The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow

Molecular oxygen (O 2 ) is the ultimate “green” oxidant for organic synthesis. There has been recent intensive research within the synthetic community to develop new selective liquid phase aerobic oxidation methodologies as a response to the necessity to reduce the environmental impact of chemical s...

Full description

Saved in:
Bibliographic Details
Published inTopics in current chemistry (2016) Vol. 377; no. 1; p. 2
Main Authors Hone, Christopher A., Kappe, C. Oliver
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2019
Subjects
Online AccessGet full text
ISSN2365-0869
2364-8961
DOI10.1007/s41061-018-0226-z

Cover

Loading…
Abstract Molecular oxygen (O 2 ) is the ultimate “green” oxidant for organic synthesis. There has been recent intensive research within the synthetic community to develop new selective liquid phase aerobic oxidation methodologies as a response to the necessity to reduce the environmental impact of chemical synthesis and manufacture. Green and sustainable chemical processes rely not only on effective chemistry but also on the implementation of reactor technologies that enhance reaction performance and overall safety. Continuous flow reactors have facilitated safer and more efficient utilization of O 2 , whilst enabling protocols to be scalable. In this article, we discuss recent advancements in the utilization of continuous processing for aerobic oxidations. The translation of aerobic oxidation from batch protocols to continuous flow processes, including process intensification (high T/p), is examined. The use of “synthetic air”, typically consisting of less than 10% O 2 in N 2 , is compared to pure O 2 (100% O 2 ) as an oxidant source in terms of process efficiency and safety. Examples of homogeneous catalysis and heterogeneous (packed bed) catalysis are provided. The application of flow photoreactors for the in situ formation of singlet oxygen ( 1 O 2 ) for use in organic reactions, as well as the implementation of membrane technologies, green solvents and recent reactor solutions for handling O 2 are covered.
AbstractList Molecular oxygen (O 2 ) is the ultimate “green” oxidant for organic synthesis. There has been recent intensive research within the synthetic community to develop new selective liquid phase aerobic oxidation methodologies as a response to the necessity to reduce the environmental impact of chemical synthesis and manufacture. Green and sustainable chemical processes rely not only on effective chemistry but also on the implementation of reactor technologies that enhance reaction performance and overall safety. Continuous flow reactors have facilitated safer and more efficient utilization of O 2 , whilst enabling protocols to be scalable. In this article, we discuss recent advancements in the utilization of continuous processing for aerobic oxidations. The translation of aerobic oxidation from batch protocols to continuous flow processes, including process intensification (high T/p), is examined. The use of “synthetic air”, typically consisting of less than 10% O 2 in N 2 , is compared to pure O 2 (100% O 2 ) as an oxidant source in terms of process efficiency and safety. Examples of homogeneous catalysis and heterogeneous (packed bed) catalysis are provided. The application of flow photoreactors for the in situ formation of singlet oxygen ( 1 O 2 ) for use in organic reactions, as well as the implementation of membrane technologies, green solvents and recent reactor solutions for handling O 2 are covered.
Molecular oxygen (O ) is the ultimate "green" oxidant for organic synthesis. There has been recent intensive research within the synthetic community to develop new selective liquid phase aerobic oxidation methodologies as a response to the necessity to reduce the environmental impact of chemical synthesis and manufacture. Green and sustainable chemical processes rely not only on effective chemistry but also on the implementation of reactor technologies that enhance reaction performance and overall safety. Continuous flow reactors have facilitated safer and more efficient utilization of O , whilst enabling protocols to be scalable. In this article, we discuss recent advancements in the utilization of continuous processing for aerobic oxidations. The translation of aerobic oxidation from batch protocols to continuous flow processes, including process intensification (high T/p), is examined. The use of "synthetic air", typically consisting of less than 10% O in N , is compared to pure O (100% O ) as an oxidant source in terms of process efficiency and safety. Examples of homogeneous catalysis and heterogeneous (packed bed) catalysis are provided. The application of flow photoreactors for the in situ formation of singlet oxygen ( O ) for use in organic reactions, as well as the implementation of membrane technologies, green solvents and recent reactor solutions for handling O are covered.
ArticleNumber 2
Author Hone, Christopher A.
Kappe, C. Oliver
Author_xml – sequence: 1
  givenname: Christopher A.
  surname: Hone
  fullname: Hone, Christopher A.
  organization: Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering (RCPE), Institute of Chemistry, NAWI Graz, University of Graz
– sequence: 2
  givenname: C. Oliver
  orcidid: 0000-0003-2983-6007
  surname: Kappe
  fullname: Kappe, C. Oliver
  email: oliver.kappe@uni-graz.at
  organization: Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering (RCPE), Institute of Chemistry, NAWI Graz, University of Graz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30536152$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAUhYMovn-AG8kfqObRpOlGGAZfMDIizjqkSToTqcmYtL5-vdFRUReucsI934F7zw5Y98FbAA4wOsIIVcepxIjjAmFRIEJ48boGtgnlZSFqjtc_NCuQ4PUW2E_JNYhRwTAjfBNs0fzhWW-Dm9uFhbNkYWjhVeisHjoV4fT5ZW49bEOEE_cwOAOvFyqbRjaGxuk8d0b1LvgEnYfj4HvnhzAkeNaFpz2w0aou2f3PdxfMzk5vxxfFZHp-OR5NCs2Q6AtlWNlyw6jGWRpD6raqrbCiqgkWotElqilW2jJiMLMKNw0uW8VMTS03itBdcLLKXQ7NvTXa-j6qTi6ju1fxRQbl5O-Jdws5D4-SkxpVlOaAw58B3-TXdbKhWhl0DClF20rt-o-9c57rJEbyvQq5qkLmKuR7FfI1k_gP-RX-H0NWTMpeP7dR3oUh-nzCf6A3ugqdXQ
CitedBy_id crossref_primary_10_1021_acs_orglett_0c03100
crossref_primary_10_1016_j_chemosphere_2024_142995
crossref_primary_10_1021_acs_oprd_1c00279
crossref_primary_10_1002_anie_202015740
crossref_primary_10_1021_acs_oprd_1c00399
crossref_primary_10_1039_D4GC05769D
crossref_primary_10_3389_fchem_2021_614944
crossref_primary_10_1002_anie_202210343
crossref_primary_10_1021_acs_oprd_0c00228
crossref_primary_10_1039_D3GC00579H
crossref_primary_10_1021_acscatal_0c03240
crossref_primary_10_1055_s_0040_1719900
crossref_primary_10_3762_bjoc_16_125
crossref_primary_10_1039_C9CC07953J
crossref_primary_10_1021_acs_orglett_0c01336
crossref_primary_10_1021_acs_oprd_8b00456
crossref_primary_10_1021_acssuschemeng_1c01668
crossref_primary_10_1039_D0CS00670J
crossref_primary_10_1007_s41981_024_00312_5
crossref_primary_10_1021_acs_oprd_1c00309
crossref_primary_10_1016_j_jcat_2022_08_010
crossref_primary_10_1039_D2GC01992B
crossref_primary_10_1016_j_cej_2019_122250
crossref_primary_10_1016_j_mcat_2020_111202
crossref_primary_10_1021_acs_energyfuels_4c04387
crossref_primary_10_1007_s41981_022_00248_8
crossref_primary_10_1039_D0CC03511D
crossref_primary_10_1039_D2GC02074B
crossref_primary_10_1021_acs_iecr_2c03550
crossref_primary_10_1021_acs_oprd_3c00237
crossref_primary_10_1002_cctc_202000205
crossref_primary_10_1021_acs_energyfuels_3c00971
crossref_primary_10_1007_s41981_024_00328_x
crossref_primary_10_1021_acs_oprd_2c00184
crossref_primary_10_1002_cssc_202201059
crossref_primary_10_1021_acscatal_4c01809
crossref_primary_10_1007_s41981_022_00225_1
crossref_primary_10_1021_acssuschemeng_9b07304
crossref_primary_10_1021_acs_accounts_4c00731
crossref_primary_10_1002_nadc_20204103185
crossref_primary_10_1007_s11696_023_02837_w
crossref_primary_10_1002_cssc_202200916
crossref_primary_10_1021_acs_joc_1c01151
crossref_primary_10_1021_jacs_0c09605
crossref_primary_10_1039_D2CY01761J
crossref_primary_10_1002_ejoc_202001616
crossref_primary_10_1021_acs_joc_3c00686
crossref_primary_10_1039_D0QO00424C
crossref_primary_10_1002_tcr_202200022
crossref_primary_10_3390_mi12111307
crossref_primary_10_1002_adsc_202200124
crossref_primary_10_1021_acs_joc_9b02263
crossref_primary_10_1002_cssc_202201323
crossref_primary_10_1007_s12010_020_03448_x
crossref_primary_10_1002_cssc_202001372
crossref_primary_10_1007_s41981_023_00272_2
crossref_primary_10_1021_acs_oprd_0c00135
crossref_primary_10_1007_s10562_020_03474_8
crossref_primary_10_1002_chem_202101313
crossref_primary_10_1007_s41981_019_00073_6
crossref_primary_10_1021_acs_iecr_3c01818
crossref_primary_10_1039_D4RE00484A
crossref_primary_10_1039_D5QI00091B
crossref_primary_10_1002_ange_202210343
crossref_primary_10_1021_acssuschemeng_4c08560
crossref_primary_10_1016_j_cep_2020_107842
crossref_primary_10_1039_D1OB01607E
crossref_primary_10_1021_acs_iecr_9b00977
crossref_primary_10_1039_D1RE00004G
crossref_primary_10_1021_acs_chemrev_9b00846
crossref_primary_10_1007_s41981_021_00176_z
crossref_primary_10_1039_D3CC06172H
crossref_primary_10_1016_j_ces_2024_119985
crossref_primary_10_1021_acs_oprd_9b00125
crossref_primary_10_1007_s11426_024_2043_2
crossref_primary_10_1007_s41981_019_00066_5
crossref_primary_10_1021_acs_oprd_9b00525
crossref_primary_10_1039_C9CS00832B
crossref_primary_10_1021_acs_joc_0c00506
crossref_primary_10_1002_ange_202015740
crossref_primary_10_1039_D1GC01615F
crossref_primary_10_1039_D3GC01242E
crossref_primary_10_1039_D3CP00283G
crossref_primary_10_1021_acs_joc_2c02429
crossref_primary_10_1002_jsde_12451
crossref_primary_10_1039_D0RE00273A
crossref_primary_10_3762_bjoc_19_55
crossref_primary_10_1021_acs_orglett_9b04193
crossref_primary_10_1039_C9GC01641D
crossref_primary_10_1088_1361_6528_ab3127
crossref_primary_10_1021_acs_orglett_1c02440
crossref_primary_10_1002_bit_27556
crossref_primary_10_1021_acs_jchemed_0c00410
crossref_primary_10_1039_D1NJ02401A
crossref_primary_10_1021_acs_oprd_3c00424
crossref_primary_10_1039_D3RE00051F
crossref_primary_10_1021_acs_chemrev_1c00332
crossref_primary_10_1142_S0218625X21501018
crossref_primary_10_1039_C9RE00084D
crossref_primary_10_1016_j_crgsc_2021_100123
crossref_primary_10_1039_D2RE00041E
crossref_primary_10_1002_cssc_202400292
crossref_primary_10_1016_j_tetlet_2021_153613
crossref_primary_10_1055_s_0040_1707815
crossref_primary_10_3390_chemistry7020029
crossref_primary_10_1039_C9GC02961C
crossref_primary_10_1039_C9GC00336C
crossref_primary_10_1016_j_cej_2021_129045
Cites_doi 10.1021/op300347w
10.1021/jacs.6b12722
10.1002/ceat.200407139
10.1039/C6CY00309E
10.1007/s12247-015-9215-8
10.1002/cssc.201802261
10.1002/cptc.201600054
10.1021/ar500359m
10.1098/rstl.1803.0004
10.1002/anie.201800818
10.1016/j.cattod.2018.02.052
10.1007/s41981-018-0015-4
10.1002/anie.200461493
10.3762/bjoc.8.229
10.1039/C7GC03352D
10.1021/acs.oprd.7b00217
10.1021/cs400571y
10.1063/1.555680
10.1021/op2000699
10.1039/C5RE00021A
10.1021/sc5004314
10.1002/chem.201204558
10.1021/op049918r
10.1039/b913434d
10.1021/ar010070q
10.1021/acs.oprd.5b00220
10.1039/C3CC47081D
10.1002/cctc.201402483
10.1002/cssc.201100262
10.1021/op060165d
10.1016/S0920-5861(02)00375-9
10.1002/adsc.201400989
10.1002/cptc.201800033
10.1039/c0gc00106f
10.1021/acssuschemeng.6b01371
10.1002/ejoc.201800149
10.1002/adsc.201400925
10.1002/adsc.201400261
10.1039/c2cs35296f
10.1002/chem.201400283
10.1039/B706711A
10.1002/anie.201310572
10.1021/acs.oprd.5b00077
10.1007/3418_2015_133
10.1039/c1gc15137a
10.1021/op200053w
10.1021/cr0680843
10.1021/op200347k
10.1002/adsc.201300278
10.1039/c0sc00641f
10.1007/s11426-012-4719-2
10.1021/op400085a
10.1021/acs.oprd.5b00359
10.1021/acs.oprd.5b00125
10.1039/b926014p
10.1002/anie.201103945
10.1016/S1385-8947(02)00067-0
10.1021/acs.chemrev.7b00183
10.1039/B703488C
10.1002/adsc.201401081
10.1039/C4CC07913B
10.1039/c0gc00918k
10.1021/ol401273k
10.1002/anie.201409318
10.1021/acs.chemrev.5b00726
10.1021/ja102666y
10.3762/bjoc.7.134
10.1039/c3gc40307f
10.1002/anie.201004637
10.1021/acs.chemrev.5b00707
10.1039/C6RE00155F
10.1021/op500328f
10.1039/C7RE00021A
10.1021/acs.oprd.5b00370
10.1039/C1GC15904F
10.1002/cctc.201700671
10.1021/acs.chemrev.7b00360
10.1039/C7OB02557B
10.1039/C6GC00611F
10.1021/acs.chemrev.7b00353
10.1039/c1gc15138j
10.1039/c2cy20260c
10.1039/b418069k
10.1002/047084289x.ro028.pub3
10.1039/C7GC00406K
10.1002/chem.201406439
10.1021/op5002116
10.1021/acs.oprd.7b00153
10.1021/acs.oprd.5b00222
10.1021/op400207f
10.1021/ar970342i
10.1002/chem.201802588
10.1039/C5CS00902B
10.1039/C4RA14947E
10.1002/cssc.200900020
10.1002/chem.201700888
10.1039/c2gc36896j
10.1021/op400192h
10.1002/anie.200900565
10.1021/acs.oprd.7b00358
10.1021/acs.oprd.6b00015
10.1021/ol502910e
10.1002/anie.201303528
10.1002/prs.680120404
10.1039/C0GC00595A
10.1016/j.ces.2006.12.057
10.1002/adsc.200303218
10.1002/cssc.201100339
10.1021/acs.chemrev.7b00334
10.1002/anie.201107446
10.1002/cssc.201601321
10.1039/c0gc00493f
10.1002/cctc.201701295
10.1021/op5002676
10.1038/nchem.2261
10.1021/ie5041176
10.1021/ol2017643
10.1021/ar010065m
10.1021/acscentsci.7b00275
10.1039/C4RA12067A
10.1021/acscentsci.6b00091
10.1039/C5CS00447K
10.1556/1846.2017.00020
10.1039/c1lc20071b
10.1021/op800079u
10.1021/op500181z
10.1021/cr040679f
10.1021/acs.oprd.6b00044
10.1002/9783527690121
10.1002/adsc.201000771
10.1002/cctc.201200266
10.1556/jfchem.2012.00022
10.1039/C6CY00232C
10.1002/cssc.201200913
ContentType Journal Article
Copyright The Author(s) 2018. corrected publication 2019
The Author(s) 2018, corrected publication 2019
Copyright_xml – notice: The Author(s) 2018. corrected publication 2019
– notice: The Author(s) 2018, corrected publication 2019
DBID C6C
AAYXX
CITATION
NPM
5PM
DOI 10.1007/s41061-018-0226-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
DatabaseTitleList

PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 2364-8961
ExternalDocumentID PMC6290733
30536152
10_1007_s41061_018_0226_z
Genre Journal Article
Review
GrantInformation_xml – fundername: Österreichische Forschungsförderungsgesellschaft
  grantid: 862766
  funderid: http://dx.doi.org/10.13039/501100004955
– fundername: Österreichische Forschungsförderungsgesellschaft
  grantid: 862766
– fundername: ;
  grantid: 862766
GroupedDBID -EM
0R~
203
406
AAAVM
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
ABAKF
ABDZT
ABECU
ABJNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADTPH
ADZKW
AEBTG
AEFQL
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AFZKB
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGWZB
AGYKE
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AMYQR
ASPBG
AVWKF
AXYYD
BGNMA
C6C
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GJIRD
IKXTQ
IWAJR
IXD
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NU0
O9-
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z5O
Z7U
Z7V
Z7W
Z7X
Z7Y
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
5PM
ABRTQ
ID FETCH-LOGICAL-c508t-ad54f6d53c1ad5dd29f79e8e8792188bc40931ace52d15ea1bb14fa5d93e6da23
IEDL.DBID AGYKE
ISSN 2365-0869
IngestDate Thu Aug 21 18:23:20 EDT 2025
Wed Feb 19 02:33:53 EST 2025
Thu Apr 24 23:07:45 EDT 2025
Tue Jul 01 03:10:38 EDT 2025
Fri Feb 21 02:32:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Flow reactor
Molecular oxygen
Membranes
Green solvents
Aerobic oxidation
Process intensification
Continuous processing
Continuous flow
Photochemistry
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-ad54f6d53c1ad5dd29f79e8e8792188bc40931ace52d15ea1bb14fa5d93e6da23
ORCID 0000-0003-2983-6007
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s41061-018-0226-z
PMID 30536152
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6290733
pubmed_primary_30536152
crossref_citationtrail_10_1007_s41061_018_0226_z
crossref_primary_10_1007_s41061_018_0226_z
springer_journals_10_1007_s41061_018_0226_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
PublicationTitle Topics in current chemistry (2016)
PublicationTitleAbbrev Top Curr Chem (Z)
PublicationTitleAlternate Top Curr Chem (Cham)
PublicationYear 2019
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References LoponovKNLopesJBarlogMAstrovaEVMalkovAVLapkinAAOptimization of a scalable photochemical reactor for reactions with singlet oxygenOrg Process Res Dev201418144314541:CAS:528:DC%2BC2cXhtlaisbjL
IzawaYStahlSSAerobic oxidative coupling of o-xylene: discovery of 2-fluoropyridine as a ligand to support selective Pd-catalyzedAdv Synth Catal2010352322332291:CAS:528:DC%2BC3cXhsFOjs7%2FM213997043049937
LeitnerWSupercritical carbon dioxide as a green reaction medium for catalysisAcc Chem Res2002357467561:CAS:528:DC%2BD38XltFGmsbs%3D12234204
WangDWeinsteinABWhitePBStahlSSLigand-promoted palladium-catalyzed aerobic oxidation reactionsChem Rev2018118263626791:CAS:528:DC%2BC2sXhsF2js77L28975795
HartmanRLMcMullenJPJensenKFDeciding whether to go with the flow: evaluating the merits of flow reactors for synthesisAngew Chem Int Ed201150750275191:CAS:528:DC%2BC3MXotVCns74%3D
AlderCMHaylerJDHendersonRKRedmanAMShuklaLShusterESneddonHFUpdating and further expanding GSK’s solvent sustainability guideGreen Chem201618387938901:CAS:528:DC%2BC28Xms1Kkt7o%3D
HeZJamisonTFContinuous-flow synthesis of functionalized phenols by aerobic oxidation of Grignard reagentsAngew Chem Int Ed201453335333571:CAS:528:DC%2BC2cXivVeksbo%3D
HanXBourneRAPoliakoffMGeorgeMWImmobilised photosensitisers for continuous flow reactions of singlet oxygen in supercritical carbon dioxideChem Sci20112105910671:CAS:528:DC%2BC3MXmtV2it7c%3D
ParkCPMauryaRALeeJHKimDPEfficient photosensitized oxygenations in phase contact enhanced microreactorsLab Chip201111194119451:CAS:528:DC%2BC3MXmtFenurc%3D21499614
VanoyeLPablosMSmithNDe BellefonCFavre-RéguillonAAerobic oxidation of aldehydes: selectivity improvement using sequential pulse experimentation in continuous flow microreactorRSC Adv2014457159571631:CAS:528:DC%2BC2cXhvVWmsbvN
MovsisyanMDelbekeEIPBertonJKETBattilocchioCLeySVStevensCVTaming hazardous chemistry by continuous flow technologyChem Soc Rev201645489249281:CAS:528:DC%2BC28Xht1agtLjI27453961
ParmeggianiCMatassiniCCardonaFA step forward towards sustainable aerobic alcohol oxidation: new and revised catalysts based on transition metals on solid supportsGreen Chem201719203020501:CAS:528:DC%2BC2sXkvF2ku7o%3D
PieberBKappeCOAerobic oxidations in continuous flowTop Organomet Chem20155797136
OsterbergPMNiemeierJKWelchCJHawkinsJMMartinelliJRJohnsonTERootTWStahlSSExperimental limiting oxygen concentrations for nine organic solvents at temperatures and pressures relevant to aerobic oxidations in the pharmaceutical industryOrg Process Res Dev201519153715431:CAS:528:DC%2BC2cXitVCku7nP26622165
NoëlTHesselVMembrane microreactors: gas–liquid reactions made easyChemSusChem2013640540723303711
GavriilidisAConstantinouAHellgardtKHiiKKMHutchingsGJBrettGLKuhnSMarsdenSPAerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industriesReact Chem Eng201615956121:CAS:528:DC%2BC28XhsFCrsLbE
ShvydkivOLimburgCNolanKOelgemöllerMSynthesis of juglone (5-Hydroxy-1,4-Naphthoquinone) in a falling film microreactorJ Flow Chem2012252551:CAS:528:DC%2BC38XhtVaku7rE
PyeSJDalgarnoSJChalkerJMRastonCLOrganic oxidations promoted in vortex driven thin films under continuous flowGreen Chem2018201181241:CAS:528:DC%2BC2sXhvVKgtrzL
ParkCPKimDPDual-channel microreactor for gas-liquid synthesesJ Am Chem Soc201013210102101061:CAS:528:DC%2BC3cXot1Wmsrg%3D20593807
ConstantinouAWuGCorrederaAEllisPBethellDHutchingsGJKuhnSGavriilidisAContinuous heterogeneously catalyzed oxidation of benzyl alcohol in a ceramic membrane packed-bed reactorOrg Process Res Dev201519197319791:CAS:528:DC%2BC2MXitVSnsr7N
GutmannBElsnerPCoxDPWeiglURobergeDMKappeCOTowards the synthesis of noroxymorphone via aerobic palladium-catalyzed continuous flow N-demethylation strategiesACS Sustain Chem Eng20164604860611:CAS:528:DC%2BC28Xht1Wkt7jI
RobergeDMGottsponerMEyholzerMKockmannNIndustrial design, scale-up, and use of microreactorsChim Oggi2009278111:CAS:528:DC%2BD1MXhsFWks7zN
YangLJensenKFMass transport and reactions in the tube-in-tube reactorOrg Process Res Dev2013179279331:CAS:528:DC%2BC3sXnsFaktbo%3D
AmaraZBellamyJFBHorvathRMillerSJBeebyABurgardARossenKPoliakoffMGeorgeMWApplying green chemistry to the photochemical route to artemisininNat Chem201574894951:CAS:528:DC%2BC2MXht1ajtrbO25991527
WuGConstantinouACaoEKuhnSMoradMSankarMBethellDHutchingsGJGavriilidisAContinuous heterogeneously catalyzed oxidation of benzyl alcohol using a tube-in-tube membrane microreactorInd Eng Chem Res201554418341891:CAS:528:DC%2BC2MXhvFGnurY%3D
Garcia-VerdugoEVenardouEThomasWBWhistonKPartenheimerWHamleyPAPoliakoffMIs it possible to achieve highly selective oxidations in supercritical water? Aerobic oxidation of methylaromatic compoundsAdv Synth Catal20043463073161:CAS:528:DC%2BD2cXjt1ent78%3D
BrittonJStubbsKAWeissGARastonCLVortex fluidic chemical transformationsChem Eur J20172313270132781:CAS:528:DC%2BC2sXhtlCnsLjO28597512
GemoetsHPLHesselVNoëlTAerobic C–H olefination of indoles via a cross-dehydrogenative coupling in continuous flowOrg Lett201416580058031:CAS:528:DC%2BC2cXhvVWnsL%2FO25341623
VanoyeLAlouiAPablosMPhilippeRPercheronAFavre-RéguillonADe BellefonCA safe and efficient flow oxidation of aldehydes with O2Org Lett201315597859811:CAS:528:DC%2BC3sXhvVCmurrJ24266859
VanoyeLWangJPablosMde BellefonCFavre-RéguillonAEpoxidation using molecular oxygen in flow: facts and questions on the mechanism of the Mukaiyama epoxidationCatal Sci Technol20166472447321:CAS:528:DC%2BC28XktVCnurg%3D
ErdmannNSuYBosmansBHesselVNoelTPalladium-catalyzed aerobic oxidative coupling of O-xylene in flow: a safe and scalable protocol for cross-dehydrogenative couplingOrg Process Res Dev2016208318351:CAS:528:DC%2BC28XjvFyrtr0%3D
CavaniFHenriqueJSustainability in catalytic oxidation: an alternative approach or a structural evolution?ChemSusChem200925085341:CAS:528:DC%2BD1MXnvV2ntLo%3D19536755
LeahyDKTuckerJLMergelsbergIDunnPJKopachMEPurohitVCSeven important elements for an effective green chemistry program: an IQ consortium perspectiveOrg Process Res Dev201317109911091:CAS:528:DC%2BC3sXhsVSisb7P
CaoQDornanLMRoganLHughesNLMuldoonMJAerobic oxidation catalysis with stable radicalsChem Commun201450452445431:CAS:528:DC%2BC2cXls12hsrg%3D
ObermayerDBaluAMRomeroAAGoesslerWLuqueRKappeCONanocatalysis in continuous flow: supported iron oxide nanoparticles for the heterogeneous aerobic oxidation of benzyl alcoholGreen Chem201315153015371:CAS:528:DC%2BC3sXot1egsLg%3D
YoshidaJKataokaKHorcajadaRNagakiAModern strategies in electroorganic synthesisChem Rev2008108226522991:CAS:528:DC%2BD1cXnsVehs7k%3D18564879
SpacciniRLiguoriLPuntaCBjørsvikHROrganocatalyzed epoxidation of alkenes in continuous flow using a multi-jet oscillating disk reactorChemSusChem201252612651:CAS:528:DC%2BC3MXht12qtr7O21994167
PieberBCoxDPKappeCOSelective olefin reduction in thebaine using hydrazine hydrate and O2 under intensified continuous flow conditionsOrg Process Res Dev2016203763851:CAS:528:DC%2BC2MXitVSksr%2FE
ChaudhuriSRHartwigJKupraczLKodanekTWegnerJKirschningAOxidations of allylic and benzylic alcohols under inductively-heated flow conditions with gold-doped superparamagnetic nanostructured particles as catalyst and oxygen as oxidantAdv Synth Catal2014356353035381:CAS:528:DC%2BC2cXhvFGisL3F
De AngelisSHoneCADegennaroLCelestiniPLuisiRKappeCOSequential α-lithiation and aerobic oxidation of an arylacetic acid—continuous-flow synthesis of cyclopentyl mandelic acidJ Flow Chem20188109116
HollmannFArendsIWCEBuehlerKBrunoBEnzyme-mediated oxidations for the chemistGreen Chem2011132262651:CAS:528:DC%2BC3MXhs1GjtL8%3D
WatsonWJWHow do the fine chemical, pharmaceutical, and related industries approach green chemistry and sustainability?Green Chem2012142512591:CAS:528:DC%2BC38Xhslersrk%3D
Folgueiras-AmadorAAWirthTPerspectives in flow electrochemistryJ Flow Chem2017794951:CAS:528:DC%2BC1MXntFygur4%3D
HoneCAO’Kearney-McMullanAMundayRKappeCOA continuous-flow process for palladium-catalyzed olefin cleavage by using oxygen within the explosive regimeChemCatChem20179329833021:CAS:528:DC%2BC2sXht1WlsLnJ
Wu G, Cao E, Ellis P, Constantinou A, Kuhn S, Gavriilidis A (2018) Development of a flat membrane microchannel packed-bed reactor for scalable aerobic oxidation of benzyl alcohol in flow. Chem Eng J 1–9
WuLLeeDSBoufrouraHPoliakoffMPhotooxidation of fulvenes in a continuous flow photoreactor using carbon dioxide as a solventChemPhotoChem201825805851:CAS:528:DC%2BC1cXosFWjs74%3D
GemoetsHPLSuYShangMHesselVLuqueRNoelTLiquid phase oxidation chemistry in continuous-flow microreactorsChem Soc Rev201645831171:CAS:528:DC%2BC2MXht1aksrbO
Jones AB, Wang J, Hamme AT, Han W (2013) Oxygen. In: Encyclopedia of reagents for organic synthesis. https://doi.org/10.1002/047084289x.ro028.pub3
YeXJohnsonMDDiaoTYatesMHStahlSSDevelopment of safe and scalable continuous-flow methods for palladium-catalyzed aerobic oxidation reactionsGreen Chem201012118011861:CAS:528:DC%2BC3cXotlyru7o%3D206941692914337
MannelDSStahlSSRootTWContinuous flow aerobic alcohol oxidation reactions using a heterogeneous Ru(OH)x/Al2O3 catalystOrg Process Res Dev201418150315081:CAS:528:DC%2BC2cXhsFyrsLrL256208694299400
DurndellLJCucuzzellaCParlettCMAIsaacsMAWilsonKLeeAFPlatinum catalysed aerobic selective oxidation of cinnamaldehyde to cinnamic acidCatal Today201810.1016/j.cattod.2018.02.052
BrzozowskiMForniJASavagePGPolyzosAThe direct α-C(sp3)-H functionalisation of N-aryl tetrahydroisoquinolines via an iron-catalysed aerobic nitro-Mannich reaction and continuous flow processingChem Commun2015513343371:CAS:528:DC%2BC2cXhvFeisbrO
IoannouGIMontagnonTKalaitzakisDPergantisSAVassilikogiannakisGA novel nebulizer-based continuous flow reactor: introducing the use of pneumatically generated aerosols for highly productive photooxidationsChemPhotoChem201711731771:CAS:528:DC%2BC2sXhs1KgtbrN
SambiagioCSterckxHMaesBUWElectrosynthesis: a new frontier in aerobic oxidation?ACS Cent Sci201736866881:CAS:528:DC%2BC2sXhtFSiurjP287760085532737
LaudadioGGovaertsSWangYRavelliDKoolmanHFFagnoniMDjuricSWNoëlTSelective C(sp3)–H aerobic oxidation enabled by de
B Gutmann (226_CR35) 2016; 4
SS Stahl (226_CR4) 2016
M Sankar (226_CR63) 2012; 41
M Atobe (226_CR106) 2018; 118
D Cantillo (226_CR55) 2015; 6
M Brzozowski (226_CR78) 2015; 51
A Gavriilidis (226_CR24) 2016; 1
RL Hartman (226_CR23) 2011; 50
HPL Gemoets (226_CR17) 2016; 45
R Spaccini (226_CR131) 2012; 5
E Roduner (226_CR5) 2013; 5
F Lévesque (226_CR97) 2011; 13
N Erdmann (226_CR38) 2016; 20
DS Mannel (226_CR58) 2014; 18
K Jähnisch (226_CR138) 2005; 28
SL Lee (226_CR14) 2015; 10
IT Horváth (226_CR115) 1998; 31
F Hollmann (226_CR81) 2011; 13
DJC Constable (226_CR37) 2007; 9
TP Petersen (226_CR77) 2012; 5
EJ Horn (226_CR104) 2016; 2
Q Cao (226_CR8) 2014; 50
DS Mannel (226_CR65) 2017; 139
PM Osterberg (226_CR25) 2015; 19
JF Greene (226_CR44) 2013; 17
DK Leahy (226_CR15) 2013; 17
226_CR87
Y Chen (226_CR42) 2017; 21
D Cambié (226_CR96) 2016; 116
RA Sheldon (226_CR110) 2005; 7
N Wang (226_CR62) 2009; 48
RH Ringborg (226_CR82) 2017; 9
S Guo (226_CR52) 2018; 22
JF Greene (226_CR88) 2015; 19
B Pieber (226_CR47) 2013; 15
B Pieber (226_CR71) 2016; 20
A Constantinou (226_CR86) 2015; 19
AA Folgueiras-Amador (226_CR105) 2017; 7
SR Chaudhuri (226_CR79) 2014; 356
F Cavani (226_CR6) 2009; 2
GI Ioannou (226_CR132) 2017; 1
GI Ioannou (226_CR133) 2017; 15
SJ Pye (226_CR135) 2018; 20
ML Thomas (226_CR28) 2008; 10
EH Stitt (226_CR7) 2002; 90
JP Knowles (226_CR94) 2012; 8
L Vanoye (226_CR48) 2013; 15
U Hintermair (226_CR120) 2011; 15
G Wu (226_CR64) 2016; 6
Z Hou (226_CR121) 2005; 44
LQ Jin (226_CR32) 2012; 55
D Kopetzki (226_CR99) 2013; 19
B Tomaszewski (226_CR83) 2014; 18
C Sambiagio (226_CR109) 2017; 3
X Ye (226_CR33) 2010; 12
MP Feth (226_CR69) 2013; 17
CA Hone (226_CR34) 2017; 9
LJ Diorazio (226_CR113) 2016; 20
DJ Watson (226_CR66) 2004; 8
S Caron (226_CR2) 2006; 106
X Han (226_CR123) 2011; 2
DS Lee (226_CR136) 2017; 21
J Yue (226_CR22) 2007; 62
CP Park (226_CR89) 2010; 132
C Parmeggiani (226_CR56) 2017; 19
M Movsisyan (226_CR10) 2016; 45
N Kockmann (226_CR29) 2017; 2
N Gunasekaran (226_CR116) 2015; 357
HPL Gemoets (226_CR40) 2014; 16
AE Wendlandt (226_CR43) 2011; 50
KN Loponov (226_CR100) 2014; 18
AO Chapman (226_CR122) 2010; 12
L Liguori (226_CR130) 2011; 15
SL Bourne (226_CR76) 2013; 355
D Obermayer (226_CR59) 2013; 15
AA Ghogare (226_CR93) 2016; 116
E Pérez (226_CR129) 2011; 13
CM Rayner (226_CR117) 2007; 11
B Pieber (226_CR68) 2013; 52
DM Roberge (226_CR36) 2009; 27
LJ Durndell (226_CR61) 2018
PT Anastas (226_CR3) 2002; 35
Y Izawa (226_CR39) 2010; 352
M Campanati (226_CR54) 2003; 77
CA Hone (226_CR41) 2018
L Vanoye (226_CR51) 2016; 6
R Gérardy (226_CR12) 2018; 2018
N Zotova (226_CR57) 2010; 12
O Shvydkiv (226_CR137) 2012; 2
B Gutmann (226_CR46) 2013; 3
CM Alder (226_CR112) 2016; 18
W Leitner (226_CR118) 2002; 35
CJ Mallia (226_CR21) 2016; 20
J Britton (226_CR134) 2017; 23
TH Pratt (226_CR26) 1993; 12
J Yoshida (226_CR103) 2008; 108
B Gutmann (226_CR9) 2015; 54
RK Henderson (226_CR111) 2011; 13
CA Hone (226_CR18) 2017; 10
M Brzozowski (226_CR75) 2015; 48
R Munirathinam (226_CR53) 2015; 357
MB Plutschack (226_CR11) 2017; 117
226_CR1
D Pletcher (226_CR107) 2018; 118
G Wu (226_CR85) 2015; 54
Z Amara (226_CR124) 2015; 7
L Vanoye (226_CR49) 2014; 4
X Liu (226_CR60) 2012; 2
G Laudadio (226_CR102) 2018; 57
T Noël (226_CR74) 2013; 6
JH Park (226_CR80) 2015; 19
D Wang (226_CR31) 2018; 118
E Garcia-Verdugo (226_CR127) 2004; 346
PR Ogilby (226_CR92) 2010; 39
Y Su (226_CR95) 2014; 20
CP Park (226_CR90) 2011; 11
NG Anderson (226_CR30) 2012; 16
W Henry (226_CR20) 1803; 93
FP Byrne (226_CR114) 2016
K Veser (226_CR27) 2001; 56
L Yang (226_CR84) 2013; 17
Y Su (226_CR101) 2016; 1
S Angelis De (226_CR73) 2018; 8
E Pérez (226_CR128) 2011; 13
L Vanoye (226_CR50) 2016; 20
WJW Watson (226_CR13) 2012; 14
Z He (226_CR72) 2014; 53
L Wu (226_CR125) 2018; 2
RA Maurya (226_CR91) 2011; 7
B Pieber (226_CR16) 2015; 57
TL Laporte (226_CR67) 2008; 12
B Pieber (226_CR70) 2015; 21
L Vanoye (226_CR45) 2015; 357
R Battino (226_CR19) 1983; 12
F Lévesque (226_CR98) 2012; 51
T Osako (226_CR126) 2015; 5
Y Medina-Gonzalez (226_CR119) 2014; 2
Y Mo (226_CR108) 2018; 24
References_xml – reference: JähnischKDingerdissenUPhotochemical generation and [4 + 2]-cycloaddition of singlet oxygen in a falling-film microreactorChem Eng Technol200528426427
– reference: PetersenTPPolyzosABrienMOUlvenTBaxendaleIRLeySVThe oxygen-mediated synthesis of 1,3-butadiynes in continuous flow: using teflon AF-2400 to effect gas/liquid contactChemSusChem201252742771:CAS:528:DC%2BC3MXht1Slur%2FJ21948655
– reference: ChapmanAOAkienGRArrowsmithNJLicencePPoliakoffMContinuous heterogeneous catalytic oxidation of primary and secondary alcohols in scCO2Green Chem2010123103151:CAS:528:DC%2BC3cXhsleru7Y%3D
– reference: HoneCALopatkaPMundayRO’Kearney-McMullanAKappeCOContinuous-flow synthesis of aryl aldehydes by Pd-catalyzed formylation of aryl bromides using carbon monoxide and hydrogenChemSusChem201810.1002/cssc.201802261303009706582436
– reference: LiguoriLBjørsvikH-RMultijet oscillating disc millireactor: a novel approach for continuous flow organic synthesisOrg Process Res Dev20111599710091:CAS:528:DC%2BC3MXpsFSlu78%3D
– reference: KnowlesJPElliottLDBooker-MilburnKIFlow photochemistry: old light through new windowsBeilstein J Org Chem20128202520521:CAS:528:DC%2BC38XhvVaqtbrJ232095383511038
– reference: MauryaRAParkCPKimDPTriple-channel microreactor for biphasic gas-liquid reactions: photosensitized oxygenationsBeilstein J Org Chem20117115811631:CAS:528:DC%2BC3MXhtF2ns7zJ219152213170200
– reference: CaoQDornanLMRoganLHughesNLMuldoonMJAerobic oxidation catalysis with stable radicalsChem Commun201450452445431:CAS:528:DC%2BC2cXls12hsrg%3D
– reference: PieberBKappeCODirect aerobic oxidation of 2-benzylpyridines in a gas–liquid continuous-flow regime using propylene carbonate as a solventGreen Chem2013153203241:CAS:528:DC%2BC3sXhsVOntrw%3D
– reference: PyeSJDalgarnoSJChalkerJMRastonCLOrganic oxidations promoted in vortex driven thin films under continuous flowGreen Chem2018201181241:CAS:528:DC%2BC2sXhvVKgtrzL
– reference: PieberBMartinezSTCantilloDKappeCOIn situ generation of diimide from hydrazine and oxygen: continuous-flow transfer hydrogenation of olefinsAngew Chemie Int Ed20135210241102441:CAS:528:DC%2BC3sXht1Oqur7N
– reference: ChaudhuriSRHartwigJKupraczLKodanekTWegnerJKirschningAOxidations of allylic and benzylic alcohols under inductively-heated flow conditions with gold-doped superparamagnetic nanostructured particles as catalyst and oxygen as oxidantAdv Synth Catal2014356353035381:CAS:528:DC%2BC2cXhvFGisL3F
– reference: GreeneJFPregerYStahlSSRootTWPTFE-membrane flow reactor for aerobic oxidation reactions and its application to alcohol oxidationOrg Process Res Dev2015198588641:CAS:528:DC%2BC2MXptFWqu7w%3D
– reference: CambiéDBottecchiaCStraathofNJWHesselVNoëlTApplications of continuous-flow photochemistry in organic synthesis, material science, and water treatmentChem Rev2016116102761034126935706
– reference: OsterbergPMNiemeierJKWelchCJHawkinsJMMartinelliJRJohnsonTERootTWStahlSSExperimental limiting oxygen concentrations for nine organic solvents at temperatures and pressures relevant to aerobic oxidations in the pharmaceutical industryOrg Process Res Dev201519153715431:CAS:528:DC%2BC2cXitVCku7nP26622165
– reference: ErdmannNSuYBosmansBHesselVNoelTPalladium-catalyzed aerobic oxidative coupling of O-xylene in flow: a safe and scalable protocol for cross-dehydrogenative couplingOrg Process Res Dev2016208318351:CAS:528:DC%2BC28XjvFyrtr0%3D
– reference: LaporteTLHamediMDepueJSShenLWatsonDHsiehDDevelopment and scale-up of three consecutive continuous reactions for production of 6-hydroxybuspironeOrg Process Res Dev2008129569661:CAS:528:DC%2BD1cXhtVChs7zJ
– reference: LoponovKNLopesJBarlogMAstrovaEVMalkovAVLapkinAAOptimization of a scalable photochemical reactor for reactions with singlet oxygenOrg Process Res Dev201418144314541:CAS:528:DC%2BC2cXhtlaisbjL
– reference: BourneSLLeySVA continuous flow solution to achieving efficient aerobic anti-Markovnikov Wacker oxidationAdv Synth Catal2013355190519101:CAS:528:DC%2BC3sXptFGjsbw%3D
– reference: ConstableDJCDunnPJHaylerJDHumphreyGRLeazerJLJrLindermanRJLorenzKManleyJPearlmanBAWellsAZaksAZhangTYKey green chemistry research areas? A perspective from pharmaceutical manufacturersGreen Chem200794114201:CAS:528:DC%2BD2sXmslyqsbY%3D
– reference: AmaraZBellamyJFBHorvathRMillerSJBeebyABurgardARossenKPoliakoffMGeorgeMWApplying green chemistry to the photochemical route to artemisininNat Chem201574894951:CAS:528:DC%2BC2MXht1ajtrbO25991527
– reference: DurndellLJCucuzzellaCParlettCMAIsaacsMAWilsonKLeeAFPlatinum catalysed aerobic selective oxidation of cinnamaldehyde to cinnamic acidCatal Today201810.1016/j.cattod.2018.02.052
– reference: WuGBrettGLCaoEConstantinouAEllisPKuhnSHutchingsGJBethellDGavriilidisAOxidation of cinnamyl alcohol using bimetallic Au–Pd/TiO2 catalysts: a deactivation study in a continuous flow packed bed microreactorCatal Sci Technol20166474947581:CAS:528:DC%2BC28XoslWqu7s%3D
– reference: LeeDSAmaraZClarkCAXuZKakimpaBMorvanHPPickeringSJPoliakoffMGeorgeMWContinuous photo-oxidation in a vortex reactor: efficient operations using air drawn from the laboratoryOrg Process Res Dev201721104210501:CAS:528:DC%2BC2sXhtVyrtLnK287815135526652
– reference: StittEHAlternative multiphase reactors for fine chemicals A world beyond stirred tanks?Chem Eng J20029047601:CAS:528:DC%2BD38Xotl2lurY%3D
– reference: RobergeDMGottsponerMEyholzerMKockmannNIndustrial design, scale-up, and use of microreactorsChim Oggi2009278111:CAS:528:DC%2BD1MXhsFWks7zN
– reference: BrittonJStubbsKAWeissGARastonCLVortex fluidic chemical transformationsChem Eur J20172313270132781:CAS:528:DC%2BC2sXhtlCnsLjO28597512
– reference: ByrneFPJinSPaggiolaGPetcheyTHMClarkJHFarmerTJHuntAJMcelroyCRSherwoodJTools and techniques for solvent selection: green solvent selection guidesSustainable chemical processes2016BerlinSpringer124
– reference: AnastasPTKirchhoffMMOrigins, current status, and future challenges of green chemistryAcc Chem Res2002356866941:CAS:528:DC%2BD38XksFOrtLs%3D12234198
– reference: GérardyREmmanuelNToupyTKassinVTshibalonzaNNSchmitzMMonbaliuJMContinuous flow organic chemistry: successes and pitfalls at the interface with current societal challengesEur J Org Chem2018201823012351
– reference: WatsonDJDowdyEDDepueJSKotnisASLeungSReillyBCODevelopment of a safe and scalable oxidation process for the preparation of 6-hydroxybuspirone: application of in-line monitoring for process ruggedness and product qualityOrg Process Res Dev200486166231:CAS:528:DC%2BD2cXkvVSis7c%3D
– reference: AtobeMTatenoHMatsumuraYApplications of flow microreactors in electrosynthetic processesChem Rev2018118454145721:CAS:528:DC%2BC2sXhsVGhsr3L28885826
– reference: OsakoTToriiKUozumiYAerobic flow oxidation of alcohols in water catalyzed by platinum nanoparticles dispersed in an amphiphilic polymerRSC Adv20155264726541:CAS:528:DC%2BC2cXhvF2rtbjM
– reference: GreeneJFHooverJMMannelDSRootTWStahlSSContinuous-flow aerobic oxidation of primary alcohols with a copper(I)/TEMPO catalystOrg Process Res Dev201317124712511:CAS:528:DC%2BC3sXhsVSls7rL
– reference: GuoSYuZYuCKilogram-scale synthesis of 2,4-dichloro-5-fluorobenzoic acid by air oxidation under the continuous-flow processOrg Process Res Dev2018222522561:CAS:528:DC%2BC1cXhtlyqsbg%3D
– reference: PrattTHElectrostatic ignitions in enriched oxygen atmospheres: a case historyProcess Saf Prog1993122032051:CAS:528:DyaK2cXhslaisbY%3D
– reference: CantilloDKappeCOImmobilized transition metals as catalysts for cross-couplings in continuous flow—a critical assessment of the reaction mechanism and metal leachingChemCatChem2015632863305
– reference: Folgueiras-AmadorAAWirthTPerspectives in flow electrochemistryJ Flow Chem2017794951:CAS:528:DC%2BC1MXntFygur4%3D
– reference: HendersonRKJiménez-GonzálezCConstableDJCAlstonSRInglisGGAFisherGSherwoodJBinksSPCurzonsADExpanding GSK’s solvent selection guide—embedding sustainability into solvent selection starting at medicinal chemistryGreen Chem2011138541:CAS:528:DC%2BC3MXkt1Khsbo%3D
– reference: MunirathinamRHuskensJVerboomWSupported catalysis in continuous-flow microreactorsAdv Synth Catal2015357109311231:CAS:528:DC%2BC2MXkvVShs7Y%3D
– reference: LévesqueFSeebergerPHHighly efficient continuous flow reactions using singlet oxygen as a “Green” reagentOrg Lett2011135008501121879739
– reference: GhogareAAGreerAUsing singlet oxygen to synthesize natural products and drugsChem Rev20161169994100341:CAS:528:DC%2BC28XmvVyhsrk%3D27128098
– reference: YoshidaJKataokaKHorcajadaRNagakiAModern strategies in electroorganic synthesisChem Rev2008108226522991:CAS:528:DC%2BD1cXnsVehs7k%3D18564879
– reference: HornEJRosenBRBaranPSSynthetic organic electrochemistry: an enabling and innately sustainable methodACS Cent Sci201623023081:CAS:528:DC%2BC28XntFyrsLg%3D272801644882743
– reference: YangLJensenKFMass transport and reactions in the tube-in-tube reactorOrg Process Res Dev2013179279331:CAS:528:DC%2BC3sXnsFaktbo%3D
– reference: SankarMDimitratosNMiedziakPJWellsPPKielyJHutchingsGJDesigning bimetallic catalysts for a green and sustainable futureChem Soc Rev201241809981391:CAS:528:DC%2BC38Xhs12rsL%2FL23093051
– reference: LévesqueFSeebergerPHContinuous-flow synthesis of the anti-malaria drug artemisininAngew Chem Int Ed20125117061709
– reference: VanoyeLWangJPablosMDeBellefon CFavre-RéguillonAContinuous, fast, and safe aerobic oxidation of 2-ethylhexanal: pushing the limits of the simple tube reactor for a gas/liquid reactionOrg Process Res Dev20162090941:CAS:528:DC%2BC28XkslSjsQ%3D%3D
– reference: FethMPRossenKBurgardAPilot plant PAT approach for the diastereoselective diimide reduction of artemisinic acidOrg Process Res Dev2013172822931:CAS:528:DC%2BC3sXntVansw%3D%3D
– reference: ChenYHoneCAGutmannBKappeCOContinuous flow synthesis of carbonylated heterocycles via Pd-catalyzed oxidative carbonylation using CO and O2 at elevated temperature and pressureOrg Process Res Dev201721108010871:CAS:528:DC%2BC2sXhtVOnsL3K
– reference: BrzozowskiMO’BrienMLeySVPolyzosAFlow chemistry: intelligent processing of gas–liquid transformations using a tube-in-tube reactorAcc Chem Res2015483493621:CAS:528:DC%2BC2MXhsF2isbs%3D25611216
– reference: HouZTheyssenNBrinkmannALeitnerWBiphasic aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxideAngew Chem Int Ed200544134613491:CAS:528:DC%2BD2MXitVSjsLg%3D
– reference: HollmannFArendsIWCEBuehlerKBrunoBEnzyme-mediated oxidations for the chemistGreen Chem2011132262651:CAS:528:DC%2BC3MXhs1GjtL8%3D
– reference: VeserKExperimental and theoretical investigation of H oxidation in a high-temperature catalytic microreactorAIChE J200156126512731:CAS:528:DC%2BD3MXhslOhs7o%3D
– reference: GutmannBElsnerPRobergeDKappeCOHomogeneous liquid-phase oxidation of ethylbenzene to acetophenone in continuous flow modeACS Catal20133266926761:CAS:528:DC%2BC3sXhs1SqsrbF
– reference: LeitnerWSupercritical carbon dioxide as a green reaction medium for catalysisAcc Chem Res2002357467561:CAS:528:DC%2BD38XltFGmsbs%3D12234204
– reference: CavaniFHenriqueJSustainability in catalytic oxidation: an alternative approach or a structural evolution?ChemSusChem200925085341:CAS:528:DC%2BD1MXnvV2ntLo%3D19536755
– reference: PérezEFraga-DubreuilJGarcía-VerdugoEHamleyPAThomasWBHousleyDPartenheimerWPoliakoffMSelective aerobic oxidation of para-xylene in sub- and supercritical water. Part 1. Comparison with ortho-xylene and the role of the catalystGreen Chem2011132389
– reference: HanXBourneRAPoliakoffMGeorgeMWImmobilised photosensitisers for continuous flow reactions of singlet oxygen in supercritical carbon dioxideChem Sci20112105910671:CAS:528:DC%2BC3MXmtV2it7c%3D
– reference: VanoyeLWangJPablosMde BellefonCFavre-RéguillonAEpoxidation using molecular oxygen in flow: facts and questions on the mechanism of the Mukaiyama epoxidationCatal Sci Technol20166472447321:CAS:528:DC%2BC28XktVCnurg%3D
– reference: OgilbyPRSinglet oxygen: there is indeed something new under the sunChem Soc Rev201039318132091:CAS:528:DC%2BC3cXptFygs7k%3D20571680
– reference: LeahyDKTuckerJLMergelsbergIDunnPJKopachMEPurohitVCSeven important elements for an effective green chemistry program: an IQ consortium perspectiveOrg Process Res Dev201317109911091:CAS:528:DC%2BC3sXhsVSisb7P
– reference: HintermairURoosenCKaeverMKronenbergHThelenRAeySLeitnerWGreinerLA versatile lab to pilot scale continuous reaction system for supercritical fluid processingOrg Process Res Dev201115127512801:CAS:528:DC%2BC3MXhtFWjs7rI
– reference: ParkJHParkCYKimMJKimMUKimYJKimGHParkCPContinuous-flow synthesis of meta-substituted phenol derivativesOrg Process Res Dev2015198128181:CAS:528:DC%2BC2MXpsFaku70%3D
– reference: WatsonWJWHow do the fine chemical, pharmaceutical, and related industries approach green chemistry and sustainability?Green Chem2012142512591:CAS:528:DC%2BC38Xhslersrk%3D
– reference: VanoyeLPablosMSmithNDe BellefonCFavre-RéguillonAAerobic oxidation of aldehydes: selectivity improvement using sequential pulse experimentation in continuous flow microreactorRSC Adv2014457159571631:CAS:528:DC%2BC2cXhvVWmsbvN
– reference: WuLLeeDSBoufrouraHPoliakoffMPhotooxidation of fulvenes in a continuous flow photoreactor using carbon dioxide as a solventChemPhotoChem201825805851:CAS:528:DC%2BC1cXosFWjs74%3D
– reference: JinLQLeiAWMechanistic aspects of oxidation of palladium with O2Sci China Chem201255202720351:CAS:528:DC%2BC38XhsVCgtLvL
– reference: MoYJensenKFContinuous N-hydroxyphthalimide (NHPI)-mediated electrochemical aerobic oxidation of benzylic C-H bondsChem Eur J20182410260102651:CAS:528:DC%2BC1cXhtF2qsbfE
– reference: MannelDSAhmedMSRootTWStahlSSDiscovery of multicomponent heterogeneous catalysts via admixture screening: PdBiTe catalysts for aerobic oxidative esterification of primary alcoholsJ Am Chem Soc2017139169016981:CAS:528:DC%2BC2sXms1Ogug%3D%3D28060501
– reference: LeeSLO’ConnorTFYangXCruzCNChatterjeeSMaduraweRDMooreCMVYuLXWoodcockJmodernizing pharmaceutical manufacturing: from batch to continuous productionJ Pharm Innov201510191199
– reference: WangDWeinsteinABWhitePBStahlSSLigand-promoted palladium-catalyzed aerobic oxidation reactionsChem Rev2018118263626791:CAS:528:DC%2BC2sXhsF2js77L28975795
– reference: RingborgRHToftgaard PedersenAWoodleyJMAutomated determination of oxygen-dependent enzyme kinetics in a tube-in-tube flow reactorChemCatChem2017932731:CAS:528:DC%2BC2sXhsVKqsbfL
– reference: AlderCMHaylerJDHendersonRKRedmanAMShuklaLShusterESneddonHFUpdating and further expanding GSK’s solvent sustainability guideGreen Chem201618387938901:CAS:528:DC%2BC28Xms1Kkt7o%3D
– reference: TomaszewskiBSchmidABuehlerKBiocatalytic production of catechols using a high pressure tube-in-tube segmented flow reactorOrg Process Res Dev201418151615261:CAS:528:DC%2BC2cXhsleksr3F
– reference: Wu G, Cao E, Ellis P, Constantinou A, Kuhn S, Gavriilidis A (2018) Development of a flat membrane microchannel packed-bed reactor for scalable aerobic oxidation of benzyl alcohol in flow. Chem Eng J 1–9
– reference: BattinoRRettichTRTominagaTSolubility of oxygen and ozone in liquidsJ Phys Chem Ref Data1983121631781:CAS:528:DyaL3sXkvFCntb0%3D
– reference: KockmannNThenéePFleischer-TrebesCLaudadioGNoëlTSafety assessment in development and operation of modular continuous-flow processesReact Chem Eng201722582801:CAS:528:DC%2BC2sXlsVaktbc%3D
– reference: Jones AB, Wang J, Hamme AT, Han W (2013) Oxygen. In: Encyclopedia of reagents for organic synthesis. https://doi.org/10.1002/047084289x.ro028.pub3
– reference: SuYStraathofNJWHesselVNoëlTPhotochemical transformations accelerated in continuous-flow reactors: basic concepts and applicationsChem Eur J20142010562105891:CAS:528:DC%2BC2cXht1Wltr%2FI
– reference: YeXJohnsonMDDiaoTYatesMHStahlSSDevelopment of safe and scalable continuous-flow methods for palladium-catalyzed aerobic oxidation reactionsGreen Chem201012118011861:CAS:528:DC%2BC3cXotlyru7o%3D206941692914337
– reference: LiuXÜnalBJensenKFHeterogeneous catalysis with continuous flow microreactorsCatal Sci Technol20122213421381:CAS:528:DC%2BC38XhtlaktrzJ
– reference: PletcherDGreenRABrownRCDFlow electrolysis cells for the synthetic organic chemistry laboratoryChem Rev2018118457345911:CAS:528:DC%2BC2sXhsV2qtrnN28921969
– reference: GutmannBCantilloDKappeCOContinuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredientsAngew Chem Int Ed201554668867281:CAS:528:DC%2BC2MXosVGnt7k%3D
– reference: KopetzkiDLévesqueFSeebergerPHA continuous-flow process for the synthesis of artemisininChem Eur J201319545054561:CAS:528:DC%2BC3sXksVOhu7g%3D23520059
– reference: SambiagioCSterckxHMaesBUWElectrosynthesis: a new frontier in aerobic oxidation?ACS Cent Sci201736866881:CAS:528:DC%2BC2sXhtFSiurjP287760085532737
– reference: WangNMatsumotoTUenoMMiyamuraHKobayashiSA gold-immobilized microchannel flow reactor for oxidation of alcohols with molecular oxygenAngew Chem Int Ed200948474447461:CAS:528:DC%2BD1MXntlOitrg%3D
– reference: GemoetsHPLSuYShangMHesselVLuqueRNoelTLiquid phase oxidation chemistry in continuous-flow microreactorsChem Soc Rev201645831171:CAS:528:DC%2BC2MXht1aksrbO
– reference: GavriilidisAConstantinouAHellgardtKHiiKKMHutchingsGJBrettGLKuhnSMarsdenSPAerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industriesReact Chem Eng201615956121:CAS:528:DC%2BC28XhsFCrsLbE
– reference: IoannouGIMontagnonTKalaitzakisDPergantisSAVassilikogiannakisGA novel nebulizer-based continuous flow reactor: introducing the use of pneumatically generated aerosols for highly productive photooxidationsChemPhotoChem201711731771:CAS:528:DC%2BC2sXhs1KgtbrN
– reference: VanoyeLAlouiAPablosMPhilippeRPercheronAFavre-RéguillonADe BellefonCA safe and efficient flow oxidation of aldehydes with O2Org Lett201315597859811:CAS:528:DC%2BC3sXhvVCmurrJ24266859
– reference: PieberBKappeCOAerobic oxidations in continuous flowTop Organomet Chem20155797136
– reference: SheldonRAGreen solvents for sustainable organic synthesis: state of the artGreen Chem200572672681:CAS:528:DC%2BD2MXjsl2lt7o%3D
– reference: ParmeggianiCMatassiniCCardonaFA step forward towards sustainable aerobic alcohol oxidation: new and revised catalysts based on transition metals on solid supportsGreen Chem201719203020501:CAS:528:DC%2BC2sXkvF2ku7o%3D
– reference: PlutschackMBBartholomäusPGilmoreKSeebergerPHThe Hitchhiker’s guide to flow chemistryChem Rev201711711796118931:CAS:528:DC%2BC2sXpt1Siu7c%3D
– reference: HoneCAO’Kearney-McMullanAMundayRKappeCOA continuous-flow process for palladium-catalyzed olefin cleavage by using oxygen within the explosive regimeChemCatChem20179329833021:CAS:528:DC%2BC2sXht1WlsLnJ
– reference: GemoetsHPLHesselVNoëlTAerobic C–H olefination of indoles via a cross-dehydrogenative coupling in continuous flowOrg Lett201416580058031:CAS:528:DC%2BC2cXhvVWnsL%2FO25341623
– reference: DiorazioLJHoseDRJAdlingtonNKToward a more holistic framework for solvent selectionOrg Process Res Dev2016207607731:CAS:528:DC%2BC28XislOnsb0%3D
– reference: CaronSDuggerRWRuggeriSGRaganJARipinDHBLarge-scale oxidations in the pharmaceutical industryChem Rev2006106294329891:CAS:528:DC%2BD28Xmt12lsL4%3D16836305
– reference: PieberBCoxDPKappeCOSelective olefin reduction in thebaine using hydrazine hydrate and O2 under intensified continuous flow conditionsOrg Process Res Dev2016203763851:CAS:528:DC%2BC2MXitVSksr%2FE
– reference: LaudadioGGovaertsSWangYRavelliDKoolmanHFFagnoniMDjuricSWNoëlTSelective C(sp3)–H aerobic oxidation enabled by decatungstate photocatalysis in flowAngew Chem Int Ed201857407840821:CAS:528:DC%2BC1cXkt1Gqu7g%3D
– reference: Medina-GonzalezYCamySCondoretJ-SScCO2/green solvents: biphasic promising systems for cleaner chemicals manufacturingACS Sustain Chem Eng20142262326361:CAS:528:DC%2BC2cXhslOhu7rF
– reference: BrzozowskiMForniJASavagePGPolyzosAThe direct α-C(sp3)-H functionalisation of N-aryl tetrahydroisoquinolines via an iron-catalysed aerobic nitro-Mannich reaction and continuous flow processingChem Commun2015513343371:CAS:528:DC%2BC2cXhvFeisbrO
– reference: ParkCPMauryaRALeeJHKimDPEfficient photosensitized oxygenations in phase contact enhanced microreactorsLab Chip201111194119451:CAS:528:DC%2BC3MXmtFenurc%3D21499614
– reference: Garcia-VerdugoEVenardouEThomasWBWhistonKPartenheimerWHamleyPAPoliakoffMIs it possible to achieve highly selective oxidations in supercritical water? Aerobic oxidation of methylaromatic compoundsAdv Synth Catal20043463073161:CAS:528:DC%2BD2cXjt1ent78%3D
– reference: NoëlTHesselVMembrane microreactors: gas–liquid reactions made easyChemSusChem2013640540723303711
– reference: HoneCARobergeDMKappeCOThe use of molecular oxygen in pharmaceutical manufacturing: is flow the way to go?ChemSusChem20171032411:CAS:528:DC%2BC28XhvVGiu77I27863103
– reference: GunasekaranNaerobic oxidation catalysis with air or molecular oxygen and ionic liquidsAdv Synth Catal2015357199020101:CAS:528:DC%2BC2MXhtVSitLzE
– reference: MalliaCJBaxendaleIRThe use of gases in flow synthesisOrg Process Res Dev2016203273601:CAS:528:DC%2BC2MXht1OqsL%2FL
– reference: VanoyeLPablosMDe BellefonCFavre-RéguillonAGas-liquid segmented flow microfluidics for screening copper/tempo-catalyzed aerobic oxidation of primary alcoholsAdv Synth Catal20153577397461:CAS:528:DC%2BC2MXktVChurY%3D
– reference: CampanatiMFornasariGVaccariAFundamentals in the preparation of heterogeneous catalystsCatal Today2003772993141:CAS:528:DC%2BD3sXht1yqsrY%3D
– reference: MannelDSStahlSSRootTWContinuous flow aerobic alcohol oxidation reactions using a heterogeneous Ru(OH)x/Al2O3 catalystOrg Process Res Dev201418150315081:CAS:528:DC%2BC2cXhsFyrsLrL256208694299400
– reference: PérezEFraga-DubreuilJGarcía-VerdugoEHamleyPAThomasMLYanCThomasWBHousleyDPartenheimerWPoliakoffMSelective aerobic oxidation of para-xylene in sub- and supercritical water. Part 2. The discovery of better catalystsGreen Chem2011132397
– reference: StahlSSAlstersPLLiquid phase aerobic oxidation catalysis: industrial applications and academic perspectives2016New YorkWiley
– reference: ParkCPKimDPDual-channel microreactor for gas-liquid synthesesJ Am Chem Soc201013210102101061:CAS:528:DC%2BC3cXot1Wmsrg%3D20593807
– reference: ShvydkivOLimburgCNolanKOelgemöllerMSynthesis of juglone (5-Hydroxy-1,4-Naphthoquinone) in a falling film microreactorJ Flow Chem2012252551:CAS:528:DC%2BC38XhtVaku7rE
– reference: YueJChenGYuanQLuoLGonthierYHydrodynamics and mass transfer characteristics in gas–liquid flow through a rectangular microchannelChem Eng Sci200762209621081:CAS:528:DC%2BD2sXitFOrsrc%3D
– reference: IoannouGIMontagnonTKalaitzakisDPergantisSAVassilikogiannakisGSynthesis of cyclopent-2-enones from furans using a nebulizer-based continuous flow photoreactorOrg Biomol Chem20171510151101551:CAS:528:DC%2BC2sXhvVaqsLjM29177328
– reference: HartmanRLMcMullenJPJensenKFDeciding whether to go with the flow: evaluating the merits of flow reactors for synthesisAngew Chem Int Ed201150750275191:CAS:528:DC%2BC3MXotVCns74%3D
– reference: ConstantinouAWuGCorrederaAEllisPBethellDHutchingsGJKuhnSGavriilidisAContinuous heterogeneously catalyzed oxidation of benzyl alcohol in a ceramic membrane packed-bed reactorOrg Process Res Dev201519197319791:CAS:528:DC%2BC2MXitVSnsr7N
– reference: WendlandtAESuessAMStahlSSCopper-catalyzed aerobic oxidative C–H functionalizations: trends and mechanistic insightsAngew Chem Int Ed20115011062110871:CAS:528:DC%2BC3MXhtlyisrzI
– reference: ThomasMLFraga-DubreuilJCooteASPoliakoffMA dramatic switch in selectivity in the catalytic dehydrogenation of 4-vinylcyclohexene in high pressure steam; a cautionary lesson for continuous flow reactionsGreen Chem2008101972011:CAS:528:DC%2BD1cXhsVSisrc%3D
– reference: De AngelisSHoneCADegennaroLCelestiniPLuisiRKappeCOSequential α-lithiation and aerobic oxidation of an arylacetic acid—continuous-flow synthesis of cyclopentyl mandelic acidJ Flow Chem20188109116
– reference: IzawaYStahlSSAerobic oxidative coupling of o-xylene: discovery of 2-fluoropyridine as a ligand to support selective Pd-catalyzedAdv Synth Catal2010352322332291:CAS:528:DC%2BC3cXhsFOjs7%2FM213997043049937
– reference: SpacciniRLiguoriLPuntaCBjørsvikHROrganocatalyzed epoxidation of alkenes in continuous flow using a multi-jet oscillating disk reactorChemSusChem201252612651:CAS:528:DC%2BC3MXht12qtr7O21994167
– reference: RodunerEKaimWSarkarBUrlacherVBPleissJGlaserREinickeWDSprengerGABeifusUKlemmELiebnerCHieronymusHHsuSFPlietkerBLaschatSSelective catalytic oxidation of C–H bonds with molecular oxygenChemCatChem20135821121:CAS:528:DC%2BC38XhsV2rsLrK
– reference: ObermayerDBaluAMRomeroAAGoesslerWLuqueRKappeCONanocatalysis in continuous flow: supported iron oxide nanoparticles for the heterogeneous aerobic oxidation of benzyl alcoholGreen Chem201315153015371:CAS:528:DC%2BC3sXot1egsLg%3D
– reference: ZotovaNHellgardtKKelsallGHJessimanASHiiKKMCatalysis in flow: the practical and selective aerobic oxidation of alcohols to aldehydes and ketonesGreen Chem201012215721631:CAS:528:DC%2BC3cXhsVyrurfF
– reference: WuGConstantinouACaoEKuhnSMoradMSankarMBethellDHutchingsGJGavriilidisAContinuous heterogeneously catalyzed oxidation of benzyl alcohol using a tube-in-tube membrane microreactorInd Eng Chem Res201554418341891:CAS:528:DC%2BC2MXhvFGnurY%3D
– reference: SuYKuijpersKHesselVNoëlTA convenient numbering-up strategy for the scale-up of gas–liquid photoredox catalysis in flowReact Chem Eng2016173811:CAS:528:DC%2BC28XhtlSlt7%2FK
– reference: HeZJamisonTFContinuous-flow synthesis of functionalized phenols by aerobic oxidation of Grignard reagentsAngew Chem Int Ed201453335333571:CAS:528:DC%2BC2cXivVeksbo%3D
– reference: GutmannBElsnerPCoxDPWeiglURobergeDMKappeCOTowards the synthesis of noroxymorphone via aerobic palladium-catalyzed continuous flow N-demethylation strategiesACS Sustain Chem Eng20164604860611:CAS:528:DC%2BC28Xht1Wkt7jI
– reference: HorváthITFluorous biphase chemistryAcc Chem Res199831641650
– reference: AndersonNGUsing continuous processes to increase productionOrg Process Res Dev2012168528691:CAS:528:DC%2BC38Xhs1eht7s%3D
– reference: RaynerCMThe potential of carbon dioxide in synthetic organic chemistryOrg Process Res Dev2007111211321:CAS:528:DC%2BD28XhtlCgs7rM
– reference: MovsisyanMDelbekeEIPBertonJKETBattilocchioCLeySVStevensCVTaming hazardous chemistry by continuous flow technologyChem Soc Rev201645489249281:CAS:528:DC%2BC28Xht1agtLjI27453961
– reference: PieberBGlasnovTKappeCOContinuous flow reduction of artemisinic acid utilizing multi-injection strategies-closing the gap towards a fully continuous synthesis of antimalarial drugsChem Eur J201521436843761:CAS:528:DC%2BC2MXjsFGhu7s%3D25655090
– reference: HenryWlll. Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressuresPhil Trans R Soc Lond18039329274
– volume: 17
  start-page: 282
  year: 2013
  ident: 226_CR69
  publication-title: Org Process Res Dev
  doi: 10.1021/op300347w
– volume: 139
  start-page: 1690
  year: 2017
  ident: 226_CR65
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b12722
– volume: 28
  start-page: 426
  year: 2005
  ident: 226_CR138
  publication-title: Chem Eng Technol
  doi: 10.1002/ceat.200407139
– volume: 6
  start-page: 4724
  year: 2016
  ident: 226_CR51
  publication-title: Catal Sci Technol
  doi: 10.1039/C6CY00309E
– volume: 10
  start-page: 191
  year: 2015
  ident: 226_CR14
  publication-title: J Pharm Innov
  doi: 10.1007/s12247-015-9215-8
– year: 2018
  ident: 226_CR41
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201802261
– volume: 1
  start-page: 173
  year: 2017
  ident: 226_CR132
  publication-title: ChemPhotoChem
  doi: 10.1002/cptc.201600054
– volume: 48
  start-page: 349
  year: 2015
  ident: 226_CR75
  publication-title: Acc Chem Res
  doi: 10.1021/ar500359m
– volume: 93
  start-page: 29
  year: 1803
  ident: 226_CR20
  publication-title: Phil Trans R Soc Lond
  doi: 10.1098/rstl.1803.0004
– volume: 57
  start-page: 4078
  year: 2018
  ident: 226_CR102
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201800818
– year: 2018
  ident: 226_CR61
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2018.02.052
– volume: 8
  start-page: 109
  year: 2018
  ident: 226_CR73
  publication-title: J Flow Chem
  doi: 10.1007/s41981-018-0015-4
– volume: 44
  start-page: 1346
  year: 2005
  ident: 226_CR121
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200461493
– volume: 8
  start-page: 2025
  year: 2012
  ident: 226_CR94
  publication-title: Beilstein J Org Chem
  doi: 10.3762/bjoc.8.229
– volume: 20
  start-page: 118
  year: 2018
  ident: 226_CR135
  publication-title: Green Chem
  doi: 10.1039/C7GC03352D
– volume: 21
  start-page: 1080
  year: 2017
  ident: 226_CR42
  publication-title: Org Process Res Dev
  doi: 10.1021/acs.oprd.7b00217
– volume: 3
  start-page: 2669
  year: 2013
  ident: 226_CR46
  publication-title: ACS Catal
  doi: 10.1021/cs400571y
– volume: 12
  start-page: 163
  year: 1983
  ident: 226_CR19
  publication-title: J Phys Chem Ref Data
  doi: 10.1063/1.555680
– volume: 15
  start-page: 997
  year: 2011
  ident: 226_CR130
  publication-title: Org Process Res Dev
  doi: 10.1021/op2000699
– volume: 1
  start-page: 73
  year: 2016
  ident: 226_CR101
  publication-title: React Chem Eng
  doi: 10.1039/C5RE00021A
– volume: 2
  start-page: 2623
  year: 2014
  ident: 226_CR119
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/sc5004314
– volume: 19
  start-page: 5450
  year: 2013
  ident: 226_CR99
  publication-title: Chem Eur J
  doi: 10.1002/chem.201204558
– volume: 8
  start-page: 616
  year: 2004
  ident: 226_CR66
  publication-title: Org Process Res Dev
  doi: 10.1021/op049918r
– volume: 12
  start-page: 310
  year: 2010
  ident: 226_CR122
  publication-title: Green Chem
  doi: 10.1039/b913434d
– volume: 35
  start-page: 746
  year: 2002
  ident: 226_CR118
  publication-title: Acc Chem Res
  doi: 10.1021/ar010070q
– volume: 19
  start-page: 1973
  year: 2015
  ident: 226_CR86
  publication-title: Org Process Res Dev
  doi: 10.1021/acs.oprd.5b00220
– volume: 50
  start-page: 4524
  year: 2014
  ident: 226_CR8
  publication-title: Chem Commun
  doi: 10.1039/C3CC47081D
– volume: 6
  start-page: 3286
  year: 2015
  ident: 226_CR55
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201402483
– volume: 5
  start-page: 261
  year: 2012
  ident: 226_CR131
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100262
– volume: 11
  start-page: 121
  year: 2007
  ident: 226_CR117
  publication-title: Org Process Res Dev
  doi: 10.1021/op060165d
– volume: 77
  start-page: 299
  year: 2003
  ident: 226_CR54
  publication-title: Catal Today
  doi: 10.1016/S0920-5861(02)00375-9
– volume: 357
  start-page: 1990
  year: 2015
  ident: 226_CR116
  publication-title: Adv Synth Catal
  doi: 10.1002/adsc.201400989
– volume: 2
  start-page: 580
  year: 2018
  ident: 226_CR125
  publication-title: ChemPhotoChem
  doi: 10.1002/cptc.201800033
– volume: 12
  start-page: 1180
  year: 2010
  ident: 226_CR33
  publication-title: Green Chem
  doi: 10.1039/c0gc00106f
– volume: 4
  start-page: 6048
  year: 2016
  ident: 226_CR35
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.6b01371
– volume: 2018
  start-page: 2301
  year: 2018
  ident: 226_CR12
  publication-title: Eur J Org Chem
  doi: 10.1002/ejoc.201800149
– volume: 357
  start-page: 739
  year: 2015
  ident: 226_CR45
  publication-title: Adv Synth Catal
  doi: 10.1002/adsc.201400925
– volume: 356
  start-page: 3530
  year: 2014
  ident: 226_CR79
  publication-title: Adv Synth Catal
  doi: 10.1002/adsc.201400261
– volume: 41
  start-page: 8099
  year: 2012
  ident: 226_CR63
  publication-title: Chem Soc Rev
  doi: 10.1039/c2cs35296f
– volume: 20
  start-page: 10562
  year: 2014
  ident: 226_CR95
  publication-title: Chem Eur J
  doi: 10.1002/chem.201400283
– volume: 10
  start-page: 197
  year: 2008
  ident: 226_CR28
  publication-title: Green Chem
  doi: 10.1039/B706711A
– volume: 53
  start-page: 3353
  year: 2014
  ident: 226_CR72
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201310572
– volume: 19
  start-page: 812
  year: 2015
  ident: 226_CR80
  publication-title: Org Process Res Dev
  doi: 10.1021/acs.oprd.5b00077
– volume: 57
  start-page: 97
  year: 2015
  ident: 226_CR16
  publication-title: Top Organomet Chem
  doi: 10.1007/3418_2015_133
– volume: 13
  start-page: 2389
  year: 2011
  ident: 226_CR128
  publication-title: Green Chem
  doi: 10.1039/c1gc15137a
– ident: 226_CR87
– volume: 15
  start-page: 1275
  year: 2011
  ident: 226_CR120
  publication-title: Org Process Res Dev
  doi: 10.1021/op200053w
– volume: 108
  start-page: 2265
  year: 2008
  ident: 226_CR103
  publication-title: Chem Rev
  doi: 10.1021/cr0680843
– volume: 16
  start-page: 852
  year: 2012
  ident: 226_CR30
  publication-title: Org Process Res Dev
  doi: 10.1021/op200347k
– volume: 355
  start-page: 1905
  year: 2013
  ident: 226_CR76
  publication-title: Adv Synth Catal
  doi: 10.1002/adsc.201300278
– volume: 2
  start-page: 1059
  year: 2011
  ident: 226_CR123
  publication-title: Chem Sci
  doi: 10.1039/c0sc00641f
– volume: 55
  start-page: 2027
  year: 2012
  ident: 226_CR32
  publication-title: Sci China Chem
  doi: 10.1007/s11426-012-4719-2
– volume: 17
  start-page: 927
  year: 2013
  ident: 226_CR84
  publication-title: Org Process Res Dev
  doi: 10.1021/op400085a
– volume: 56
  start-page: 1265
  year: 2001
  ident: 226_CR27
  publication-title: AIChE J
– volume: 20
  start-page: 90
  year: 2016
  ident: 226_CR50
  publication-title: Org Process Res Dev
  doi: 10.1021/acs.oprd.5b00359
– volume: 19
  start-page: 858
  year: 2015
  ident: 226_CR88
  publication-title: Org Process Res Dev
  doi: 10.1021/acs.oprd.5b00125
– volume: 39
  start-page: 3181
  year: 2010
  ident: 226_CR92
  publication-title: Chem Soc Rev
  doi: 10.1039/b926014p
– volume: 50
  start-page: 11062
  year: 2011
  ident: 226_CR43
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201103945
– volume: 90
  start-page: 47
  year: 2002
  ident: 226_CR7
  publication-title: Chem Eng J
  doi: 10.1016/S1385-8947(02)00067-0
– volume: 117
  start-page: 11796
  year: 2017
  ident: 226_CR11
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.7b00183
– volume: 9
  start-page: 411
  year: 2007
  ident: 226_CR37
  publication-title: Green Chem
  doi: 10.1039/B703488C
– volume: 357
  start-page: 1093
  year: 2015
  ident: 226_CR53
  publication-title: Adv Synth Catal
  doi: 10.1002/adsc.201401081
– volume: 51
  start-page: 334
  year: 2015
  ident: 226_CR78
  publication-title: Chem Commun
  doi: 10.1039/C4CC07913B
– volume: 13
  start-page: 854
  year: 2011
  ident: 226_CR111
  publication-title: Green Chem
  doi: 10.1039/c0gc00918k
– volume: 15
  start-page: 5978
  year: 2013
  ident: 226_CR48
  publication-title: Org Lett
  doi: 10.1021/ol401273k
– volume: 54
  start-page: 6688
  year: 2015
  ident: 226_CR9
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201409318
– volume: 116
  start-page: 9994
  year: 2016
  ident: 226_CR93
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00726
– volume: 132
  start-page: 10102
  year: 2010
  ident: 226_CR89
  publication-title: J Am Chem Soc
  doi: 10.1021/ja102666y
– volume: 7
  start-page: 1158
  year: 2011
  ident: 226_CR91
  publication-title: Beilstein J Org Chem
  doi: 10.3762/bjoc.7.134
– volume: 15
  start-page: 1530
  year: 2013
  ident: 226_CR59
  publication-title: Green Chem
  doi: 10.1039/c3gc40307f
– volume: 50
  start-page: 7502
  year: 2011
  ident: 226_CR23
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201004637
– volume: 116
  start-page: 10276
  year: 2016
  ident: 226_CR96
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00707
– volume: 1
  start-page: 595
  year: 2016
  ident: 226_CR24
  publication-title: React Chem Eng
  doi: 10.1039/C6RE00155F
– volume: 19
  start-page: 1537
  year: 2015
  ident: 226_CR25
  publication-title: Org Process Res Dev
  doi: 10.1021/op500328f
– volume: 2
  start-page: 258
  year: 2017
  ident: 226_CR29
  publication-title: React Chem Eng
  doi: 10.1039/C7RE00021A
– volume: 20
  start-page: 376
  year: 2016
  ident: 226_CR71
  publication-title: Org Process Res Dev
  doi: 10.1021/acs.oprd.5b00370
– volume: 14
  start-page: 251
  year: 2012
  ident: 226_CR13
  publication-title: Green Chem
  doi: 10.1039/C1GC15904F
– volume: 9
  start-page: 3298
  year: 2017
  ident: 226_CR34
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201700671
– volume: 118
  start-page: 4573
  year: 2018
  ident: 226_CR107
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.7b00360
– volume: 15
  start-page: 10151
  year: 2017
  ident: 226_CR133
  publication-title: Org Biomol Chem
  doi: 10.1039/C7OB02557B
– volume: 18
  start-page: 3879
  year: 2016
  ident: 226_CR112
  publication-title: Green Chem
  doi: 10.1039/C6GC00611F
– volume: 118
  start-page: 4541
  year: 2018
  ident: 226_CR106
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.7b00353
– volume: 13
  start-page: 2397
  year: 2011
  ident: 226_CR129
  publication-title: Green Chem
  doi: 10.1039/c1gc15138j
– volume: 2
  start-page: 2134
  year: 2012
  ident: 226_CR60
  publication-title: Catal Sci Technol
  doi: 10.1039/c2cy20260c
– volume: 7
  start-page: 267
  year: 2005
  ident: 226_CR110
  publication-title: Green Chem
  doi: 10.1039/b418069k
– ident: 226_CR1
  doi: 10.1002/047084289x.ro028.pub3
– volume: 19
  start-page: 2030
  year: 2017
  ident: 226_CR56
  publication-title: Green Chem
  doi: 10.1039/C7GC00406K
– volume: 21
  start-page: 4368
  year: 2015
  ident: 226_CR70
  publication-title: Chem Eur J
  doi: 10.1002/chem.201406439
– volume: 18
  start-page: 1516
  year: 2014
  ident: 226_CR83
  publication-title: Org Process Res Dev
  doi: 10.1021/op5002116
– volume: 21
  start-page: 1042
  year: 2017
  ident: 226_CR136
  publication-title: Org Process Res Dev
  doi: 10.1021/acs.oprd.7b00153
– volume: 20
  start-page: 327
  year: 2016
  ident: 226_CR21
  publication-title: Org Process Res Dev
  doi: 10.1021/acs.oprd.5b00222
– volume: 17
  start-page: 1247
  year: 2013
  ident: 226_CR44
  publication-title: Org Process Res Dev
  doi: 10.1021/op400207f
– volume: 31
  start-page: 641
  year: 1998
  ident: 226_CR115
  publication-title: Acc Chem Res
  doi: 10.1021/ar970342i
– volume: 24
  start-page: 10260
  year: 2018
  ident: 226_CR108
  publication-title: Chem Eur J
  doi: 10.1002/chem.201802588
– volume: 45
  start-page: 4892
  year: 2016
  ident: 226_CR10
  publication-title: Chem Soc Rev
  doi: 10.1039/C5CS00902B
– volume: 5
  start-page: 2647
  year: 2015
  ident: 226_CR126
  publication-title: RSC Adv
  doi: 10.1039/C4RA14947E
– volume: 2
  start-page: 508
  year: 2009
  ident: 226_CR6
  publication-title: ChemSusChem
  doi: 10.1002/cssc.200900020
– volume: 23
  start-page: 13270
  year: 2017
  ident: 226_CR134
  publication-title: Chem Eur J
  doi: 10.1002/chem.201700888
– volume: 15
  start-page: 320
  year: 2013
  ident: 226_CR47
  publication-title: Green Chem
  doi: 10.1039/c2gc36896j
– volume: 17
  start-page: 1099
  year: 2013
  ident: 226_CR15
  publication-title: Org Process Res Dev
  doi: 10.1021/op400192h
– volume: 48
  start-page: 4744
  year: 2009
  ident: 226_CR62
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200900565
– volume: 22
  start-page: 252
  year: 2018
  ident: 226_CR52
  publication-title: Org Process Res Dev
  doi: 10.1021/acs.oprd.7b00358
– volume: 20
  start-page: 760
  year: 2016
  ident: 226_CR113
  publication-title: Org Process Res Dev
  doi: 10.1021/acs.oprd.6b00015
– volume: 16
  start-page: 5800
  year: 2014
  ident: 226_CR40
  publication-title: Org Lett
  doi: 10.1021/ol502910e
– volume: 52
  start-page: 10241
  year: 2013
  ident: 226_CR68
  publication-title: Angew Chemie Int Ed
  doi: 10.1002/anie.201303528
– start-page: 1
  volume-title: Sustainable chemical processes
  year: 2016
  ident: 226_CR114
– volume: 12
  start-page: 203
  year: 1993
  ident: 226_CR26
  publication-title: Process Saf Prog
  doi: 10.1002/prs.680120404
– volume: 13
  start-page: 226
  year: 2011
  ident: 226_CR81
  publication-title: Green Chem
  doi: 10.1039/C0GC00595A
– volume: 62
  start-page: 2096
  year: 2007
  ident: 226_CR22
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2006.12.057
– volume: 346
  start-page: 307
  year: 2004
  ident: 226_CR127
  publication-title: Adv Synth Catal
  doi: 10.1002/adsc.200303218
– volume: 5
  start-page: 274
  year: 2012
  ident: 226_CR77
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100339
– volume: 118
  start-page: 2636
  year: 2018
  ident: 226_CR31
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.7b00334
– volume: 51
  start-page: 1706
  year: 2012
  ident: 226_CR98
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201107446
– volume: 10
  start-page: 32
  year: 2017
  ident: 226_CR18
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201601321
– volume: 12
  start-page: 2157
  year: 2010
  ident: 226_CR57
  publication-title: Green Chem
  doi: 10.1039/c0gc00493f
– volume: 9
  start-page: 3273
  year: 2017
  ident: 226_CR82
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201701295
– volume: 18
  start-page: 1503
  year: 2014
  ident: 226_CR58
  publication-title: Org Process Res Dev
  doi: 10.1021/op5002676
– volume: 7
  start-page: 489
  year: 2015
  ident: 226_CR124
  publication-title: Nat Chem
  doi: 10.1038/nchem.2261
– volume: 54
  start-page: 4183
  year: 2015
  ident: 226_CR85
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie5041176
– volume: 13
  start-page: 5008
  year: 2011
  ident: 226_CR97
  publication-title: Org Lett
  doi: 10.1021/ol2017643
– volume: 35
  start-page: 686
  year: 2002
  ident: 226_CR3
  publication-title: Acc Chem Res
  doi: 10.1021/ar010065m
– volume: 3
  start-page: 686
  year: 2017
  ident: 226_CR109
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.7b00275
– volume: 4
  start-page: 57159
  year: 2014
  ident: 226_CR49
  publication-title: RSC Adv
  doi: 10.1039/C4RA12067A
– volume: 2
  start-page: 302
  year: 2016
  ident: 226_CR104
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.6b00091
– volume: 45
  start-page: 83
  year: 2016
  ident: 226_CR17
  publication-title: Chem Soc Rev
  doi: 10.1039/C5CS00447K
– volume: 7
  start-page: 94
  year: 2017
  ident: 226_CR105
  publication-title: J Flow Chem
  doi: 10.1556/1846.2017.00020
– volume: 11
  start-page: 1941
  year: 2011
  ident: 226_CR90
  publication-title: Lab Chip
  doi: 10.1039/c1lc20071b
– volume: 27
  start-page: 8
  year: 2009
  ident: 226_CR36
  publication-title: Chim Oggi
– volume: 12
  start-page: 956
  year: 2008
  ident: 226_CR67
  publication-title: Org Process Res Dev
  doi: 10.1021/op800079u
– volume: 18
  start-page: 1443
  year: 2014
  ident: 226_CR100
  publication-title: Org Process Res Dev
  doi: 10.1021/op500181z
– volume: 106
  start-page: 2943
  year: 2006
  ident: 226_CR2
  publication-title: Chem Rev
  doi: 10.1021/cr040679f
– volume: 20
  start-page: 831
  year: 2016
  ident: 226_CR38
  publication-title: Org Process Res Dev
  doi: 10.1021/acs.oprd.6b00044
– volume-title: Liquid phase aerobic oxidation catalysis: industrial applications and academic perspectives
  year: 2016
  ident: 226_CR4
  doi: 10.1002/9783527690121
– volume: 352
  start-page: 3223
  year: 2010
  ident: 226_CR39
  publication-title: Adv Synth Catal
  doi: 10.1002/adsc.201000771
– volume: 5
  start-page: 82
  year: 2013
  ident: 226_CR5
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201200266
– volume: 2
  start-page: 52
  year: 2012
  ident: 226_CR137
  publication-title: J Flow Chem
  doi: 10.1556/jfchem.2012.00022
– volume: 6
  start-page: 4749
  year: 2016
  ident: 226_CR64
  publication-title: Catal Sci Technol
  doi: 10.1039/C6CY00232C
– volume: 6
  start-page: 405
  year: 2013
  ident: 226_CR74
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201200913
SSID ssib053851526
ssj0001738078
Score 2.4499478
SecondaryResourceType review_article
Snippet Molecular oxygen (O 2 ) is the ultimate “green” oxidant for organic synthesis. There has been recent intensive research within the synthetic community to...
Molecular oxygen (O ) is the ultimate "green" oxidant for organic synthesis. There has been recent intensive research within the synthetic community to develop...
SourceID pubmedcentral
pubmed
crossref
springer
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 2
SubjectTerms Accounts on Sustainable Flow Chemistry
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Life Sciences
Materials Science
Molecular Medicine
Physics
Review
Title The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow
URI https://link.springer.com/article/10.1007/s41061-018-0226-z
https://www.ncbi.nlm.nih.gov/pubmed/30536152
https://pubmed.ncbi.nlm.nih.gov/PMC6290733
Volume 377
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9swED7WlNG9dFvbbdm6oIc9dajEtixbj2loWtYmK6OB9snIkkzNirPNMd3y63eyLUNCN-iLMehsLOmk-866-w7gkwkyo9Dy0wy9C8oio6gITUR9ib4EZ7EMUpuNPJ3x8zn7chPetHncpYt2d0eS9U7dJbsx672g6xtTtDucrrZgG-HHkPVge3R2e3Hq1AiXMBrpFlXUv1qimlW9LjPHQ4ogXrjzzcfeu2ahOrO0GTK5cW5am6PJS7h2HWmiUL4fV8v0WK02OB6f2NNXsNvCUzJq9Ok1PDPFHuyMXVW4PXheh4yqch--oYaReWnIIiNTV2SXfP39B1WSIBQml_nPKtfk6g4NJRkZS_iksD1vqjiVJC-I5cbKi2pRlWRyv3g4gPnk9Hp8TtsKDVQhsFtSqUOWcR0GysNbrX2RRcLEJo4EQoc4Veg9Bp5UJvS1FxrppanHMhlqERiupR-8gV6xKMw7IEb4WnmeNFGsGNdKBBnjNhF4KP0MdaYPQzcriWrpy20VjfukI16uhy3BYUvssCWrPhx1j_xouDv-J_y2meFOFHfCAPGe34dobe47AcvMvd5S5Hc1Qzf3hS2G2YfPboKTdmso__0F758k_QFeIHYTTQD5IfSWvyrzEfHRMh3gepicnMwG7boYwNaYj_E6u5r-Ba79CSo
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IHoR367PHDwpQdumaXOUxWXVXRVxwVtJkxQL0lW7i49f76Qv2EUFb4VMS5lJ-n3TTL4BODJeYhQiP00wu6AsMIoK3wTUlZhLcBZKL7ankfs3vDtgV4_-YyUWbc_CTO3fn-bM5iyY8IYU0YbTr1mYZ5go2-q9Nm_XUweXLQJzxSSK3ytBoaRetJbjPkXiLuo9zZ-eOoFKDRRNl0lO7ZUWENRZgeWKO5LzMtirMGOyNVhs1y3b1mChqOdU-TrcY_jJIDdkmJB-3QGX3H584nwhyFNJL30dp5rcPSGKkXNj1ZgUjqdli6WcpBmxwlVpNh6Oc9J5Hr5vwKBz8dDu0qp9AlXIukZUap8lXPuecvBSa1ckgTChCQOBuB7GClM7z5HK-K52fCOdOHZYIn0tPMO1dL1NmMuGmdkGYoSrleNIE4SKca2ElzBuT-meSTfBgLbgrHZfpCptcdvi4jlqVJELj0fo8ch6PPpqwXFzy0sprPGX8VYZisYUP1MekjG3BcFEkBoDK5s9OZKlT4V8NneF7VTZgpM6nFG1bvPf32DnX9aHsNh96Pei3uXN9S4sIckSZaX3HsyN3sZmH4nMKD4opvA3zPHnhA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB61qShcqhIKhFK6B06gFfi19h5RIKKUR1Q1Um7Weh_CEnIAJwLy65ldP6REUKk3S7u2rJlZfzOemW8A9nVgtETkpwajCxrGWlIe6Zj6AmMJFiYiyGw38tU1Ox-FF-NoXM85LZtq9yYlWfU0WJamYnp0r8xR2_gW2kgGw-CEIgYxOv8InzBQcXnaPus3BoWHGeG69i_cT5fY8au7gXMsoujO8ybT-dZTF7CqBajl4smlDKoDpsFX-FJ7lOSkMoF1-KCLLqz2m0FuXVhxVZ6y3IA_aBRkVGoyMeSqmYtLbp5f0IoIeq_kMn-Y5YoMbxHbyIm2HE0S1_Nq8FJJ8oJYOqu8mE1mJRncTZ6-wWhw9rd_TuuhClSiLzalQkWhYSoKpIeXSvncxFwnOok5on2SSZRj4AmpI195kRZelnmhEZHigWZK-MEmdIpJobeBaO4r6XlCx4kMmZI8MCGzvbvHwjeo5h4cN-JLZc04bgdf3KUtV7KTeIoST63E03kPDtpb7iu6jX9t3qpU0W7Fj1eALprfg3hBSe0GS6a9uFLkt45Um_nczq_swWGjzrQ-zeX7b7DzX7t_wufh6SC9_HX9-zusoefFq_LvXehMH2f6B3o302zPWfArA27vyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Use+of+Molecular+Oxygen+for+Liquid+Phase+Aerobic+Oxidations+in+Continuous+Flow&rft.jtitle=Topics+in+current+chemistry+%282016%29&rft.au=Hone%2C+Christopher+A.&rft.au=Kappe%2C+C.+Oliver&rft.date=2019-02-01&rft.issn=2365-0869&rft.eissn=2364-8961&rft.volume=377&rft.issue=1&rft_id=info:doi/10.1007%2Fs41061-018-0226-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41061_018_0226_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-0869&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-0869&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-0869&client=summon