Evidence for brain glial activation in chronic pain patients
Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomo...
Saved in:
Published in | Brain (London, England : 1878) Vol. 138; no. 3; pp. 604 - 615 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.03.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-8950 1460-2156 1460-2156 |
DOI | 10.1093/brain/awu377 |
Cover
Loading…
Abstract | Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand (11)C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for (11)C-PBR28, nine patient-control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29-63 for patients and 28-65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions. |
---|---|
AbstractList | Using integrated PET-MRI, Loggia et al. reveal elevated levels of the translocator protein (TSPO) in patients with chronic pain. As TSPO is a glial marker, these results provide the first demonstration of pain-related glial activation in humans. They also lend support to the pain-protective role of TSPO predicted by animal studies.Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand super(11)C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for super(11)C-PBR28, nine patient-control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29-63 for patients and 28-65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions.Using integrated PET-MRI, Loggia et al. reveal elevated levels of the translocator protein (TSPO) in patients with chronic pain. As TSPO is a glial marker, these results provide the first demonstration of pain-related glial activation in humans. They also lend support to the pain-protective role of TSPO predicted by animal studies. Using integrated PET-MRI, Loggia et al. reveal elevated levels of the translocator protein (TSPO) in patients with chronic pain. As TSPO is a glial marker, these results provide the first demonstration of pain-related glial activation in humans. They also lend support to the pain-protective role of TSPO predicted by animal studies. Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand 11 C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for 11 C-PBR28, nine patient–control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29–63 for patients and 28–65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions. Using integrated PET-MRI, Loggia et al. reveal elevated levels of the translocator protein (TSPO) in patients with chronic pain. As TSPO is a glial marker, these results provide the first demonstration of pain-related glial activation in humans. They also lend support to the pain-protective role of TSPO predicted by animal studies. Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand (11)C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for (11)C-PBR28, nine patient-control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29-63 for patients and 28-65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions. Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand (11)C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for (11)C-PBR28, nine patient-control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29-63 for patients and 28-65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions.Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand (11)C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for (11)C-PBR28, nine patient-control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29-63 for patients and 28-65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions. |
Author | Hsu, Shirley Hill, Elena Ji, Ru-Rong Catana, Ciprian Wasan, Ajay D. Riley, Misha Edwards, Robert R. Izquierdo-Garcia, David Akeju, Oluwaseun Albrecht, Daniel S. Napadow, Vitaly Arabasz, Grae Chonde, Daniel B. Hooker, Jacob M. Vangel, Mark G. Loggia, Marco L. Rosen, Bruce R. Zürcher, Nicole R. |
Author_xml | – sequence: 1 givenname: Marco L. surname: Loggia fullname: Loggia, Marco L. – sequence: 2 givenname: Daniel B. surname: Chonde fullname: Chonde, Daniel B. – sequence: 3 givenname: Oluwaseun surname: Akeju fullname: Akeju, Oluwaseun – sequence: 4 givenname: Grae surname: Arabasz fullname: Arabasz, Grae – sequence: 5 givenname: Ciprian surname: Catana fullname: Catana, Ciprian – sequence: 6 givenname: Robert R. surname: Edwards fullname: Edwards, Robert R. – sequence: 7 givenname: Elena surname: Hill fullname: Hill, Elena – sequence: 8 givenname: Shirley surname: Hsu fullname: Hsu, Shirley – sequence: 9 givenname: David surname: Izquierdo-Garcia fullname: Izquierdo-Garcia, David – sequence: 10 givenname: Ru-Rong surname: Ji fullname: Ji, Ru-Rong – sequence: 11 givenname: Misha surname: Riley fullname: Riley, Misha – sequence: 12 givenname: Ajay D. surname: Wasan fullname: Wasan, Ajay D. – sequence: 13 givenname: Nicole R. surname: Zürcher fullname: Zürcher, Nicole R. – sequence: 14 givenname: Daniel S. surname: Albrecht fullname: Albrecht, Daniel S. – sequence: 15 givenname: Mark G. surname: Vangel fullname: Vangel, Mark G. – sequence: 16 givenname: Bruce R. surname: Rosen fullname: Rosen, Bruce R. – sequence: 17 givenname: Vitaly surname: Napadow fullname: Napadow, Vitaly – sequence: 18 givenname: Jacob M. surname: Hooker fullname: Hooker, Jacob M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25582579$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1LAzEQxYMotlZvnmWPHlybbDabDYgg4hcUvOg5ZJNZG9kmNdlW_O-NrRUVwUMITH7z5uXNHtp23gFChwSfEizouAnKurF6XVDOt9CQlBXOC8KqbTTEGFd5LRgeoL0YnzEmJS2qXTQoGKsLxsUQnV0trQGnIWt9yFZa2VNnVZcp3dul6q13WarpafDO6mz-AcxTGVwf99FOq7oIB5_3CD1eXz1c3uaT-5u7y4tJrhmu-1wBx6w2bVkbMJQrXtIKGiiB8NI0ShvRKpWIugBTCS2KBtOWGFYCaEKKho7Q-Vp3vmhmYHSaHVQn58HOVHiTXln588XZqXzyS1lSKjjHSeD4UyD4lwXEXs5s1NB1yoFfREl4ikaIdP5HK1an7whWJfTou60vP5t0E1CsAR18jAFaqW2_ijS5tJ0kWH6sUK5il-sVpqaTX00b3T_xdw5ToUk |
CitedBy_id | crossref_primary_10_1016_j_phrs_2018_02_008 crossref_primary_10_1097_PR9_0000000000000864 crossref_primary_10_3389_fneur_2021_734821 crossref_primary_10_1002_jnr_23883 crossref_primary_10_1038_s41390_019_0689_9 crossref_primary_10_1186_s12974_019_1451_2 crossref_primary_10_1016_j_neuron_2018_11_009 crossref_primary_10_2519_jospt_2019_8716 crossref_primary_10_1111_ner_12756 crossref_primary_10_3390_ph14080777 crossref_primary_10_1016_j_pneurobio_2022_102365 crossref_primary_10_3389_fphar_2020_600421 crossref_primary_10_3389_fnmol_2022_815945 crossref_primary_10_1155_2015_732014 crossref_primary_10_1016_j_neuroscience_2018_01_048 crossref_primary_10_1038_s41583_025_00914_5 crossref_primary_10_1016_j_bbih_2020_100184 crossref_primary_10_1016_j_jpain_2016_03_001 crossref_primary_10_1002_ana_24791 crossref_primary_10_1016_j_bbih_2021_100364 crossref_primary_10_1016_j_ynpai_2024_100175 crossref_primary_10_1016_j_brainresbull_2019_11_012 crossref_primary_10_1016_j_cct_2023_107087 crossref_primary_10_1016_j_bbi_2024_04_015 crossref_primary_10_1097_j_pain_0000000000003002 crossref_primary_10_1097_j_pain_0000000000003247 crossref_primary_10_1111_ner_12866 crossref_primary_10_1007_s12035_022_02864_w crossref_primary_10_1016_j_jpain_2022_05_001 crossref_primary_10_1016_j_bbi_2016_02_001 crossref_primary_10_1002_mus_26385 crossref_primary_10_1016_j_neuroscience_2017_03_047 crossref_primary_10_1007_s11064_016_2170_z crossref_primary_10_1016_j_pnpbp_2017_07_005 crossref_primary_10_1371_journal_pone_0315341 crossref_primary_10_1021_acschemneuro_8b00072 crossref_primary_10_3389_fmicb_2018_00811 crossref_primary_10_1155_2021_8881557 crossref_primary_10_3389_fpsyt_2017_00103 crossref_primary_10_1016_j_phrs_2018_10_027 crossref_primary_10_1016_j_phrs_2020_105280 crossref_primary_10_1136_bmjopen_2024_092919 crossref_primary_10_1016_j_msksp_2020_102166 crossref_primary_10_1080_08923973_2019_1590846 crossref_primary_10_1515_mr_2023_0034 crossref_primary_10_1016_j_neuroimage_2015_05_014 crossref_primary_10_1111_papr_13051 crossref_primary_10_3389_fphar_2018_01008 crossref_primary_10_1186_s12974_019_1608_z crossref_primary_10_1177_0300060518799902 crossref_primary_10_4103_2221_1691_310200 crossref_primary_10_3389_fpain_2021_646068 crossref_primary_10_1093_cercor_bhac511 crossref_primary_10_1016_j_bbi_2016_07_150 crossref_primary_10_1016_j_brs_2018_05_007 crossref_primary_10_3390_biom11091343 crossref_primary_10_1097_j_pain_0000000000000439 crossref_primary_10_1515_sjpain_2019_0138 crossref_primary_10_1002_jsp2_1345 crossref_primary_10_1186_s13075_015_0783_2 crossref_primary_10_1016_j_jpain_2018_07_002 crossref_primary_10_1161_CIRCIMAGING_116_005613 crossref_primary_10_1016_j_ejphar_2024_176861 crossref_primary_10_2217_fnl_2016_0010 crossref_primary_10_1016_j_neulet_2016_04_067 crossref_primary_10_1016_j_vetimm_2016_12_007 crossref_primary_10_2174_1570159X20666221012112725 crossref_primary_10_1038_s41598_019_51990_4 crossref_primary_10_1093_pm_pnx108 crossref_primary_10_1097_j_pain_0000000000001401 crossref_primary_10_1055_s_0043_1775745 crossref_primary_10_1038_srep22655 crossref_primary_10_1523_JNEUROSCI_2768_15_2016 crossref_primary_10_3389_fgene_2021_687687 crossref_primary_10_1186_s12974_016_0540_8 crossref_primary_10_1176_appi_ajp_2015_14101358 crossref_primary_10_1371_journal_pone_0206807 crossref_primary_10_1016_j_bbi_2017_11_007 crossref_primary_10_1016_j_arr_2022_101767 crossref_primary_10_1016_j_bja_2019_07_016 crossref_primary_10_1016_j_schres_2017_08_063 crossref_primary_10_1111_ejn_15676 crossref_primary_10_1212_NXI_0000000000001144 crossref_primary_10_1213_ANE_0000000000004063 crossref_primary_10_1097_AJP_0000000000001008 crossref_primary_10_1016_j_neures_2024_12_005 crossref_primary_10_3724_SP_J_1329_2024_03003 crossref_primary_10_1002_pmic_202100137 crossref_primary_10_3389_fnmol_2022_1032617 crossref_primary_10_1016_j_neuroscience_2018_07_033 crossref_primary_10_1136_bmjopen_2022_063613 crossref_primary_10_1016_S2665_9913_21_00032_1 crossref_primary_10_3389_fneur_2018_01033 crossref_primary_10_1055_s_0040_1713607 crossref_primary_10_1097_AJP_0000000000001250 crossref_primary_10_1097_j_pain_0000000000002480 crossref_primary_10_1016_j_psyneuen_2016_05_017 crossref_primary_10_1002_ana_24853 crossref_primary_10_1016_j_bcp_2020_114309 crossref_primary_10_1016_j_euroneuro_2019_12_106 crossref_primary_10_1097_ACO_0000000000000616 crossref_primary_10_1177_17448069241301628 crossref_primary_10_1002_jnr_25199 crossref_primary_10_1007_s11307_017_1129_z crossref_primary_10_1016_j_bbi_2020_01_020 crossref_primary_10_2519_jospt_2019_8489 crossref_primary_10_1097_j_pain_0000000000001264 crossref_primary_10_1016_j_ebiom_2019_04_032 crossref_primary_10_1016_j_pnpbp_2018_01_017 crossref_primary_10_1097_j_pain_0000000000003447 crossref_primary_10_1002_ejp_2313 crossref_primary_10_1002_mus_26620 crossref_primary_10_1016_j_joca_2020_09_002 crossref_primary_10_1177_0271678X17747189 crossref_primary_10_3390_jcm13030644 crossref_primary_10_1016_j_intimp_2022_109544 crossref_primary_10_3389_fphar_2024_1368634 crossref_primary_10_1016_j_pnpbp_2019_02_005 crossref_primary_10_1080_14728222_2016_1214716 crossref_primary_10_1016_j_bbi_2019_04_033 crossref_primary_10_1038_s41467_019_11031_0 crossref_primary_10_1177_1744806916636385 crossref_primary_10_1111_aej_12250 crossref_primary_10_1523_JNEUROSCI_4036_14_2015 crossref_primary_10_3390_ijms24044114 crossref_primary_10_1002_ejp_1304 crossref_primary_10_1097_j_pain_0000000000001616 crossref_primary_10_1186_s12990_015_0066_6 crossref_primary_10_2967_jnumed_118_217901 crossref_primary_10_1177_17448069231203090 crossref_primary_10_1016_j_bbi_2015_12_022 crossref_primary_10_1136_bmjopen_2021_059723 crossref_primary_10_1093_ptj_pzab198 crossref_primary_10_1097_j_pain_0000000000003114 crossref_primary_10_1155_2017_9383184 crossref_primary_10_2967_jnumed_116_178335 crossref_primary_10_1007_s12474_018_00208_w crossref_primary_10_1038_s41380_023_02294_7 crossref_primary_10_1038_srep14329 crossref_primary_10_3390_cells13070606 crossref_primary_10_1016_j_jpain_2015_10_019 crossref_primary_10_2147_JPR_S246883 crossref_primary_10_1097_j_pain_0000000000001171 crossref_primary_10_1111_jnc_14944 crossref_primary_10_1093_brain_awx339 crossref_primary_10_1016_j_bjpt_2023_100506 crossref_primary_10_3390_healthcare6040129 crossref_primary_10_1007_s00259_021_05248_9 crossref_primary_10_1007_s00259_021_05309_z crossref_primary_10_3390_antiox10071074 crossref_primary_10_1002_ejp_1558 crossref_primary_10_1016_j_neubiorev_2018_02_015 crossref_primary_10_1016_j_nicl_2015_01_009 crossref_primary_10_1097_j_pain_0000000000001607 crossref_primary_10_1007_s00787_018_1212_2 crossref_primary_10_1096_fj_201902024 crossref_primary_10_1007_s11926_019_0870_5 crossref_primary_10_1016_j_phrs_2021_105957 crossref_primary_10_3390_brainsci14080741 crossref_primary_10_1111_ner_12964 crossref_primary_10_1097_ALN_0000000000002130 crossref_primary_10_1016_j_mehy_2017_02_011 crossref_primary_10_1038_s41380_020_0682_z crossref_primary_10_1093_pm_pnaa378 crossref_primary_10_1097_PR9_0000000000000629 crossref_primary_10_1016_j_bbi_2024_08_057 crossref_primary_10_1016_j_bbih_2021_100336 crossref_primary_10_1016_j_nicl_2017_11_014 crossref_primary_10_1016_j_bbi_2021_06_005 crossref_primary_10_14412_1996_7012_2018_3_53_60 crossref_primary_10_1097_j_pain_0000000000003342 crossref_primary_10_3389_fnimg_2023_1137848 crossref_primary_10_3390_ijms22105345 crossref_primary_10_1002_ana_25731 crossref_primary_10_1038_s41380_019_0433_1 crossref_primary_10_2174_1381612825666190709204107 crossref_primary_10_1155_2018_9347696 crossref_primary_10_3389_fimmu_2019_03061 crossref_primary_10_1002_glia_23831 crossref_primary_10_1016_j_brainres_2017_02_001 crossref_primary_10_1186_s13041_017_0289_8 crossref_primary_10_1002_glia_22986 crossref_primary_10_1038_s41598_024_55290_4 crossref_primary_10_1038_s41582_023_00777_3 crossref_primary_10_3389_fnagi_2016_00003 crossref_primary_10_1212_WNL_0000000000007371 crossref_primary_10_1136_bmjopen_2021_055748 crossref_primary_10_1016_j_jneuroim_2019_577000 crossref_primary_10_1016_j_ejphar_2016_11_031 crossref_primary_10_1016_j_jtos_2017_05_002 crossref_primary_10_1093_pm_pnx153 crossref_primary_10_1016_j_mric_2017_01_002 crossref_primary_10_1016_j_neubiorev_2021_08_013 crossref_primary_10_1016_j_neuroimage_2020_116656 crossref_primary_10_1016_j_ejphar_2018_06_009 crossref_primary_10_1016_j_neuroimage_2020_116899 crossref_primary_10_1097_ACO_0000000000000373 crossref_primary_10_3390_ijms21113764 crossref_primary_10_1016_j_neuroimage_2017_12_021 crossref_primary_10_3390_cells12060965 crossref_primary_10_1016_j_neulet_2017_07_023 crossref_primary_10_1097_j_pain_0000000000000389 crossref_primary_10_1016_j_jpain_2024_03_005 crossref_primary_10_1016_j_neubiorev_2021_01_023 crossref_primary_10_1016_j_preteyeres_2021_100974 crossref_primary_10_3389_fphar_2021_649807 crossref_primary_10_1213_ANE_0000000000004033 crossref_primary_10_1016_j_clinbiomech_2018_12_010 crossref_primary_10_1080_14737175_2021_1947797 crossref_primary_10_1021_acschemneuro_6b00056 crossref_primary_10_1186_s12974_018_1378_z crossref_primary_10_1097_j_pain_0000000000001903 crossref_primary_10_1155_2015_205985 crossref_primary_10_1016_j_cmpb_2024_108375 crossref_primary_10_1093_cei_uxab032 crossref_primary_10_3390_ijms241511944 crossref_primary_10_11154_pain_32_239 crossref_primary_10_1016_j_expneurol_2022_114146 crossref_primary_10_1016_j_neubiorev_2021_12_005 crossref_primary_10_1080_14728222_2017_1353603 crossref_primary_10_1016_j_joca_2017_02_798 crossref_primary_10_1016_j_bbi_2023_12_016 crossref_primary_10_1007_s00259_021_05425_w crossref_primary_10_1016_j_jpain_2024_104689 crossref_primary_10_1097_SPC_0000000000000365 crossref_primary_10_1111_aas_14278 crossref_primary_10_3390_antiox9010031 crossref_primary_10_1111_ner_12586 crossref_primary_10_1016_j_celrep_2016_04_063 crossref_primary_10_1016_j_lfs_2016_11_030 crossref_primary_10_1038_s41467_018_04648_0 crossref_primary_10_1016_j_jpain_2016_01_001 crossref_primary_10_1016_j_nicl_2017_10_024 crossref_primary_10_1097_j_pain_0000000000002108 crossref_primary_10_1080_14728222_2020_1784142 crossref_primary_10_3748_wjg_v27_i9_794 crossref_primary_10_1097_j_pain_0000000000001815 crossref_primary_10_3233_JAD_200099 crossref_primary_10_1016_j_cophys_2019_03_008 crossref_primary_10_1038_s41582_020_0362_2 crossref_primary_10_1016_j_jneuroim_2020_577249 crossref_primary_10_1177_0022034516653604 crossref_primary_10_1098_rsos_200260 crossref_primary_10_1172_JCI123743 crossref_primary_10_1002_med_21726 crossref_primary_10_1016_j_douler_2020_03_006 crossref_primary_10_1080_14656566_2022_2071606 crossref_primary_10_1016_j_jneuroim_2015_07_004 crossref_primary_10_2217_pmt_16_4 crossref_primary_10_3389_fncel_2021_745178 crossref_primary_10_1016_j_jpain_2017_03_008 crossref_primary_10_3390_jcm8060890 crossref_primary_10_1016_j_neuroscience_2017_09_042 crossref_primary_10_1155_2015_130639 crossref_primary_10_7759_cureus_41747 crossref_primary_10_1007_s40122_018_0094_9 crossref_primary_10_3389_fnhum_2024_1463935 crossref_primary_10_1016_j_jot_2023_07_003 crossref_primary_10_1016_j_phrs_2020_105339 crossref_primary_10_12688_wellcomeopenres_20153_1 crossref_primary_10_1097_j_pain_0000000000002695 crossref_primary_10_1002_jbt_70071 crossref_primary_10_1016_j_bbi_2016_04_012 crossref_primary_10_1097_j_pain_0000000000003305 crossref_primary_10_1038_nrn_2016_162 crossref_primary_10_1007_s42399_021_00772_z crossref_primary_10_1212_WNL_0000000000003427 crossref_primary_10_1097_MD_0000000000005735 crossref_primary_10_1038_s41582_019_0216_y crossref_primary_10_1177_0269881120913154 crossref_primary_10_1084_jem_20221687 crossref_primary_10_3389_fpain_2022_869215 crossref_primary_10_1016_j_bcp_2019_08_016 crossref_primary_10_1016_j_nicl_2020_102346 crossref_primary_10_1177_2472555217716912 crossref_primary_10_1016_j_bbi_2024_01_012 crossref_primary_10_1111_srt_13867 crossref_primary_10_1186_s12974_022_02574_z crossref_primary_10_1080_14656566_2019_1647166 crossref_primary_10_3389_fncel_2020_594216 crossref_primary_10_2147_JPR_S306280 crossref_primary_10_1186_s13063_021_05776_7 crossref_primary_10_1016_j_coph_2015_09_006 crossref_primary_10_1016_j_nicl_2018_04_015 crossref_primary_10_1016_S1474_4422_20_30346_X crossref_primary_10_3390_biomedicines8090324 crossref_primary_10_1007_s40473_017_0126_5 crossref_primary_10_1093_brain_awaf029 crossref_primary_10_1097_j_pain_0000000000003175 crossref_primary_10_1186_s10194_024_01827_x crossref_primary_10_3389_fpain_2021_684684 crossref_primary_10_1016_j_cophys_2019_06_006 crossref_primary_10_1016_j_bbi_2022_06_009 crossref_primary_10_1089_neu_2018_6149 crossref_primary_10_1016_j_nbd_2021_105424 crossref_primary_10_1186_s10194_021_01271_1 crossref_primary_10_1177_0022034516657070 crossref_primary_10_1007_s12264_022_00961_3 crossref_primary_10_1016_j_pupt_2017_02_003 crossref_primary_10_1111_jabr_12123 crossref_primary_10_1093_pm_pnx126 crossref_primary_10_1016_j_nicl_2022_103309 crossref_primary_10_1523_JNEUROSCI_1650_20_2020 crossref_primary_10_1177_0271678X211023387 crossref_primary_10_1136_rapm_2024_106030 crossref_primary_10_1186_s13023_021_01709_4 crossref_primary_10_12688_f1000research_13548_1 crossref_primary_10_1002_ana_24909 crossref_primary_10_7759_cureus_43555 crossref_primary_10_1097_PR9_0000000000000927 crossref_primary_10_1093_brain_awab336 crossref_primary_10_1148_radiol_2016160293 crossref_primary_10_1093_rheumatology_keaa565 crossref_primary_10_3344_kjp_2021_34_2_176 crossref_primary_10_3389_fneur_2019_01110 crossref_primary_10_1097_j_pain_0000000000002198 crossref_primary_10_1002_ptr_5849 crossref_primary_10_1016_j_bbi_2018_09_010 crossref_primary_10_1016_j_phrs_2025_107585 crossref_primary_10_3389_fncel_2023_1163171 crossref_primary_10_3389_fpain_2022_1018800 crossref_primary_10_1007_s10439_020_02556_3 crossref_primary_10_1016_j_bbi_2018_09_018 crossref_primary_10_1097_AJP_0000000000000535 crossref_primary_10_3390_children3040040 crossref_primary_10_1080_14728222_2022_2137404 crossref_primary_10_13109_zptm_2018_64_4_365 crossref_primary_10_2967_jnumed_119_229443 crossref_primary_10_1007_s00540_018_2579_4 crossref_primary_10_1016_j_neubiorev_2016_05_006 crossref_primary_10_1097_AJP_0000000000001073 crossref_primary_10_1080_00207454_2016_1257992 crossref_primary_10_1016_j_psyneuen_2016_07_202 crossref_primary_10_1016_j_brainresbull_2019_02_011 crossref_primary_10_1002_JLB_3MR0520_695R crossref_primary_10_3389_fpsyt_2021_682056 crossref_primary_10_1038_mp_2017_10 crossref_primary_10_1016_j_ynpai_2024_100150 crossref_primary_10_1038_tp_2016_168 crossref_primary_10_1186_s12871_020_00985_0 crossref_primary_10_1038_nrn_2018_2 crossref_primary_10_1038_s41583_019_0218_1 crossref_primary_10_1002_ejp_1838 crossref_primary_10_1007_s12474_017_0156_5 crossref_primary_10_1093_pm_pny111 crossref_primary_10_1111_bph_15994 crossref_primary_10_2147_JPR_S309872 crossref_primary_10_1155_2015_292805 crossref_primary_10_2147_JPR_S416253 crossref_primary_10_1177_0271678X241290912 crossref_primary_10_1097_j_pain_0000000000002534 crossref_primary_10_3389_fmed_2020_589079 crossref_primary_10_1007_s40336_015_0142_y crossref_primary_10_3166_dea_2020_0082 crossref_primary_10_3389_fnins_2024_1395769 crossref_primary_10_1016_j_jneuroim_2016_05_005 crossref_primary_10_1097_SPC_0000000000000342 |
Cites_doi | 10.2174/157488406778249334 10.1016/j.pain.2005.02.009 10.1016/0028-3908(94)90051-5 10.1002/1097-4679(198407)40:4<909::AID-JCLP2270400407>3.0.CO;2-J 10.1093/toxsci/kfj172 10.1186/1744-8069-6-22 10.2967/jnumed.112.118885 10.1016/S1474-4422(12)70134-5 10.1016/0304-3959(87)91074-8 10.1016/j.neuroimage.2008.03.061 10.2967/jnumed.111.091694 10.1523/JNEUROSCI.0003-06.2006 10.1038/nrn2591 10.1016/j.neuroimage.2009.11.056 10.1038/nature01786 10.1111/j.1600-0447.1983.tb09716.x 10.2967/jnumed.107.044842 10.1016/j.expneurol.2011.11.006 10.1016/j.neulet.2011.04.077 10.1016/j.nurt.2007.04.006 10.1016/j.bbi.2008.08.004 10.1016/j.pain.2013.03.028 10.1016/S0304-3959(97)03369-1 10.1093/brain/awh161 10.1038/nm.2234 10.1016/j.nucmedbio.2013.06.008 10.1007/s11481-014-9540-6 10.1017/S1740925X07000403 10.1002/(SICI)1097-4547(19971015)50:2<345::AID-JNR22>3.0.CO;2-5 10.1038/nn.3295 10.1371/journal.pone.0074052 10.1038/jcbfm.2011.147 10.1038/jcbfm.2012.131 10.1002/hbm.1058 10.1038/nrd3295 10.1016/j.neuroimage.2004.07.051 10.1016/j.jsbmb.2014.02.017 10.1093/bmb/65.1.121 10.1016/j.jneuroim.2011.10.013 10.1186/1742-2094-9-242 10.1023/A:1018567510105 10.1038/nn.3155 10.1016/j.expneurol.2012.01.006 10.1523/JNEUROSCI.5628-11.2012 10.1038/sj.jcbfm.9600500 10.1016/j.tips.2009.08.002 10.1602/neurorx.2.4.683 10.1038/jcbfm.2009.205 10.1523/JNEUROSCI.1609-13.2013 10.2217/pmt.12.28 10.1523/JNEUROSCI.3153-13.2014 10.1523/JNEUROSCI.2900-11.2012 10.1016/j.expneurol.2011.08.018 10.1097/00007632-199904150-00003 10.1016/j.neuint.2008.10.001 10.1016/j.neulet.2007.08.053 10.1016/j.pain.2007.05.002 10.1523/JNEUROSCI.0176-07.2007 10.1016/j.brainres.2009.06.043 10.1002/art.37734 10.1007/s002219900273 10.1016/j.mce.2010.06.013 10.1126/science.1175055 10.1016/j.brainres.2007.04.054 10.1002/hbm.22451 10.1523/JNEUROSCI.2312-08.2008 10.1016/j.bbi.2006.10.017 10.1152/physrev.00041.2013 10.1016/j.pain.2012.07.014 10.1006/nimg.1998.0395 10.1093/brain/123.11.2321 10.1038/nature04223 10.1186/1744-8069-3-33 10.1111/j.1365-2990.2008.01006.x 10.1124/jpet.103.052407 10.1016/j.pain.2013.06.022 10.1111/j.1460-9568.2004.03593.x 10.1523/JNEUROSCI.3338-07.2008 10.1073/pnas.0711622105 10.1016/j.neulet.2013.12.071 10.1016/j.neulet.2006.09.093 10.1016/j.bbi.2006.10.011 10.1523/JNEUROSCI.3365-09.2009 10.1111/j.1526-4637.2009.00613.x 10.1021/jm0707370 10.2967/jnumed.113.136341 10.1016/j.tips.2006.06.005 10.1093/brain/awu140 10.1097/00002508-199706000-00011 10.1016/0165-0173(94)00015-H 10.1523/JNEUROSCI.0324-12.2013 10.1046/j.1471-4159.2000.0741694.x 10.1016/j.jpain.2009.09.001 |
ContentType | Journal Article |
Copyright | The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2015 |
Copyright_xml | – notice: The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1093/brain/awu377 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 615 |
ExternalDocumentID | PMC4339770 25582579 10_1093_brain_awu377 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: S10 RR022976 – fundername: NINDS NIH HHS grantid: R21 NS087472 – fundername: NCATS NIH HHS grantid: UL1 TR001102 – fundername: NIBIB NIH HHS grantid: R01 EB014894 – fundername: NIDCR NIH HHS grantid: R01 DE022743 – fundername: NIBIB NIH HHS grantid: T32 EB013180 – fundername: NCRR NIH HHS grantid: S10 RR023385 – fundername: NCATS NIH HHS grantid: 8UL1TR000170-05 – fundername: NCRR NIH HHS grantid: UL1 RR025758 – fundername: NCRR NIH HHS grantid: 1UL1RR025758-04 |
GroupedDBID | --- -E4 -~X .2P .I3 .XZ .ZR 0R~ 1TH 23N 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWTL AAYXX ABDFA ABEJV ABEUO ABGNP ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABQNK ABVGC ABWST ABXVV ABXZS ABZBJ ACGFS ACIWK ACPRK ACUFI ACUTJ ACUTO ACYHN ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFXAL AGINJ AGKEF AGORE AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AIJHB AJBYB AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM C45 CDBKE CITATION COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN ENERS F5P F9B FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MHKGH ML0 N9A NGC NLBLG NOMLY NOYVH NU- NVLIB O9- OAUYM OAWHX OBOKY OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO TCURE TEORI TJX TLC TR2 VVN W8F WH7 WOQ X7H YAYTL YKOAZ YSK YXANX ZKX ~91 .55 .GJ 1CY 354 3O- 41~ 6.Y AAGKA AAPGJ AAQQT AAWDT AAYJJ ABDPE ABNGD ABQTQ ABSAR ABSMQ ACBNA ACFRR ACPQN ACZBC ADJQC ADRIX AEHUL AEKPW AFFNX AFFQV AFSHK AFXEN AFYAG AGKRT AGMDO AI. ANFBD APJGH AQDSO AQKUS ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BZKNY C1A CAG CGR CUY CVF CXTWN DFGAJ ECM EIF EIHJH ELUNK FEDTE HVGLF M49 MBLQV MBTAY MVM N4W NPM NTWIH O0~ OHT O~Y PB- QBD RIG RNI RZF RZO TCN TMA VH1 VXZ X7M XJT XOL YQJ ZCG ZGI ZKB ZXP 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c508t-ae7058df48ded37a7436ebe4e174dbacd9faa05882ed69c92b03f1d54eec112b3 |
ISSN | 0006-8950 1460-2156 |
IngestDate | Thu Aug 21 13:55:12 EDT 2025 Fri Jul 11 13:03:36 EDT 2025 Thu Jul 10 23:34:58 EDT 2025 Wed Feb 19 02:43:38 EST 2025 Tue Jul 01 00:46:07 EDT 2025 Thu Apr 24 22:53:12 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | 11C-PBR28 TSPO chronic pain translocator protein (18kDa) neuroinflammation glia |
Language | English |
License | The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c508t-ae7058df48ded37a7436ebe4e174dbacd9faa05882ed69c92b03f1d54eec112b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/brain/article-pdf/138/3/604/13799185/awu377.pdf |
PMID | 25582579 |
PQID | 1658705956 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4339770 proquest_miscellaneous_1701499149 proquest_miscellaneous_1658705956 pubmed_primary_25582579 crossref_citationtrail_10_1093_brain_awu377 crossref_primary_10_1093_brain_awu377 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-01 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2015 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Calvo ( key 20170425172549_awu377-B16) 2012; 11 Pekny ( key 20170425172549_awu377-B66) 2014; 94 Ji ( key 20170425172549_awu377-B40) 2013; 154 Tracey ( key 20170425172549_awu377-B80) 2009; 10 Raghavendra ( key 20170425172549_awu377-B68) 2003; 306 Del Valle ( key 20170425172549_awu377-B24) 2009; 23 Rojas ( key 20170425172549_awu377-B70) 2007; 27 Mika ( key 20170425172549_awu377-B61) 2008; 60 Shi ( key 20170425172549_awu377-B75) 2012; 32 Chen ( key 20170425172549_awu377-B20) 2014; 137 Okada-Ogawa ( key 20170425172549_awu377-B63) 2009; 29 Martin ( key 20170425172549_awu377-B56) 2010; 30 Turner ( key 20170425172549_awu377-B82) 1984; 40 Echeverry ( key 20170425172549_awu377-B25) 2008; 135 Martinez ( key 20170425172549_awu377-B57) 2013; 154 Meller ( key 20170425172549_awu377-B59) 1994; 33 Owen ( key 20170425172549_awu377-B64) 2012; 32 Ji ( key 20170425172549_awu377-B43) 2007; 3 Rupprecht ( key 20170425172549_awu377-B72) 2010; 9 Yoder ( key 20170425172549_awu377-B94) 2013; 54 Landry ( key 20170425172549_awu377-B49) 2012; 234 Wei ( key 20170425172549_awu377-B91) 2013; 33 Eidson ( key 20170425172549_awu377-B26) 2013; 33 Watkins ( key 20170425172549_awu377-B90) 1997; 71 Batarseh ( key 20170425172549_awu377-B6) 2010; 327 Cagnin ( key 20170425172549_awu377-B14) 2007; 4 Smith ( key 20170425172549_awu377-B76) 2004; 23 Kuhlmann ( key 20170425172549_awu377-B48) 2000; 74 Younger ( key 20170425172549_awu377-B92) 2009; 10 Ledeboer ( key 20170425172549_awu377-B51) 2005; 115 Rolls ( key 20170425172549_awu377-B71) 2009; 10 Chen ( key 20170425172549_awu377-B21) 2006; 91 Beggs ( key 20170425172549_awu377-B7) 2007; 21 Venneti ( key 20170425172549_awu377-B84) 2007; 426 Geisser ( key 20170425172549_awu377-B31) 1997; 13 Smith ( key 20170425172549_awu377-B77) 2009; 44 Kreisl ( key 20170425172549_awu377-B46) 2010; 49 Rupprecht ( key 20170425172549_awu377-B73) 2009; 325 Gomez-Mancilla ( key 20170425172549_awu377-B32) 2005; 2 Watkins ( key 20170425172549_awu377-B89) 2009; 30 Brown ( key 20170425172549_awu377-B13) 2007; 48 Papadopoulos ( key 20170425172549_awu377-B65) 2006; 27 de Vries ( key 20170425172549_awu377-B79) 2006; 1 Abourbeh ( key 20170425172549_awu377-B1) 2012 Verge ( key 20170425172549_awu377-B85) 2004; 20 Gehrmann ( key 20170425172549_awu377-B30) 1995; 20 Shao ( key 20170425172549_awu377-B74) 2013; 40 Hains ( key 20170425172549_awu377-B35) 2006; 26 Leblanc ( key 20170425172549_awu377-B50) 2011; 498 Ferrini ( key 20170425172549_awu377-B27) 2013; 16 Nichols ( key 20170425172549_awu377-B62) 2002; 15 Dale ( key 20170425172549_awu377-B23) 1999; 9 Liu ( key 20170425172549_awu377-B52) 2000; 131 Catana ( key 20170425172549_awu377-B17) 2008; 105 Kreisl ( key 20170425172549_awu377-B47) 2013; 33 Banati ( key 20170425172549_awu377-B3) 1997; 26 Watkins ( key 20170425172549_awu377-B88) 2007; 21 Banati ( key 20170425172549_awu377-B5) 2003; 65 Brisby ( key 20170425172549_awu377-B10) 1999; 24 Wang ( key 20170425172549_awu377-B86) 2014; 34 Banati ( key 20170425172549_awu377-B4) 2000; 123 Melzack ( key 20170425172549_awu377-B60) 1987; 30 Kadetoff ( key 20170425172549_awu377-B44) 2012; 242 Beggs ( key 20170425172549_awu377-B8) 2012; 15 Bromander ( key 20170425172549_awu377-B12) 2012; 9 Izquierdo-Garcia ( key 20170425172549_awu377-B39) 2014; 55 Watkins ( key 20170425172549_awu377-B87) 2012; 234 Boendermaker ( key 20170425172549_awu377-B9) 2014; 35 Vowinckel ( key 20170425172549_awu377-B78) 1997; 50 Younger ( key 20170425172549_awu377-B93) 2013; 65 Loggia ( key 20170425172549_awu377-B54) 2012; 153 Ren ( key 20170425172549_awu377-B69) 2010; 16 Uceyler ( key 20170425172549_awu377-B83) 2012; 2 Tsuda ( key 20170425172549_awu377-B81) 2003; 424 Zigmond ( key 20170425172549_awu377-B95) 1983; 67 Friston ( key 20170425172549_awu377-B28) 2003 Fujita ( key 20170425172549_awu377-B29) 2013; 8 Imaizumi ( key 20170425172549_awu377-B38) 2007; 411 Coull ( key 20170425172549_awu377-B22) 2005; 438 Hirvonen ( key 20170425172549_awu377-B37) 2012; 53 Pekny ( key 20170425172549_awu377-B67) 2014; 565 Gulyas ( key 20170425172549_awu377-B33) 2009; 54 Kawasaki ( key 20170425172549_awu377-B45) 2008; 28 Briard ( key 20170425172549_awu377-B11) 2008; 51 Calvo ( key 20170425172549_awu377-B15) 2012; 234 Maeda ( key 20170425172549_awu377-B55) 2007; 1157 Ji ( key 20170425172549_awu377-B42) 2008; 28 Liu ( key 20170425172549_awu377-B53) 2014; 143 Guo ( key 20170425172549_awu377-B34) 2007; 27 Cosenza-Nashat ( key 20170425172549_awu377-B18) 2009; 35 Hernstadt ( key 20170425172549_awu377-B36) 2009; 1286 Bae ( key 20170425172549_awu377-B2) 2014; 9 Mattioli ( key 20170425172549_awu377-B58) 2010; 6 Ji ( key 20170425172549_awu377-B41) 2006; 2 Chen ( key 20170425172549_awu377-B19) 2004; 127 15836971 - Pain. 2005 May;115(1-2):71-83 22883925 - Pain. 2012 Oct;153(10):2140-51 19948230 - Neuroimage. 2010 Feb 15;49(4):2924-32 24406153 - Neurosci Lett. 2014 Apr 17;565:30-8 7532831 - Neuropharmacology. 1994 Nov;33(11):1471-8 24599476 - J Neurosci. 2014 Mar 5;34(10):3793-806 23792284 - Pain. 2013 Dec;154 Suppl 1:S10-28 22875918 - J Neurosci. 2012 Aug 8;32(32):10833-40 17457364 - J Cereb Blood Flow Metab. 2007 Dec;27(12):1975-86 17888571 - Neurosci Lett. 2007 Oct 16;426(2):117-22 16822554 - Trends Pharmacol Sci. 2006 Aug;27(8):402-9 22119425 - Exp Neurol. 2012 Apr;234(2):340-50 19762094 - Trends Pharmacol Sci. 2009 Nov;30(11):581-91 19794397 - J Cereb Blood Flow Metab. 2010 Jan;30(1):230-41 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 18501637 - Neuroimage. 2009 Jan 1;44(1):83-98 19878862 - J Pain. 2009 Nov;10(11):1113-20 24687172 - J Neuroimmune Pharmacol. 2014 Jun;9(3):424-37 6880820 - Acta Psychiatr Scand. 1983 Jun;67(6):361-70 9931268 - Neuroimage. 1999 Feb;9(2):179-94 18319342 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3705-10 19453963 - Pain Med. 2009 May-Jun;10(4):663-72 24654725 - Pain Manag. 2012 Jul;2(4):391-8 18786633 - Brain Behav Immun. 2009 Jan;23(1):85-91 22269389 - Exp Neurol. 2012 Apr;234(2):351-3 15069023 - Brain. 2004 Jun;127(Pt 6):1379-92 12734393 - J Pharmacol Exp Ther. 2003 Aug;306(2):624-30 3670870 - Pain. 1987 Aug;30(2):191-7 24607808 - J Steroid Biochem Mol Biol. 2014 Sep;143:130-40 11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25 19229242 - Nat Rev Neurosci. 2009 Mar;10(3):235-41 22837036 - Nat Neurosci. 2012 Aug;15(8):1068-73 17599710 - Neurotherapeutics. 2007 Jul;4(3):443-52 12697620 - Br Med Bull. 2003;65:121-31 16489375 - NeuroRx. 2005 Oct;2(4):683-95 18067245 - J Med Chem. 2008 Jan 10;51(1):17-30 15341587 - Eur J Neurosci. 2004 Sep;20(5):1150-60 19020019 - J Neurosci. 2008 Nov 19;28(47):12255-67 24464423 - Hum Brain Mapp. 2014 Aug;35(8):3962-71 9373043 - J Neurosci Res. 1997 Oct 15;50(2):345-53 10759172 - Exp Brain Res. 2000 Mar;131(1):64-73 18984021 - Neurochem Int. 2009 Jan;54(1):28-36 23095517 - J Neuroinflammation. 2012;9:242 22238156 - J Nucl Med. 2012 Feb;53(2):234-40 23785173 - J Nucl Med. 2013 Aug;54(8):1320-2 24919967 - Brain. 2014 Aug;137(Pt 8):2193-209 10222523 - Spine (Phila Pa 1976). 1999 Apr 15;24(8):742-6 20398374 - Mol Pain. 2010;6:22 22008728 - J Cereb Blood Flow Metab. 2012 Jan;32(1):1-5 9186024 - Clin J Pain. 1997 Jun;13(2):163-70 9231865 - Pain. 1997 Jul;71(3):225-35 17267172 - Brain Behav Immun. 2007 Jul;21(5):624-33 17537972 - J Neurosci. 2007 May 30;27(22):6006-18 17974036 - Mol Pain. 2007;3:33 24089500 - J Neurosci. 2013 Oct 2;33(40):15952-63 16624951 - J Neurosci. 2006 Apr 19;26(16):4308-17 16554315 - Toxicol Sci. 2006 Jun;91(2):532-9 17540348 - Brain Res. 2007 Jul 9;1157:100-11 22710756 - Lancet Neurol. 2012 Jul;11(7):629-42 12917686 - Nature. 2003 Aug 14;424(6950):778-83 23359310 - Arthritis Rheum. 2013 Feb;65(2):529-38 22968319 - J Cereb Blood Flow Metab. 2013 Jan;33(1):53-8 6480856 - J Clin Psychol. 1984 Jul;40(4):909-13 11050032 - Brain. 2000 Nov;123 ( Pt 11):2321-37 17175134 - Brain Behav Immun. 2007 Feb;21(2):131-46 21571034 - Neurosci Lett. 2011 Jul 8;498(2):138-42 16355225 - Nature. 2005 Dec 15;438(7070):1017-21 17127001 - Neurosci Lett. 2007 Jan 16;411(3):200-5 21893056 - Exp Neurol. 2012 Apr;234(2):271-82 19555675 - Brain Res. 2009 Aug 25;1286:42-52 17560721 - Pain. 2008 Mar;135(1-2):37-47 23891203 - Nucl Med Biol. 2013 Oct;40(7):906-11 18622054 - Pharmacol Rep. 2008 May-Jun;60(3):297-307 22539835 - J Neurosci. 2012 Apr 25;32(17):5728-36 10737628 - J Neurochem. 2000 Apr;74(4):1694-704 18666748 - Curr Clin Pharmacol. 2006 Sep;1(3):229-42 17710215 - Neuron Glia Biol. 2006 Nov;2(4):259-69 9181482 - J Neurocytol. 1997 Feb;26(2):77-82 20948535 - Nat Med. 2010 Nov;16(11):1267-76 7550361 - Brain Res Brain Res Rev. 1995 Mar;20(3):269-87 23292683 - Nat Neurosci. 2013 Feb;16(2):183-92 23345228 - J Neurosci. 2013 Jan 23;33(4):1540-51 19741123 - J Neurosci. 2009 Sep 9;29(36):11161-71 25287860 - Physiol Rev. 2014 Oct;94(4):1077-98 20600583 - Mol Cell Endocrinol. 2010 Oct 7;327(1-2):1-12 21119734 - Nat Rev Drug Discov. 2010 Dec;9(12):971-88 18480275 - J Neurosci. 2008 May 14;28(20):5189-94 25278515 - J Nucl Med. 2014 Nov;55(11):1825-30 23706627 - Pain. 2013 Aug;154(8):1197-203 22126705 - J Neuroimmunol. 2012 Jan 18;242(1-2):33-8 19077109 - Neuropathol Appl Neurobiol. 2009 Jun;35(3):306-28 24058514 - PLoS One. 2013;8(9):e74052 18006619 - J Nucl Med. 2007 Dec;48(12):2072-9 19541954 - Science. 2009 Jul 24;325(5939):490-3 |
References_xml | – volume: 1 start-page: 229 year: 2006 ident: key 20170425172549_awu377-B79 article-title: Nuclear imaging of inflammation in neurologic and psychiatric disorders publication-title: Curr Clin Pharmacol doi: 10.2174/157488406778249334 – volume: 115 start-page: 71 year: 2005 ident: key 20170425172549_awu377-B51 article-title: Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation publication-title: Pain doi: 10.1016/j.pain.2005.02.009 – volume: 33 start-page: 1471 year: 1994 ident: key 20170425172549_awu377-B59 article-title: The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat publication-title: Neuropharmacology doi: 10.1016/0028-3908(94)90051-5 – volume: 40 start-page: 909 year: 1984 ident: key 20170425172549_awu377-B82 article-title: Self-report screening measures for depression in chronic pain patients publication-title: J Clin Psychol doi: 10.1002/1097-4679(198407)40:4<909::AID-JCLP2270400407>3.0.CO;2-J – volume: 91 start-page: 532 year: 2006 ident: key 20170425172549_awu377-B21 article-title: Imaging the peripheral benzodiazepine receptor response in central nervous system demyelination and remyelination publication-title: Toxicol Sci doi: 10.1093/toxsci/kfj172 – volume: 6 start-page: 22 year: 2010 ident: key 20170425172549_awu377-B58 article-title: Ultra-low dose naltrexone attenuates chronic morphine-induced gliosis in rats publication-title: Mol Pain doi: 10.1186/1744-8069-6-22 – volume: 54 start-page: 1320 year: 2013 ident: key 20170425172549_awu377-B94 article-title: Influence of TSPO genotype on 11C-PBR28 standardized uptake values publication-title: J Nuclear Med doi: 10.2967/jnumed.112.118885 – volume: 11 start-page: 629 year: 2012 ident: key 20170425172549_awu377-B16 article-title: The role of the immune system in the generation of neuropathic pain publication-title: Lancet Neurol doi: 10.1016/S1474-4422(12)70134-5 – volume: 30 start-page: 191 year: 1987 ident: key 20170425172549_awu377-B60 article-title: The short-form McGill Pain questionnaire publication-title: Pain doi: 10.1016/0304-3959(87)91074-8 – volume: 44 start-page: 83 year: 2009 ident: key 20170425172549_awu377-B77 article-title: Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.03.061 – volume: 53 start-page: 234 year: 2012 ident: key 20170425172549_awu377-B37 article-title: Increased in vivo expression of an inflammatory marker in temporal lobe epilepsy publication-title: J Nuclear Med doi: 10.2967/jnumed.111.091694 – volume: 26 start-page: 4308 year: 2006 ident: key 20170425172549_awu377-B35 article-title: Activated microglia contribute to the maintenance of chronic pain after spinal cord injury publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0003-06.2006 – volume: 10 start-page: 235 year: 2009 ident: key 20170425172549_awu377-B71 article-title: The bright side of the glial scar in CNS repair publication-title: Nat Rev Neurosci doi: 10.1038/nrn2591 – volume-title: Human brain function year: 2003 ident: key 20170425172549_awu377-B28 article-title: Introduction: experimental design and statistical parametric mapping – volume: 49 start-page: 2924 year: 2010 ident: key 20170425172549_awu377-B46 article-title: Comparison of [(11)C]-(R)-PK 11195 and [(11)C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: Implications for positron emission tomographic imaging of this inflammation biomarker publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.056 – volume: 60 start-page: 297 year: 2008 ident: key 20170425172549_awu377-B61 article-title: Modulation of microglia can attenuate neuropathic pain symptoms and enhance morphine effectiveness publication-title: Pharmacol Rep – volume: 424 start-page: 778 year: 2003 ident: key 20170425172549_awu377-B81 article-title: P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury publication-title: Nature doi: 10.1038/nature01786 – volume: 67 start-page: 361 year: 1983 ident: key 20170425172549_awu377-B95 article-title: The hospital anxiety and depression scale publication-title: Acta Psychiatr Scand doi: 10.1111/j.1600-0447.1983.tb09716.x – volume: 48 start-page: 2072 year: 2007 ident: key 20170425172549_awu377-B13 article-title: Radiation dosimetry and biodistribution in monkey and man of 11C-PBR28: a PET radioligand to image inflammation publication-title: J Nucl Med doi: 10.2967/jnumed.107.044842 – volume: 234 start-page: 340 year: 2012 ident: key 20170425172549_awu377-B49 article-title: Propentofylline, a CNS glial modulator does not decrease pain in post-herpetic neuralgia patients: in vitro evidence for differential responses in human and rodent microglia and macrophages publication-title: Exp Neurol doi: 10.1016/j.expneurol.2011.11.006 – volume: 498 start-page: 138 year: 2011 ident: key 20170425172549_awu377-B50 article-title: Minocycline injection in the ventral posterolateral thalamus reverses microglial reactivity and thermal hyperalgesia secondary to sciatic neuropathy publication-title: Neurosci Lett doi: 10.1016/j.neulet.2011.04.077 – volume: 4 start-page: 443 year: 2007 ident: key 20170425172549_awu377-B14 article-title: Positron emission tomography imaging of neuroinflammation publication-title: Neurotherapeutics doi: 10.1016/j.nurt.2007.04.006 – volume: 23 start-page: 85 year: 2009 ident: key 20170425172549_awu377-B24 article-title: Spinal cord histopathological alterations in a patient with longstanding complex regional pain syndrome publication-title: Brain Behav Immun doi: 10.1016/j.bbi.2008.08.004 – volume: 154 start-page: 1197 year: 2013 ident: key 20170425172549_awu377-B57 article-title: The efficacy of a glial inhibitor, minocycline, for preventing persistent pain after lumbar discectomy: a randomized, double-blind, controlled study publication-title: Pain doi: 10.1016/j.pain.2013.03.028 – volume: 71 start-page: 225 year: 1997 ident: key 20170425172549_awu377-B90 article-title: Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat publication-title: Pain doi: 10.1016/S0304-3959(97)03369-1 – volume: 127 start-page: 1379 issue: Pt 6 year: 2004 ident: key 20170425172549_awu377-B19 article-title: Peripheral benzodiazepine receptor imaging in CNS demyelination: functional implications of anatomical and cellular localization publication-title: Brain doi: 10.1093/brain/awh161 – volume: 16 start-page: 1267 year: 2010 ident: key 20170425172549_awu377-B69 article-title: Interactions between the immune and nervous systems in pain publication-title: Nat Med doi: 10.1038/nm.2234 – volume: 40 start-page: 906 year: 2013 ident: key 20170425172549_awu377-B74 article-title: Imaging of carrageenan-induced local inflammation and adjuvant-induced systemic arthritis with [(11)C]PBR28 PET publication-title: Nucleic Med Biol doi: 10.1016/j.nucmedbio.2013.06.008 – volume: 9 start-page: 424 year: 2014 ident: key 20170425172549_awu377-B2 article-title: Translocator protein 18 kDa negatively regulates inflammation in microglia publication-title: J Neuroimmune Pharmacol doi: 10.1007/s11481-014-9540-6 – volume: 2 start-page: 259 year: 2006 ident: key 20170425172549_awu377-B41 article-title: Possible role of spinal astrocytes in maintaining chronic pain sensitization: review of current evidence with focus on bFGF/JNK pathway publication-title: Neuron Glia Biol doi: 10.1017/S1740925X07000403 – volume: 50 start-page: 345 year: 1997 ident: key 20170425172549_awu377-B78 article-title: PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis publication-title: J Neurosci Res doi: 10.1002/(SICI)1097-4547(19971015)50:2<345::AID-JNR22>3.0.CO;2-5 – volume: 16 start-page: 183 year: 2013 ident: key 20170425172549_awu377-B27 article-title: Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl(-) homeostasis publication-title: Nat Neurosci doi: 10.1038/nn.3295 – volume: 8 start-page: e74052 year: 2013 ident: key 20170425172549_awu377-B29 article-title: PET reveals inflammation around calcified Taenia solium granulomas with perilesional edema publication-title: PLoS One doi: 10.1371/journal.pone.0074052 – volume: 32 start-page: 1 year: 2012 ident: key 20170425172549_awu377-B64 article-title: An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28 publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2011.147 – volume: 33 start-page: 53 year: 2013 ident: key 20170425172549_awu377-B47 article-title: A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2012.131 – volume: 15 start-page: 1 year: 2002 ident: key 20170425172549_awu377-B62 article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples publication-title: Hum Brain Mapp doi: 10.1002/hbm.1058 – volume: 9 start-page: 971 year: 2010 ident: key 20170425172549_awu377-B72 article-title: Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders publication-title: Nat Rev Drug Discov doi: 10.1038/nrd3295 – volume: 23 start-page: S208 issue: Suppl 1 year: 2004 ident: key 20170425172549_awu377-B76 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 143 start-page: 130 year: 2014 ident: key 20170425172549_awu377-B53 article-title: Early repeated administration of progesterone improves the recovery of neuropathic pain and modulates spinal 18kDa-translocator protein (TSPO) expression publication-title: J Steroid Biochem Mol Biol doi: 10.1016/j.jsbmb.2014.02.017 – volume: 65 start-page: 121 year: 2003 ident: key 20170425172549_awu377-B5 article-title: Neuropathological imaging: in vivo detection of glial activation as a measure of disease and adaptive change in the brain publication-title: Br Med Bull doi: 10.1093/bmb/65.1.121 – volume: 242 start-page: 33 year: 2012 ident: key 20170425172549_awu377-B44 article-title: Evidence of central inflammation in fibromyalgia-increased cerebrospinal fluid interleukin-8 levels publication-title: J Neuroimmunol doi: 10.1016/j.jneuroim.2011.10.013 – volume: 9 start-page: 242 year: 2012 ident: key 20170425172549_awu377-B12 article-title: Changes in serum and cerebrospinal fluid cytokines in response to non-neurological surgery: an observational study publication-title: J Neuroinflammation doi: 10.1186/1742-2094-9-242 – volume: 26 start-page: 77 year: 1997 ident: key 20170425172549_awu377-B3 article-title: PK (‘peripheral benzodiazepine')—binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia publication-title: J Neurocytol doi: 10.1023/A:1018567510105 – volume: 15 start-page: 1068 year: 2012 ident: key 20170425172549_awu377-B8 article-title: P2X4R+ microglia drive neuropathic pain publication-title: Nat Neurosci doi: 10.1038/nn.3155 – volume: 234 start-page: 351 year: 2012 ident: key 20170425172549_awu377-B87 article-title: Commentary on Landry et al.: “Propentofylline, a CNS glial modulator, does not decrease pain in post-herpetic neuralgia patients: in vitro evidence for differential responses in human and rodent microglia and macrophages" publication-title: Exp Neurol doi: 10.1016/j.expneurol.2012.01.006 – volume: 32 start-page: 10833 year: 2012 ident: key 20170425172549_awu377-B75 article-title: Chronic-pain-associated astrocytic reaction in the spinal cord dorsal horn of human immunodeficiency virus-infected patients publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5628-11.2012 – volume: 27 start-page: 1975 year: 2007 ident: key 20170425172549_awu377-B70 article-title: Imaging brain inflammation with [(11)C]PK11195 by PET and induction of the peripheral-type benzodiazepine receptor after transient focal ischemia in rats publication-title: J Cereb Blood Flow Metab doi: 10.1038/sj.jcbfm.9600500 – volume: 30 start-page: 581 year: 2009 ident: key 20170425172549_awu377-B89 article-title: The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2009.08.002 – volume: 2 start-page: 683 year: 2005 ident: key 20170425172549_awu377-B32 article-title: Central nervous system drug development: an integrative biomarker approach toward individualized medicine publication-title: NeuroRx doi: 10.1602/neurorx.2.4.683 – volume: 30 start-page: 230 year: 2010 ident: key 20170425172549_awu377-B56 article-title: Evaluation of the PBR/TSPO radioligand [(18)F]DPA-714 in a rat model of focal cerebral ischemia publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2009.205 – volume: 33 start-page: 15952 year: 2013 ident: key 20170425172549_awu377-B26 article-title: Blockade of Toll-like receptor 4 attenuates morphine tolerance and facilitates the pain relieving properties of morphine publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1609-13.2013 – volume: 2 start-page: 391 year: 2012 ident: key 20170425172549_awu377-B83 article-title: Cytokine-related and histological biomarkers for neuropathic pain assessment publication-title: Pain Manag doi: 10.2217/pmt.12.28 – volume: 34 start-page: 3793 year: 2014 ident: key 20170425172549_awu377-B86 article-title: Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3153-13.2014 – year: 2012 ident: key 20170425172549_awu377-B1 article-title: Imaging microglial/macrophage activation in spinal cords of experimental autoimmune encephalomyelitis rats by positron emission tomography using the mitochondrial 18 kDa translocator protein radioligand [(1)(8)F]DPA-714 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2900-11.2012 – volume: 234 start-page: 271 year: 2012 ident: key 20170425172549_awu377-B15 article-title: The mechanisms of microgliosis and pain following peripheral nerve injury publication-title: Exp Neurol doi: 10.1016/j.expneurol.2011.08.018 – volume: 24 start-page: 742 year: 1999 ident: key 20170425172549_awu377-B10 article-title: Markers of nerve tissue injury in the cerebrospinal fluid in patients with lumbar disc herniation and sciatica publication-title: Spine (Phila Pa 1976) doi: 10.1097/00007632-199904150-00003 – volume: 54 start-page: 28 year: 2009 ident: key 20170425172549_awu377-B33 article-title: A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system publication-title: Neurochem Int doi: 10.1016/j.neuint.2008.10.001 – volume: 426 start-page: 117 year: 2007 ident: key 20170425172549_awu377-B84 article-title: Activated macrophages in HIV encephalitis and a macaque model show increased [3H](R)-PK11195 binding in a PI3-kinase-dependent manner publication-title: Neurosci Lett doi: 10.1016/j.neulet.2007.08.053 – volume: 135 start-page: 37 year: 2008 ident: key 20170425172549_awu377-B25 article-title: Characterization of cell proliferation in rat spinal cord following peripheral nerve injury and the relationship with neuropathic pain publication-title: Pain doi: 10.1016/j.pain.2007.05.002 – volume: 27 start-page: 6006 year: 2007 ident: key 20170425172549_awu377-B34 article-title: Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0176-07.2007 – volume: 1286 start-page: 42 year: 2009 ident: key 20170425172549_awu377-B36 article-title: Spinal translocator protein (TSPO) modulates pain behavior in rats with CFA-induced monoarthritis publication-title: Brain Res doi: 10.1016/j.brainres.2009.06.043 – volume: 65 start-page: 529 year: 2013 ident: key 20170425172549_awu377-B93 article-title: Low-dose naltrexone for the treatment of fibromyalgia: findings of a small, randomized, double-blind, placebo-controlled, counterbalanced, crossover trial assessing daily pain levels publication-title: Arthritis Rheum doi: 10.1002/art.37734 – volume: 131 start-page: 64 year: 2000 ident: key 20170425172549_awu377-B52 article-title: Glial cell proliferation in the spinal cord after dorsal rhizotomy or sciatic nerve transection in the adult rat publication-title: Exp Brain Res doi: 10.1007/s002219900273 – volume: 327 start-page: 1 year: 2010 ident: key 20170425172549_awu377-B6 article-title: Regulation of translocator protein 18 kDa (TSPO) expression in health and disease states publication-title: Mol Cell Endocrinol doi: 10.1016/j.mce.2010.06.013 – volume: 325 start-page: 490 year: 2009 ident: key 20170425172549_awu377-B73 article-title: Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects publication-title: Science doi: 10.1126/science.1175055 – volume: 1157 start-page: 100 year: 2007 ident: key 20170425172549_awu377-B55 article-title: Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor publication-title: Brain Res doi: 10.1016/j.brainres.2007.04.054 – volume: 35 start-page: 3962 year: 2014 ident: key 20170425172549_awu377-B9 article-title: The cortical and cerebellar representation of the lumbar spine publication-title: Hum Brain Mapp doi: 10.1002/hbm.22451 – volume: 28 start-page: 12255 year: 2008 ident: key 20170425172549_awu377-B42 article-title: Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer's and other CNS pathologies publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2312-08.2008 – volume: 21 start-page: 624 year: 2007 ident: key 20170425172549_awu377-B7 article-title: Stereological and somatotopic analysis of the spinal microglial response to peripheral nerve injury publication-title: Brain Behav Immun doi: 10.1016/j.bbi.2006.10.017 – volume: 94 start-page: 1077 year: 2014 ident: key 20170425172549_awu377-B66 article-title: Astrocyte reactivity and reactive astrogliosis: costs and benefits publication-title: Physiol Rev doi: 10.1152/physrev.00041.2013 – volume: 153 start-page: 2140 year: 2012 ident: key 20170425172549_awu377-B54 article-title: Disentangling linear and nonlinear brain responses to evoked deep tissue pain publication-title: Pain doi: 10.1016/j.pain.2012.07.014 – volume: 9 start-page: 179 year: 1999 ident: key 20170425172549_awu377-B23 article-title: Cortical surface-based analysis. I. Segmentation and surface reconstruction publication-title: Neuroimage doi: 10.1006/nimg.1998.0395 – volume: 123 start-page: 2321 issue: Pt 11 year: 2000 ident: key 20170425172549_awu377-B4 article-title: The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity publication-title: Brain doi: 10.1093/brain/123.11.2321 – volume: 438 start-page: 1017 year: 2005 ident: key 20170425172549_awu377-B22 article-title: BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain publication-title: Nature doi: 10.1038/nature04223 – volume: 3 start-page: 33 year: 2007 ident: key 20170425172549_awu377-B43 article-title: p38 MAPK, microglial signaling, and neuropathic pain publication-title: Mol Pain doi: 10.1186/1744-8069-3-33 – volume: 35 start-page: 306 year: 2009 ident: key 20170425172549_awu377-B18 article-title: Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain publication-title: Neuropathol Appl Neurobiol doi: 10.1111/j.1365-2990.2008.01006.x – volume: 306 start-page: 624 year: 2003 ident: key 20170425172549_awu377-B68 article-title: Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.103.052407 – volume: 154 start-page: S10 issue: Suppl 1 year: 2013 ident: key 20170425172549_awu377-B40 article-title: Glia and pain: Is chronic pain a gliopathy? publication-title: Pain doi: 10.1016/j.pain.2013.06.022 – volume: 20 start-page: 1150 year: 2004 ident: key 20170425172549_awu377-B85 article-title: Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2004.03593.x – volume: 28 start-page: 5189 year: 2008 ident: key 20170425172549_awu377-B45 article-title: Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3338-07.2008 – volume: 105 start-page: 3705 year: 2008 ident: key 20170425172549_awu377-B17 article-title: Simultaneous in vivo positron emission tomography and magnetic resonance imaging publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0711622105 – volume: 565 start-page: 30 year: 2014 ident: key 20170425172549_awu377-B67 article-title: The dual role of astrocyte activation and reactive gliosis publication-title: Neurosci Lett doi: 10.1016/j.neulet.2013.12.071 – volume: 411 start-page: 200 year: 2007 ident: key 20170425172549_awu377-B38 article-title: PET imaging with 11C-PBR28 can localize and quantify upregulated peripheral benzodiazepine receptors associated with cerebral ischemia in rat publication-title: Neurosci Lett doi: 10.1016/j.neulet.2006.09.093 – volume: 21 start-page: 131 year: 2007 ident: key 20170425172549_awu377-B88 article-title: Norman Cousins Lecture. Glia as the “bad guys”: implications for improving clinical pain control and the clinical utility of opioids publication-title: Brain Behav Immun doi: 10.1016/j.bbi.2006.10.011 – volume: 29 start-page: 11161 year: 2009 ident: key 20170425172549_awu377-B63 article-title: Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3365-09.2009 – volume: 10 start-page: 663 year: 2009 ident: key 20170425172549_awu377-B92 article-title: Fibromyalgia symptoms are reduced by low-dose naltrexone: a pilot study publication-title: Pain Med doi: 10.1111/j.1526-4637.2009.00613.x – volume: 51 start-page: 17 year: 2008 ident: key 20170425172549_awu377-B11 article-title: Synthesis and evaluation in monkey of two sensitive 11C-labeled aryloxyanilide ligands for imaging brain peripheral benzodiazepine receptors in vivo publication-title: J Med Chem doi: 10.1021/jm0707370 – volume: 55 start-page: 1825 year: 2014 ident: key 20170425172549_awu377-B39 article-title: An SPM8-based approach for attenuation correction combining segmentation and non-rigid template formation: application to simultaneous PET/MR brain imaging publication-title: J Nucl Med doi: 10.2967/jnumed.113.136341 – volume: 27 start-page: 402 year: 2006 ident: key 20170425172549_awu377-B65 article-title: Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2006.06.005 – volume: 137 start-page: 2193 issue: Pt 8 year: 2014 ident: key 20170425172549_awu377-B20 article-title: Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice publication-title: Brain doi: 10.1093/brain/awu140 – volume: 13 start-page: 163 year: 1997 ident: key 20170425172549_awu377-B31 article-title: Assessing depression among persons with chronic pain using the Center for Epidemiological Studies-Depression Scale and the Beck Depression Inventory: a comparative analysis publication-title: Clin J Pain doi: 10.1097/00002508-199706000-00011 – volume: 20 start-page: 269 year: 1995 ident: key 20170425172549_awu377-B30 article-title: Microglia: intrinsic immuneffector cell of the brain publication-title: Brain Res Brain Res Rev doi: 10.1016/0165-0173(94)00015-H – volume: 33 start-page: 1540 year: 2013 ident: key 20170425172549_awu377-B91 article-title: The upregulation of translocator protein (18 kDa) promotes recovery from neuropathic pain in rats publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0324-12.2013 – volume: 74 start-page: 1694 year: 2000 ident: key 20170425172549_awu377-B48 article-title: Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity publication-title: J Neurochem doi: 10.1046/j.1471-4159.2000.0741694.x – volume: 10 start-page: 1113 year: 2009 ident: key 20170425172549_awu377-B80 article-title: How neuroimaging studies have challenged us to rethink: is chronic pain a disease? publication-title: J Pain doi: 10.1016/j.jpain.2009.09.001 – reference: 24599476 - J Neurosci. 2014 Mar 5;34(10):3793-806 – reference: 10759172 - Exp Brain Res. 2000 Mar;131(1):64-73 – reference: 19453963 - Pain Med. 2009 May-Jun;10(4):663-72 – reference: 11747097 - Hum Brain Mapp. 2002 Jan;15(1):1-25 – reference: 18006619 - J Nucl Med. 2007 Dec;48(12):2072-9 – reference: 22883925 - Pain. 2012 Oct;153(10):2140-51 – reference: 23792284 - Pain. 2013 Dec;154 Suppl 1:S10-28 – reference: 9181482 - J Neurocytol. 1997 Feb;26(2):77-82 – reference: 23891203 - Nucl Med Biol. 2013 Oct;40(7):906-11 – reference: 17560721 - Pain. 2008 Mar;135(1-2):37-47 – reference: 22119425 - Exp Neurol. 2012 Apr;234(2):340-50 – reference: 24607808 - J Steroid Biochem Mol Biol. 2014 Sep;143:130-40 – reference: 25278515 - J Nucl Med. 2014 Nov;55(11):1825-30 – reference: 25287860 - Physiol Rev. 2014 Oct;94(4):1077-98 – reference: 19229242 - Nat Rev Neurosci. 2009 Mar;10(3):235-41 – reference: 15341587 - Eur J Neurosci. 2004 Sep;20(5):1150-60 – reference: 19741123 - J Neurosci. 2009 Sep 9;29(36):11161-71 – reference: 17888571 - Neurosci Lett. 2007 Oct 16;426(2):117-22 – reference: 19948230 - Neuroimage. 2010 Feb 15;49(4):2924-32 – reference: 18984021 - Neurochem Int. 2009 Jan;54(1):28-36 – reference: 6480856 - J Clin Psychol. 1984 Jul;40(4):909-13 – reference: 17127001 - Neurosci Lett. 2007 Jan 16;411(3):200-5 – reference: 18622054 - Pharmacol Rep. 2008 May-Jun;60(3):297-307 – reference: 20398374 - Mol Pain. 2010;6:22 – reference: 20600583 - Mol Cell Endocrinol. 2010 Oct 7;327(1-2):1-12 – reference: 17540348 - Brain Res. 2007 Jul 9;1157:100-11 – reference: 24919967 - Brain. 2014 Aug;137(Pt 8):2193-209 – reference: 17537972 - J Neurosci. 2007 May 30;27(22):6006-18 – reference: 24406153 - Neurosci Lett. 2014 Apr 17;565:30-8 – reference: 22710756 - Lancet Neurol. 2012 Jul;11(7):629-42 – reference: 19878862 - J Pain. 2009 Nov;10(11):1113-20 – reference: 23706627 - Pain. 2013 Aug;154(8):1197-203 – reference: 10737628 - J Neurochem. 2000 Apr;74(4):1694-704 – reference: 24654725 - Pain Manag. 2012 Jul;2(4):391-8 – reference: 23785173 - J Nucl Med. 2013 Aug;54(8):1320-2 – reference: 24464423 - Hum Brain Mapp. 2014 Aug;35(8):3962-71 – reference: 19541954 - Science. 2009 Jul 24;325(5939):490-3 – reference: 6880820 - Acta Psychiatr Scand. 1983 Jun;67(6):361-70 – reference: 18666748 - Curr Clin Pharmacol. 2006 Sep;1(3):229-42 – reference: 19020019 - J Neurosci. 2008 Nov 19;28(47):12255-67 – reference: 12697620 - Br Med Bull. 2003;65:121-31 – reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 – reference: 18067245 - J Med Chem. 2008 Jan 10;51(1):17-30 – reference: 17175134 - Brain Behav Immun. 2007 Feb;21(2):131-46 – reference: 22837036 - Nat Neurosci. 2012 Aug;15(8):1068-73 – reference: 20948535 - Nat Med. 2010 Nov;16(11):1267-76 – reference: 24058514 - PLoS One. 2013;8(9):e74052 – reference: 16624951 - J Neurosci. 2006 Apr 19;26(16):4308-17 – reference: 19077109 - Neuropathol Appl Neurobiol. 2009 Jun;35(3):306-28 – reference: 19555675 - Brain Res. 2009 Aug 25;1286:42-52 – reference: 16489375 - NeuroRx. 2005 Oct;2(4):683-95 – reference: 10222523 - Spine (Phila Pa 1976). 1999 Apr 15;24(8):742-6 – reference: 17710215 - Neuron Glia Biol. 2006 Nov;2(4):259-69 – reference: 12917686 - Nature. 2003 Aug 14;424(6950):778-83 – reference: 17457364 - J Cereb Blood Flow Metab. 2007 Dec;27(12):1975-86 – reference: 7550361 - Brain Res Brain Res Rev. 1995 Mar;20(3):269-87 – reference: 17599710 - Neurotherapeutics. 2007 Jul;4(3):443-52 – reference: 16554315 - Toxicol Sci. 2006 Jun;91(2):532-9 – reference: 19794397 - J Cereb Blood Flow Metab. 2010 Jan;30(1):230-41 – reference: 16355225 - Nature. 2005 Dec 15;438(7070):1017-21 – reference: 24687172 - J Neuroimmune Pharmacol. 2014 Jun;9(3):424-37 – reference: 18786633 - Brain Behav Immun. 2009 Jan;23(1):85-91 – reference: 23095517 - J Neuroinflammation. 2012;9:242 – reference: 9231865 - Pain. 1997 Jul;71(3):225-35 – reference: 23359310 - Arthritis Rheum. 2013 Feb;65(2):529-38 – reference: 9186024 - Clin J Pain. 1997 Jun;13(2):163-70 – reference: 22539835 - J Neurosci. 2012 Apr 25;32(17):5728-36 – reference: 22875918 - J Neurosci. 2012 Aug 8;32(32):10833-40 – reference: 22238156 - J Nucl Med. 2012 Feb;53(2):234-40 – reference: 18480275 - J Neurosci. 2008 May 14;28(20):5189-94 – reference: 22269389 - Exp Neurol. 2012 Apr;234(2):351-3 – reference: 18319342 - Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3705-10 – reference: 24089500 - J Neurosci. 2013 Oct 2;33(40):15952-63 – reference: 23345228 - J Neurosci. 2013 Jan 23;33(4):1540-51 – reference: 11050032 - Brain. 2000 Nov;123 ( Pt 11):2321-37 – reference: 18501637 - Neuroimage. 2009 Jan 1;44(1):83-98 – reference: 22126705 - J Neuroimmunol. 2012 Jan 18;242(1-2):33-8 – reference: 15836971 - Pain. 2005 May;115(1-2):71-83 – reference: 7532831 - Neuropharmacology. 1994 Nov;33(11):1471-8 – reference: 9931268 - Neuroimage. 1999 Feb;9(2):179-94 – reference: 17267172 - Brain Behav Immun. 2007 Jul;21(5):624-33 – reference: 21571034 - Neurosci Lett. 2011 Jul 8;498(2):138-42 – reference: 22008728 - J Cereb Blood Flow Metab. 2012 Jan;32(1):1-5 – reference: 23292683 - Nat Neurosci. 2013 Feb;16(2):183-92 – reference: 21893056 - Exp Neurol. 2012 Apr;234(2):271-82 – reference: 15069023 - Brain. 2004 Jun;127(Pt 6):1379-92 – reference: 3670870 - Pain. 1987 Aug;30(2):191-7 – reference: 17974036 - Mol Pain. 2007;3:33 – reference: 21119734 - Nat Rev Drug Discov. 2010 Dec;9(12):971-88 – reference: 22968319 - J Cereb Blood Flow Metab. 2013 Jan;33(1):53-8 – reference: 16822554 - Trends Pharmacol Sci. 2006 Aug;27(8):402-9 – reference: 12734393 - J Pharmacol Exp Ther. 2003 Aug;306(2):624-30 – reference: 9373043 - J Neurosci Res. 1997 Oct 15;50(2):345-53 – reference: 19762094 - Trends Pharmacol Sci. 2009 Nov;30(11):581-91 |
SSID | ssj0014326 |
Score | 2.6106067 |
Snippet | Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal... Using integrated PET-MRI, Loggia et al. reveal elevated levels of the translocator protein (TSPO) in patients with chronic pain. As TSPO is a glial marker,... Using integrated PET-MRI, Loggia et al. reveal elevated levels of the translocator protein (TSPO) in patients with chronic pain. As TSPO is a glial marker,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 604 |
SubjectTerms | Adult Aged Brain - diagnostic imaging Brain - metabolism Brain - pathology Case-Control Studies Chronic Pain - diagnostic imaging Chronic Pain - genetics Chronic Pain - pathology Female Genotype Humans Interleukin-6 - blood Magnetic Resonance Imaging Male Middle Aged Neuroglia - diagnostic imaging Neuroglia - pathology Original Polymorphism, Single Nucleotide - genetics Positron-Emission Tomography Pyrimidines Receptors, GABA - genetics Receptors, GABA - metabolism Statistics as Topic |
Title | Evidence for brain glial activation in chronic pain patients |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25582579 https://www.proquest.com/docview/1658705956 https://www.proquest.com/docview/1701499149 https://pubmed.ncbi.nlm.nih.gov/PMC4339770 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbB2MvY99L94EH25PxmliyZcNeRmlXRtruIYG8GVlS0o7glNWm0L--P1ny15qNbg8xQTrLlu50ujvfByEfBeXU5L8O8piJwIR2BqmMWcBEvlxqSPCRqr0tTuKjOfu-iBZdVdQ6uqTMP8vrrXEl_4NVtAGvJkr2HzDbDooG_Ad-cQWGcb0TjpuSoNbn0hR78FdrYwI30QrW1mrsGdImwPUvRJdI9XLwNbe-dVtxD2sxSHjSsxhMN6uVdbE9xi7Z-K35eP8Mt-sucL2r6Iyp_axMx-m6usK5WRUdoQkcpNc2XEbovhFiEnVeWI5vsngcQHpwWa23tDXMliY9qvpR-rTHPWNbifgWV7cZr-plNEfXVUVd6ZdB-uyT0-xwPp1ms4PF7D55EEJvMCUtvi1anx_IhqELN7Nv5iIhMP5ePfqeHXsoo9xSPH73n-0JJLMn5LHTJLyvliyeknu6eEYeHjtfiefkS0MdHqjDqx_s1dThddThoc1Rh2eow2uo4wWZHx7M9o8CVysjkBCxy0BoPo4StWSJ0opyAcEwxv5kGhqnyoVU6VIIQCShVnEq0zAf0-VERUxrCZE7py_JTrEp9GviCbBlLlXIQxOlLRW2M4diIEINcZ1LNiJ-szqZdInkTT2TdWYdGmhWTymzazkin1roC5tA5Q9wH5qFzsDhzGcrUehNdZlNICRjclDk_wLDjaqf4jciryxy2qdBaU5wMKGHD9DWApgM68Oe4vyszrTOqNGPxrt3eLc35FG3Md6SnfJXpd9BXi3z9zUN3gD4oZh6 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+brain+glial+activation+in+chronic+pain+patients&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Loggia%2C+Marco+L&rft.au=Chonde%2C+Daniel+B&rft.au=Akeju%2C+Oluwaseun&rft.au=Arabasz%2C+Grae&rft.date=2015-03-01&rft.issn=1460-2156&rft.eissn=1460-2156&rft.volume=138&rft.issue=Pt+3&rft.spage=604&rft_id=info:doi/10.1093%2Fbrain%2Fawu377&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |