A Nodule-Specific Lipid Transfer Protein AsE246 Participates in Transport of Plant-Synthesized Lipids to Symbiosome Membrane and Is Essential for Nodule Organogenesis in Chinese Milk Vetch
Rhizobia in legume root nodules fix nitrogen in symbiosomes, organelle-like structures in which a membrane from the host plant surrounds the symbiotic bacteria. However, the components that transport plant-synthesized lipids to the symbiosome membrane remain unknown. This study identified and functi...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 164; no. 2; pp. 1045 - 1058 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society of Plant Biologists
01.02.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rhizobia in legume root nodules fix nitrogen in symbiosomes, organelle-like structures in which a membrane from the host plant surrounds the symbiotic bacteria. However, the components that transport plant-synthesized lipids to the symbiosome membrane remain unknown. This study identified and functionally characterized the Chinese milk vetch (Astragalus sinicus) lipid transfer protein AsE246, which is specifically expressed in nodules. It was found that AsE246 can bind lipids in vitro. More importantly, AsE246 can bind the plant-synthesized membrane lipid digalactosyldiacylglycerol in vivo. Immunofluorescence and immunoelectron microscopy showed that AsE246 and digalactosyldiacylglycerol localize in the symbiosome membrane and are present in infection threads. Overexpression of AsE246 resulted in increased nodule numbers; knockdown of AsE246 resulted in reduced nodule numbers, decreased lipids contents in nodules, diminished nitrogen fixation activity, and abnormal development of symbiosomes. AsE246 knockdown also resulted in fewer infection threads, nodule primordia, and nodules, while AsE246 overexpression resulted in more infection threads and nodule primordia, suggesting that AsE246 affects nodule organogenesis associated with infection thread formation. Taken together, these results indicate that AsE246 contributes to lipids transport to the symbiosome membrane, and this transport is required for effective legume-rhizobium symbiosis. |
---|---|
AbstractList | Rhizobia in legume root nodules fix nitrogen in symbiosomes, organelle-like structures in which a membrane from the host plant surrounds the symbiotic bacteria. However, the components that transport plant-synthesized lipids to the symbiosome membrane remain unknown. This study identified and functionally characterized the Chinese milk vetch (Astragalus sinicus) lipid transfer protein AsE246, which is specifically expressed in nodules. It was found that AsE246 can bind lipids in vitro. More importantly, AsE246 can bind the plant-synthesized membrane lipid digalactosyldiacylglycerol in vivo. Immunofluorescence and immunoelectron microscopy showed that AsE246 and digalactosyldiacylglycerol localize in the symbiosome membrane and are present in infection threads. Overexpression of AsE246 resulted in increased nodule numbers; knockdown of AsE246 resulted in reduced nodule numbers, decreased lipids contents in nodules, diminished nitrogen fixation activity, and abnormal development of symbiosomes. AsE246 knockdown also resulted in fewer infection threads, nodule primordia, and nodules, while AsE246 overexpression resulted in more infection threads and nodule primordia, suggesting that AsE246 affects nodule organogenesis associated with infection thread formation. Taken together, these results indicate that AsE246 contributes to lipids transport to the symbiosome membrane, and this transport is required for effective legume-rhizobium symbiosis.Rhizobia in legume root nodules fix nitrogen in symbiosomes, organelle-like structures in which a membrane from the host plant surrounds the symbiotic bacteria. However, the components that transport plant-synthesized lipids to the symbiosome membrane remain unknown. This study identified and functionally characterized the Chinese milk vetch (Astragalus sinicus) lipid transfer protein AsE246, which is specifically expressed in nodules. It was found that AsE246 can bind lipids in vitro. More importantly, AsE246 can bind the plant-synthesized membrane lipid digalactosyldiacylglycerol in vivo. Immunofluorescence and immunoelectron microscopy showed that AsE246 and digalactosyldiacylglycerol localize in the symbiosome membrane and are present in infection threads. Overexpression of AsE246 resulted in increased nodule numbers; knockdown of AsE246 resulted in reduced nodule numbers, decreased lipids contents in nodules, diminished nitrogen fixation activity, and abnormal development of symbiosomes. AsE246 knockdown also resulted in fewer infection threads, nodule primordia, and nodules, while AsE246 overexpression resulted in more infection threads and nodule primordia, suggesting that AsE246 affects nodule organogenesis associated with infection thread formation. Taken together, these results indicate that AsE246 contributes to lipids transport to the symbiosome membrane, and this transport is required for effective legume-rhizobium symbiosis. Rhizobia in legume root nodules fix nitrogen in symbiosomes, organelle-like structures in which a membrane from the host plant surrounds the symbiotic bacteria. However, the components that transport plant-synthesized lipids to the symbiosome membrane remain unknown. This study identified and functionally characterized the Chinese milk vetch (Astragalus sinicus) lipid transfer protein AsE246, which is specifically expressed in nodules. It was found that AsE246 can bind lipids in vitro. More importantly, AsE246 can bind the plant-synthesized membrane lipid digalactosyldiacylglycerol in vivo. Immunofluorescence and immunoelectron microscopy showed that AsE246 and digalactosyldiacylglycerol localize in the symbiosome membrane and are present in infection threads. Overexpression of AsE246 resulted in increased nodule numbers; knockdown of AsE246 resulted in reduced nodule numbers, decreased lipids contents in nodules, diminished nitrogen fixation activity, and abnormal development of symbiosomes. AsE246 knockdown also resulted in fewer infection threads, nodule primordia, and nodules, while AsE246 overexpression resulted in more infection threads and nodule primordia, suggesting that AsE246 affects nodule organogenesis associated with infection thread formation. Taken together, these results indicate that AsE246 contributes to lipids transport to the symbiosome membrane, and this transport is required for effective legume-rhizobium symbiosis. A nodule-specific lipid transfer protein contributes to transport to the symbiosome membrane and is required for effective legumerhizobium symbiosis . Rhizobia in legume root nodules fix nitrogen in symbiosomes, organelle-like structures in which a membrane from the host plant surrounds the symbiotic bacteria. However, the components that transport plant-synthesized lipids to the symbiosome membrane remain unknown. This study identified and functionally characterized the Chinese milk vetch ( Astragalus sinicus ) lipid transfer protein AsE246, which is specifically expressed in nodules. It was found that AsE246 can bind lipids in vitro. More importantly, AsE246 can bind the plant-synthesized membrane lipid digalactosyldiacylglycerol in vivo. Immunofluorescence and immunoelectron microscopy showed that AsE246 and digalactosyldiacylglycerol localize in the symbiosome membrane and are present in infection threads. Overexpression of AsE246 resulted in increased nodule numbers; knockdown of AsE246 resulted in reduced nodule numbers, decreased lipids contents in nodules, diminished nitrogen fixation activity, and abnormal development of symbiosomes. AsE246 knockdown also resulted in fewer infection threads, nodule primordia, and nodules, while AsE246 overexpression resulted in more infection threads and nodule primordia, suggesting that AsE246 affects nodule organogenesis associated with infection thread formation. Taken together, these results indicate that AsE246 contributes to lipids transport to the symbiosome membrane, and this transport is required for effective legume-rhizobium symbiosis. A nodule-specific lipid transfer protein contributes to transport to the symbiosome membrane and is required for effective legumerhizobium symbiosis . |
Author | Li, Yixing Xie, Fuli Shi, Xiaofeng Wang, Jianyun Lei, Lei Chen, Dasong Chen, Ling Li, Youguo |
Author_xml | – sequence: 1 givenname: Lei surname: Lei fullname: Lei, Lei – sequence: 2 givenname: Ling surname: Chen fullname: Chen, Ling – sequence: 3 givenname: Xiaofeng surname: Shi fullname: Shi, Xiaofeng – sequence: 4 givenname: Yixing surname: Li fullname: Li, Yixing – sequence: 5 givenname: Jianyun surname: Wang fullname: Wang, Jianyun – sequence: 6 givenname: Dasong surname: Chen fullname: Chen, Dasong – sequence: 7 givenname: Fuli surname: Xie fullname: Xie, Fuli – sequence: 8 givenname: Youguo surname: Li fullname: Li, Youguo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24367021$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEUhS1URB-wZAnyks0UvyYzs0GKogCVAo2UwtbyeK4Tlxl7ajtI4bfx43CatAIkxOpe-X7n-MjX5-jEeQcIvaTkklIi3o5jrvyScTbh1RN0RkvOClaK-gSdEZJ7UtfNKTqP8ZYQQjkVz9ApE3xSEUbP0M8p_uy7bQ_FagRtjdV4YUfb4ZugXDQQ8DL4BNbhaZwzMcFLFZLVdlQJIs7H99zoQ8Le4GWvXCpWO5c2EO0P6A5mESePV7uhtT76AfAnGNosA6xch68inscILlnVY-PDMQ--Dmvl_Bpcdrq_abaxuc9q23_DXyHpzXP01Kg-wotjvUBf3s9vZh-LxfWHq9l0UeiS1KlQhpfCdJwxwqEtKRetnrCmJVXZcmMq0ui61kzzWjWKd6AZKxsBQuc5qYzgF-jdwXfctgN0OocNqpdjsIMKO-mVlX9OnN3Itf8ueUMZqeps8OZoEPzdFmKSg40a-vxc4LdRsv1qaN4K-S9KRZNNq6rkGX39e6zHPA_bzQA_ADr4GAMYqW1Syfp9SttLSuT-D8lxzJXLwx_KquIv1YPxv_hXB_42Jh8eYcFpQ6t6wn8BVjHUdA |
CitedBy_id | crossref_primary_10_1111_tpj_15152 crossref_primary_10_1016_j_envexpbot_2022_104823 crossref_primary_10_1038_srep30279 crossref_primary_10_1134_S1021443721050150 crossref_primary_10_3390_genes8120396 crossref_primary_10_1007_s00299_014_1655_y crossref_primary_10_1371_journal_pone_0179983 crossref_primary_10_1016_j_ncrops_2024_100015 crossref_primary_10_3390_plants14030378 crossref_primary_10_1186_1471_2229_14_143 crossref_primary_10_2174_0929866526666190619112438 crossref_primary_10_1093_plphys_kiad318 crossref_primary_10_1093_plphys_kiad437 crossref_primary_10_3390_microorganisms11010059 crossref_primary_10_1111_mpp_13264 crossref_primary_10_1134_S1068162018060055 crossref_primary_10_1038_s41598_020_77278_6 crossref_primary_10_1016_j_chnaes_2021_05_002 crossref_primary_10_1038_s41396_020_00744_6 crossref_primary_10_1038_srep26829 crossref_primary_10_1007_s00425_016_2585_4 crossref_primary_10_1128_spectrum_03350_22 crossref_primary_10_1016_j_plantsci_2018_12_003 crossref_primary_10_1094_MPMI_06_15_0141_R crossref_primary_10_3389_fagro_2021_660100 crossref_primary_10_1093_pcp_pcv071 crossref_primary_10_1093_pcp_pcaa085 crossref_primary_10_1093_jxb_erv313 crossref_primary_10_1021_acs_jafc_4c12956 crossref_primary_10_3389_fpls_2016_00566 crossref_primary_10_3390_plants5010002 crossref_primary_10_21638_spbu03_2020_205 crossref_primary_10_3389_fpls_2018_01285 crossref_primary_10_1093_jxb_erae172 crossref_primary_10_1007_s11103_015_0323_0 crossref_primary_10_1186_s12906_022_03616_y crossref_primary_10_3389_fpls_2017_00263 crossref_primary_10_1016_j_plaphy_2021_12_026 crossref_primary_10_1094_MPMI_06_22_0131_R crossref_primary_10_1007_s11105_017_1038_y crossref_primary_10_1016_j_pmpp_2023_102096 crossref_primary_10_1038_s41477_022_01261_4 crossref_primary_10_1038_s41598_023_41117_1 crossref_primary_10_1111_tpj_15349 crossref_primary_10_1016_j_jgg_2022_04_004 crossref_primary_10_1094_MPMI_11_18_0322_R crossref_primary_10_1111_tpj_14805 crossref_primary_10_3389_fmicb_2023_1230170 crossref_primary_10_1016_j_ejsobi_2016_01_001 crossref_primary_10_1111_tra_12187 crossref_primary_10_1016_j_bbalip_2016_01_022 crossref_primary_10_3389_fpls_2019_00002 crossref_primary_10_1038_s41477_020_00832_7 crossref_primary_10_1111_pbi_13183 crossref_primary_10_1111_tpj_16470 |
Cites_doi | 10.1023/A:1015624316573 10.1038/nature01527 10.1111/j.1469-8137.2008.02562.x 10.1038/nrm1591 10.1080/10635150390235520 10.1139/o59-099 10.1016/0966-842X(96)10053-6 10.1093/molbev/msr121 10.1186/1471-2164-9-86 10.1083/jcb.101.2.441 10.1016/S0014-5793(01)02078-6 10.1111/j.1399-3054.1997.tb03452.x 10.1016/0038-0717(73)90093-X 10.1016/j.peptides.2007.03.004 10.1105/tpc.108.064410 10.2307/3869439 10.1016/j.plipres.2006.06.002 10.1111/j.1399-3054.1997.tb03455.x 10.1104/pp.105.072876 10.1038/nrmicro1705 10.1006/jmbi.1997.1550 10.1046/j.1432-1327.2000.01109.x 10.1016/S0969-2126(01)00149-6 10.1073/pnas.181331498 10.1016/S0021-9258(18)92968-6 10.1083/jcb.200407022 10.1093/nar/gkp985 10.1105/tpc.110.075564 10.1093/jxb/erl030 10.1094/MPMI-22-12-1577 10.1046/j.1469-8137.2000.00703.x 10.1016/j.tcb.2004.07.017 10.1074/jbc.R400032200 10.1042/bst0280732 10.1016/S0014-5793(03)00109-1 10.1105/tpc.108.064451 10.1194/jlr.M700476-JLR200 10.1007/BF01939695 10.1038/nrm2971 10.1016/j.plaphy.2004.03.009 10.1094/PHYTO-05-12-0099-R 10.1110/ps.035972.108 10.1016/j.tplants.2010.01.001 10.1111/j.1432-1033.1984.tb08020.x 10.1128/JB.155.1.367-380.1983 10.1016/S0176-1617(87)80219-5 10.1007/s00425-006-0369-y 10.1074/jbc.M404098200 10.1016/j.tplants.2010.08.001 10.1104/pp.106.078691 10.1093/molbev/msn067 10.1006/bbrc.1998.8341 10.1091/mbc.e04-07-0575 10.1146/annurev.cellbio.042308.113414 10.1093/bioinformatics/14.9.755 10.1007/s00253-006-0354-1 10.1016/j.ceb.2008.03.013 10.1128/AEM.62.11.4186-4190.1996 10.1104/pp.84.3.835 10.1038/nature10625 10.1094/MPMI.2000.13.3.325 |
ContentType | Journal Article |
Copyright | 2014 American Society of Plant Biologists 2014 American Society of Plant Biologists. All Rights Reserved. 2014 |
Copyright_xml | – notice: 2014 American Society of Plant Biologists – notice: 2014 American Society of Plant Biologists. All Rights Reserved. 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1104/pp.113.232637 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 1058 |
ExternalDocumentID | PMC3912078 24367021 10_1104_pp_113_232637 43191786 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2WC 2~F 4.4 5VS 5WD 85S 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAXTN ABBHK ABDFA ABEJV ABGNP ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABVGC ABXSQ ABXVV ABXZS ACBTR ACGOD ACHIC ACNCT ACPRK ACUFI ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADXHL ADYHW AEEJZ AENEX AEUPB AFAZZ AFFZL AFGWE AFRAH AGORE AGUYK AHMBA AHXOZ AICQM AJBYB AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX AQVQM ATGXG BAWUL BCRHZ BEYMZ BTFSW CBGCD CS3 DATOO DIK DU5 E3Z EBS ECGQY EJD F5P FLUFQ FOEOM H13 IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN MV1 NOMLY NU- OBOKY OJZSN OK1 OWPYF P0- P2P Q2X RHI ROX RPB RWL RXW SA0 TAE TN5 TR2 W8F WH7 WOQ XSW YBU YKV YNT YSK YZZ ZCA ZCN ~02 ~KM AAYXX CITATION 53G 7X2 7X7 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 AAWDT AAYJJ ABIME ABPIB ABUWG ABZEO ACFRR ACIPB ACUTJ ACVCV ACZBC AEUYN AFFDN AFKRA AFYAG AGMDO AHGBF AIDAL AIDBO AJDVS ANFBD APJGH AQDSO AS~ ATCPS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C1A CCPQU CGR CUY CVF D1J DWQXO ECM EIF FYUFA GNUQQ GTFYD GUQSH HCIFZ HMCUK HTVGU LK8 LU7 M0K M1P M2O M2P M2Q M7P MVM NPM PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO QZG S0X TCN UBC UKHRP UKR WHG XOL Y6R ZCG 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c508t-af354fd32203eb5134bc629b075b3ff709c88c2c38a9a3dec22594e4c75b07f43 |
ISSN | 0032-0889 1532-2548 |
IngestDate | Thu Aug 21 18:29:05 EDT 2025 Thu Jul 10 22:38:31 EDT 2025 Thu Jul 10 20:35:17 EDT 2025 Mon Jul 21 05:53:22 EDT 2025 Tue Jul 01 03:08:02 EDT 2025 Thu Apr 24 23:08:33 EDT 2025 Fri May 30 11:59:03 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c508t-af354fd32203eb5134bc629b075b3ff709c88c2c38a9a3dec22594e4c75b07f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Some figures in this article are displayed in color online but in black and white in the print edition. The online version of this article contains Web-only data. Articles can be viewed online without a subscription. www.plantphysiol.org/cgi/doi/10.1104/pp.113.232637 The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Youguo Li (youguoli@mail.hzau.edu.cn). This work was supported by funds from the National Basic Research Program of China (973 program grant no. 2010CB126502), the National Natural Science Foundation of China (grant nos. 31371549, 31071346, and 30970074), and the State Key Laboratory of Agricultural Microbiology (grant no. AMLKF200909). |
OpenAccessLink | http://www.plantphysiol.org/content/plantphysiol/164/2/1045.full.pdf |
PMID | 24367021 |
PQID | 1499127753 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3912078 proquest_miscellaneous_2000112430 proquest_miscellaneous_1499127753 pubmed_primary_24367021 crossref_citationtrail_10_1104_pp_113_232637 crossref_primary_10_1104_pp_113_232637 jstor_primary_43191786 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-02-01 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2014 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | Kaplan (2021041919161130700_b29) 1985; 101 Hirsch (2021041919161130700_b21) 1983; 155 Schumpp (2021041919161130700_b49) 2010; 15 Limpens (2021041919161130700_b39) 2009; 21 Benning (2021041919161130700_b3) 2009; 25 Panter (2021041919161130700_b46) 2000; 13 Vance (2021041919161130700_b55) 1991; 266 Hardy (2021041919161130700_b19) 1973; 5 Bligh (2021041919161130700_b5) 1959; 37 Buhot (2021041919161130700_b8) 2004; 15 Verma (2021041919161130700_b56) 1992; 4 Awai (2021041919161130700_b2) 2001; 98 Botté (2021041919161130700_b6) 2008; 49 Finn (2021041919161130700_b16) 2010; 38 Li (2021041919161130700_b38) 2008; 180 Israel (2021041919161130700_b23) 1987; 84 Lev (2021041919161130700_b36) 2010; 11 Verma (2021041919161130700_b57) 1996; 4 Carvalho (2021041919161130700_b9) 2007; 28 Jouhet (2021041919161130700_b26) 2004; 167 Chou (2021041919161130700_b12) 2006; 57 Jones (2021041919161130700_b24) 2007; 5 Leidi (2021041919161130700_b35) 2000; 147 Tassin-Moindrot (2021041919161130700_b52) 2000; 267 Wu (2021041919161130700_b60) 2010; 22 Kader (2021041919161130700_b28) 1984; 139 Van de Velde (2021041919161130700_b54) 2006; 141 D’Angelo (2021041919161130700_b13) 2008; 20 Lascombe (2021041919161130700_b32) 2008; 17 Pii (2021041919161130700_b47) 2009; 22 Debono (2021041919161130700_b14) 2009; 21 Benning (2021041919161130700_b4) 2005; 280 Levine (2021041919161130700_b37) 2004; 14 Catalano (2021041919161130700_b10) 2007; 225 Lodwig (2021041919161130700_b40) 2003; 422 Gaude (2021041919161130700_b17) 2004; 279 Whitehead (2021041919161130700_b59) 1997; 100 Eddy (2021041919161130700_b15) 1998; 14 Held (2021041919161130700_b20) 2010; 15 Holthuis (2021041919161130700_b22) 2005; 6 Guindon (2021041919161130700_b18) 2003; 52 Voelker (2021041919161130700_b58) 1990; 46 Lee (2021041919161130700_b34) 1998; 276 Monahan-Giovanelli (2021041919161130700_b44) 2006; 140 José-Estanyol (2021041919161130700_b25) 2004; 42 Boutrot (2021041919161130700_b7) 2008; 9 Le (2021041919161130700_b33) 2008; 25 Osman (2021041919161130700_b45) 2001; 489 Kim (2021041919161130700_b31) 1996; 62 Tamura (2021041919161130700_b51) 2011; 28 Price (2021041919161130700_b48) 1987; 130 Cho (2021041919161130700_b11) 2002; 69 Maréchal (2021041919161130700_b42) 1997; 1 Maréchal (2021041919161130700_b41) 2000; 28 Shin (2021041919161130700_b50) 1995; 3 Mikes (2021041919161130700_b43) 1998; 245 Trainer (2021041919161130700_b53) 2006; 71 Young (2021041919161130700_b61) 2011; 480 Kim (2021041919161130700_b30) 2013; 103 Andersson (2021041919161130700_b1) 2003; 537 Jouhet (2021041919161130700_b27) 2007; 46 6575011 - J Bacteriol. 1983 Jul;155(1):367-80 4040519 - J Cell Biol. 1985 Aug;101(2):441-5 2193820 - Experientia. 1990 Jun 15;46(6):569-79 21546353 - Mol Biol Evol. 2011 Oct;28(10):2731-9 20117958 - Trends Plant Sci. 2010 Apr;15(4):189-95 16648219 - Plant Physiol. 2006 Jun;141(2):711-20 22089132 - Nature. 2011 Dec 22;480(7378):520-4 15356262 - Mol Biol Cell. 2004 Nov;15(11):5047-52 18490149 - Curr Opin Cell Biol. 2008 Aug;20(4):360-70 7735835 - Structure. 1995 Feb 15;3(2):189-99 10672021 - Eur J Biochem. 2000 Feb;267(4):1117-24 16970991 - Prog Lipid Res. 2007 Jan;46(1):37-55 19920124 - Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22 15590685 - J Biol Chem. 2005 Jan 28;280(4):2397-400 17418913 - Peptides. 2007 May;28(5):1144-53 12297652 - Plant Cell. 1992 Apr;4(4):373-382 18643938 - New Phytol. 2008;180(1):185-92 16703322 - Appl Microbiol Biotechnol. 2006 Jul;71(4):377-86 18367465 - Mol Biol Evol. 2008 Jul;25(7):1307-20 15738987 - Nat Rev Mol Cell Biol. 2005 Mar;6(3):209-20 12700763 - Nature. 2003 Apr 17;422(6933):722-6 19572810 - Annu Rev Cell Dev Biol. 2009;25:71-91 19366900 - Plant Cell. 2009 Apr;21(4):1230-8 18291034 - BMC Genomics. 2008;9:86 16384905 - Plant Physiol. 2006 Feb;140(2):661-70 9512714 - J Mol Biol. 1998 Feb 20;276(2):437-48 20829094 - Trends Plant Sci. 2010 Oct;15(10):540-5 10707358 - Mol Plant Microbe Interact. 2000 Mar;13(3):325-33 15191737 - Plant Physiol Biochem. 2004 May;42(5):355-65 14530136 - Syst Biol. 2003 Oct;52(5):696-704 15350976 - Trends Cell Biol. 2004 Sep;14(9):483-90 20823909 - Nat Rev Mol Cell Biol. 2010 Oct;11(10):739-50 11171188 - Biochem Soc Trans. 2000 Dec;28(6):732-8 15159398 - J Biol Chem. 2004 Aug 13;279(33):34624-30 9918945 - Bioinformatics. 1998;14(9):755-63 18552128 - Protein Sci. 2008 Sep;17(9):1522-30 15569715 - J Cell Biol. 2004 Dec 6;167(5):863-74 11553816 - Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10960-5 16535445 - Appl Environ Microbiol. 1996 Nov;62(11):4186-90 12606044 - FEBS Lett. 2003 Feb 27;537(1-3):128-32 17632573 - Nat Rev Microbiol. 2007 Aug;5(8):619-33 21081696 - Plant Cell. 2010 Nov;22(11):3726-44 16831842 - J Exp Bot. 2006;57(11):2673-85 13671378 - Can J Biochem Physiol. 1959 Aug;37(8):911-7 6698022 - Eur J Biochem. 1984 Mar 1;139(2):411-6 18182683 - J Lipid Res. 2008 Apr;49(4):746-62 19734435 - Plant Cell. 2009 Sep;21(9):2811-28 23035632 - Phytopathology. 2013 Jan;103(1):74-80 16944200 - Planta. 2007 Feb;225(3):541-50 9535796 - Biochem Biophys Res Commun. 1998 Apr 7;245(1):133-9 2022641 - J Biol Chem. 1991 May 5;266(13):8241-7 11231013 - FEBS Lett. 2001 Jan 26;489(1):55-8 8885172 - Trends Microbiol. 1996 Sep;4(9):364-8 19888823 - Mol Plant Microbe Interact. 2009 Dec;22(12):1577-87 16665531 - Plant Physiol. 1987 Jul;84(3):835-40 |
References_xml | – volume: 69 start-page: 259 year: 2002 ident: 2021041919161130700_b11 article-title: Improved shoot regeneration protocol for hairy roots of the legume Astragalus sinicus publication-title: Plant Cell Tissue Organ Cult doi: 10.1023/A:1015624316573 – volume: 422 start-page: 722 year: 2003 ident: 2021041919161130700_b40 article-title: Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis publication-title: Nature doi: 10.1038/nature01527 – volume: 180 start-page: 185 year: 2008 ident: 2021041919161130700_b38 article-title: A nodule-specific plant cysteine proteinase, AsNODF32, is involved in nodule senescence and nitrogen fixation activity of the green manure legume Astragalus sinicus publication-title: New Phytol doi: 10.1111/j.1469-8137.2008.02562.x – volume: 6 start-page: 209 year: 2005 ident: 2021041919161130700_b22 article-title: Lipid traffic: floppy drives and a superhighway publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1591 – volume: 52 start-page: 696 year: 2003 ident: 2021041919161130700_b18 article-title: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood publication-title: Syst Biol doi: 10.1080/10635150390235520 – volume: 37 start-page: 911 year: 1959 ident: 2021041919161130700_b5 article-title: A rapid method of total lipid extraction and purification publication-title: Can J Biochem Physiol doi: 10.1139/o59-099 – volume: 4 start-page: 364 year: 1996 ident: 2021041919161130700_b57 article-title: Biogenesis of the peribacteroid membrane in root nodules publication-title: Trends Microbiol doi: 10.1016/0966-842X(96)10053-6 – volume: 28 start-page: 2731 year: 2011 ident: 2021041919161130700_b51 article-title: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods publication-title: Mol Biol Evol doi: 10.1093/molbev/msr121 – volume: 9 start-page: 86 year: 2008 ident: 2021041919161130700_b7 article-title: Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining publication-title: BMC Genomics doi: 10.1186/1471-2164-9-86 – volume: 101 start-page: 441 year: 1985 ident: 2021041919161130700_b29 article-title: Intracellular transport of phosphatidylcholine to the plasma membrane publication-title: J Cell Biol doi: 10.1083/jcb.101.2.441 – volume: 489 start-page: 55 year: 2001 ident: 2021041919161130700_b45 article-title: Fatty acids bind to the fungal elicitor cryptogein and compete with sterols publication-title: FEBS Lett doi: 10.1016/S0014-5793(01)02078-6 – volume: 100 start-page: 30 year: 1997 ident: 2021041919161130700_b59 article-title: The peribacteroid membrane publication-title: Physiol Plant doi: 10.1111/j.1399-3054.1997.tb03452.x – volume: 5 start-page: 47 year: 1973 ident: 2021041919161130700_b19 article-title: Applications of the acetylene-ethylene assay for measurement of nitrogen fixation publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(73)90093-X – volume: 28 start-page: 1144 year: 2007 ident: 2021041919161130700_b9 article-title: Role of plant lipid transfer proteins in plant cell physiology-a concise review publication-title: Peptides doi: 10.1016/j.peptides.2007.03.004 – volume: 21 start-page: 2811 year: 2009 ident: 2021041919161130700_b39 article-title: Medicago N2-fixing symbiosomes acquire the endocytic identity marker Rab7 but delay the acquisition of vacuolar identity publication-title: Plant Cell doi: 10.1105/tpc.108.064410 – volume: 4 start-page: 373 year: 1992 ident: 2021041919161130700_b56 article-title: Signals in root nodule organogenesis and endocytosis of Rhizobium publication-title: Plant Cell doi: 10.2307/3869439 – volume: 46 start-page: 37 year: 2007 ident: 2021041919161130700_b27 article-title: Glycerolipid transfer for the building of membranes in plant cells publication-title: Prog Lipid Res doi: 10.1016/j.plipres.2006.06.002 – volume: 1 start-page: 65 year: 1997 ident: 2021041919161130700_b42 article-title: Lipid synthesis and metabolism in the plastid envelope publication-title: Physiol Plant doi: 10.1111/j.1399-3054.1997.tb03455.x – volume: 140 start-page: 661 year: 2006 ident: 2021041919161130700_b44 article-title: Architecture of infection thread networks in developing root nodules induced by the symbiotic bacterium Sinorhizobium meliloti on Medicago truncatula publication-title: Plant Physiol doi: 10.1104/pp.105.072876 – volume: 5 start-page: 619 year: 2007 ident: 2021041919161130700_b24 article-title: How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1705 – volume: 276 start-page: 437 year: 1998 ident: 2021041919161130700_b34 article-title: Rice non-specific lipid transfer protein: the 1.6 A crystal structure in the unliganded state reveals a small hydrophobic cavity publication-title: J Mol Biol doi: 10.1006/jmbi.1997.1550 – volume: 267 start-page: 1117 year: 2000 ident: 2021041919161130700_b52 article-title: The wide binding properties of a wheat nonspecific lipid transfer protein. Solution structure of a complex with prostaglandin B2 publication-title: Eur J Biochem doi: 10.1046/j.1432-1327.2000.01109.x – volume: 3 start-page: 189 year: 1995 ident: 2021041919161130700_b50 article-title: High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings publication-title: Structure doi: 10.1016/S0969-2126(01)00149-6 – volume: 98 start-page: 10960 year: 2001 ident: 2021041919161130700_b2 article-title: Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.181331498 – volume: 266 start-page: 8241 year: 1991 ident: 2021041919161130700_b55 article-title: Brefeldin A does not inhibit the movement of phosphatidylethanolamine from its sites for synthesis to the cell surface publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)92968-6 – volume: 167 start-page: 863 year: 2004 ident: 2021041919161130700_b26 article-title: Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria publication-title: J Cell Biol doi: 10.1083/jcb.200407022 – volume: 38 start-page: D211 year: 2010 ident: 2021041919161130700_b16 article-title: The Pfam protein families database publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp985 – volume: 22 start-page: 3726 year: 2010 ident: 2021041919161130700_b60 article-title: Arabidopsis β-ketoacyl-[acyl carrier protein] synthase I is crucial for fatty acid synthesis and plays a role in chloroplast division and embryo development publication-title: Plant Cell doi: 10.1105/tpc.110.075564 – volume: 57 start-page: 2673 year: 2006 ident: 2021041919161130700_b12 article-title: Thirteen nodule-specific or nodule-enhanced genes encoding products homologous to cysteine cluster proteins or plant lipid transfer proteins are identified in Astragalus sinicus L. by suppressive subtractive hybridization publication-title: J Exp Bot doi: 10.1093/jxb/erl030 – volume: 22 start-page: 1577 year: 2009 ident: 2021041919161130700_b47 article-title: The Medicago truncatula N5 gene encoding a root-specific lipid transfer protein is required for the symbiotic interaction with Sinorhizobium meliloti publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-22-12-1577 – volume: 147 start-page: 337 year: 2000 ident: 2021041919161130700_b35 article-title: Nitrogen and phosphorus availability limit N2 fixation in bean publication-title: New Phytol doi: 10.1046/j.1469-8137.2000.00703.x – volume: 14 start-page: 483 year: 2004 ident: 2021041919161130700_b37 article-title: Short-range intracellular trafficking of small molecules across endoplasmic reticulum junctions publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2004.07.017 – volume: 280 start-page: 2397 year: 2005 ident: 2021041919161130700_b4 article-title: Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants publication-title: J Biol Chem doi: 10.1074/jbc.R400032200 – volume: 28 start-page: 732 year: 2000 ident: 2021041919161130700_b41 article-title: The multigenic family of monogalactosyl diacylglycerol synthases publication-title: Biochem Soc Trans doi: 10.1042/bst0280732 – volume: 537 start-page: 128 year: 2003 ident: 2021041919161130700_b1 article-title: Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol publication-title: FEBS Lett doi: 10.1016/S0014-5793(03)00109-1 – volume: 21 start-page: 1230 year: 2009 ident: 2021041919161130700_b14 article-title: Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface publication-title: Plant Cell doi: 10.1105/tpc.108.064451 – volume: 49 start-page: 746 year: 2008 ident: 2021041919161130700_b6 article-title: Subcellular localization and dynamics of a digalactolipid-like epitope in Toxoplasma gondii publication-title: J Lipid Res doi: 10.1194/jlr.M700476-JLR200 – volume: 46 start-page: 569 year: 1990 ident: 2021041919161130700_b58 article-title: Lipid transport pathways in mammalian cells publication-title: Experientia doi: 10.1007/BF01939695 – volume: 11 start-page: 739 year: 2010 ident: 2021041919161130700_b36 article-title: Non-vesicular lipid transport by lipid-transfer proteins and beyond publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2971 – volume: 42 start-page: 355 year: 2004 ident: 2021041919161130700_b25 article-title: The eight-cysteine motif, a versatile structure in plant proteins publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2004.03.009 – volume: 103 start-page: 74 year: 2013 ident: 2021041919161130700_b30 article-title: Lipid profiles in wheat cultivars resistant and susceptible to tan spot and the effect of disease on the profiles publication-title: Phytopathology doi: 10.1094/PHYTO-05-12-0099-R – volume: 17 start-page: 1522 year: 2008 ident: 2021041919161130700_b32 article-title: The structure of “defective in induced resistance” protein of Arabidopsis thaliana, DIR1, reveals a new type of lipid transfer protein publication-title: Protein Sci doi: 10.1110/ps.035972.108 – volume: 15 start-page: 189 year: 2010 ident: 2021041919161130700_b49 article-title: How inefficient rhizobia prolong their existence within nodules publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2010.01.001 – volume: 139 start-page: 411 year: 1984 ident: 2021041919161130700_b28 article-title: Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts publication-title: Eur J Biochem doi: 10.1111/j.1432-1033.1984.tb08020.x – volume: 155 start-page: 367 year: 1983 ident: 2021041919161130700_b21 article-title: Ultrastructural analysis of ineffective alfalfa nodules formed by nif:Tn5 mutants of Rhizobium meliloti publication-title: J Bacteriol doi: 10.1128/JB.155.1.367-380.1983 – volume: 130 start-page: 157 year: 1987 ident: 2021041919161130700_b48 article-title: Rapid isolation of intact peribacteroid envelopes from soybean nodules and demonstration of selective permeability to metabolites publication-title: J Plant Physiol doi: 10.1016/S0176-1617(87)80219-5 – volume: 225 start-page: 541 year: 2007 ident: 2021041919161130700_b10 article-title: Medicago truncatula syntaxin SYP132 defines the symbiosome membrane and infection droplet membrane in root nodules publication-title: Planta doi: 10.1007/s00425-006-0369-y – volume: 279 start-page: 34624 year: 2004 ident: 2021041919161130700_b17 article-title: The galactolipid digalactosyldiacylglycerol accumulates in the peribacteroid membrane of nitrogen-fixing nodules of soybean and Lotus publication-title: J Biol Chem doi: 10.1074/jbc.M404098200 – volume: 15 start-page: 540 year: 2010 ident: 2021041919161130700_b20 article-title: Common and not so common symbiotic entry publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2010.08.001 – volume: 141 start-page: 711 year: 2006 ident: 2021041919161130700_b54 article-title: Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula publication-title: Plant Physiol doi: 10.1104/pp.106.078691 – volume: 25 start-page: 1307 year: 2008 ident: 2021041919161130700_b33 article-title: An improved general amino acid replacement matrix publication-title: Mol Biol Evol doi: 10.1093/molbev/msn067 – volume: 245 start-page: 133 year: 1998 ident: 2021041919161130700_b43 article-title: Elicitins, proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1998.8341 – volume: 15 start-page: 5047 year: 2004 ident: 2021041919161130700_b8 article-title: Modulation of the biological activity of a tobacco LTP1 by lipid complexation publication-title: Mol Biol Cell doi: 10.1091/mbc.e04-07-0575 – volume: 25 start-page: 71 year: 2009 ident: 2021041919161130700_b3 article-title: Mechanisms of lipid transport involved in organelle biogenesis in plant cells publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.042308.113414 – volume: 14 start-page: 755 year: 1998 ident: 2021041919161130700_b15 article-title: Profile hidden Markov models publication-title: Bioinformatics doi: 10.1093/bioinformatics/14.9.755 – volume: 71 start-page: 377 year: 2006 ident: 2021041919161130700_b53 article-title: The role of PHB metabolism in the symbiosis of rhizobia with legumes publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-006-0354-1 – volume: 20 start-page: 360 year: 2008 ident: 2021041919161130700_b13 article-title: Lipid-transfer proteins in biosynthetic pathways publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2008.03.013 – volume: 62 start-page: 4186 year: 1996 ident: 2021041919161130700_b31 article-title: Enzymes of poly-β-hydroxybutyrate metabolism in soybean and chickpea bacteroids publication-title: Appl Environ Microbiol doi: 10.1128/AEM.62.11.4186-4190.1996 – volume: 84 start-page: 835 year: 1987 ident: 2021041919161130700_b23 article-title: Investigation of the role of phosphorus in symbiotic dinitrogen fixation publication-title: Plant Physiol doi: 10.1104/pp.84.3.835 – volume: 480 start-page: 520 year: 2011 ident: 2021041919161130700_b61 article-title: The Medicago genome provides insight into the evolution of rhizobial symbioses publication-title: Nature doi: 10.1038/nature10625 – volume: 13 start-page: 325 year: 2000 ident: 2021041919161130700_b46 article-title: Identification with proteomics of novel proteins associated with the peribacteroid membrane of soybean root nodules publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI.2000.13.3.325 – reference: 15356262 - Mol Biol Cell. 2004 Nov;15(11):5047-52 – reference: 19734435 - Plant Cell. 2009 Sep;21(9):2811-28 – reference: 10707358 - Mol Plant Microbe Interact. 2000 Mar;13(3):325-33 – reference: 23035632 - Phytopathology. 2013 Jan;103(1):74-80 – reference: 16831842 - J Exp Bot. 2006;57(11):2673-85 – reference: 19888823 - Mol Plant Microbe Interact. 2009 Dec;22(12):1577-87 – reference: 20823909 - Nat Rev Mol Cell Biol. 2010 Oct;11(10):739-50 – reference: 19366900 - Plant Cell. 2009 Apr;21(4):1230-8 – reference: 9512714 - J Mol Biol. 1998 Feb 20;276(2):437-48 – reference: 19572810 - Annu Rev Cell Dev Biol. 2009;25:71-91 – reference: 18367465 - Mol Biol Evol. 2008 Jul;25(7):1307-20 – reference: 19920124 - Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22 – reference: 18182683 - J Lipid Res. 2008 Apr;49(4):746-62 – reference: 16384905 - Plant Physiol. 2006 Feb;140(2):661-70 – reference: 10672021 - Eur J Biochem. 2000 Feb;267(4):1117-24 – reference: 11231013 - FEBS Lett. 2001 Jan 26;489(1):55-8 – reference: 16944200 - Planta. 2007 Feb;225(3):541-50 – reference: 15590685 - J Biol Chem. 2005 Jan 28;280(4):2397-400 – reference: 12297652 - Plant Cell. 1992 Apr;4(4):373-382 – reference: 15191737 - Plant Physiol Biochem. 2004 May;42(5):355-65 – reference: 2193820 - Experientia. 1990 Jun 15;46(6):569-79 – reference: 17418913 - Peptides. 2007 May;28(5):1144-53 – reference: 15569715 - J Cell Biol. 2004 Dec 6;167(5):863-74 – reference: 12606044 - FEBS Lett. 2003 Feb 27;537(1-3):128-32 – reference: 21546353 - Mol Biol Evol. 2011 Oct;28(10):2731-9 – reference: 18490149 - Curr Opin Cell Biol. 2008 Aug;20(4):360-70 – reference: 18552128 - Protein Sci. 2008 Sep;17(9):1522-30 – reference: 4040519 - J Cell Biol. 1985 Aug;101(2):441-5 – reference: 22089132 - Nature. 2011 Dec 22;480(7378):520-4 – reference: 15738987 - Nat Rev Mol Cell Biol. 2005 Mar;6(3):209-20 – reference: 16648219 - Plant Physiol. 2006 Jun;141(2):711-20 – reference: 16535445 - Appl Environ Microbiol. 1996 Nov;62(11):4186-90 – reference: 6698022 - Eur J Biochem. 1984 Mar 1;139(2):411-6 – reference: 16703322 - Appl Microbiol Biotechnol. 2006 Jul;71(4):377-86 – reference: 15350976 - Trends Cell Biol. 2004 Sep;14(9):483-90 – reference: 8885172 - Trends Microbiol. 1996 Sep;4(9):364-8 – reference: 16665531 - Plant Physiol. 1987 Jul;84(3):835-40 – reference: 7735835 - Structure. 1995 Feb 15;3(2):189-99 – reference: 18643938 - New Phytol. 2008;180(1):185-92 – reference: 11553816 - Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10960-5 – reference: 17632573 - Nat Rev Microbiol. 2007 Aug;5(8):619-33 – reference: 9918945 - Bioinformatics. 1998;14(9):755-63 – reference: 6575011 - J Bacteriol. 1983 Jul;155(1):367-80 – reference: 16970991 - Prog Lipid Res. 2007 Jan;46(1):37-55 – reference: 9535796 - Biochem Biophys Res Commun. 1998 Apr 7;245(1):133-9 – reference: 15159398 - J Biol Chem. 2004 Aug 13;279(33):34624-30 – reference: 18291034 - BMC Genomics. 2008;9:86 – reference: 20117958 - Trends Plant Sci. 2010 Apr;15(4):189-95 – reference: 20829094 - Trends Plant Sci. 2010 Oct;15(10):540-5 – reference: 12700763 - Nature. 2003 Apr 17;422(6933):722-6 – reference: 13671378 - Can J Biochem Physiol. 1959 Aug;37(8):911-7 – reference: 21081696 - Plant Cell. 2010 Nov;22(11):3726-44 – reference: 2022641 - J Biol Chem. 1991 May 5;266(13):8241-7 – reference: 14530136 - Syst Biol. 2003 Oct;52(5):696-704 – reference: 11171188 - Biochem Soc Trans. 2000 Dec;28(6):732-8 |
SSID | ssj0001314 |
Score | 2.3580832 |
Snippet | Rhizobia in legume root nodules fix nitrogen in symbiosomes, organelle-like structures in which a membrane from the host plant surrounds the symbiotic... A nodule-specific lipid transfer protein contributes to transport to the symbiosome membrane and is required for effective legumerhizobium symbiosis . A nodule-specific lipid transfer protein contributes to transport to the symbiosome membrane and is required for effective legumerhizobium symbiosis . Rhizobia... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1045 |
SubjectTerms | Antibodies Astragalus Astragalus Plant - metabolism Astragalus Plant - microbiology Astragalus Plant - ultrastructure Biological Transport Carrier Proteins - metabolism Cell Membrane - metabolism Cell membranes China Diglycerides - metabolism Fatty acids Gene Knockdown Techniques Infections Intracellular Membranes - metabolism Lipid Metabolism lipid transfer proteins Lipids Membrane Lipids - metabolism MEMBRANES, TRANSPORT, AND BIOENERGETICS Nodules Organ Specificity Organogenesis Phenotype Phylogeny Plant cells Plant Root Nodulation Plant roots Plants Protein Transport Rhizobium - physiology RNA Interference Root Nodules, Plant - growth & development Root Nodules, Plant - metabolism Root Nodules, Plant - microbiology Root Nodules, Plant - ultrastructure Symbiosis |
Title | A Nodule-Specific Lipid Transfer Protein AsE246 Participates in Transport of Plant-Synthesized Lipids to Symbiosome Membrane and Is Essential for Nodule Organogenesis in Chinese Milk Vetch |
URI | https://www.jstor.org/stable/43191786 https://www.ncbi.nlm.nih.gov/pubmed/24367021 https://www.proquest.com/docview/1499127753 https://www.proquest.com/docview/2000112430 https://pubmed.ncbi.nlm.nih.gov/PMC3912078 |
Volume | 164 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2wQM8IG6DcpOREC8lWxI7afLYTUUrdBPSNlSeKsdxIKJNqqWV6H4bP47jW5qUToK9tJXrxGnOV_t8zjnfQeidS4jvcp86MYs4EBSPOywKEweYBwsyzkQoZDby6Vl4ckk_jYPxzu79RtTScpEc8OuteSW3sSq0gV1llux_WLY-KTTAZ7AvvIKF4fWfbNzvnpXpciocVUU-y3lXlqJOtWJ5Jq5kGoCsZglGGPg0BHfRBlGrMKy1srmKhJvCTXbOVwW4hFV-DY6oOplSgDhfzZK8rMoZTAJiBgS70E8dhlV3UMn0pVznQZrr0Rme5Xc5j-ZqJFmmW1RwdD792f0qodL0itXQepNFS0KB23skM5GrlDW2KkZCp3KLfB2UoGfNkV2Aldik6jXOWZmJdfNItX7Lf9muZqvDozY62oLTPsOyAa323pi6nfC_aG5wugSOjnSBogNhp3ffAUocteZ_LaNugO43ZnOgqkHDMwBXNNq-6rhUlkqeywI5B-CihlrHpoHA-UxB0KdSL0-nhG_IfH85PSax54PHtovu-MB51P7A8HPtVnhEC9Xbn1ULxtLD1shS3toM0_K1dLjtNiK1GQ_ccLAuHqIHhhnhvob5I7Qjisfo7lEJ7GX1BP3u4w2sYwVPbLGODdaxxjpuYh1Dc411XGb4L6zrk1V4UeI11rHFOgas42GFa6xjwLq5HtzCuhzJYB1LrGOF9afo8uPg4vjEMZVHHA6EZeGwjAQ0S2Gxc4lIAo_QhId-nIB_nZAs67kxjyLucxKxmJFUcFgVYyooh-_dXkbJPtorykI8Rxj4EqM9loJpPCqSmMVpyLM0heUuiljkd9AHa6MJN7L8sjrMdKLouUsn8zm8k4m2bge9r7vPtR7NTR33lcHrXsAUYq8XhR301iJgAkuJfD4IN7JcVhOPAlkE6AXk5j6-IpEAMLeDnmnU1CNY2HVQr4WnuoOUsm9_U-Q_lKS9gf6LWx_5Et1bzxiv0N7iaileA11YJG_U3-gPLn8aYw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Nodule-Specific+Lipid+Transfer+Protein+AsE246+Participates+in+Transport+of+Plant-Synthesized+Lipids+to+Symbiosome+Membrane+and+Is+Essential+for+Nodule+Organogenesis+in+Chinese+Milk+Vetch&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Lei%2C+Lei&rft.au=Chen%2C+Ling&rft.au=Shi%2C+Xiaofeng&rft.au=Li%2C+Yixing&rft.date=2014-02-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=164&rft.issue=2&rft.spage=1045&rft.epage=1058&rft_id=info:doi/10.1104%2Fpp.113.232637&rft_id=info%3Apmid%2F24367021&rft.externalDocID=PMC3912078 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |