The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow
Molecular oxygen (O 2 ) is the ultimate “green” oxidant for organic synthesis. There has been recent intensive research within the synthetic community to develop new selective liquid phase aerobic oxidation methodologies as a response to the necessity to reduce the environmental impact of chemical s...
Saved in:
Published in | Topics in current chemistry (2016) Vol. 377; no. 1; p. 2 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2365-0869 2364-8961 |
DOI | 10.1007/s41061-018-0226-z |
Cover
Loading…
Abstract | Molecular oxygen (O
2
) is the ultimate “green” oxidant for organic synthesis. There has been recent intensive research within the synthetic community to develop new selective liquid phase aerobic oxidation methodologies as a response to the necessity to reduce the environmental impact of chemical synthesis and manufacture. Green and sustainable chemical processes rely not only on effective chemistry but also on the implementation of reactor technologies that enhance reaction performance and overall safety. Continuous flow reactors have facilitated safer and more efficient utilization of O
2
, whilst enabling protocols to be scalable. In this article, we discuss recent advancements in the utilization of continuous processing for aerobic oxidations. The translation of aerobic oxidation from batch protocols to continuous flow processes, including process intensification (high T/p), is examined. The use of “synthetic air”, typically consisting of less than 10% O
2
in N
2
, is compared to pure O
2
(100% O
2
) as an oxidant source in terms of process efficiency and safety. Examples of homogeneous catalysis and heterogeneous (packed bed) catalysis are provided. The application of flow photoreactors for the in situ formation of singlet oxygen (
1
O
2
) for use in organic reactions, as well as the implementation of membrane technologies, green solvents and recent reactor solutions for handling O
2
are covered. |
---|---|
AbstractList | Molecular oxygen (O
2
) is the ultimate “green” oxidant for organic synthesis. There has been recent intensive research within the synthetic community to develop new selective liquid phase aerobic oxidation methodologies as a response to the necessity to reduce the environmental impact of chemical synthesis and manufacture. Green and sustainable chemical processes rely not only on effective chemistry but also on the implementation of reactor technologies that enhance reaction performance and overall safety. Continuous flow reactors have facilitated safer and more efficient utilization of O
2
, whilst enabling protocols to be scalable. In this article, we discuss recent advancements in the utilization of continuous processing for aerobic oxidations. The translation of aerobic oxidation from batch protocols to continuous flow processes, including process intensification (high T/p), is examined. The use of “synthetic air”, typically consisting of less than 10% O
2
in N
2
, is compared to pure O
2
(100% O
2
) as an oxidant source in terms of process efficiency and safety. Examples of homogeneous catalysis and heterogeneous (packed bed) catalysis are provided. The application of flow photoreactors for the in situ formation of singlet oxygen (
1
O
2
) for use in organic reactions, as well as the implementation of membrane technologies, green solvents and recent reactor solutions for handling O
2
are covered. Molecular oxygen (O ) is the ultimate "green" oxidant for organic synthesis. There has been recent intensive research within the synthetic community to develop new selective liquid phase aerobic oxidation methodologies as a response to the necessity to reduce the environmental impact of chemical synthesis and manufacture. Green and sustainable chemical processes rely not only on effective chemistry but also on the implementation of reactor technologies that enhance reaction performance and overall safety. Continuous flow reactors have facilitated safer and more efficient utilization of O , whilst enabling protocols to be scalable. In this article, we discuss recent advancements in the utilization of continuous processing for aerobic oxidations. The translation of aerobic oxidation from batch protocols to continuous flow processes, including process intensification (high T/p), is examined. The use of "synthetic air", typically consisting of less than 10% O in N , is compared to pure O (100% O ) as an oxidant source in terms of process efficiency and safety. Examples of homogeneous catalysis and heterogeneous (packed bed) catalysis are provided. The application of flow photoreactors for the in situ formation of singlet oxygen ( O ) for use in organic reactions, as well as the implementation of membrane technologies, green solvents and recent reactor solutions for handling O are covered. |
ArticleNumber | 2 |
Author | Hone, Christopher A. Kappe, C. Oliver |
Author_xml | – sequence: 1 givenname: Christopher A. surname: Hone fullname: Hone, Christopher A. organization: Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering (RCPE), Institute of Chemistry, NAWI Graz, University of Graz – sequence: 2 givenname: C. Oliver orcidid: 0000-0003-2983-6007 surname: Kappe fullname: Kappe, C. Oliver email: oliver.kappe@uni-graz.at organization: Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering (RCPE), Institute of Chemistry, NAWI Graz, University of Graz |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30536152$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLxDAUhYMovn-AG8kfqObRpOlGGAZfMDIizjqkSToTqcmYtL5-vdFRUReucsI934F7zw5Y98FbAA4wOsIIVcepxIjjAmFRIEJ48boGtgnlZSFqjtc_NCuQ4PUW2E_JNYhRwTAjfBNs0fzhWW-Dm9uFhbNkYWjhVeisHjoV4fT5ZW49bEOEE_cwOAOvFyqbRjaGxuk8d0b1LvgEnYfj4HvnhzAkeNaFpz2w0aou2f3PdxfMzk5vxxfFZHp-OR5NCs2Q6AtlWNlyw6jGWRpD6raqrbCiqgkWotElqilW2jJiMLMKNw0uW8VMTS03itBdcLLKXQ7NvTXa-j6qTi6ju1fxRQbl5O-Jdws5D4-SkxpVlOaAw58B3-TXdbKhWhl0DClF20rt-o-9c57rJEbyvQq5qkLmKuR7FfI1k_gP-RX-H0NWTMpeP7dR3oUh-nzCf6A3ugqdXQ |
CitedBy_id | crossref_primary_10_1021_acs_orglett_0c03100 crossref_primary_10_1016_j_chemosphere_2024_142995 crossref_primary_10_1021_acs_oprd_1c00279 crossref_primary_10_1002_anie_202015740 crossref_primary_10_1021_acs_oprd_1c00399 crossref_primary_10_1039_D4GC05769D crossref_primary_10_3389_fchem_2021_614944 crossref_primary_10_1002_anie_202210343 crossref_primary_10_1021_acs_oprd_0c00228 crossref_primary_10_1039_D3GC00579H crossref_primary_10_1021_acscatal_0c03240 crossref_primary_10_1055_s_0040_1719900 crossref_primary_10_3762_bjoc_16_125 crossref_primary_10_1039_C9CC07953J crossref_primary_10_1021_acs_orglett_0c01336 crossref_primary_10_1021_acs_oprd_8b00456 crossref_primary_10_1021_acssuschemeng_1c01668 crossref_primary_10_1039_D0CS00670J crossref_primary_10_1007_s41981_024_00312_5 crossref_primary_10_1021_acs_oprd_1c00309 crossref_primary_10_1016_j_jcat_2022_08_010 crossref_primary_10_1039_D2GC01992B crossref_primary_10_1016_j_cej_2019_122250 crossref_primary_10_1016_j_mcat_2020_111202 crossref_primary_10_1021_acs_energyfuels_4c04387 crossref_primary_10_1007_s41981_022_00248_8 crossref_primary_10_1039_D0CC03511D crossref_primary_10_1039_D2GC02074B crossref_primary_10_1021_acs_iecr_2c03550 crossref_primary_10_1021_acs_oprd_3c00237 crossref_primary_10_1002_cctc_202000205 crossref_primary_10_1021_acs_energyfuels_3c00971 crossref_primary_10_1007_s41981_024_00328_x crossref_primary_10_1021_acs_oprd_2c00184 crossref_primary_10_1002_cssc_202201059 crossref_primary_10_1021_acscatal_4c01809 crossref_primary_10_1007_s41981_022_00225_1 crossref_primary_10_1021_acssuschemeng_9b07304 crossref_primary_10_1021_acs_accounts_4c00731 crossref_primary_10_1002_nadc_20204103185 crossref_primary_10_1007_s11696_023_02837_w crossref_primary_10_1002_cssc_202200916 crossref_primary_10_1021_acs_joc_1c01151 crossref_primary_10_1021_jacs_0c09605 crossref_primary_10_1039_D2CY01761J crossref_primary_10_1002_ejoc_202001616 crossref_primary_10_1021_acs_joc_3c00686 crossref_primary_10_1039_D0QO00424C crossref_primary_10_1002_tcr_202200022 crossref_primary_10_3390_mi12111307 crossref_primary_10_1002_adsc_202200124 crossref_primary_10_1021_acs_joc_9b02263 crossref_primary_10_1002_cssc_202201323 crossref_primary_10_1007_s12010_020_03448_x crossref_primary_10_1002_cssc_202001372 crossref_primary_10_1007_s41981_023_00272_2 crossref_primary_10_1021_acs_oprd_0c00135 crossref_primary_10_1007_s10562_020_03474_8 crossref_primary_10_1002_chem_202101313 crossref_primary_10_1007_s41981_019_00073_6 crossref_primary_10_1021_acs_iecr_3c01818 crossref_primary_10_1039_D4RE00484A crossref_primary_10_1039_D5QI00091B crossref_primary_10_1002_ange_202210343 crossref_primary_10_1021_acssuschemeng_4c08560 crossref_primary_10_1016_j_cep_2020_107842 crossref_primary_10_1039_D1OB01607E crossref_primary_10_1021_acs_iecr_9b00977 crossref_primary_10_1039_D1RE00004G crossref_primary_10_1021_acs_chemrev_9b00846 crossref_primary_10_1007_s41981_021_00176_z crossref_primary_10_1039_D3CC06172H crossref_primary_10_1016_j_ces_2024_119985 crossref_primary_10_1021_acs_oprd_9b00125 crossref_primary_10_1007_s11426_024_2043_2 crossref_primary_10_1007_s41981_019_00066_5 crossref_primary_10_1021_acs_oprd_9b00525 crossref_primary_10_1039_C9CS00832B crossref_primary_10_1021_acs_joc_0c00506 crossref_primary_10_1002_ange_202015740 crossref_primary_10_1039_D1GC01615F crossref_primary_10_1039_D3GC01242E crossref_primary_10_1039_D3CP00283G crossref_primary_10_1021_acs_joc_2c02429 crossref_primary_10_1002_jsde_12451 crossref_primary_10_1039_D0RE00273A crossref_primary_10_3762_bjoc_19_55 crossref_primary_10_1021_acs_orglett_9b04193 crossref_primary_10_1039_C9GC01641D crossref_primary_10_1088_1361_6528_ab3127 crossref_primary_10_1021_acs_orglett_1c02440 crossref_primary_10_1002_bit_27556 crossref_primary_10_1021_acs_jchemed_0c00410 crossref_primary_10_1039_D1NJ02401A crossref_primary_10_1021_acs_oprd_3c00424 crossref_primary_10_1039_D3RE00051F crossref_primary_10_1021_acs_chemrev_1c00332 crossref_primary_10_1142_S0218625X21501018 crossref_primary_10_1039_C9RE00084D crossref_primary_10_1016_j_crgsc_2021_100123 crossref_primary_10_1039_D2RE00041E crossref_primary_10_1002_cssc_202400292 crossref_primary_10_1016_j_tetlet_2021_153613 crossref_primary_10_1055_s_0040_1707815 crossref_primary_10_3390_chemistry7020029 crossref_primary_10_1039_C9GC02961C crossref_primary_10_1039_C9GC00336C crossref_primary_10_1016_j_cej_2021_129045 |
Cites_doi | 10.1021/op300347w 10.1021/jacs.6b12722 10.1002/ceat.200407139 10.1039/C6CY00309E 10.1007/s12247-015-9215-8 10.1002/cssc.201802261 10.1002/cptc.201600054 10.1021/ar500359m 10.1098/rstl.1803.0004 10.1002/anie.201800818 10.1016/j.cattod.2018.02.052 10.1007/s41981-018-0015-4 10.1002/anie.200461493 10.3762/bjoc.8.229 10.1039/C7GC03352D 10.1021/acs.oprd.7b00217 10.1021/cs400571y 10.1063/1.555680 10.1021/op2000699 10.1039/C5RE00021A 10.1021/sc5004314 10.1002/chem.201204558 10.1021/op049918r 10.1039/b913434d 10.1021/ar010070q 10.1021/acs.oprd.5b00220 10.1039/C3CC47081D 10.1002/cctc.201402483 10.1002/cssc.201100262 10.1021/op060165d 10.1016/S0920-5861(02)00375-9 10.1002/adsc.201400989 10.1002/cptc.201800033 10.1039/c0gc00106f 10.1021/acssuschemeng.6b01371 10.1002/ejoc.201800149 10.1002/adsc.201400925 10.1002/adsc.201400261 10.1039/c2cs35296f 10.1002/chem.201400283 10.1039/B706711A 10.1002/anie.201310572 10.1021/acs.oprd.5b00077 10.1007/3418_2015_133 10.1039/c1gc15137a 10.1021/op200053w 10.1021/cr0680843 10.1021/op200347k 10.1002/adsc.201300278 10.1039/c0sc00641f 10.1007/s11426-012-4719-2 10.1021/op400085a 10.1021/acs.oprd.5b00359 10.1021/acs.oprd.5b00125 10.1039/b926014p 10.1002/anie.201103945 10.1016/S1385-8947(02)00067-0 10.1021/acs.chemrev.7b00183 10.1039/B703488C 10.1002/adsc.201401081 10.1039/C4CC07913B 10.1039/c0gc00918k 10.1021/ol401273k 10.1002/anie.201409318 10.1021/acs.chemrev.5b00726 10.1021/ja102666y 10.3762/bjoc.7.134 10.1039/c3gc40307f 10.1002/anie.201004637 10.1021/acs.chemrev.5b00707 10.1039/C6RE00155F 10.1021/op500328f 10.1039/C7RE00021A 10.1021/acs.oprd.5b00370 10.1039/C1GC15904F 10.1002/cctc.201700671 10.1021/acs.chemrev.7b00360 10.1039/C7OB02557B 10.1039/C6GC00611F 10.1021/acs.chemrev.7b00353 10.1039/c1gc15138j 10.1039/c2cy20260c 10.1039/b418069k 10.1002/047084289x.ro028.pub3 10.1039/C7GC00406K 10.1002/chem.201406439 10.1021/op5002116 10.1021/acs.oprd.7b00153 10.1021/acs.oprd.5b00222 10.1021/op400207f 10.1021/ar970342i 10.1002/chem.201802588 10.1039/C5CS00902B 10.1039/C4RA14947E 10.1002/cssc.200900020 10.1002/chem.201700888 10.1039/c2gc36896j 10.1021/op400192h 10.1002/anie.200900565 10.1021/acs.oprd.7b00358 10.1021/acs.oprd.6b00015 10.1021/ol502910e 10.1002/anie.201303528 10.1002/prs.680120404 10.1039/C0GC00595A 10.1016/j.ces.2006.12.057 10.1002/adsc.200303218 10.1002/cssc.201100339 10.1021/acs.chemrev.7b00334 10.1002/anie.201107446 10.1002/cssc.201601321 10.1039/c0gc00493f 10.1002/cctc.201701295 10.1021/op5002676 10.1038/nchem.2261 10.1021/ie5041176 10.1021/ol2017643 10.1021/ar010065m 10.1021/acscentsci.7b00275 10.1039/C4RA12067A 10.1021/acscentsci.6b00091 10.1039/C5CS00447K 10.1556/1846.2017.00020 10.1039/c1lc20071b 10.1021/op800079u 10.1021/op500181z 10.1021/cr040679f 10.1021/acs.oprd.6b00044 10.1002/9783527690121 10.1002/adsc.201000771 10.1002/cctc.201200266 10.1556/jfchem.2012.00022 10.1039/C6CY00232C 10.1002/cssc.201200913 |
ContentType | Journal Article |
Copyright | The Author(s) 2018. corrected publication 2019 The Author(s) 2018, corrected publication 2019 |
Copyright_xml | – notice: The Author(s) 2018. corrected publication 2019 – notice: The Author(s) 2018, corrected publication 2019 |
DBID | C6C AAYXX CITATION NPM 5PM |
DOI | 10.1007/s41061-018-0226-z |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 2364-8961 |
ExternalDocumentID | PMC6290733 30536152 10_1007_s41061_018_0226_z |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Österreichische Forschungsförderungsgesellschaft grantid: 862766 funderid: http://dx.doi.org/10.13039/501100004955 – fundername: Österreichische Forschungsförderungsgesellschaft grantid: 862766 – fundername: ; grantid: 862766 |
GroupedDBID | -EM 0R~ 203 406 AAAVM AACDK AAHNG AAJBT AAJKR AANZL AARHV AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO ABAKF ABDZT ABECU ABJNI ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADTPH ADZKW AEBTG AEFQL AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFQWF AFZKB AGAYW AGJBK AGMZJ AGQEE AGQMX AGWZB AGYKE AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AMYQR ASPBG AVWKF AXYYD BGNMA C6C CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GJIRD IKXTQ IWAJR IXD J-C JZLTJ KOV LLZTM M4Y NPVJJ NU0 O9- O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 Z5O Z7U Z7V Z7W Z7X Z7Y ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM 5PM ABRTQ |
ID | FETCH-LOGICAL-c508t-ad54f6d53c1ad5dd29f79e8e8792188bc40931ace52d15ea1bb14fa5d93e6da23 |
IEDL.DBID | AGYKE |
ISSN | 2365-0869 |
IngestDate | Thu Aug 21 18:23:20 EDT 2025 Wed Feb 19 02:33:53 EST 2025 Thu Apr 24 23:07:45 EDT 2025 Tue Jul 01 03:10:38 EDT 2025 Fri Feb 21 02:32:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Flow reactor Molecular oxygen Membranes Green solvents Aerobic oxidation Process intensification Continuous processing Continuous flow Photochemistry |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-ad54f6d53c1ad5dd29f79e8e8792188bc40931ace52d15ea1bb14fa5d93e6da23 |
ORCID | 0000-0003-2983-6007 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s41061-018-0226-z |
PMID | 30536152 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6290733 pubmed_primary_30536152 crossref_citationtrail_10_1007_s41061_018_0226_z crossref_primary_10_1007_s41061_018_0226_z springer_journals_10_1007_s41061_018_0226_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Switzerland |
PublicationTitle | Topics in current chemistry (2016) |
PublicationTitleAbbrev | Top Curr Chem (Z) |
PublicationTitleAlternate | Top Curr Chem (Cham) |
PublicationYear | 2019 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | LoponovKNLopesJBarlogMAstrovaEVMalkovAVLapkinAAOptimization of a scalable photochemical reactor for reactions with singlet oxygenOrg Process Res Dev201418144314541:CAS:528:DC%2BC2cXhtlaisbjL IzawaYStahlSSAerobic oxidative coupling of o-xylene: discovery of 2-fluoropyridine as a ligand to support selective Pd-catalyzedAdv Synth Catal2010352322332291:CAS:528:DC%2BC3cXhsFOjs7%2FM213997043049937 LeitnerWSupercritical carbon dioxide as a green reaction medium for catalysisAcc Chem Res2002357467561:CAS:528:DC%2BD38XltFGmsbs%3D12234204 WangDWeinsteinABWhitePBStahlSSLigand-promoted palladium-catalyzed aerobic oxidation reactionsChem Rev2018118263626791:CAS:528:DC%2BC2sXhsF2js77L28975795 HartmanRLMcMullenJPJensenKFDeciding whether to go with the flow: evaluating the merits of flow reactors for synthesisAngew Chem Int Ed201150750275191:CAS:528:DC%2BC3MXotVCns74%3D AlderCMHaylerJDHendersonRKRedmanAMShuklaLShusterESneddonHFUpdating and further expanding GSK’s solvent sustainability guideGreen Chem201618387938901:CAS:528:DC%2BC28Xms1Kkt7o%3D HeZJamisonTFContinuous-flow synthesis of functionalized phenols by aerobic oxidation of Grignard reagentsAngew Chem Int Ed201453335333571:CAS:528:DC%2BC2cXivVeksbo%3D HanXBourneRAPoliakoffMGeorgeMWImmobilised photosensitisers for continuous flow reactions of singlet oxygen in supercritical carbon dioxideChem Sci20112105910671:CAS:528:DC%2BC3MXmtV2it7c%3D ParkCPMauryaRALeeJHKimDPEfficient photosensitized oxygenations in phase contact enhanced microreactorsLab Chip201111194119451:CAS:528:DC%2BC3MXmtFenurc%3D21499614 VanoyeLPablosMSmithNDe BellefonCFavre-RéguillonAAerobic oxidation of aldehydes: selectivity improvement using sequential pulse experimentation in continuous flow microreactorRSC Adv2014457159571631:CAS:528:DC%2BC2cXhvVWmsbvN MovsisyanMDelbekeEIPBertonJKETBattilocchioCLeySVStevensCVTaming hazardous chemistry by continuous flow technologyChem Soc Rev201645489249281:CAS:528:DC%2BC28Xht1agtLjI27453961 ParmeggianiCMatassiniCCardonaFA step forward towards sustainable aerobic alcohol oxidation: new and revised catalysts based on transition metals on solid supportsGreen Chem201719203020501:CAS:528:DC%2BC2sXkvF2ku7o%3D PieberBKappeCOAerobic oxidations in continuous flowTop Organomet Chem20155797136 OsterbergPMNiemeierJKWelchCJHawkinsJMMartinelliJRJohnsonTERootTWStahlSSExperimental limiting oxygen concentrations for nine organic solvents at temperatures and pressures relevant to aerobic oxidations in the pharmaceutical industryOrg Process Res Dev201519153715431:CAS:528:DC%2BC2cXitVCku7nP26622165 NoëlTHesselVMembrane microreactors: gas–liquid reactions made easyChemSusChem2013640540723303711 GavriilidisAConstantinouAHellgardtKHiiKKMHutchingsGJBrettGLKuhnSMarsdenSPAerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industriesReact Chem Eng201615956121:CAS:528:DC%2BC28XhsFCrsLbE ShvydkivOLimburgCNolanKOelgemöllerMSynthesis of juglone (5-Hydroxy-1,4-Naphthoquinone) in a falling film microreactorJ Flow Chem2012252551:CAS:528:DC%2BC38XhtVaku7rE PyeSJDalgarnoSJChalkerJMRastonCLOrganic oxidations promoted in vortex driven thin films under continuous flowGreen Chem2018201181241:CAS:528:DC%2BC2sXhvVKgtrzL ParkCPKimDPDual-channel microreactor for gas-liquid synthesesJ Am Chem Soc201013210102101061:CAS:528:DC%2BC3cXot1Wmsrg%3D20593807 ConstantinouAWuGCorrederaAEllisPBethellDHutchingsGJKuhnSGavriilidisAContinuous heterogeneously catalyzed oxidation of benzyl alcohol in a ceramic membrane packed-bed reactorOrg Process Res Dev201519197319791:CAS:528:DC%2BC2MXitVSnsr7N GutmannBElsnerPCoxDPWeiglURobergeDMKappeCOTowards the synthesis of noroxymorphone via aerobic palladium-catalyzed continuous flow N-demethylation strategiesACS Sustain Chem Eng20164604860611:CAS:528:DC%2BC28Xht1Wkt7jI RobergeDMGottsponerMEyholzerMKockmannNIndustrial design, scale-up, and use of microreactorsChim Oggi2009278111:CAS:528:DC%2BD1MXhsFWks7zN YangLJensenKFMass transport and reactions in the tube-in-tube reactorOrg Process Res Dev2013179279331:CAS:528:DC%2BC3sXnsFaktbo%3D AmaraZBellamyJFBHorvathRMillerSJBeebyABurgardARossenKPoliakoffMGeorgeMWApplying green chemistry to the photochemical route to artemisininNat Chem201574894951:CAS:528:DC%2BC2MXht1ajtrbO25991527 WuGConstantinouACaoEKuhnSMoradMSankarMBethellDHutchingsGJGavriilidisAContinuous heterogeneously catalyzed oxidation of benzyl alcohol using a tube-in-tube membrane microreactorInd Eng Chem Res201554418341891:CAS:528:DC%2BC2MXhvFGnurY%3D Garcia-VerdugoEVenardouEThomasWBWhistonKPartenheimerWHamleyPAPoliakoffMIs it possible to achieve highly selective oxidations in supercritical water? Aerobic oxidation of methylaromatic compoundsAdv Synth Catal20043463073161:CAS:528:DC%2BD2cXjt1ent78%3D BrittonJStubbsKAWeissGARastonCLVortex fluidic chemical transformationsChem Eur J20172313270132781:CAS:528:DC%2BC2sXhtlCnsLjO28597512 GemoetsHPLHesselVNoëlTAerobic C–H olefination of indoles via a cross-dehydrogenative coupling in continuous flowOrg Lett201416580058031:CAS:528:DC%2BC2cXhvVWnsL%2FO25341623 VanoyeLAlouiAPablosMPhilippeRPercheronAFavre-RéguillonADe BellefonCA safe and efficient flow oxidation of aldehydes with O2Org Lett201315597859811:CAS:528:DC%2BC3sXhvVCmurrJ24266859 VanoyeLWangJPablosMde BellefonCFavre-RéguillonAEpoxidation using molecular oxygen in flow: facts and questions on the mechanism of the Mukaiyama epoxidationCatal Sci Technol20166472447321:CAS:528:DC%2BC28XktVCnurg%3D ErdmannNSuYBosmansBHesselVNoelTPalladium-catalyzed aerobic oxidative coupling of O-xylene in flow: a safe and scalable protocol for cross-dehydrogenative couplingOrg Process Res Dev2016208318351:CAS:528:DC%2BC28XjvFyrtr0%3D CavaniFHenriqueJSustainability in catalytic oxidation: an alternative approach or a structural evolution?ChemSusChem200925085341:CAS:528:DC%2BD1MXnvV2ntLo%3D19536755 LeahyDKTuckerJLMergelsbergIDunnPJKopachMEPurohitVCSeven important elements for an effective green chemistry program: an IQ consortium perspectiveOrg Process Res Dev201317109911091:CAS:528:DC%2BC3sXhsVSisb7P CaoQDornanLMRoganLHughesNLMuldoonMJAerobic oxidation catalysis with stable radicalsChem Commun201450452445431:CAS:528:DC%2BC2cXls12hsrg%3D ObermayerDBaluAMRomeroAAGoesslerWLuqueRKappeCONanocatalysis in continuous flow: supported iron oxide nanoparticles for the heterogeneous aerobic oxidation of benzyl alcoholGreen Chem201315153015371:CAS:528:DC%2BC3sXot1egsLg%3D YoshidaJKataokaKHorcajadaRNagakiAModern strategies in electroorganic synthesisChem Rev2008108226522991:CAS:528:DC%2BD1cXnsVehs7k%3D18564879 SpacciniRLiguoriLPuntaCBjørsvikHROrganocatalyzed epoxidation of alkenes in continuous flow using a multi-jet oscillating disk reactorChemSusChem201252612651:CAS:528:DC%2BC3MXht12qtr7O21994167 PieberBCoxDPKappeCOSelective olefin reduction in thebaine using hydrazine hydrate and O2 under intensified continuous flow conditionsOrg Process Res Dev2016203763851:CAS:528:DC%2BC2MXitVSksr%2FE ChaudhuriSRHartwigJKupraczLKodanekTWegnerJKirschningAOxidations of allylic and benzylic alcohols under inductively-heated flow conditions with gold-doped superparamagnetic nanostructured particles as catalyst and oxygen as oxidantAdv Synth Catal2014356353035381:CAS:528:DC%2BC2cXhvFGisL3F De AngelisSHoneCADegennaroLCelestiniPLuisiRKappeCOSequential α-lithiation and aerobic oxidation of an arylacetic acid—continuous-flow synthesis of cyclopentyl mandelic acidJ Flow Chem20188109116 HollmannFArendsIWCEBuehlerKBrunoBEnzyme-mediated oxidations for the chemistGreen Chem2011132262651:CAS:528:DC%2BC3MXhs1GjtL8%3D WatsonWJWHow do the fine chemical, pharmaceutical, and related industries approach green chemistry and sustainability?Green Chem2012142512591:CAS:528:DC%2BC38Xhslersrk%3D Folgueiras-AmadorAAWirthTPerspectives in flow electrochemistryJ Flow Chem2017794951:CAS:528:DC%2BC1MXntFygur4%3D HoneCAO’Kearney-McMullanAMundayRKappeCOA continuous-flow process for palladium-catalyzed olefin cleavage by using oxygen within the explosive regimeChemCatChem20179329833021:CAS:528:DC%2BC2sXht1WlsLnJ Wu G, Cao E, Ellis P, Constantinou A, Kuhn S, Gavriilidis A (2018) Development of a flat membrane microchannel packed-bed reactor for scalable aerobic oxidation of benzyl alcohol in flow. Chem Eng J 1–9 WuLLeeDSBoufrouraHPoliakoffMPhotooxidation of fulvenes in a continuous flow photoreactor using carbon dioxide as a solventChemPhotoChem201825805851:CAS:528:DC%2BC1cXosFWjs74%3D GemoetsHPLSuYShangMHesselVLuqueRNoelTLiquid phase oxidation chemistry in continuous-flow microreactorsChem Soc Rev201645831171:CAS:528:DC%2BC2MXht1aksrbO Jones AB, Wang J, Hamme AT, Han W (2013) Oxygen. In: Encyclopedia of reagents for organic synthesis. https://doi.org/10.1002/047084289x.ro028.pub3 YeXJohnsonMDDiaoTYatesMHStahlSSDevelopment of safe and scalable continuous-flow methods for palladium-catalyzed aerobic oxidation reactionsGreen Chem201012118011861:CAS:528:DC%2BC3cXotlyru7o%3D206941692914337 MannelDSStahlSSRootTWContinuous flow aerobic alcohol oxidation reactions using a heterogeneous Ru(OH)x/Al2O3 catalystOrg Process Res Dev201418150315081:CAS:528:DC%2BC2cXhsFyrsLrL256208694299400 DurndellLJCucuzzellaCParlettCMAIsaacsMAWilsonKLeeAFPlatinum catalysed aerobic selective oxidation of cinnamaldehyde to cinnamic acidCatal Today201810.1016/j.cattod.2018.02.052 BrzozowskiMForniJASavagePGPolyzosAThe direct α-C(sp3)-H functionalisation of N-aryl tetrahydroisoquinolines via an iron-catalysed aerobic nitro-Mannich reaction and continuous flow processingChem Commun2015513343371:CAS:528:DC%2BC2cXhvFeisbrO IoannouGIMontagnonTKalaitzakisDPergantisSAVassilikogiannakisGA novel nebulizer-based continuous flow reactor: introducing the use of pneumatically generated aerosols for highly productive photooxidationsChemPhotoChem201711731771:CAS:528:DC%2BC2sXhs1KgtbrN SambiagioCSterckxHMaesBUWElectrosynthesis: a new frontier in aerobic oxidation?ACS Cent Sci201736866881:CAS:528:DC%2BC2sXhtFSiurjP287760085532737 LaudadioGGovaertsSWangYRavelliDKoolmanHFFagnoniMDjuricSWNoëlTSelective C(sp3)–H aerobic oxidation enabled by de B Gutmann (226_CR35) 2016; 4 SS Stahl (226_CR4) 2016 M Sankar (226_CR63) 2012; 41 M Atobe (226_CR106) 2018; 118 D Cantillo (226_CR55) 2015; 6 M Brzozowski (226_CR78) 2015; 51 A Gavriilidis (226_CR24) 2016; 1 RL Hartman (226_CR23) 2011; 50 HPL Gemoets (226_CR17) 2016; 45 R Spaccini (226_CR131) 2012; 5 E Roduner (226_CR5) 2013; 5 F Lévesque (226_CR97) 2011; 13 N Erdmann (226_CR38) 2016; 20 DS Mannel (226_CR58) 2014; 18 K Jähnisch (226_CR138) 2005; 28 SL Lee (226_CR14) 2015; 10 IT Horváth (226_CR115) 1998; 31 F Hollmann (226_CR81) 2011; 13 DJC Constable (226_CR37) 2007; 9 TP Petersen (226_CR77) 2012; 5 EJ Horn (226_CR104) 2016; 2 Q Cao (226_CR8) 2014; 50 DS Mannel (226_CR65) 2017; 139 PM Osterberg (226_CR25) 2015; 19 JF Greene (226_CR44) 2013; 17 DK Leahy (226_CR15) 2013; 17 226_CR87 Y Chen (226_CR42) 2017; 21 D Cambié (226_CR96) 2016; 116 RA Sheldon (226_CR110) 2005; 7 N Wang (226_CR62) 2009; 48 RH Ringborg (226_CR82) 2017; 9 S Guo (226_CR52) 2018; 22 JF Greene (226_CR88) 2015; 19 B Pieber (226_CR47) 2013; 15 B Pieber (226_CR71) 2016; 20 A Constantinou (226_CR86) 2015; 19 AA Folgueiras-Amador (226_CR105) 2017; 7 SR Chaudhuri (226_CR79) 2014; 356 F Cavani (226_CR6) 2009; 2 GI Ioannou (226_CR132) 2017; 1 GI Ioannou (226_CR133) 2017; 15 SJ Pye (226_CR135) 2018; 20 ML Thomas (226_CR28) 2008; 10 EH Stitt (226_CR7) 2002; 90 JP Knowles (226_CR94) 2012; 8 L Vanoye (226_CR48) 2013; 15 U Hintermair (226_CR120) 2011; 15 G Wu (226_CR64) 2016; 6 Z Hou (226_CR121) 2005; 44 LQ Jin (226_CR32) 2012; 55 D Kopetzki (226_CR99) 2013; 19 B Tomaszewski (226_CR83) 2014; 18 C Sambiagio (226_CR109) 2017; 3 X Ye (226_CR33) 2010; 12 MP Feth (226_CR69) 2013; 17 CA Hone (226_CR34) 2017; 9 LJ Diorazio (226_CR113) 2016; 20 DJ Watson (226_CR66) 2004; 8 S Caron (226_CR2) 2006; 106 X Han (226_CR123) 2011; 2 DS Lee (226_CR136) 2017; 21 J Yue (226_CR22) 2007; 62 CP Park (226_CR89) 2010; 132 C Parmeggiani (226_CR56) 2017; 19 M Movsisyan (226_CR10) 2016; 45 N Kockmann (226_CR29) 2017; 2 N Gunasekaran (226_CR116) 2015; 357 HPL Gemoets (226_CR40) 2014; 16 AE Wendlandt (226_CR43) 2011; 50 KN Loponov (226_CR100) 2014; 18 AO Chapman (226_CR122) 2010; 12 L Liguori (226_CR130) 2011; 15 SL Bourne (226_CR76) 2013; 355 D Obermayer (226_CR59) 2013; 15 AA Ghogare (226_CR93) 2016; 116 E Pérez (226_CR129) 2011; 13 CM Rayner (226_CR117) 2007; 11 B Pieber (226_CR68) 2013; 52 DM Roberge (226_CR36) 2009; 27 LJ Durndell (226_CR61) 2018 PT Anastas (226_CR3) 2002; 35 Y Izawa (226_CR39) 2010; 352 M Campanati (226_CR54) 2003; 77 CA Hone (226_CR41) 2018 L Vanoye (226_CR51) 2016; 6 R Gérardy (226_CR12) 2018; 2018 N Zotova (226_CR57) 2010; 12 O Shvydkiv (226_CR137) 2012; 2 B Gutmann (226_CR46) 2013; 3 CM Alder (226_CR112) 2016; 18 W Leitner (226_CR118) 2002; 35 CJ Mallia (226_CR21) 2016; 20 J Britton (226_CR134) 2017; 23 TH Pratt (226_CR26) 1993; 12 J Yoshida (226_CR103) 2008; 108 B Gutmann (226_CR9) 2015; 54 RK Henderson (226_CR111) 2011; 13 CA Hone (226_CR18) 2017; 10 M Brzozowski (226_CR75) 2015; 48 R Munirathinam (226_CR53) 2015; 357 MB Plutschack (226_CR11) 2017; 117 226_CR1 D Pletcher (226_CR107) 2018; 118 G Wu (226_CR85) 2015; 54 Z Amara (226_CR124) 2015; 7 L Vanoye (226_CR49) 2014; 4 X Liu (226_CR60) 2012; 2 G Laudadio (226_CR102) 2018; 57 T Noël (226_CR74) 2013; 6 JH Park (226_CR80) 2015; 19 D Wang (226_CR31) 2018; 118 E Garcia-Verdugo (226_CR127) 2004; 346 PR Ogilby (226_CR92) 2010; 39 Y Su (226_CR95) 2014; 20 CP Park (226_CR90) 2011; 11 NG Anderson (226_CR30) 2012; 16 W Henry (226_CR20) 1803; 93 FP Byrne (226_CR114) 2016 K Veser (226_CR27) 2001; 56 L Yang (226_CR84) 2013; 17 Y Su (226_CR101) 2016; 1 S Angelis De (226_CR73) 2018; 8 E Pérez (226_CR128) 2011; 13 L Vanoye (226_CR50) 2016; 20 WJW Watson (226_CR13) 2012; 14 Z He (226_CR72) 2014; 53 L Wu (226_CR125) 2018; 2 RA Maurya (226_CR91) 2011; 7 B Pieber (226_CR16) 2015; 57 TL Laporte (226_CR67) 2008; 12 B Pieber (226_CR70) 2015; 21 L Vanoye (226_CR45) 2015; 357 R Battino (226_CR19) 1983; 12 F Lévesque (226_CR98) 2012; 51 T Osako (226_CR126) 2015; 5 Y Medina-Gonzalez (226_CR119) 2014; 2 Y Mo (226_CR108) 2018; 24 |
References_xml | – reference: JähnischKDingerdissenUPhotochemical generation and [4 + 2]-cycloaddition of singlet oxygen in a falling-film microreactorChem Eng Technol200528426427 – reference: PetersenTPPolyzosABrienMOUlvenTBaxendaleIRLeySVThe oxygen-mediated synthesis of 1,3-butadiynes in continuous flow: using teflon AF-2400 to effect gas/liquid contactChemSusChem201252742771:CAS:528:DC%2BC3MXht1Slur%2FJ21948655 – reference: ChapmanAOAkienGRArrowsmithNJLicencePPoliakoffMContinuous heterogeneous catalytic oxidation of primary and secondary alcohols in scCO2Green Chem2010123103151:CAS:528:DC%2BC3cXhsleru7Y%3D – reference: HoneCALopatkaPMundayRO’Kearney-McMullanAKappeCOContinuous-flow synthesis of aryl aldehydes by Pd-catalyzed formylation of aryl bromides using carbon monoxide and hydrogenChemSusChem201810.1002/cssc.201802261303009706582436 – reference: LiguoriLBjørsvikH-RMultijet oscillating disc millireactor: a novel approach for continuous flow organic synthesisOrg Process Res Dev20111599710091:CAS:528:DC%2BC3MXpsFSlu78%3D – reference: KnowlesJPElliottLDBooker-MilburnKIFlow photochemistry: old light through new windowsBeilstein J Org Chem20128202520521:CAS:528:DC%2BC38XhvVaqtbrJ232095383511038 – reference: MauryaRAParkCPKimDPTriple-channel microreactor for biphasic gas-liquid reactions: photosensitized oxygenationsBeilstein J Org Chem20117115811631:CAS:528:DC%2BC3MXhtF2ns7zJ219152213170200 – reference: CaoQDornanLMRoganLHughesNLMuldoonMJAerobic oxidation catalysis with stable radicalsChem Commun201450452445431:CAS:528:DC%2BC2cXls12hsrg%3D – reference: PieberBKappeCODirect aerobic oxidation of 2-benzylpyridines in a gas–liquid continuous-flow regime using propylene carbonate as a solventGreen Chem2013153203241:CAS:528:DC%2BC3sXhsVOntrw%3D – reference: PyeSJDalgarnoSJChalkerJMRastonCLOrganic oxidations promoted in vortex driven thin films under continuous flowGreen Chem2018201181241:CAS:528:DC%2BC2sXhvVKgtrzL – reference: PieberBMartinezSTCantilloDKappeCOIn situ generation of diimide from hydrazine and oxygen: continuous-flow transfer hydrogenation of olefinsAngew Chemie Int Ed20135210241102441:CAS:528:DC%2BC3sXht1Oqur7N – reference: ChaudhuriSRHartwigJKupraczLKodanekTWegnerJKirschningAOxidations of allylic and benzylic alcohols under inductively-heated flow conditions with gold-doped superparamagnetic nanostructured particles as catalyst and oxygen as oxidantAdv Synth Catal2014356353035381:CAS:528:DC%2BC2cXhvFGisL3F – reference: GreeneJFPregerYStahlSSRootTWPTFE-membrane flow reactor for aerobic oxidation reactions and its application to alcohol oxidationOrg Process Res Dev2015198588641:CAS:528:DC%2BC2MXptFWqu7w%3D – reference: CambiéDBottecchiaCStraathofNJWHesselVNoëlTApplications of continuous-flow photochemistry in organic synthesis, material science, and water treatmentChem Rev2016116102761034126935706 – reference: OsterbergPMNiemeierJKWelchCJHawkinsJMMartinelliJRJohnsonTERootTWStahlSSExperimental limiting oxygen concentrations for nine organic solvents at temperatures and pressures relevant to aerobic oxidations in the pharmaceutical industryOrg Process Res Dev201519153715431:CAS:528:DC%2BC2cXitVCku7nP26622165 – reference: ErdmannNSuYBosmansBHesselVNoelTPalladium-catalyzed aerobic oxidative coupling of O-xylene in flow: a safe and scalable protocol for cross-dehydrogenative couplingOrg Process Res Dev2016208318351:CAS:528:DC%2BC28XjvFyrtr0%3D – reference: LaporteTLHamediMDepueJSShenLWatsonDHsiehDDevelopment and scale-up of three consecutive continuous reactions for production of 6-hydroxybuspironeOrg Process Res Dev2008129569661:CAS:528:DC%2BD1cXhtVChs7zJ – reference: LoponovKNLopesJBarlogMAstrovaEVMalkovAVLapkinAAOptimization of a scalable photochemical reactor for reactions with singlet oxygenOrg Process Res Dev201418144314541:CAS:528:DC%2BC2cXhtlaisbjL – reference: BourneSLLeySVA continuous flow solution to achieving efficient aerobic anti-Markovnikov Wacker oxidationAdv Synth Catal2013355190519101:CAS:528:DC%2BC3sXptFGjsbw%3D – reference: ConstableDJCDunnPJHaylerJDHumphreyGRLeazerJLJrLindermanRJLorenzKManleyJPearlmanBAWellsAZaksAZhangTYKey green chemistry research areas? A perspective from pharmaceutical manufacturersGreen Chem200794114201:CAS:528:DC%2BD2sXmslyqsbY%3D – reference: AmaraZBellamyJFBHorvathRMillerSJBeebyABurgardARossenKPoliakoffMGeorgeMWApplying green chemistry to the photochemical route to artemisininNat Chem201574894951:CAS:528:DC%2BC2MXht1ajtrbO25991527 – reference: DurndellLJCucuzzellaCParlettCMAIsaacsMAWilsonKLeeAFPlatinum catalysed aerobic selective oxidation of cinnamaldehyde to cinnamic acidCatal Today201810.1016/j.cattod.2018.02.052 – reference: WuGBrettGLCaoEConstantinouAEllisPKuhnSHutchingsGJBethellDGavriilidisAOxidation of cinnamyl alcohol using bimetallic Au–Pd/TiO2 catalysts: a deactivation study in a continuous flow packed bed microreactorCatal Sci Technol20166474947581:CAS:528:DC%2BC28XoslWqu7s%3D – reference: LeeDSAmaraZClarkCAXuZKakimpaBMorvanHPPickeringSJPoliakoffMGeorgeMWContinuous photo-oxidation in a vortex reactor: efficient operations using air drawn from the laboratoryOrg Process Res Dev201721104210501:CAS:528:DC%2BC2sXhtVyrtLnK287815135526652 – reference: StittEHAlternative multiphase reactors for fine chemicals A world beyond stirred tanks?Chem Eng J20029047601:CAS:528:DC%2BD38Xotl2lurY%3D – reference: RobergeDMGottsponerMEyholzerMKockmannNIndustrial design, scale-up, and use of microreactorsChim Oggi2009278111:CAS:528:DC%2BD1MXhsFWks7zN – reference: BrittonJStubbsKAWeissGARastonCLVortex fluidic chemical transformationsChem Eur J20172313270132781:CAS:528:DC%2BC2sXhtlCnsLjO28597512 – reference: ByrneFPJinSPaggiolaGPetcheyTHMClarkJHFarmerTJHuntAJMcelroyCRSherwoodJTools and techniques for solvent selection: green solvent selection guidesSustainable chemical processes2016BerlinSpringer124 – reference: AnastasPTKirchhoffMMOrigins, current status, and future challenges of green chemistryAcc Chem Res2002356866941:CAS:528:DC%2BD38XksFOrtLs%3D12234198 – reference: GérardyREmmanuelNToupyTKassinVTshibalonzaNNSchmitzMMonbaliuJMContinuous flow organic chemistry: successes and pitfalls at the interface with current societal challengesEur J Org Chem2018201823012351 – reference: WatsonDJDowdyEDDepueJSKotnisASLeungSReillyBCODevelopment of a safe and scalable oxidation process for the preparation of 6-hydroxybuspirone: application of in-line monitoring for process ruggedness and product qualityOrg Process Res Dev200486166231:CAS:528:DC%2BD2cXkvVSis7c%3D – reference: AtobeMTatenoHMatsumuraYApplications of flow microreactors in electrosynthetic processesChem Rev2018118454145721:CAS:528:DC%2BC2sXhsVGhsr3L28885826 – reference: OsakoTToriiKUozumiYAerobic flow oxidation of alcohols in water catalyzed by platinum nanoparticles dispersed in an amphiphilic polymerRSC Adv20155264726541:CAS:528:DC%2BC2cXhvF2rtbjM – reference: GreeneJFHooverJMMannelDSRootTWStahlSSContinuous-flow aerobic oxidation of primary alcohols with a copper(I)/TEMPO catalystOrg Process Res Dev201317124712511:CAS:528:DC%2BC3sXhsVSls7rL – reference: GuoSYuZYuCKilogram-scale synthesis of 2,4-dichloro-5-fluorobenzoic acid by air oxidation under the continuous-flow processOrg Process Res Dev2018222522561:CAS:528:DC%2BC1cXhtlyqsbg%3D – reference: PrattTHElectrostatic ignitions in enriched oxygen atmospheres: a case historyProcess Saf Prog1993122032051:CAS:528:DyaK2cXhslaisbY%3D – reference: CantilloDKappeCOImmobilized transition metals as catalysts for cross-couplings in continuous flow—a critical assessment of the reaction mechanism and metal leachingChemCatChem2015632863305 – reference: Folgueiras-AmadorAAWirthTPerspectives in flow electrochemistryJ Flow Chem2017794951:CAS:528:DC%2BC1MXntFygur4%3D – reference: HendersonRKJiménez-GonzálezCConstableDJCAlstonSRInglisGGAFisherGSherwoodJBinksSPCurzonsADExpanding GSK’s solvent selection guide—embedding sustainability into solvent selection starting at medicinal chemistryGreen Chem2011138541:CAS:528:DC%2BC3MXkt1Khsbo%3D – reference: MunirathinamRHuskensJVerboomWSupported catalysis in continuous-flow microreactorsAdv Synth Catal2015357109311231:CAS:528:DC%2BC2MXkvVShs7Y%3D – reference: LévesqueFSeebergerPHHighly efficient continuous flow reactions using singlet oxygen as a “Green” reagentOrg Lett2011135008501121879739 – reference: GhogareAAGreerAUsing singlet oxygen to synthesize natural products and drugsChem Rev20161169994100341:CAS:528:DC%2BC28XmvVyhsrk%3D27128098 – reference: YoshidaJKataokaKHorcajadaRNagakiAModern strategies in electroorganic synthesisChem Rev2008108226522991:CAS:528:DC%2BD1cXnsVehs7k%3D18564879 – reference: HornEJRosenBRBaranPSSynthetic organic electrochemistry: an enabling and innately sustainable methodACS Cent Sci201623023081:CAS:528:DC%2BC28XntFyrsLg%3D272801644882743 – reference: YangLJensenKFMass transport and reactions in the tube-in-tube reactorOrg Process Res Dev2013179279331:CAS:528:DC%2BC3sXnsFaktbo%3D – reference: SankarMDimitratosNMiedziakPJWellsPPKielyJHutchingsGJDesigning bimetallic catalysts for a green and sustainable futureChem Soc Rev201241809981391:CAS:528:DC%2BC38Xhs12rsL%2FL23093051 – reference: LévesqueFSeebergerPHContinuous-flow synthesis of the anti-malaria drug artemisininAngew Chem Int Ed20125117061709 – reference: VanoyeLWangJPablosMDeBellefon CFavre-RéguillonAContinuous, fast, and safe aerobic oxidation of 2-ethylhexanal: pushing the limits of the simple tube reactor for a gas/liquid reactionOrg Process Res Dev20162090941:CAS:528:DC%2BC28XkslSjsQ%3D%3D – reference: FethMPRossenKBurgardAPilot plant PAT approach for the diastereoselective diimide reduction of artemisinic acidOrg Process Res Dev2013172822931:CAS:528:DC%2BC3sXntVansw%3D%3D – reference: ChenYHoneCAGutmannBKappeCOContinuous flow synthesis of carbonylated heterocycles via Pd-catalyzed oxidative carbonylation using CO and O2 at elevated temperature and pressureOrg Process Res Dev201721108010871:CAS:528:DC%2BC2sXhtVOnsL3K – reference: BrzozowskiMO’BrienMLeySVPolyzosAFlow chemistry: intelligent processing of gas–liquid transformations using a tube-in-tube reactorAcc Chem Res2015483493621:CAS:528:DC%2BC2MXhsF2isbs%3D25611216 – reference: HouZTheyssenNBrinkmannALeitnerWBiphasic aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxideAngew Chem Int Ed200544134613491:CAS:528:DC%2BD2MXitVSjsLg%3D – reference: HollmannFArendsIWCEBuehlerKBrunoBEnzyme-mediated oxidations for the chemistGreen Chem2011132262651:CAS:528:DC%2BC3MXhs1GjtL8%3D – reference: VeserKExperimental and theoretical investigation of H oxidation in a high-temperature catalytic microreactorAIChE J200156126512731:CAS:528:DC%2BD3MXhslOhs7o%3D – reference: GutmannBElsnerPRobergeDKappeCOHomogeneous liquid-phase oxidation of ethylbenzene to acetophenone in continuous flow modeACS Catal20133266926761:CAS:528:DC%2BC3sXhs1SqsrbF – reference: LeitnerWSupercritical carbon dioxide as a green reaction medium for catalysisAcc Chem Res2002357467561:CAS:528:DC%2BD38XltFGmsbs%3D12234204 – reference: CavaniFHenriqueJSustainability in catalytic oxidation: an alternative approach or a structural evolution?ChemSusChem200925085341:CAS:528:DC%2BD1MXnvV2ntLo%3D19536755 – reference: PérezEFraga-DubreuilJGarcía-VerdugoEHamleyPAThomasWBHousleyDPartenheimerWPoliakoffMSelective aerobic oxidation of para-xylene in sub- and supercritical water. Part 1. Comparison with ortho-xylene and the role of the catalystGreen Chem2011132389 – reference: HanXBourneRAPoliakoffMGeorgeMWImmobilised photosensitisers for continuous flow reactions of singlet oxygen in supercritical carbon dioxideChem Sci20112105910671:CAS:528:DC%2BC3MXmtV2it7c%3D – reference: VanoyeLWangJPablosMde BellefonCFavre-RéguillonAEpoxidation using molecular oxygen in flow: facts and questions on the mechanism of the Mukaiyama epoxidationCatal Sci Technol20166472447321:CAS:528:DC%2BC28XktVCnurg%3D – reference: OgilbyPRSinglet oxygen: there is indeed something new under the sunChem Soc Rev201039318132091:CAS:528:DC%2BC3cXptFygs7k%3D20571680 – reference: LeahyDKTuckerJLMergelsbergIDunnPJKopachMEPurohitVCSeven important elements for an effective green chemistry program: an IQ consortium perspectiveOrg Process Res Dev201317109911091:CAS:528:DC%2BC3sXhsVSisb7P – reference: HintermairURoosenCKaeverMKronenbergHThelenRAeySLeitnerWGreinerLA versatile lab to pilot scale continuous reaction system for supercritical fluid processingOrg Process Res Dev201115127512801:CAS:528:DC%2BC3MXhtFWjs7rI – reference: ParkJHParkCYKimMJKimMUKimYJKimGHParkCPContinuous-flow synthesis of meta-substituted phenol derivativesOrg Process Res Dev2015198128181:CAS:528:DC%2BC2MXpsFaku70%3D – reference: WatsonWJWHow do the fine chemical, pharmaceutical, and related industries approach green chemistry and sustainability?Green Chem2012142512591:CAS:528:DC%2BC38Xhslersrk%3D – reference: VanoyeLPablosMSmithNDe BellefonCFavre-RéguillonAAerobic oxidation of aldehydes: selectivity improvement using sequential pulse experimentation in continuous flow microreactorRSC Adv2014457159571631:CAS:528:DC%2BC2cXhvVWmsbvN – reference: WuLLeeDSBoufrouraHPoliakoffMPhotooxidation of fulvenes in a continuous flow photoreactor using carbon dioxide as a solventChemPhotoChem201825805851:CAS:528:DC%2BC1cXosFWjs74%3D – reference: JinLQLeiAWMechanistic aspects of oxidation of palladium with O2Sci China Chem201255202720351:CAS:528:DC%2BC38XhsVCgtLvL – reference: MoYJensenKFContinuous N-hydroxyphthalimide (NHPI)-mediated electrochemical aerobic oxidation of benzylic C-H bondsChem Eur J20182410260102651:CAS:528:DC%2BC1cXhtF2qsbfE – reference: MannelDSAhmedMSRootTWStahlSSDiscovery of multicomponent heterogeneous catalysts via admixture screening: PdBiTe catalysts for aerobic oxidative esterification of primary alcoholsJ Am Chem Soc2017139169016981:CAS:528:DC%2BC2sXms1Ogug%3D%3D28060501 – reference: LeeSLO’ConnorTFYangXCruzCNChatterjeeSMaduraweRDMooreCMVYuLXWoodcockJmodernizing pharmaceutical manufacturing: from batch to continuous productionJ Pharm Innov201510191199 – reference: WangDWeinsteinABWhitePBStahlSSLigand-promoted palladium-catalyzed aerobic oxidation reactionsChem Rev2018118263626791:CAS:528:DC%2BC2sXhsF2js77L28975795 – reference: RingborgRHToftgaard PedersenAWoodleyJMAutomated determination of oxygen-dependent enzyme kinetics in a tube-in-tube flow reactorChemCatChem2017932731:CAS:528:DC%2BC2sXhsVKqsbfL – reference: AlderCMHaylerJDHendersonRKRedmanAMShuklaLShusterESneddonHFUpdating and further expanding GSK’s solvent sustainability guideGreen Chem201618387938901:CAS:528:DC%2BC28Xms1Kkt7o%3D – reference: TomaszewskiBSchmidABuehlerKBiocatalytic production of catechols using a high pressure tube-in-tube segmented flow reactorOrg Process Res Dev201418151615261:CAS:528:DC%2BC2cXhsleksr3F – reference: Wu G, Cao E, Ellis P, Constantinou A, Kuhn S, Gavriilidis A (2018) Development of a flat membrane microchannel packed-bed reactor for scalable aerobic oxidation of benzyl alcohol in flow. Chem Eng J 1–9 – reference: BattinoRRettichTRTominagaTSolubility of oxygen and ozone in liquidsJ Phys Chem Ref Data1983121631781:CAS:528:DyaL3sXkvFCntb0%3D – reference: KockmannNThenéePFleischer-TrebesCLaudadioGNoëlTSafety assessment in development and operation of modular continuous-flow processesReact Chem Eng201722582801:CAS:528:DC%2BC2sXlsVaktbc%3D – reference: Jones AB, Wang J, Hamme AT, Han W (2013) Oxygen. In: Encyclopedia of reagents for organic synthesis. https://doi.org/10.1002/047084289x.ro028.pub3 – reference: SuYStraathofNJWHesselVNoëlTPhotochemical transformations accelerated in continuous-flow reactors: basic concepts and applicationsChem Eur J20142010562105891:CAS:528:DC%2BC2cXht1Wltr%2FI – reference: YeXJohnsonMDDiaoTYatesMHStahlSSDevelopment of safe and scalable continuous-flow methods for palladium-catalyzed aerobic oxidation reactionsGreen Chem201012118011861:CAS:528:DC%2BC3cXotlyru7o%3D206941692914337 – reference: LiuXÜnalBJensenKFHeterogeneous catalysis with continuous flow microreactorsCatal Sci Technol20122213421381:CAS:528:DC%2BC38XhtlaktrzJ – reference: PletcherDGreenRABrownRCDFlow electrolysis cells for the synthetic organic chemistry laboratoryChem Rev2018118457345911:CAS:528:DC%2BC2sXhsV2qtrnN28921969 – reference: GutmannBCantilloDKappeCOContinuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredientsAngew Chem Int Ed201554668867281:CAS:528:DC%2BC2MXosVGnt7k%3D – reference: KopetzkiDLévesqueFSeebergerPHA continuous-flow process for the synthesis of artemisininChem Eur J201319545054561:CAS:528:DC%2BC3sXksVOhu7g%3D23520059 – reference: SambiagioCSterckxHMaesBUWElectrosynthesis: a new frontier in aerobic oxidation?ACS Cent Sci201736866881:CAS:528:DC%2BC2sXhtFSiurjP287760085532737 – reference: WangNMatsumotoTUenoMMiyamuraHKobayashiSA gold-immobilized microchannel flow reactor for oxidation of alcohols with molecular oxygenAngew Chem Int Ed200948474447461:CAS:528:DC%2BD1MXntlOitrg%3D – reference: GemoetsHPLSuYShangMHesselVLuqueRNoelTLiquid phase oxidation chemistry in continuous-flow microreactorsChem Soc Rev201645831171:CAS:528:DC%2BC2MXht1aksrbO – reference: GavriilidisAConstantinouAHellgardtKHiiKKMHutchingsGJBrettGLKuhnSMarsdenSPAerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industriesReact Chem Eng201615956121:CAS:528:DC%2BC28XhsFCrsLbE – reference: IoannouGIMontagnonTKalaitzakisDPergantisSAVassilikogiannakisGA novel nebulizer-based continuous flow reactor: introducing the use of pneumatically generated aerosols for highly productive photooxidationsChemPhotoChem201711731771:CAS:528:DC%2BC2sXhs1KgtbrN – reference: VanoyeLAlouiAPablosMPhilippeRPercheronAFavre-RéguillonADe BellefonCA safe and efficient flow oxidation of aldehydes with O2Org Lett201315597859811:CAS:528:DC%2BC3sXhvVCmurrJ24266859 – reference: PieberBKappeCOAerobic oxidations in continuous flowTop Organomet Chem20155797136 – reference: SheldonRAGreen solvents for sustainable organic synthesis: state of the artGreen Chem200572672681:CAS:528:DC%2BD2MXjsl2lt7o%3D – reference: ParmeggianiCMatassiniCCardonaFA step forward towards sustainable aerobic alcohol oxidation: new and revised catalysts based on transition metals on solid supportsGreen Chem201719203020501:CAS:528:DC%2BC2sXkvF2ku7o%3D – reference: PlutschackMBBartholomäusPGilmoreKSeebergerPHThe Hitchhiker’s guide to flow chemistryChem Rev201711711796118931:CAS:528:DC%2BC2sXpt1Siu7c%3D – reference: HoneCAO’Kearney-McMullanAMundayRKappeCOA continuous-flow process for palladium-catalyzed olefin cleavage by using oxygen within the explosive regimeChemCatChem20179329833021:CAS:528:DC%2BC2sXht1WlsLnJ – reference: GemoetsHPLHesselVNoëlTAerobic C–H olefination of indoles via a cross-dehydrogenative coupling in continuous flowOrg Lett201416580058031:CAS:528:DC%2BC2cXhvVWnsL%2FO25341623 – reference: DiorazioLJHoseDRJAdlingtonNKToward a more holistic framework for solvent selectionOrg Process Res Dev2016207607731:CAS:528:DC%2BC28XislOnsb0%3D – reference: CaronSDuggerRWRuggeriSGRaganJARipinDHBLarge-scale oxidations in the pharmaceutical industryChem Rev2006106294329891:CAS:528:DC%2BD28Xmt12lsL4%3D16836305 – reference: PieberBCoxDPKappeCOSelective olefin reduction in thebaine using hydrazine hydrate and O2 under intensified continuous flow conditionsOrg Process Res Dev2016203763851:CAS:528:DC%2BC2MXitVSksr%2FE – reference: LaudadioGGovaertsSWangYRavelliDKoolmanHFFagnoniMDjuricSWNoëlTSelective C(sp3)–H aerobic oxidation enabled by decatungstate photocatalysis in flowAngew Chem Int Ed201857407840821:CAS:528:DC%2BC1cXkt1Gqu7g%3D – reference: Medina-GonzalezYCamySCondoretJ-SScCO2/green solvents: biphasic promising systems for cleaner chemicals manufacturingACS Sustain Chem Eng20142262326361:CAS:528:DC%2BC2cXhslOhu7rF – reference: BrzozowskiMForniJASavagePGPolyzosAThe direct α-C(sp3)-H functionalisation of N-aryl tetrahydroisoquinolines via an iron-catalysed aerobic nitro-Mannich reaction and continuous flow processingChem Commun2015513343371:CAS:528:DC%2BC2cXhvFeisbrO – reference: ParkCPMauryaRALeeJHKimDPEfficient photosensitized oxygenations in phase contact enhanced microreactorsLab Chip201111194119451:CAS:528:DC%2BC3MXmtFenurc%3D21499614 – reference: Garcia-VerdugoEVenardouEThomasWBWhistonKPartenheimerWHamleyPAPoliakoffMIs it possible to achieve highly selective oxidations in supercritical water? Aerobic oxidation of methylaromatic compoundsAdv Synth Catal20043463073161:CAS:528:DC%2BD2cXjt1ent78%3D – reference: NoëlTHesselVMembrane microreactors: gas–liquid reactions made easyChemSusChem2013640540723303711 – reference: HoneCARobergeDMKappeCOThe use of molecular oxygen in pharmaceutical manufacturing: is flow the way to go?ChemSusChem20171032411:CAS:528:DC%2BC28XhvVGiu77I27863103 – reference: GunasekaranNaerobic oxidation catalysis with air or molecular oxygen and ionic liquidsAdv Synth Catal2015357199020101:CAS:528:DC%2BC2MXhtVSitLzE – reference: MalliaCJBaxendaleIRThe use of gases in flow synthesisOrg Process Res Dev2016203273601:CAS:528:DC%2BC2MXht1OqsL%2FL – reference: VanoyeLPablosMDe BellefonCFavre-RéguillonAGas-liquid segmented flow microfluidics for screening copper/tempo-catalyzed aerobic oxidation of primary alcoholsAdv Synth Catal20153577397461:CAS:528:DC%2BC2MXktVChurY%3D – reference: CampanatiMFornasariGVaccariAFundamentals in the preparation of heterogeneous catalystsCatal Today2003772993141:CAS:528:DC%2BD3sXht1yqsrY%3D – reference: MannelDSStahlSSRootTWContinuous flow aerobic alcohol oxidation reactions using a heterogeneous Ru(OH)x/Al2O3 catalystOrg Process Res Dev201418150315081:CAS:528:DC%2BC2cXhsFyrsLrL256208694299400 – reference: PérezEFraga-DubreuilJGarcía-VerdugoEHamleyPAThomasMLYanCThomasWBHousleyDPartenheimerWPoliakoffMSelective aerobic oxidation of para-xylene in sub- and supercritical water. Part 2. The discovery of better catalystsGreen Chem2011132397 – reference: StahlSSAlstersPLLiquid phase aerobic oxidation catalysis: industrial applications and academic perspectives2016New YorkWiley – reference: ParkCPKimDPDual-channel microreactor for gas-liquid synthesesJ Am Chem Soc201013210102101061:CAS:528:DC%2BC3cXot1Wmsrg%3D20593807 – reference: ShvydkivOLimburgCNolanKOelgemöllerMSynthesis of juglone (5-Hydroxy-1,4-Naphthoquinone) in a falling film microreactorJ Flow Chem2012252551:CAS:528:DC%2BC38XhtVaku7rE – reference: YueJChenGYuanQLuoLGonthierYHydrodynamics and mass transfer characteristics in gas–liquid flow through a rectangular microchannelChem Eng Sci200762209621081:CAS:528:DC%2BD2sXitFOrsrc%3D – reference: IoannouGIMontagnonTKalaitzakisDPergantisSAVassilikogiannakisGSynthesis of cyclopent-2-enones from furans using a nebulizer-based continuous flow photoreactorOrg Biomol Chem20171510151101551:CAS:528:DC%2BC2sXhvVaqsLjM29177328 – reference: HartmanRLMcMullenJPJensenKFDeciding whether to go with the flow: evaluating the merits of flow reactors for synthesisAngew Chem Int Ed201150750275191:CAS:528:DC%2BC3MXotVCns74%3D – reference: ConstantinouAWuGCorrederaAEllisPBethellDHutchingsGJKuhnSGavriilidisAContinuous heterogeneously catalyzed oxidation of benzyl alcohol in a ceramic membrane packed-bed reactorOrg Process Res Dev201519197319791:CAS:528:DC%2BC2MXitVSnsr7N – reference: WendlandtAESuessAMStahlSSCopper-catalyzed aerobic oxidative C–H functionalizations: trends and mechanistic insightsAngew Chem Int Ed20115011062110871:CAS:528:DC%2BC3MXhtlyisrzI – reference: ThomasMLFraga-DubreuilJCooteASPoliakoffMA dramatic switch in selectivity in the catalytic dehydrogenation of 4-vinylcyclohexene in high pressure steam; a cautionary lesson for continuous flow reactionsGreen Chem2008101972011:CAS:528:DC%2BD1cXhsVSisrc%3D – reference: De AngelisSHoneCADegennaroLCelestiniPLuisiRKappeCOSequential α-lithiation and aerobic oxidation of an arylacetic acid—continuous-flow synthesis of cyclopentyl mandelic acidJ Flow Chem20188109116 – reference: IzawaYStahlSSAerobic oxidative coupling of o-xylene: discovery of 2-fluoropyridine as a ligand to support selective Pd-catalyzedAdv Synth Catal2010352322332291:CAS:528:DC%2BC3cXhsFOjs7%2FM213997043049937 – reference: SpacciniRLiguoriLPuntaCBjørsvikHROrganocatalyzed epoxidation of alkenes in continuous flow using a multi-jet oscillating disk reactorChemSusChem201252612651:CAS:528:DC%2BC3MXht12qtr7O21994167 – reference: RodunerEKaimWSarkarBUrlacherVBPleissJGlaserREinickeWDSprengerGABeifusUKlemmELiebnerCHieronymusHHsuSFPlietkerBLaschatSSelective catalytic oxidation of C–H bonds with molecular oxygenChemCatChem20135821121:CAS:528:DC%2BC38XhsV2rsLrK – reference: ObermayerDBaluAMRomeroAAGoesslerWLuqueRKappeCONanocatalysis in continuous flow: supported iron oxide nanoparticles for the heterogeneous aerobic oxidation of benzyl alcoholGreen Chem201315153015371:CAS:528:DC%2BC3sXot1egsLg%3D – reference: ZotovaNHellgardtKKelsallGHJessimanASHiiKKMCatalysis in flow: the practical and selective aerobic oxidation of alcohols to aldehydes and ketonesGreen Chem201012215721631:CAS:528:DC%2BC3cXhsVyrurfF – reference: WuGConstantinouACaoEKuhnSMoradMSankarMBethellDHutchingsGJGavriilidisAContinuous heterogeneously catalyzed oxidation of benzyl alcohol using a tube-in-tube membrane microreactorInd Eng Chem Res201554418341891:CAS:528:DC%2BC2MXhvFGnurY%3D – reference: SuYKuijpersKHesselVNoëlTA convenient numbering-up strategy for the scale-up of gas–liquid photoredox catalysis in flowReact Chem Eng2016173811:CAS:528:DC%2BC28XhtlSlt7%2FK – reference: HeZJamisonTFContinuous-flow synthesis of functionalized phenols by aerobic oxidation of Grignard reagentsAngew Chem Int Ed201453335333571:CAS:528:DC%2BC2cXivVeksbo%3D – reference: GutmannBElsnerPCoxDPWeiglURobergeDMKappeCOTowards the synthesis of noroxymorphone via aerobic palladium-catalyzed continuous flow N-demethylation strategiesACS Sustain Chem Eng20164604860611:CAS:528:DC%2BC28Xht1Wkt7jI – reference: HorváthITFluorous biphase chemistryAcc Chem Res199831641650 – reference: AndersonNGUsing continuous processes to increase productionOrg Process Res Dev2012168528691:CAS:528:DC%2BC38Xhs1eht7s%3D – reference: RaynerCMThe potential of carbon dioxide in synthetic organic chemistryOrg Process Res Dev2007111211321:CAS:528:DC%2BD28XhtlCgs7rM – reference: MovsisyanMDelbekeEIPBertonJKETBattilocchioCLeySVStevensCVTaming hazardous chemistry by continuous flow technologyChem Soc Rev201645489249281:CAS:528:DC%2BC28Xht1agtLjI27453961 – reference: PieberBGlasnovTKappeCOContinuous flow reduction of artemisinic acid utilizing multi-injection strategies-closing the gap towards a fully continuous synthesis of antimalarial drugsChem Eur J201521436843761:CAS:528:DC%2BC2MXjsFGhu7s%3D25655090 – reference: HenryWlll. Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressuresPhil Trans R Soc Lond18039329274 – volume: 17 start-page: 282 year: 2013 ident: 226_CR69 publication-title: Org Process Res Dev doi: 10.1021/op300347w – volume: 139 start-page: 1690 year: 2017 ident: 226_CR65 publication-title: J Am Chem Soc doi: 10.1021/jacs.6b12722 – volume: 28 start-page: 426 year: 2005 ident: 226_CR138 publication-title: Chem Eng Technol doi: 10.1002/ceat.200407139 – volume: 6 start-page: 4724 year: 2016 ident: 226_CR51 publication-title: Catal Sci Technol doi: 10.1039/C6CY00309E – volume: 10 start-page: 191 year: 2015 ident: 226_CR14 publication-title: J Pharm Innov doi: 10.1007/s12247-015-9215-8 – year: 2018 ident: 226_CR41 publication-title: ChemSusChem doi: 10.1002/cssc.201802261 – volume: 1 start-page: 173 year: 2017 ident: 226_CR132 publication-title: ChemPhotoChem doi: 10.1002/cptc.201600054 – volume: 48 start-page: 349 year: 2015 ident: 226_CR75 publication-title: Acc Chem Res doi: 10.1021/ar500359m – volume: 93 start-page: 29 year: 1803 ident: 226_CR20 publication-title: Phil Trans R Soc Lond doi: 10.1098/rstl.1803.0004 – volume: 57 start-page: 4078 year: 2018 ident: 226_CR102 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201800818 – year: 2018 ident: 226_CR61 publication-title: Catal Today doi: 10.1016/j.cattod.2018.02.052 – volume: 8 start-page: 109 year: 2018 ident: 226_CR73 publication-title: J Flow Chem doi: 10.1007/s41981-018-0015-4 – volume: 44 start-page: 1346 year: 2005 ident: 226_CR121 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200461493 – volume: 8 start-page: 2025 year: 2012 ident: 226_CR94 publication-title: Beilstein J Org Chem doi: 10.3762/bjoc.8.229 – volume: 20 start-page: 118 year: 2018 ident: 226_CR135 publication-title: Green Chem doi: 10.1039/C7GC03352D – volume: 21 start-page: 1080 year: 2017 ident: 226_CR42 publication-title: Org Process Res Dev doi: 10.1021/acs.oprd.7b00217 – volume: 3 start-page: 2669 year: 2013 ident: 226_CR46 publication-title: ACS Catal doi: 10.1021/cs400571y – volume: 12 start-page: 163 year: 1983 ident: 226_CR19 publication-title: J Phys Chem Ref Data doi: 10.1063/1.555680 – volume: 15 start-page: 997 year: 2011 ident: 226_CR130 publication-title: Org Process Res Dev doi: 10.1021/op2000699 – volume: 1 start-page: 73 year: 2016 ident: 226_CR101 publication-title: React Chem Eng doi: 10.1039/C5RE00021A – volume: 2 start-page: 2623 year: 2014 ident: 226_CR119 publication-title: ACS Sustain Chem Eng doi: 10.1021/sc5004314 – volume: 19 start-page: 5450 year: 2013 ident: 226_CR99 publication-title: Chem Eur J doi: 10.1002/chem.201204558 – volume: 8 start-page: 616 year: 2004 ident: 226_CR66 publication-title: Org Process Res Dev doi: 10.1021/op049918r – volume: 12 start-page: 310 year: 2010 ident: 226_CR122 publication-title: Green Chem doi: 10.1039/b913434d – volume: 35 start-page: 746 year: 2002 ident: 226_CR118 publication-title: Acc Chem Res doi: 10.1021/ar010070q – volume: 19 start-page: 1973 year: 2015 ident: 226_CR86 publication-title: Org Process Res Dev doi: 10.1021/acs.oprd.5b00220 – volume: 50 start-page: 4524 year: 2014 ident: 226_CR8 publication-title: Chem Commun doi: 10.1039/C3CC47081D – volume: 6 start-page: 3286 year: 2015 ident: 226_CR55 publication-title: ChemCatChem doi: 10.1002/cctc.201402483 – volume: 5 start-page: 261 year: 2012 ident: 226_CR131 publication-title: ChemSusChem doi: 10.1002/cssc.201100262 – volume: 11 start-page: 121 year: 2007 ident: 226_CR117 publication-title: Org Process Res Dev doi: 10.1021/op060165d – volume: 77 start-page: 299 year: 2003 ident: 226_CR54 publication-title: Catal Today doi: 10.1016/S0920-5861(02)00375-9 – volume: 357 start-page: 1990 year: 2015 ident: 226_CR116 publication-title: Adv Synth Catal doi: 10.1002/adsc.201400989 – volume: 2 start-page: 580 year: 2018 ident: 226_CR125 publication-title: ChemPhotoChem doi: 10.1002/cptc.201800033 – volume: 12 start-page: 1180 year: 2010 ident: 226_CR33 publication-title: Green Chem doi: 10.1039/c0gc00106f – volume: 4 start-page: 6048 year: 2016 ident: 226_CR35 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.6b01371 – volume: 2018 start-page: 2301 year: 2018 ident: 226_CR12 publication-title: Eur J Org Chem doi: 10.1002/ejoc.201800149 – volume: 357 start-page: 739 year: 2015 ident: 226_CR45 publication-title: Adv Synth Catal doi: 10.1002/adsc.201400925 – volume: 356 start-page: 3530 year: 2014 ident: 226_CR79 publication-title: Adv Synth Catal doi: 10.1002/adsc.201400261 – volume: 41 start-page: 8099 year: 2012 ident: 226_CR63 publication-title: Chem Soc Rev doi: 10.1039/c2cs35296f – volume: 20 start-page: 10562 year: 2014 ident: 226_CR95 publication-title: Chem Eur J doi: 10.1002/chem.201400283 – volume: 10 start-page: 197 year: 2008 ident: 226_CR28 publication-title: Green Chem doi: 10.1039/B706711A – volume: 53 start-page: 3353 year: 2014 ident: 226_CR72 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201310572 – volume: 19 start-page: 812 year: 2015 ident: 226_CR80 publication-title: Org Process Res Dev doi: 10.1021/acs.oprd.5b00077 – volume: 57 start-page: 97 year: 2015 ident: 226_CR16 publication-title: Top Organomet Chem doi: 10.1007/3418_2015_133 – volume: 13 start-page: 2389 year: 2011 ident: 226_CR128 publication-title: Green Chem doi: 10.1039/c1gc15137a – ident: 226_CR87 – volume: 15 start-page: 1275 year: 2011 ident: 226_CR120 publication-title: Org Process Res Dev doi: 10.1021/op200053w – volume: 108 start-page: 2265 year: 2008 ident: 226_CR103 publication-title: Chem Rev doi: 10.1021/cr0680843 – volume: 16 start-page: 852 year: 2012 ident: 226_CR30 publication-title: Org Process Res Dev doi: 10.1021/op200347k – volume: 355 start-page: 1905 year: 2013 ident: 226_CR76 publication-title: Adv Synth Catal doi: 10.1002/adsc.201300278 – volume: 2 start-page: 1059 year: 2011 ident: 226_CR123 publication-title: Chem Sci doi: 10.1039/c0sc00641f – volume: 55 start-page: 2027 year: 2012 ident: 226_CR32 publication-title: Sci China Chem doi: 10.1007/s11426-012-4719-2 – volume: 17 start-page: 927 year: 2013 ident: 226_CR84 publication-title: Org Process Res Dev doi: 10.1021/op400085a – volume: 56 start-page: 1265 year: 2001 ident: 226_CR27 publication-title: AIChE J – volume: 20 start-page: 90 year: 2016 ident: 226_CR50 publication-title: Org Process Res Dev doi: 10.1021/acs.oprd.5b00359 – volume: 19 start-page: 858 year: 2015 ident: 226_CR88 publication-title: Org Process Res Dev doi: 10.1021/acs.oprd.5b00125 – volume: 39 start-page: 3181 year: 2010 ident: 226_CR92 publication-title: Chem Soc Rev doi: 10.1039/b926014p – volume: 50 start-page: 11062 year: 2011 ident: 226_CR43 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201103945 – volume: 90 start-page: 47 year: 2002 ident: 226_CR7 publication-title: Chem Eng J doi: 10.1016/S1385-8947(02)00067-0 – volume: 117 start-page: 11796 year: 2017 ident: 226_CR11 publication-title: Chem Rev doi: 10.1021/acs.chemrev.7b00183 – volume: 9 start-page: 411 year: 2007 ident: 226_CR37 publication-title: Green Chem doi: 10.1039/B703488C – volume: 357 start-page: 1093 year: 2015 ident: 226_CR53 publication-title: Adv Synth Catal doi: 10.1002/adsc.201401081 – volume: 51 start-page: 334 year: 2015 ident: 226_CR78 publication-title: Chem Commun doi: 10.1039/C4CC07913B – volume: 13 start-page: 854 year: 2011 ident: 226_CR111 publication-title: Green Chem doi: 10.1039/c0gc00918k – volume: 15 start-page: 5978 year: 2013 ident: 226_CR48 publication-title: Org Lett doi: 10.1021/ol401273k – volume: 54 start-page: 6688 year: 2015 ident: 226_CR9 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201409318 – volume: 116 start-page: 9994 year: 2016 ident: 226_CR93 publication-title: Chem Rev doi: 10.1021/acs.chemrev.5b00726 – volume: 132 start-page: 10102 year: 2010 ident: 226_CR89 publication-title: J Am Chem Soc doi: 10.1021/ja102666y – volume: 7 start-page: 1158 year: 2011 ident: 226_CR91 publication-title: Beilstein J Org Chem doi: 10.3762/bjoc.7.134 – volume: 15 start-page: 1530 year: 2013 ident: 226_CR59 publication-title: Green Chem doi: 10.1039/c3gc40307f – volume: 50 start-page: 7502 year: 2011 ident: 226_CR23 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201004637 – volume: 116 start-page: 10276 year: 2016 ident: 226_CR96 publication-title: Chem Rev doi: 10.1021/acs.chemrev.5b00707 – volume: 1 start-page: 595 year: 2016 ident: 226_CR24 publication-title: React Chem Eng doi: 10.1039/C6RE00155F – volume: 19 start-page: 1537 year: 2015 ident: 226_CR25 publication-title: Org Process Res Dev doi: 10.1021/op500328f – volume: 2 start-page: 258 year: 2017 ident: 226_CR29 publication-title: React Chem Eng doi: 10.1039/C7RE00021A – volume: 20 start-page: 376 year: 2016 ident: 226_CR71 publication-title: Org Process Res Dev doi: 10.1021/acs.oprd.5b00370 – volume: 14 start-page: 251 year: 2012 ident: 226_CR13 publication-title: Green Chem doi: 10.1039/C1GC15904F – volume: 9 start-page: 3298 year: 2017 ident: 226_CR34 publication-title: ChemCatChem doi: 10.1002/cctc.201700671 – volume: 118 start-page: 4573 year: 2018 ident: 226_CR107 publication-title: Chem Rev doi: 10.1021/acs.chemrev.7b00360 – volume: 15 start-page: 10151 year: 2017 ident: 226_CR133 publication-title: Org Biomol Chem doi: 10.1039/C7OB02557B – volume: 18 start-page: 3879 year: 2016 ident: 226_CR112 publication-title: Green Chem doi: 10.1039/C6GC00611F – volume: 118 start-page: 4541 year: 2018 ident: 226_CR106 publication-title: Chem Rev doi: 10.1021/acs.chemrev.7b00353 – volume: 13 start-page: 2397 year: 2011 ident: 226_CR129 publication-title: Green Chem doi: 10.1039/c1gc15138j – volume: 2 start-page: 2134 year: 2012 ident: 226_CR60 publication-title: Catal Sci Technol doi: 10.1039/c2cy20260c – volume: 7 start-page: 267 year: 2005 ident: 226_CR110 publication-title: Green Chem doi: 10.1039/b418069k – ident: 226_CR1 doi: 10.1002/047084289x.ro028.pub3 – volume: 19 start-page: 2030 year: 2017 ident: 226_CR56 publication-title: Green Chem doi: 10.1039/C7GC00406K – volume: 21 start-page: 4368 year: 2015 ident: 226_CR70 publication-title: Chem Eur J doi: 10.1002/chem.201406439 – volume: 18 start-page: 1516 year: 2014 ident: 226_CR83 publication-title: Org Process Res Dev doi: 10.1021/op5002116 – volume: 21 start-page: 1042 year: 2017 ident: 226_CR136 publication-title: Org Process Res Dev doi: 10.1021/acs.oprd.7b00153 – volume: 20 start-page: 327 year: 2016 ident: 226_CR21 publication-title: Org Process Res Dev doi: 10.1021/acs.oprd.5b00222 – volume: 17 start-page: 1247 year: 2013 ident: 226_CR44 publication-title: Org Process Res Dev doi: 10.1021/op400207f – volume: 31 start-page: 641 year: 1998 ident: 226_CR115 publication-title: Acc Chem Res doi: 10.1021/ar970342i – volume: 24 start-page: 10260 year: 2018 ident: 226_CR108 publication-title: Chem Eur J doi: 10.1002/chem.201802588 – volume: 45 start-page: 4892 year: 2016 ident: 226_CR10 publication-title: Chem Soc Rev doi: 10.1039/C5CS00902B – volume: 5 start-page: 2647 year: 2015 ident: 226_CR126 publication-title: RSC Adv doi: 10.1039/C4RA14947E – volume: 2 start-page: 508 year: 2009 ident: 226_CR6 publication-title: ChemSusChem doi: 10.1002/cssc.200900020 – volume: 23 start-page: 13270 year: 2017 ident: 226_CR134 publication-title: Chem Eur J doi: 10.1002/chem.201700888 – volume: 15 start-page: 320 year: 2013 ident: 226_CR47 publication-title: Green Chem doi: 10.1039/c2gc36896j – volume: 17 start-page: 1099 year: 2013 ident: 226_CR15 publication-title: Org Process Res Dev doi: 10.1021/op400192h – volume: 48 start-page: 4744 year: 2009 ident: 226_CR62 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200900565 – volume: 22 start-page: 252 year: 2018 ident: 226_CR52 publication-title: Org Process Res Dev doi: 10.1021/acs.oprd.7b00358 – volume: 20 start-page: 760 year: 2016 ident: 226_CR113 publication-title: Org Process Res Dev doi: 10.1021/acs.oprd.6b00015 – volume: 16 start-page: 5800 year: 2014 ident: 226_CR40 publication-title: Org Lett doi: 10.1021/ol502910e – volume: 52 start-page: 10241 year: 2013 ident: 226_CR68 publication-title: Angew Chemie Int Ed doi: 10.1002/anie.201303528 – start-page: 1 volume-title: Sustainable chemical processes year: 2016 ident: 226_CR114 – volume: 12 start-page: 203 year: 1993 ident: 226_CR26 publication-title: Process Saf Prog doi: 10.1002/prs.680120404 – volume: 13 start-page: 226 year: 2011 ident: 226_CR81 publication-title: Green Chem doi: 10.1039/C0GC00595A – volume: 62 start-page: 2096 year: 2007 ident: 226_CR22 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2006.12.057 – volume: 346 start-page: 307 year: 2004 ident: 226_CR127 publication-title: Adv Synth Catal doi: 10.1002/adsc.200303218 – volume: 5 start-page: 274 year: 2012 ident: 226_CR77 publication-title: ChemSusChem doi: 10.1002/cssc.201100339 – volume: 118 start-page: 2636 year: 2018 ident: 226_CR31 publication-title: Chem Rev doi: 10.1021/acs.chemrev.7b00334 – volume: 51 start-page: 1706 year: 2012 ident: 226_CR98 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201107446 – volume: 10 start-page: 32 year: 2017 ident: 226_CR18 publication-title: ChemSusChem doi: 10.1002/cssc.201601321 – volume: 12 start-page: 2157 year: 2010 ident: 226_CR57 publication-title: Green Chem doi: 10.1039/c0gc00493f – volume: 9 start-page: 3273 year: 2017 ident: 226_CR82 publication-title: ChemCatChem doi: 10.1002/cctc.201701295 – volume: 18 start-page: 1503 year: 2014 ident: 226_CR58 publication-title: Org Process Res Dev doi: 10.1021/op5002676 – volume: 7 start-page: 489 year: 2015 ident: 226_CR124 publication-title: Nat Chem doi: 10.1038/nchem.2261 – volume: 54 start-page: 4183 year: 2015 ident: 226_CR85 publication-title: Ind Eng Chem Res doi: 10.1021/ie5041176 – volume: 13 start-page: 5008 year: 2011 ident: 226_CR97 publication-title: Org Lett doi: 10.1021/ol2017643 – volume: 35 start-page: 686 year: 2002 ident: 226_CR3 publication-title: Acc Chem Res doi: 10.1021/ar010065m – volume: 3 start-page: 686 year: 2017 ident: 226_CR109 publication-title: ACS Cent Sci doi: 10.1021/acscentsci.7b00275 – volume: 4 start-page: 57159 year: 2014 ident: 226_CR49 publication-title: RSC Adv doi: 10.1039/C4RA12067A – volume: 2 start-page: 302 year: 2016 ident: 226_CR104 publication-title: ACS Cent Sci doi: 10.1021/acscentsci.6b00091 – volume: 45 start-page: 83 year: 2016 ident: 226_CR17 publication-title: Chem Soc Rev doi: 10.1039/C5CS00447K – volume: 7 start-page: 94 year: 2017 ident: 226_CR105 publication-title: J Flow Chem doi: 10.1556/1846.2017.00020 – volume: 11 start-page: 1941 year: 2011 ident: 226_CR90 publication-title: Lab Chip doi: 10.1039/c1lc20071b – volume: 27 start-page: 8 year: 2009 ident: 226_CR36 publication-title: Chim Oggi – volume: 12 start-page: 956 year: 2008 ident: 226_CR67 publication-title: Org Process Res Dev doi: 10.1021/op800079u – volume: 18 start-page: 1443 year: 2014 ident: 226_CR100 publication-title: Org Process Res Dev doi: 10.1021/op500181z – volume: 106 start-page: 2943 year: 2006 ident: 226_CR2 publication-title: Chem Rev doi: 10.1021/cr040679f – volume: 20 start-page: 831 year: 2016 ident: 226_CR38 publication-title: Org Process Res Dev doi: 10.1021/acs.oprd.6b00044 – volume-title: Liquid phase aerobic oxidation catalysis: industrial applications and academic perspectives year: 2016 ident: 226_CR4 doi: 10.1002/9783527690121 – volume: 352 start-page: 3223 year: 2010 ident: 226_CR39 publication-title: Adv Synth Catal doi: 10.1002/adsc.201000771 – volume: 5 start-page: 82 year: 2013 ident: 226_CR5 publication-title: ChemCatChem doi: 10.1002/cctc.201200266 – volume: 2 start-page: 52 year: 2012 ident: 226_CR137 publication-title: J Flow Chem doi: 10.1556/jfchem.2012.00022 – volume: 6 start-page: 4749 year: 2016 ident: 226_CR64 publication-title: Catal Sci Technol doi: 10.1039/C6CY00232C – volume: 6 start-page: 405 year: 2013 ident: 226_CR74 publication-title: ChemSusChem doi: 10.1002/cssc.201200913 |
SSID | ssib053851526 ssj0001738078 |
Score | 2.4499478 |
SecondaryResourceType | review_article |
Snippet | Molecular oxygen (O
2
) is the ultimate “green” oxidant for organic synthesis. There has been recent intensive research within the synthetic community to... Molecular oxygen (O ) is the ultimate "green" oxidant for organic synthesis. There has been recent intensive research within the synthetic community to develop... |
SourceID | pubmedcentral pubmed crossref springer |
SourceType | Open Access Repository Index Database Enrichment Source Publisher |
StartPage | 2 |
SubjectTerms | Accounts on Sustainable Flow Chemistry Chemistry Chemistry and Materials Science Chemistry/Food Science Life Sciences Materials Science Molecular Medicine Physics Review |
Title | The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow |
URI | https://link.springer.com/article/10.1007/s41061-018-0226-z https://www.ncbi.nlm.nih.gov/pubmed/30536152 https://pubmed.ncbi.nlm.nih.gov/PMC6290733 |
Volume | 377 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9swED7WlNG9dFvbbdm6oIc9dajEtixbj2loWtYmK6OB9snIkkzNirPNMd3y63eyLUNCN-iLMehsLOmk-866-w7gkwkyo9Dy0wy9C8oio6gITUR9ib4EZ7EMUpuNPJ3x8zn7chPetHncpYt2d0eS9U7dJbsx672g6xtTtDucrrZgG-HHkPVge3R2e3Hq1AiXMBrpFlXUv1qimlW9LjPHQ4ogXrjzzcfeu2ahOrO0GTK5cW5am6PJS7h2HWmiUL4fV8v0WK02OB6f2NNXsNvCUzJq9Ok1PDPFHuyMXVW4PXheh4yqch--oYaReWnIIiNTV2SXfP39B1WSIBQml_nPKtfk6g4NJRkZS_iksD1vqjiVJC-I5cbKi2pRlWRyv3g4gPnk9Hp8TtsKDVQhsFtSqUOWcR0GysNbrX2RRcLEJo4EQoc4Veg9Bp5UJvS1FxrppanHMhlqERiupR-8gV6xKMw7IEb4WnmeNFGsGNdKBBnjNhF4KP0MdaYPQzcriWrpy20VjfukI16uhy3BYUvssCWrPhx1j_xouDv-J_y2meFOFHfCAPGe34dobe47AcvMvd5S5Hc1Qzf3hS2G2YfPboKTdmso__0F758k_QFeIHYTTQD5IfSWvyrzEfHRMh3gepicnMwG7boYwNaYj_E6u5r-Ba79CSo |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IHoR367PHDwpQdumaXOUxWXVXRVxwVtJkxQL0lW7i49f76Qv2EUFb4VMS5lJ-n3TTL4BODJeYhQiP00wu6AsMIoK3wTUlZhLcBZKL7ankfs3vDtgV4_-YyUWbc_CTO3fn-bM5iyY8IYU0YbTr1mYZ5go2-q9Nm_XUweXLQJzxSSK3ytBoaRetJbjPkXiLuo9zZ-eOoFKDRRNl0lO7ZUWENRZgeWKO5LzMtirMGOyNVhs1y3b1mChqOdU-TrcY_jJIDdkmJB-3QGX3H584nwhyFNJL30dp5rcPSGKkXNj1ZgUjqdli6WcpBmxwlVpNh6Oc9J5Hr5vwKBz8dDu0qp9AlXIukZUap8lXPuecvBSa1ckgTChCQOBuB7GClM7z5HK-K52fCOdOHZYIn0tPMO1dL1NmMuGmdkGYoSrleNIE4SKca2ElzBuT-meSTfBgLbgrHZfpCptcdvi4jlqVJELj0fo8ch6PPpqwXFzy0sprPGX8VYZisYUP1MekjG3BcFEkBoDK5s9OZKlT4V8NneF7VTZgpM6nFG1bvPf32DnX9aHsNh96Pei3uXN9S4sIckSZaX3HsyN3sZmH4nMKD4opvA3zPHnhA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB61qShcqhIKhFK6B06gFfi19h5RIKKUR1Q1Um7Weh_CEnIAJwLy65ldP6REUKk3S7u2rJlZfzOemW8A9nVgtETkpwajCxrGWlIe6Zj6AmMJFiYiyGw38tU1Ox-FF-NoXM85LZtq9yYlWfU0WJamYnp0r8xR2_gW2kgGw-CEIgYxOv8InzBQcXnaPus3BoWHGeG69i_cT5fY8au7gXMsoujO8ybT-dZTF7CqBajl4smlDKoDpsFX-FJ7lOSkMoF1-KCLLqz2m0FuXVhxVZ6y3IA_aBRkVGoyMeSqmYtLbp5f0IoIeq_kMn-Y5YoMbxHbyIm2HE0S1_Nq8FJJ8oJYOqu8mE1mJRncTZ6-wWhw9rd_TuuhClSiLzalQkWhYSoKpIeXSvncxFwnOok5on2SSZRj4AmpI195kRZelnmhEZHigWZK-MEmdIpJobeBaO4r6XlCx4kMmZI8MCGzvbvHwjeo5h4cN-JLZc04bgdf3KUtV7KTeIoST63E03kPDtpb7iu6jX9t3qpU0W7Fj1eALprfg3hBSe0GS6a9uFLkt45Um_nczq_swWGjzrQ-zeX7b7DzX7t_wufh6SC9_HX9-zusoefFq_LvXehMH2f6B3o302zPWfArA27vyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Use+of+Molecular+Oxygen+for+Liquid+Phase+Aerobic+Oxidations+in+Continuous+Flow&rft.jtitle=Topics+in+current+chemistry+%282016%29&rft.au=Hone%2C+Christopher+A.&rft.au=Kappe%2C+C.+Oliver&rft.date=2019-02-01&rft.issn=2365-0869&rft.eissn=2364-8961&rft.volume=377&rft.issue=1&rft_id=info:doi/10.1007%2Fs41061-018-0226-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41061_018_0226_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-0869&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-0869&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-0869&client=summon |