3149
  year: 2009
  ident: B18
  article-title: Low pH regulates the production of deoxynivalenol by Fusarium graminearum.
  publication-title: Microbiology
  doi: 10.1099/mic.0.029546-0
– volume: 3
  year: 2011
  ident: B5
  article-title: The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium.
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a004168
– volume: 44
  start-page: 1191
  year: 2007
  ident: B35
  article-title: Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity.
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2007.03.001
– volume: 2
  start-page: 367
  year: 2010
  ident: B13
  article-title: Role of the osmotic stress regulatory pathway in morphogenesis and secondary metabolism in filamentous fungi.
  publication-title: Toxins
  doi: 10.3390/toxins2040367
– volume: 9
  year: 2020
  ident: B31
  article-title: Pathogenomics and management of Fusarium diseases in plants.
  publication-title: Pathogens
  doi: 10.3390/pathogens9050340
– volume: 139
  start-page: 811
  year: 2014
  ident: B30
  article-title: Molecular characterization of the Fusarium graminearum species complex in Eastern China.
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-014-0435-4
– volume: 725
  year: 2020
  ident: B15
  article-title: Wheat straw vinegar: a more cost-effective solution than chemical fungicides for sustainable wheat plant protection.
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138359
– volume: 13
  start-page: 414
  year: 2012
  ident: B10
  article-title: The Top 10 fungal pathogens in molecular plant pathology.
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/j.1364-3703.2011.00783.x
– volume: 524
  start-page: 13
  year: 2017
  ident: B38
  article-title: Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges.
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2016.10.021
– volume: 11
  ident: B16
  article-title: Fusarium graminearum pyruvate dehydrogenase kinase 1 (FgPDK1) is critical for conidiation, mycelium growth, and pathogenicity.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0158077
– volume: 24
  start-page: 5122
  year: 2020
  ident: B43
  article-title: Guaiacol suppresses osteoclastogenesis by blocking interactions of RANK with TRAF6 and C-Src and inhibiting NF−κB, MAPK and AKT pathways.
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.15153
– volume: 10
  year: 2018
  ident: B42
  article-title: The antioxidant gallic acid inhibits aflatoxin formation in Aspergillus flavus by modulating transcription factors FarB and CreA.
  publication-title: Toxins
  doi: 10.3390/toxins10070270
– volume: 126
  start-page: 232
  year: 2019
  ident: B19
  article-title: Antioxidant, anti-inflammatory and wound healing properties of medicinal plant extracts used to treat wounds and dermatological disorders.
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2019.07.013
– volume: 57
  start-page: 15
  year: 2019
  ident: B8
  article-title: Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management.
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-082718-100318
– volume: 3
  year: 2018
  ident: B24
  article-title: Guaiacol as a drug candidate for treating adult polyglucosan body disease.
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.99694
– volume: 17
  start-page: 2735
  year: 2015
  ident: B41
  article-title: A small molecule species specifically inhibits Fusarium myosin I.
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12711
– volume: 78
  year: 2013
  ident: B33
  article-title: Effect of carbendazim resistance on fitness parameters of Fusarium graminearum.
  publication-title: Commun. Agric. Appl. Biol. Sci.
– volume: 56
  start-page: 446
  year: 1996
  ident: B37
  article-title: Evaluating median effective concentrations of chemicals with bioluminescent bacteria.
  publication-title: Bull. Environ. Contam. Toxicol.
  doi: 10.1007/s001289900064
– volume: 230
  start-page: 58
  year: 2016
  ident: B11
  article-title: Effect of environmental factors on Fusarium population and associated trichothecenes in wheat grain grown in Jiangsu province, China.
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2016.04.020
– volume: 78
  start-page: 5845
  year: 2012
  ident: B40
  article-title: Expression of the laccase gene from a white rot fungus in Pichia pastoris can enhance the resistance of this yeast to H2O2-Mediated oxidative stress by stimulating the glutathione-based antioxidative system.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00218-12
– volume: 6
  start-page: 1615
  year: 2014
  ident: B27
  article-title: Effect of deoxynivalenol and other type B trichothecenes on the intestine: a review.
  publication-title: Toxins
  doi: 10.3390/toxins6051615
– volume: 21
  ident: B17
  article-title: The fungicidal activity of thymol against Fusarium graminearum via inducing lipid peroxidation and disrupting ergosterol biosynthesis.
  publication-title: Molecules
  doi: 10.3390/molecules21060770
– volume: 198
  start-page: 113
  year: 2009
  ident: B25
  article-title: Influence of Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone on mast cells.
  publication-title: Med. Microbiol. Immunol.
  doi: 10.1007/s00430-009-0111-z
– volume: 206
  start-page: 315
  year: 2015
  ident: B21
  article-title: The transmembrane protein FgSho1 regulates fungal development and pathogenicity via the MAPK module Ste50-Ste11-Ste7 in Fusarium graminearum.
  publication-title: N. Phytol.
  doi: 10.1111/nph.13158
– volume: 116
  start-page: 155
  year: 2017
  ident: B2
  article-title: Quantifications of phytochemicals and biocide actions of Lawsonia inermis linn. Extracts against wood termites and fungi.
  publication-title: Int. Biodeterior. Biodegradation
  doi: 10.1016/j.ibiod.2016.10.026
– volume: 113
  start-page: 746
  year: 2009
  ident: B4
  article-title: Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures.
  publication-title: Mycol. Res.
  doi: 10.1016/j.mycres.2009.02.010
– volume: 69
  start-page: 28
  year: 2018
  ident: B7
  article-title: Metabolic regulation of the PMCA: role in cell death and survival.
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2017.06.001
– volume: 20
  start-page: 848
  year: 2006
  ident: B26
  article-title: Pyrolysis of wood/biomass for bio-oil: a critical review.
  publication-title: Energy Fuels
  doi: 10.1021/ef0502397
– volume: 17
  start-page: 375
  year: 2019
  ident: B32
  article-title: Antifungal activity of vanilla juice and vanillin against Alternaria alternata.
  publication-title: CYTA J. Food
  doi: 10.1080/19476337.2019.1586776
– volume: 76
  start-page: 1549
  year: 2019
  ident: B36
  article-title: Resistance risk assessment for Fusarium graminearum to pydiflumetofen, a new succinate dehydrogenase inhibitor.
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.5675
– volume: 64
  start-page: 901
  year: 2015
  ident: B1
  article-title: Intracellular and membrane-damaging activities of methyl gallate isolated from Terminalia chebula against multidrug-resistant Shigella spp.
  publication-title: J. Med. Microbiol.
  doi: 10.1099/jmm.0.000107
– volume: 6
  year: 2015
  ident: B28
  article-title: Mycotoxins are a component of Fusarium graminearum stress-response system.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.01234
– volume: 124
  start-page: 85
  year: 2018
  ident: B9
  article-title: Antibacterial and antifungal activities of pyroligneous acid from wood of Eucalyptus urograndis and Mimosa tenuiflora.
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.13626
– volume: 9
  year: 2019
  ident: B20
  article-title: Worldwide research trends on wheat and barley: a bibliometric comparative analysis.
  publication-title: Agronomy
  doi: 10.3390/agronomy9070352
– volume: 31
  start-page: 169
  year: 2017
  ident: B23
  article-title: Armed and dangerous – Chemical warfare in wood decay communities.
  publication-title: Fungal Biol. Rev.
  doi: 10.1016/j.fbr.2017.07.001
– start-page: 61
  year: 2013
  ident: B39
  article-title: Green and efficient synthesis route of catechol from guaiacol.
  publication-title: J. Mol. Catal. A Chem.
  doi: 10.1016/j.molcata.2012.11.024
– volume: 483
  start-page: 1116
  year: 2017
  ident: B6
  article-title: The plasma membrane calcium pumps: focus on the role in (neuro) pathology.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.07.117
– volume: 46
  start-page: S82
  year: 2009
  ident: B22
  article-title: Morphology and development in Aspergillus nidulans: a complex puzzle.
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2008.07.023
– volume: 100
  start-page: 24
  year: 2019
  ident: B29
  article-title: Effects of medicinal herb and Brazilian traditional plant extracts on in vitro mycotoxin decontamination.
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2019.01.009
– volume: 109
  start-page: 697
  year: 2011
  ident: B34
  article-title: Arterial calcification in chronic kidney disease: key roles for calcium and phosphate.
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.110.234914
– volume: 7
  year: 2016
  ident: B3
  article-title: Antioxidant secondary metabolites in cereals: potential involvement in resistance to Fusarium and Mycotoxin accumulation.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00566
– volume: 398
  year: 2020
  ident: B12
  article-title: Quinone outside inhibitors affect DON biosynthesis, mitochondrial structure and toxisome formation in Fusarium graminearum.
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122908
SSID ssj0000402000
Score 2.4686897
Snippet The main component of creosote obtained from dry wood distillation—guaiacol—is a natural antioxidant that has been widely used in pharmaceutical and food...
The main component of creosote obtained from dry wood distillation-guaiacol-is a natural antioxidant that has been widely used in pharmaceutical and food...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 762844
SubjectTerms antioxidant
deoxynivalenol
Fusarium graminearum
guaiacol
intracellular Ca2
Microbiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxRBEG0kIOQixkRcjdJCTsLo7vTHzBxXzRoCEQ8Gcmv60wyYXtmdhc0pfz2veyZh56IXr9M9X_2qpl7RNa8IOZFlsLwMdWEaxwoudSh03biCB1PaUss65OLxi-_y7JKfX4mrnVZfqSaslwfuF-5TZR1C6EwYWxne6AbxsmG8NBqeIbXP1AgxbyeZyt_glBZNh21MZGENYGqtQT5Yzj7C_2vOR4Eo6_WPSOa4RHIn5iyek2cDWaTz_iEPyBMfX5CnffvI20NyB4zpPJUrbluHFaLAu00y1PR061fdmi7gya3FGK5h-zYRdP5Lt6CEeQzHvyEN766pjo5-9cvtbWxhej7iGj96LVjgRtuI6Wtk1Zsbmqq5wEz1anNzRC4Xpz-_nBVDQ4XCgod1hQHbqbmFp3lmXRABXztrJLNeOPAwMEUGugNKNjVBOzABRH8wlFAJoTVH4H9J9uIy-leEaun1lHlpWMW5Ll1dMW6T9ljFvJhJOyHTh9VVdlAbT00vfitkHQkQlQFRCRDVAzIhHx5P-dNLbfxt8ucE2ePEpJKdD8B21GA76l-2MyHvHwBX8Kq0VaKjX27WqkwvAnZVswmpRpYwuuN4JLbXWZ-7lgzhR7z-H4_4huynt05_P87EMdnrVhv_FjSoM--yxd8DdI0IgQ
  priority: 102
  providerName: Directory of Open Access Journals
Title The Antioxidant Guaiacol Exerts Fungicidal Activity Against Fungal Growth and Deoxynivalenol Production in Fusarium graminearum
URI https://www.proquest.com/docview/2607307483
https://pubmed.ncbi.nlm.nih.gov/PMC8634675
https://doaj.org/article/7cd99315bc7b49a98469342ba3766aea
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Pa9swFMdF1zHYZewny34UDXYauMSWLNuHMbKtaRl07LBAbkI_W0OrdI4DyWn_-r6ynTJD2WmXHCzZsfXV0_u8WHmPkPci84Znvkx0ZVnChfKJKiubcK8zkylR-m7z-Pl3cbbg35b58oDsy1sNA7i-M7SL9aQWzdXx9tfuEwz-Y4w44W-hQG00Qr0sPYZpl5zfI_fhmIpY0OB8oP1uYY6x0nR4t3n3mSPv1CXxH5HneN_kX45o_pg8GgiSznrJn5ADF56SB31Nyd0z8hvC01ncw7itLYaNYhLUMTc1Pdm6pl3TOcy7NmjDNUxfO4LOLlQNTuzacPwUsXl7SVWw9KtbbXehxnx0Adf40SeIhZi0Dui-Rqi9uaZxixdwVTWb6-dkMT_5-eUsGaosJAZw1iYaCFRyA_NzzFifeyyBRgtmXG4BZ8BHBgYCp021VxZ4ACQAtvgiz5XioIEX5DCsgntJqBJOTZkTmhWcq8yWBeMmJiQrmMtTYSZkuh9daYYU5LESxpVEKBIFkZ0gMgoie0Em5MPtKTd9_o1_df4cJbvtGFNndwdWzYUcLFEWxoLJ0lybQvNKVQCwivFMKyy1Qjk1Ie_2gkuYWnx_ooJbbdYyiw8C5CrZhBSjmTD6xnFLqC-7pN2lYPBJ-av_cYuvycP41PEvkWn-hhy2zca9BRu1-qj7TQGfp8v0qJv9fwAfpBLI
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Antioxidant+Guaiacol+Exerts+Fungicidal+Activity+Against+Fungal+Growth+and+Deoxynivalenol+Production+in+Fusarium+graminearum&rft.jtitle=Frontiers+in+microbiology&rft.au=Tao+Gao&rft.au=Tao+Gao&rft.au=Tao+Gao&rft.au=Tao+Gao&rft.date=2021-11-15&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=12&rft_id=info:doi/10.3389%2Ffmicb.2021.762844&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7cd99315bc7b49a98469342ba3766aea
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon