Efficient purification of ethene by an ethane-trapping metal-organic framework
Separating ethene (C 2 H 4 ) from ethane (C 2 H 6 ) is of paramount importance and difficulty. Here we show that C 2 H 4 can be efficiently purified by trapping the inert C 2 H 6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1...
Saved in:
Published in | Nature communications Vol. 6; no. 1; p. 8697 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.10.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Separating ethene (C
2
H
4
) from ethane (C
2
H
6
) is of paramount importance and difficulty. Here we show that C
2
H
4
can be efficiently purified by trapping the inert C
2
H
6
in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C
2
H
4
/C
2
H
6
) through 1 litre of this C
2
H
6
selective adsorbent directly produces 56 litres of C
2
H
4
with 99.95%+ purity (required by the C
2
H
4
polymerization reactor) at the outlet, with a single breakthrough operation, while other C
2
H
6
selective materials can only produce
ca
. ⩽ litre, and conventional C
2
H
4
selective adsorbents require at least four adsorption–desorption cycles to achieve the same C
2
H
4
purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C
2
H
6
selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C–H···N hydrogen bonds with C
2
H
6
instead of the more polar competitor C
2
H
4
.
The separation of high purity ethene from the mixed gaseous products of cracking poses significant obstacles. Here, the authors present a metal-organic framework which, in contrast to most absorbents, selectively binds the less polar ethane thus allowing the efficient collection of the target product. |
---|---|
AbstractList | Separating ethene (C
2
H
4
) from ethane
(C
2
H
6
) is of paramount importance and difficulty. Here we
show that C
2
H
4
can be efficiently purified by trapping the
inert C
2
H
6
in a judiciously designed metal-organic framework.
Under ambient conditions, passing a typical cracked gas mixture (15:1
C
2
H
4
/C
2
H
6
) through
1 litre of this C
2
H
6
selective adsorbent directly
produces 56 litres of C
2
H
4
with
99.95%+ purity (required by the C
2
H
4
polymerization reactor) at the outlet, with a single breakthrough operation, while
other C
2
H
6
selective materials can only produce
ca
.
⩽ litre, and conventional C
2
H
4
selective
adsorbents require at least four adsorption–desorption cycles to achieve
the same C
2
H
4
purity. Single-crystal X-ray diffraction and
computational simulation studies showed that the exceptional
C
2
H
6
selectivity arises from the proper positioning of
multiple electronegative and electropositive functional groups on the
ultramicroporous pore surface, which form multiple
C–H···N hydrogen bonds with
C
2
H
6
instead of the more polar competitor
C
2
H
4
.
The separation of high purity ethene from the mixed gaseous
products of cracking poses significant obstacles. Here, the authors present a
metal-organic framework which, in contrast to most absorbents, selectively binds the
less polar ethane thus allowing the efficient collection of the target
product. Separating ethene (C2H4) from ethane (C2H6) is of paramount importance and difficulty. Here we show that C2H4 can be efficiently purified by trapping the inert C2H6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C2H4/C2H6) through 1 litre of this C2H6 selective adsorbent directly produces 56 litres of C2H4 with 99.95%+ purity (required by the C2H4 polymerization reactor) at the outlet, with a single breakthrough operation, while other C2H6 selective materials can only produce ca. ⩽ litre, and conventional C2H4 selective adsorbents require at least four adsorption-desorption cycles to achieve the same C2H4 purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C2H6 selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C-H···N hydrogen bonds with C2H6 instead of the more polar competitor C2H4.Separating ethene (C2H4) from ethane (C2H6) is of paramount importance and difficulty. Here we show that C2H4 can be efficiently purified by trapping the inert C2H6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C2H4/C2H6) through 1 litre of this C2H6 selective adsorbent directly produces 56 litres of C2H4 with 99.95%+ purity (required by the C2H4 polymerization reactor) at the outlet, with a single breakthrough operation, while other C2H6 selective materials can only produce ca. ⩽ litre, and conventional C2H4 selective adsorbents require at least four adsorption-desorption cycles to achieve the same C2H4 purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C2H6 selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C-H···N hydrogen bonds with C2H6 instead of the more polar competitor C2H4. Separating ethene (C2H4) from ethane (C2H6) is of paramount importance and difficulty. Here we show that C2H4 can be efficiently purified by trapping the inert C2H6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C2H4/C2H6) through 1 litre of this C2H6 selective adsorbent directly produces 56 litres of C2H4 with 99.95%+ purity (required by the C2H4 polymerization reactor) at the outlet, with a single breakthrough operation, while other C2H6 selective materials can only produce ca. ⩽ litre, and conventional C2H4 selective adsorbents require at least four adsorption-desorption cycles to achieve the same C2H4 purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C2H6 selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C-H···N hydrogen bonds with C2H6 instead of the more polar competitor C2H4. Separating ethene (C 2 H 4 ) from ethane (C 2 H 6 ) is of paramount importance and difficulty. Here we show that C 2 H 4 can be efficiently purified by trapping the inert C 2 H 6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C 2 H 4 /C 2 H 6 ) through 1 litre of this C 2 H 6 selective adsorbent directly produces 56 litres of C 2 H 4 with 99.95%+ purity (required by the C 2 H 4 polymerization reactor) at the outlet, with a single breakthrough operation, while other C 2 H 6 selective materials can only produce ca . ⩽ litre, and conventional C 2 H 4 selective adsorbents require at least four adsorption–desorption cycles to achieve the same C 2 H 4 purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C 2 H 6 selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C–H···N hydrogen bonds with C 2 H 6 instead of the more polar competitor C 2 H 4 . The separation of high purity ethene from the mixed gaseous products of cracking poses significant obstacles. Here, the authors present a metal-organic framework which, in contrast to most absorbents, selectively binds the less polar ethane thus allowing the efficient collection of the target product. Separating ethene (C2 H4 ) from ethane (C2 H6 ) is of paramount importance and difficulty. Here we show that C2 H4 can be efficiently purified by trapping the inert C2 H6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C2 H4 /C2 H6 ) through 1 litre of this C2 H6 selective adsorbent directly produces 56 litres of C2 H4 with 99.95%+ purity (required by the C2 H4 polymerization reactor) at the outlet, with a single breakthrough operation, while other C2 H6 selective materials can only produce ca. [els] litre, and conventional C2 H4 selective adsorbents require at least four adsorption-desorption cycles to achieve the same C2 H4 purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C2 H6 selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C-H···N hydrogen bonds with C2 H6 instead of the more polar competitor C2 H4 . Separating ethene (C 2 H 4 ) from ethane (C 2 H 6 ) is of paramount importance and difficulty. Here we show that C 2 H 4 can be efficiently purified by trapping the inert C 2 H 6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C 2 H 4 /C 2 H 6 ) through 1 litre of this C 2 H 6 selective adsorbent directly produces 56 litres of C 2 H 4 with 99.95%+ purity (required by the C 2 H 4 polymerization reactor) at the outlet, with a single breakthrough operation, while other C 2 H 6 selective materials can only produce ca . ⩽ litre, and conventional C 2 H 4 selective adsorbents require at least four adsorption–desorption cycles to achieve the same C 2 H 4 purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C 2 H 6 selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C–H···N hydrogen bonds with C 2 H 6 instead of the more polar competitor C 2 H 4 . |
ArticleNumber | 8697 |
Author | Chen, Xiao-Ming Zhang, Jie-Peng Liao, Pei-Qin Zhang, Wei-Xiong |
Author_xml | – sequence: 1 givenname: Pei-Qin surname: Liao fullname: Liao, Pei-Qin organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University – sequence: 2 givenname: Wei-Xiong surname: Zhang fullname: Zhang, Wei-Xiong organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University – sequence: 3 givenname: Jie-Peng surname: Zhang fullname: Zhang, Jie-Peng email: zhangjp7@mail.sysu.edu.cn organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University – sequence: 4 givenname: Xiao-Ming surname: Chen fullname: Chen, Xiao-Ming organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26510376$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtv1TAQhS1URB90ww9AkdigooBfsZMNEqrKQ6pgA2tr4oxvXRI72Amo_x5fbimXgjcey98cnTNzTA5CDEjIE0ZfMiraV8HGacqd6vQDcsSpZDXTXBzs1YfkNOdrWo7oWCvlI3LIVVOatToiHy-c89ZjWKp5Tb7UsPgYqugqXK4wYNXfVBC2DwhYLwnm2YdNNeECYx3TBoK3lUsw4Y-Yvj4mDx2MGU9v7xPy5e3F5_P39eWndx_O31zWtqHtUoNF11gEJfqBcZRcDq3SynbtoLR0uulBQsdcD1oJYHoQTcek48iBQttJcUJe73TntZ9wsMV_gtHMyU-QbkwEb_7-Cf7KbOJ3I1upBKdF4PmtQIrfVsyLmXy2OI4lZVyzKYPbOpItL-ize-h1XFMo8baU7rSgVBXq6b6jOyu_R12Asx1gU8w5obtDGDXbVZo_qywwvQdbv_zaTEnjx_-3vNi15KIbNpj2bP5L_wQHzrJf |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_144851 crossref_primary_10_1016_j_micromeso_2021_111096 crossref_primary_10_6023_A20100494 crossref_primary_10_1002_ange_201610914 crossref_primary_10_1021_acsami_2c00118 crossref_primary_10_1039_C6CP00001K crossref_primary_10_1002_anie_202210343 crossref_primary_10_1016_j_chempr_2022_08_014 crossref_primary_10_1039_D4TA06869F crossref_primary_10_1039_D3QM00430A crossref_primary_10_1039_C9TA12671F crossref_primary_10_1016_j_jssc_2018_12_061 crossref_primary_10_1039_D2TA04835C crossref_primary_10_1016_j_cej_2024_149587 crossref_primary_10_1021_acs_inorgchem_8b02199 crossref_primary_10_1016_j_jct_2018_12_024 crossref_primary_10_1002_anie_202302564 crossref_primary_10_1039_C9TA06329C crossref_primary_10_1021_acsami_0c07800 crossref_primary_10_1002_anie_202100707 crossref_primary_10_1016_j_seppur_2021_119284 crossref_primary_10_1021_acs_jpcc_0c02280 crossref_primary_10_1002_anie_202312029 crossref_primary_10_1021_acs_iecr_4c04219 crossref_primary_10_1021_acs_cgd_0c00388 crossref_primary_10_1021_acsami_9b07115 crossref_primary_10_1021_acs_chemmater_1c01723 crossref_primary_10_1002_aic_15837 crossref_primary_10_1021_acs_inorgchem_9b00550 crossref_primary_10_1016_j_ccr_2022_214714 crossref_primary_10_1021_acs_energyfuels_4c04024 crossref_primary_10_1007_s12274_020_2714_z crossref_primary_10_1021_acs_iecr_8b00950 crossref_primary_10_1039_C9CC00976K crossref_primary_10_1002_advs_202003141 crossref_primary_10_1016_j_jct_2017_10_002 crossref_primary_10_1021_acsami_3c04225 crossref_primary_10_1016_j_xcrp_2022_100913 crossref_primary_10_1021_acs_energyfuels_5c00552 crossref_primary_10_1002_anie_202208134 crossref_primary_10_1021_acsami_1c01810 crossref_primary_10_1002_ange_201902209 crossref_primary_10_1021_acs_inorgchem_1c02614 crossref_primary_10_1002_anie_202213959 crossref_primary_10_1016_j_seppur_2021_120126 crossref_primary_10_1016_j_seppur_2021_119385 crossref_primary_10_3390_compounds4010007 crossref_primary_10_1016_j_cej_2023_143858 crossref_primary_10_1002_ange_202207579 crossref_primary_10_1016_j_jcis_2019_12_127 crossref_primary_10_1107_S205322961800205X crossref_primary_10_1021_jacs_6b01414 crossref_primary_10_1021_acs_langmuir_3c00474 crossref_primary_10_1016_j_seppur_2020_116819 crossref_primary_10_1002_cplu_202100482 crossref_primary_10_1016_j_poly_2018_06_025 crossref_primary_10_1039_D1CC06261A crossref_primary_10_1002_anie_201907772 crossref_primary_10_1039_C9TA09928J crossref_primary_10_1002_ange_202313855 crossref_primary_10_1007_s11426_024_2458_3 crossref_primary_10_1021_acsami_9b22410 crossref_primary_10_1039_D1TA09467J crossref_primary_10_1016_j_cej_2024_157054 crossref_primary_10_1002_adsu_201800080 crossref_primary_10_1016_j_chempr_2019_10_012 crossref_primary_10_1021_jacs_8b07563 crossref_primary_10_1039_C9QI00922A crossref_primary_10_1360_TB_2023_0594 crossref_primary_10_1039_C9CP00137A crossref_primary_10_1039_C9QI01262A crossref_primary_10_1002_ange_202309108 crossref_primary_10_1021_jacs_9b00232 crossref_primary_10_1021_acs_cgd_6b01382 crossref_primary_10_1002_anie_202418853 crossref_primary_10_1002_ange_202204046 crossref_primary_10_1021_acs_inorgchem_2c03368 crossref_primary_10_1126_science_aat0586 crossref_primary_10_1002_ange_201708769 crossref_primary_10_1039_C6RA14268K crossref_primary_10_1016_j_seppur_2020_116635 crossref_primary_10_1021_acs_iecr_3c00620 crossref_primary_10_1021_acs_chemmater_2c03645 crossref_primary_10_1021_acs_iecr_9b00183 crossref_primary_10_1016_j_cjsc_2023_100147 crossref_primary_10_1021_acsami_9b08487 crossref_primary_10_1021_acs_inorgchem_1c00863 crossref_primary_10_1002_adsu_201700092 crossref_primary_10_1007_s41061_019_0257_0 crossref_primary_10_1021_acsami_2c21261 crossref_primary_10_1070_RCR5026 crossref_primary_10_1021_jacs_7b04268 crossref_primary_10_1002_aic_17094 crossref_primary_10_1002_ange_202418853 crossref_primary_10_1039_C9TA02822F crossref_primary_10_1002_ange_202100707 crossref_primary_10_1016_j_seppur_2022_121330 crossref_primary_10_1038_s41467_020_19677_x crossref_primary_10_1021_acs_inorgchem_2c03236 crossref_primary_10_1002_anie_202317648 crossref_primary_10_1002_smll_201900426 crossref_primary_10_1021_acs_cgd_8b00385 crossref_primary_10_1021_acs_iecr_4c02483 crossref_primary_10_1039_C9TA13322D crossref_primary_10_1021_jacs_1c02108 crossref_primary_10_1021_jacs_9b12428 crossref_primary_10_1021_acssuschemeng_8b03685 crossref_primary_10_1021_acs_inorgchem_1c00753 crossref_primary_10_1016_j_cjsc_2023_100012 crossref_primary_10_1039_D0NR04860G crossref_primary_10_1039_D1CC02350K crossref_primary_10_1021_accountsmr_4c00316 crossref_primary_10_1039_D4TA04528A crossref_primary_10_1021_acs_inorgchem_4c02473 crossref_primary_10_1007_s11051_022_05569_2 crossref_primary_10_1016_j_seppur_2024_131049 crossref_primary_10_1080_01496395_2016_1243130 crossref_primary_10_1016_j_isci_2021_103042 crossref_primary_10_1039_D1SC01827B crossref_primary_10_1016_j_seppur_2023_124109 crossref_primary_10_1039_D2TA06783H crossref_primary_10_3390_nano14191602 crossref_primary_10_1021_acsami_0c15267 crossref_primary_10_1016_j_cej_2024_151146 crossref_primary_10_1016_j_ccr_2020_213485 crossref_primary_10_1002_adma_202207955 crossref_primary_10_1016_j_seppur_2023_125791 crossref_primary_10_1016_j_ccr_2021_213998 crossref_primary_10_1021_acs_chemmater_9b04177 crossref_primary_10_1016_j_seppur_2023_124465 crossref_primary_10_1016_j_cej_2021_133208 crossref_primary_10_1039_C7EE00830A crossref_primary_10_1039_D2SC01180H crossref_primary_10_1021_cbe_4c00113 crossref_primary_10_1039_D1CP05931A crossref_primary_10_1016_j_coche_2018_04_004 crossref_primary_10_1002_cjoc_202400977 crossref_primary_10_1016_j_ces_2020_115604 crossref_primary_10_1021_accountsmr_4c00336 crossref_primary_10_1126_sciadv_aaz4322 crossref_primary_10_1016_j_micromeso_2019_109784 crossref_primary_10_1039_C6EE01886F crossref_primary_10_1016_j_cjche_2021_09_032 crossref_primary_10_1002_anie_202319978 crossref_primary_10_1039_D1TA04096K crossref_primary_10_1016_j_trechm_2024_10_004 crossref_primary_10_1002_anie_201902209 crossref_primary_10_1021_acs_inorgchem_4c03371 crossref_primary_10_1002_anie_202100782 crossref_primary_10_1039_C8QM00029H crossref_primary_10_1039_C9CS00756C crossref_primary_10_1002_aic_18021 crossref_primary_10_1021_acs_iecr_9b00997 crossref_primary_10_1021_acs_chemmater_2c01097 crossref_primary_10_1021_acsaem_7b00245 crossref_primary_10_1002_anie_202423496 crossref_primary_10_1002_smll_202402382 crossref_primary_10_1016_j_seppur_2024_129738 crossref_primary_10_1021_jacs_0c11247 crossref_primary_10_1021_acsomega_0c02218 crossref_primary_10_1039_C6CS00362A crossref_primary_10_1016_j_mtsust_2022_100296 crossref_primary_10_1016_j_trechm_2023_11_001 crossref_primary_10_1021_acsmaterialslett_1c00013 crossref_primary_10_1002_ange_202008132 crossref_primary_10_1016_j_fuel_2020_119647 crossref_primary_10_1039_D3CC01296D crossref_primary_10_1002_ange_202500783 crossref_primary_10_1007_s11426_020_9929_8 crossref_primary_10_1039_C8ME00024G crossref_primary_10_1002_adma_201704210 crossref_primary_10_1016_j_seppur_2021_119424 crossref_primary_10_1016_j_cej_2022_139296 crossref_primary_10_1016_j_seppur_2018_06_064 crossref_primary_10_1002_chem_201703745 crossref_primary_10_1016_j_jechem_2022_05_023 crossref_primary_10_1021_acsami_7b19414 crossref_primary_10_1021_cbe_3c00115 crossref_primary_10_1002_chem_202000008 crossref_primary_10_1016_j_seppur_2022_121804 crossref_primary_10_1002_ange_202210343 crossref_primary_10_1016_j_seppur_2024_129609 crossref_primary_10_1002_aic_16182 crossref_primary_10_1002_ange_202114132 crossref_primary_10_1021_jacs_2c09487 crossref_primary_10_1002_smll_201700632 crossref_primary_10_1021_jacs_0c09466 crossref_primary_10_1016_j_cej_2020_126428 crossref_primary_10_3390_nano12050869 crossref_primary_10_1021_acsami_3c18858 crossref_primary_10_1002_anie_202213015 crossref_primary_10_1002_asia_202101220 crossref_primary_10_3390_nano12234281 crossref_primary_10_1002_aic_17025 crossref_primary_10_1002_ange_202106625 crossref_primary_10_1016_j_inoche_2022_109198 crossref_primary_10_1021_acsami_1c25005 crossref_primary_10_1039_D3QI01595E crossref_primary_10_1016_j_cej_2018_03_163 crossref_primary_10_1016_j_micromeso_2023_112532 crossref_primary_10_1021_acs_iecr_0c01726 crossref_primary_10_1002_ange_201806732 crossref_primary_10_1002_ange_202421753 crossref_primary_10_20517_cs_2024_83 crossref_primary_10_1002_ange_202011300 crossref_primary_10_1002_ange_202213959 crossref_primary_10_1039_C8TA00264A crossref_primary_10_1021_jacs_9b07807 crossref_primary_10_1039_D4DT02209B crossref_primary_10_1002_aic_17385 crossref_primary_10_1039_D3SC01134H crossref_primary_10_1002_chem_201802123 crossref_primary_10_1002_anie_201904312 crossref_primary_10_1021_acscentsci_9b00423 crossref_primary_10_1016_j_seppur_2023_124390 crossref_primary_10_1016_j_cherd_2020_03_013 crossref_primary_10_1016_j_seppur_2024_129821 crossref_primary_10_1016_j_jece_2022_108300 crossref_primary_10_1002_ange_202208134 crossref_primary_10_1002_adma_201606929 crossref_primary_10_1002_ange_202104318 crossref_primary_10_1021_jacs_8b13463 crossref_primary_10_1002_ange_202302564 crossref_primary_10_1021_acsmaterialslett_2c00370 crossref_primary_10_1002_ange_202312029 crossref_primary_10_1002_adma_201907601 crossref_primary_10_1002_anie_202308418 crossref_primary_10_1021_acsami_0c16575 crossref_primary_10_1016_j_jcis_2023_11_096 crossref_primary_10_1002_ange_202011678 crossref_primary_10_1016_j_seppur_2025_132033 crossref_primary_10_1016_j_enchem_2019_100006 crossref_primary_10_1021_acsaenm_2c00079 crossref_primary_10_1039_D1DT04149E crossref_primary_10_1002_eom2_12057 crossref_primary_10_1016_j_xcrp_2022_100830 crossref_primary_10_1039_D3SC04119K crossref_primary_10_1021_acsami_7b06491 crossref_primary_10_1016_j_ccr_2022_214628 crossref_primary_10_1016_j_seppur_2023_125252 crossref_primary_10_1016_j_ccr_2024_216291 crossref_primary_10_1002_anie_202425638 crossref_primary_10_1016_j_seppur_2023_125256 crossref_primary_10_1039_C8QI00469B crossref_primary_10_1021_acs_accounts_8b00658 crossref_primary_10_1039_C8ME00004B crossref_primary_10_1016_j_jcis_2021_09_043 crossref_primary_10_1016_j_micromeso_2023_112631 crossref_primary_10_1021_acsami_9b19438 crossref_primary_10_1038_s41467_021_25980_y crossref_primary_10_1016_j_seppur_2025_132141 crossref_primary_10_1016_j_cej_2020_124137 crossref_primary_10_1016_j_micromeso_2019_109724 crossref_primary_10_1039_C7TA01179B crossref_primary_10_1021_acsami_0c04228 crossref_primary_10_1007_s40820_024_01487_1 crossref_primary_10_1016_j_seppur_2024_127863 crossref_primary_10_1039_D0TA08498K crossref_primary_10_1039_C6SC00836D crossref_primary_10_1016_j_cjche_2023_01_001 crossref_primary_10_1038_s41557_021_00740_z crossref_primary_10_1126_science_aax8666 crossref_primary_10_1016_j_fuel_2024_131673 crossref_primary_10_1021_acssuschemeng_3c01468 crossref_primary_10_1021_acsami_1c17818 crossref_primary_10_1021_acs_inorgchem_8b02507 crossref_primary_10_1039_D4SC00424H crossref_primary_10_1002_anie_202011300 crossref_primary_10_1002_anie_202305041 crossref_primary_10_1002_anie_202217662 crossref_primary_10_1016_j_enchem_2022_100080 crossref_primary_10_1039_C7TA05598F crossref_primary_10_1016_j_ccr_2020_213518 crossref_primary_10_1016_j_cej_2024_157653 crossref_primary_10_1002_zaac_202200151 crossref_primary_10_1021_jacs_9b12924 crossref_primary_10_1016_j_cclet_2024_109729 crossref_primary_10_1126_science_aam7232 crossref_primary_10_1002_aic_18676 crossref_primary_10_1002_aic_18312 crossref_primary_10_1002_ange_201808716 crossref_primary_10_1021_acs_iecr_7b00517 crossref_primary_10_1016_j_cjche_2021_07_027 crossref_primary_10_1002_ange_202004072 crossref_primary_10_1039_D3TA01598J crossref_primary_10_1021_jacs_1c10973 crossref_primary_10_1021_acscatal_6b01293 crossref_primary_10_1021_jacs_7b13706 crossref_primary_10_1021_acssuschemeng_9b00062 crossref_primary_10_1016_j_cej_2024_148707 crossref_primary_10_1016_j_seppur_2018_11_005 crossref_primary_10_1039_C7CC06530B crossref_primary_10_1039_C5CC10598F crossref_primary_10_1039_D3CC02880A crossref_primary_10_1016_j_ces_2017_07_020 crossref_primary_10_1021_acs_inorgchem_0c00558 crossref_primary_10_1002_anie_202008132 crossref_primary_10_1002_chem_201903952 crossref_primary_10_1002_smll_202003167 crossref_primary_10_1002_advs_202400101 crossref_primary_10_1002_anie_202009446 crossref_primary_10_1002_adma_201705374 crossref_primary_10_1002_ange_201807652 crossref_primary_10_1039_D0QI01138J crossref_primary_10_1021_acs_inorgchem_3c02670 crossref_primary_10_1021_acs_iecr_3c04499 crossref_primary_10_1038_s41467_022_32677_3 crossref_primary_10_1021_acs_cgd_4c01065 crossref_primary_10_1002_chem_202102234 crossref_primary_10_1002_ange_202100342 crossref_primary_10_1016_j_cej_2021_132654 crossref_primary_10_1016_j_seppur_2023_125972 crossref_primary_10_1021_acs_inorgchem_1c02179 crossref_primary_10_1002_ange_201702484 crossref_primary_10_1002_adma_201800643 crossref_primary_10_1016_j_jcis_2024_04_227 crossref_primary_10_3390_ma16010154 crossref_primary_10_1016_j_micromeso_2025_113600 crossref_primary_10_1016_j_cej_2023_143056 crossref_primary_10_1016_j_cej_2023_147656 crossref_primary_10_1016_j_ccr_2023_215413 crossref_primary_10_1021_jacs_9b00913 crossref_primary_10_1002_adma_201601133 crossref_primary_10_1021_acs_inorgchem_6b00136 crossref_primary_10_1002_anie_202205427 crossref_primary_10_1021_acs_inorgchem_4c03193 crossref_primary_10_1002_anie_201702484 crossref_primary_10_1021_acs_langmuir_4c01308 crossref_primary_10_1002_smll_202208182 crossref_primary_10_1016_j_poly_2018_10_025 crossref_primary_10_1002_anie_201809884 crossref_primary_10_1016_j_seppur_2024_128116 crossref_primary_10_1002_adma_201606949 crossref_primary_10_1039_C8CC07064D crossref_primary_10_1002_aic_18401 crossref_primary_10_1002_zaac_202200248 crossref_primary_10_1021_acsami_8b12728 crossref_primary_10_1002_ejic_202300548 crossref_primary_10_1016_j_cej_2018_10_109 crossref_primary_10_1016_j_isci_2023_106239 crossref_primary_10_1002_adma_202002603 crossref_primary_10_1002_aic_18759 crossref_primary_10_1007_s40843_020_1471_0 crossref_primary_10_1016_j_seppur_2024_127011 crossref_primary_10_1039_D1NJ00414J crossref_primary_10_1002_advs_202004940 crossref_primary_10_1039_D2NR04187A crossref_primary_10_1016_j_seppur_2024_129311 crossref_primary_10_1002_anie_201807652 crossref_primary_10_1002_ange_202009446 crossref_primary_10_1021_acsmaterialslett_4c01406 crossref_primary_10_1039_D4SC02659D crossref_primary_10_1016_j_compchemeng_2022_107739 crossref_primary_10_1021_acs_inorgchem_2c00890 crossref_primary_10_1002_ange_202317648 crossref_primary_10_1021_acsami_1c13786 crossref_primary_10_1021_acscentsci_4c02155 crossref_primary_10_1016_j_ces_2016_04_016 crossref_primary_10_1016_j_cej_2020_126937 crossref_primary_10_1016_j_ccr_2021_213852 crossref_primary_10_1039_D0TA09678D crossref_primary_10_1002_anie_202311654 crossref_primary_10_1016_j_seppur_2024_128696 crossref_primary_10_1021_acs_inorgchem_2c00409 crossref_primary_10_1016_j_ces_2019_115355 crossref_primary_10_1002_anie_202100342 crossref_primary_10_1007_s11705_019_1872_6 crossref_primary_10_1039_C8CC00130H crossref_primary_10_1002_ange_202100114 crossref_primary_10_1021_acs_energyfuels_2c02749 crossref_primary_10_1021_acs_inorgchem_1c02363 crossref_primary_10_1016_j_cej_2020_125873 crossref_primary_10_1002_anie_202309108 crossref_primary_10_1021_acsami_2c07686 crossref_primary_10_1002_ange_202319978 crossref_primary_10_1021_jacs_9b10923 crossref_primary_10_1016_j_cej_2022_138272 crossref_primary_10_1021_acsami_3c03971 crossref_primary_10_1002_smll_202500937 crossref_primary_10_1016_j_cej_2022_139006 crossref_primary_10_1021_acs_cgd_7b00287 crossref_primary_10_1016_j_cej_2021_133786 crossref_primary_10_1002_adma_201805293 crossref_primary_10_1016_j_mattod_2023_03_004 crossref_primary_10_1016_j_ccr_2019_05_020 crossref_primary_10_1002_anie_202100114 crossref_primary_10_1016_j_seppur_2023_124324 crossref_primary_10_1039_D2CC00177B crossref_primary_10_1021_acs_inorgchem_0c02965 crossref_primary_10_1039_D0QM00721H crossref_primary_10_1039_D2SC05742E crossref_primary_10_1002_anie_202313855 crossref_primary_10_3390_molecules23040906 crossref_primary_10_1039_D4CC05393A crossref_primary_10_1021_acs_langmuir_4c03534 crossref_primary_10_1002_adma_201705189 crossref_primary_10_1002_ange_201907772 crossref_primary_10_1038_s41467_021_26473_8 crossref_primary_10_1039_D0CC04645K crossref_primary_10_1007_s12274_024_6883_z crossref_primary_10_1021_jacs_0c02594 crossref_primary_10_1038_s41467_024_47377_3 crossref_primary_10_1039_D0DT03013A crossref_primary_10_1039_D0DT03279D crossref_primary_10_1039_D4ME00066H crossref_primary_10_1002_aic_17752 crossref_primary_10_1016_j_micromeso_2021_111572 crossref_primary_10_1021_jacs_7b10265 crossref_primary_10_1002_anie_202004072 crossref_primary_10_1002_adma_202403834 crossref_primary_10_1021_acs_inorgchem_4c01733 crossref_primary_10_1002_anie_202207579 crossref_primary_10_1016_j_ccr_2024_215660 crossref_primary_10_1021_acs_jpcc_7b01278 crossref_primary_10_1002_bkcs_12179 crossref_primary_10_1039_D1TA00366F crossref_primary_10_1016_j_trechm_2020_02_013 crossref_primary_10_1038_s41467_020_16960_9 crossref_primary_10_1016_j_carbon_2021_02_043 crossref_primary_10_1002_adma_201806445 crossref_primary_10_1021_acs_inorgchem_0c02229 crossref_primary_10_1002_anie_202114132 crossref_primary_10_1002_ange_202425638 crossref_primary_10_1016_j_ces_2017_01_003 crossref_primary_10_1021_acs_iecr_4c02431 crossref_primary_10_1021_acsomega_2c07517 crossref_primary_10_1126_sciadv_abn9231 crossref_primary_10_1002_chem_202101779 crossref_primary_10_1021_acs_iecr_9b06765 crossref_primary_10_1021_acs_chemmater_1c03620 crossref_primary_10_1016_j_cej_2022_139713 crossref_primary_10_1016_j_mtchem_2022_100794 crossref_primary_10_1016_j_seppur_2022_122318 crossref_primary_10_1002_ange_202311654 crossref_primary_10_1002_anie_201808716 crossref_primary_10_1002_anie_202500783 crossref_primary_10_1016_j_cej_2021_130985 crossref_primary_10_1039_C7CC04160H crossref_primary_10_1002_anie_202421753 crossref_primary_10_1039_C8CC04139C crossref_primary_10_1002_anie_202204046 crossref_primary_10_1016_j_enchem_2021_100057 crossref_primary_10_1021_acs_iecr_7b05260 crossref_primary_10_1016_j_micromeso_2021_110975 crossref_primary_10_1002_cphc_202400801 crossref_primary_10_1021_acsomega_1c06309 crossref_primary_10_1016_j_cej_2022_139849 crossref_primary_10_1002_ange_202217662 crossref_primary_10_1002_ange_201809884 crossref_primary_10_1021_acs_inorgchem_1c01245 crossref_primary_10_1039_C6DT00238B crossref_primary_10_1016_j_cej_2021_131726 crossref_primary_10_1021_acs_iecr_2c02472 crossref_primary_10_1021_acs_iecr_1c01291 crossref_primary_10_1016_j_jtice_2016_10_047 crossref_primary_10_1016_j_seppur_2022_122332 crossref_primary_10_1002_zaac_201600108 crossref_primary_10_1016_j_jcis_2025_02_088 crossref_primary_10_1021_acsami_4c20772 crossref_primary_10_1016_j_jcis_2023_08_140 crossref_primary_10_3390_separations10030196 crossref_primary_10_1002_smll_201900058 crossref_primary_10_4019_bjscc_77_3 crossref_primary_10_1002_smll_202410680 crossref_primary_10_1021_acsami_2c13500 crossref_primary_10_1021_acsami_2c13905 crossref_primary_10_1021_jacs_0c00805 crossref_primary_10_1002_asia_202401529 crossref_primary_10_1039_D4DT02592J crossref_primary_10_1002_ange_202205427 crossref_primary_10_1016_j_mtnano_2018_09_003 crossref_primary_10_1016_j_seppur_2024_131239 crossref_primary_10_1016_j_ces_2016_08_026 crossref_primary_10_1002_aic_16616 crossref_primary_10_1021_acs_inorgchem_0c00003 crossref_primary_10_1002_advs_202001398 crossref_primary_10_1002_ange_202308418 crossref_primary_10_1021_acs_iecr_1c02220 crossref_primary_10_1016_j_micromeso_2020_110473 crossref_primary_10_1021_acs_chemmater_1c01892 crossref_primary_10_1039_D2TA01466A crossref_primary_10_1021_jacs_6b12847 crossref_primary_10_1039_D1DT01477C crossref_primary_10_1002_ange_202305041 crossref_primary_10_1021_acs_inorgchem_3c04602 crossref_primary_10_1021_acs_jpcc_8b00909 crossref_primary_10_1021_acs_inorgchem_2c01343 crossref_primary_10_1021_acs_inorgchem_3c02308 crossref_primary_10_1016_j_ccr_2023_215111 crossref_primary_10_1002_ange_202423496 crossref_primary_10_1039_C9NR10092J crossref_primary_10_1039_D3MH00697B crossref_primary_10_1016_j_jssc_2018_09_001 crossref_primary_10_1016_j_seppur_2024_131343 crossref_primary_10_1021_acsanm_0c00162 crossref_primary_10_1021_acs_inorgchem_0c02893 crossref_primary_10_3390_molecules29020424 crossref_primary_10_1016_j_cej_2022_139756 crossref_primary_10_1016_S1872_5805_24_60859_0 crossref_primary_10_1039_D1TA05960B crossref_primary_10_1016_j_cjche_2019_09_005 crossref_primary_10_1016_j_ccr_2020_213709 crossref_primary_10_1038_s41467_024_45081_w crossref_primary_10_1039_D3TA03852A crossref_primary_10_1039_D0FD00103A crossref_primary_10_1016_j_trechm_2019_02_012 crossref_primary_10_1016_j_cej_2022_139642 crossref_primary_10_1039_D0TA05469K crossref_primary_10_1039_D3MA01085F crossref_primary_10_1016_j_ccr_2024_215881 crossref_primary_10_1021_acs_inorgchem_2c01218 crossref_primary_10_1002_ange_201904312 crossref_primary_10_1021_acs_jpcc_8b08855 crossref_primary_10_1021_acsami_0c20000 crossref_primary_10_1002_ange_202100782 crossref_primary_10_1016_j_gee_2022_03_015 crossref_primary_10_1016_j_eng_2024_01_024 crossref_primary_10_1039_D4SC04387A crossref_primary_10_1021_acs_inorgchem_1c01560 crossref_primary_10_1002_anie_202104318 crossref_primary_10_1002_adfm_202312150 crossref_primary_10_1002_anie_202011678 crossref_primary_10_1021_jacs_3c06754 crossref_primary_10_1016_j_seppur_2022_122378 crossref_primary_10_1016_j_seppur_2022_122011 crossref_primary_10_1002_anie_201610914 crossref_primary_10_1021_acs_iecr_2c02438 crossref_primary_10_1021_jacs_9b08322 crossref_primary_10_1002_anie_202106625 crossref_primary_10_1021_acsami_1c03923 crossref_primary_10_1021_acs_inorgchem_0c00134 crossref_primary_10_1002_ange_202213015 crossref_primary_10_1021_acsanm_0c03336 crossref_primary_10_1016_j_seppur_2023_123642 crossref_primary_10_1016_j_mtchem_2022_100856 crossref_primary_10_1002_anie_201806732 crossref_primary_10_1038_ncomms13300 crossref_primary_10_1016_j_ces_2017_09_032 crossref_primary_10_1039_D0QM00186D |
Cites_doi | 10.1021/cm202976e 10.1126/science.1217544 10.1126/science.283.5405.1148 10.1021/cr200139g 10.1002/anie.201310004 10.1021/la2030473 10.1021/ja302043u 10.1016/j.energy.2005.04.001 10.1021/la401471g 10.1039/c1cc12802g 10.1016/S1004-9541(11)60019-0 10.1016/j.memsci.2010.12.001 10.1002/chem.201100958 10.1021/ie970897h 10.1002/aic.690440405 10.1039/c2ee22858k 10.1016/S0376-7388(96)00182-2 10.1039/c2cc31792c 10.1007/s00340-006-2313-z 10.1039/c2cc34689c 10.1021/ja1089765 10.1021/ie0108088 10.1021/am502686g 10.1002/aic.690470212 10.1021/cr200190s 10.1039/c3sc00032j 10.1002/chem.201102734 10.1038/nchem.2114 10.1021/ja502119z 10.2172/773773 10.1021/ja8036096 10.1002/anie.200503778 10.1038/ncomms7350 10.1021/ef050182o 10.1021/cg400164m 10.1002/aic.690110125 10.1039/C4EE02717E 10.1021/ja305663k 10.1039/c2cc35729a 10.1021/ie9900317 10.1021/ja801453c 10.1021/cm402897c 10.1021/ja8057953 10.1039/C4CC09774B 10.1002/047144409X |
ContentType | Journal Article |
Copyright | The Author(s) 2015 Copyright Nature Publishing Group Oct 2015 Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2015 – notice: Copyright Nature Publishing Group Oct 2015 – notice: Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM |
DOI | 10.1038/ncomms9697 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
ExternalDocumentID | PMC4846320 3850039301 26510376 10_1038_ncomms9697 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 4.4 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EJD EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD ABAWZ AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c508t-acef5cea63bd12e424d8676c98d674f75ba4a91fba763a17d35914f2e2a0a8943 |
IEDL.DBID | C6C |
ISSN | 2041-1723 |
IngestDate | Thu Aug 21 14:05:15 EDT 2025 Mon Jul 21 11:34:08 EDT 2025 Wed Aug 13 10:59:06 EDT 2025 Wed Feb 19 02:32:55 EST 2025 Thu Apr 24 23:13:00 EDT 2025 Tue Jul 01 02:31:07 EDT 2025 Fri Feb 21 02:39:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-acef5cea63bd12e424d8676c98d674f75ba4a91fba763a17d35914f2e2a0a8943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/ncomms9697 |
PMID | 26510376 |
PQID | 1727973006 |
PQPubID | 546298 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4846320 proquest_miscellaneous_1728676482 proquest_journals_1727973006 pubmed_primary_26510376 crossref_primary_10_1038_ncomms9697 crossref_citationtrail_10_1038_ncomms9697 springer_journals_10_1038_ncomms9697 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20151029 |
PublicationDateYYYYMMDD | 2015-10-29 |
PublicationDate_xml | – month: 10 year: 2015 text: 20151029 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | DenysenkoDGrzywaMJelicJReuterKVolkmerDScorpionate-type coordination in MFU-4l metal–organic frameworks: small-molecule binding and activation upon the thermally activated formation of open metal sitesAngew. Chem. Int. Ed.201453583258361:CAS:528:DC%2BC2cXot1Smsbw%3D10.1002/anie.201310004 van den BerghJUnderstanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixturesChem. Eur. J.201117883288401:CAS:528:DC%2BC3MXoslCktL4%3D10.1002/chem.201100958 LiaoP-QMonodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gasEnergy Environ. Sci.20158101110161:CAS:528:DC%2BC2MXjtVKmug%3D%3D10.1039/C4EE02717E HermZRBlochEDLongJ RHydrocarbon separations in metal–organic frameworksChem. Mater.2014263233381:CAS:528:DC%2BC3sXhvVGkt77J10.1021/cm402897c DippoldAAFellerMKlapoetkeTM5,5'-dinitrimino-3,3'-methylene-1H-1,2,4-bistriazole - a metal free primary explosive combining excellent thermal stability and high performanceCent. Eur. J. Energ. Mater.201182612781:CAS:528:DC%2BC38XlvFSiu7w%3D Yang, R. T. Adsorbents: Fundamentals and Applications 191–230John Wiley & Sons, Inc. (2003). YangSSupramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic frameworkNat. Chem.201571211291:CAS:528:DC%2BC2cXitVCksrnP10.1038/nchem.2114 RegeSUPadinJYangR TOlefin/paraffin separations by adsorption: π-Complexation vs. kinetic separationAIChE J.1998447998091:CAS:528:DyaK1cXisFyku7w%3D10.1002/aic.690440405 RenTPatelMBlokKOlefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processesEnergy2006314254511:CAS:528:DC%2BD2MXhtFOmsLjJ10.1016/j.energy.2005.04.001 PiresJPintoMLSainiV KEthane selective IRMOF-8 and its significance in ethane–ethylene separation by adsorptionACS Appl. Mater. Interfaces2014612093120991:CAS:528:DC%2BC2cXhtFensrbE10.1021/am502686g HorikeSDense coordination network capable of selective CO2 capture from C1 and C2 hydrocarbonsJ. Am. Chem. Soc.2012134985298551:CAS:528:DC%2BC38XotFGltbg%3D10.1021/ja302043u LiBIntroduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethaneJ. Am. Chem. Soc.2014136865486601:CAS:528:DC%2BC2cXptlyqsL8%3D10.1021/ja502119z ZhangJ-PZhangY-BLinJ-BChenX-MMetal azolate frameworks: from crystal engineering to functional materialsChem. Rev.2012112100110331:CAS:528:DC%2BC3MXht1SrsrnE10.1021/cr200139g AguadoSBergeretGDanielCFarrussengDAbsolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite AJ. Am. Chem. Soc.201213414635146371:CAS:528:DC%2BC38Xht1CisrnJ10.1021/ja305663k BlochEDHydrocarbon separations in a metal-organic framework with open iron(ii) coordination sitesScience2012335160616101:CAS:528:DC%2BC38XksVyqsLc%3D2012Sci...335.1606B10.1126/science.1217544 GeierSJSelective adsorption of ethylene over ethane and propylene over propane in the metal-organic frameworks M2(dobdc) (M=Mg, Mn, Fe, Co, Ni, Zn)Chem. Sci.20134205420611:CAS:528:DC%2BC3sXltVOltbo%3D10.1039/c3sc00032j SedighiMKeyvanlooKDarianTJOlefin production from heavy liquid hydrocarbon thermal cracking: kinetics and product distributionIran. J. Chem. Chem. Eng.2010291351471:CAS:528:DC%2BC3MXht1Shs7rL HuangX-CLinY-YZhangJ-PChenX-MLigand-directed strategy for zeolite-type metal–organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologiesAngew. Chem. Int. Ed.200645155715591:CAS:528:DC%2BD28XisVahsL0%3D10.1002/anie.200503778 LiJ-RSculleyJZhouH-CMetal–organic frameworks for separationsChem. Rev.201111286993210.1021/cr200190s Matar, S. & Hatch, L. F. Chemistry of Petrochemical Processes 2nd edn Gulf Publishing Company (2000). LiaoP-QZhuA-XZhangW-XZhangJ-PChenX-MSelf-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behavioursNat. Commun.2015663501:CAS:528:DC%2BC2MXhtF2ksr%2FJ10.1038/ncomms7350 MyersALPrausnitzJMThermodynamics of mixed-gas adsorptionAIChE. J.1965111211261:CAS:528:DyaF2MXnvVKmsA%3D%3D10.1002/aic.690110125 GuoJWuXJingSZhangQZhengDVapor-liquid equilibrium of ethylene+mesitylene system and process simulation for ethylene recoveryChin. J. Chem. Eng.2011195435481:CAS:528:DC%2BC3MXhtFOjtbjI10.1016/S1004-9541(11)60019-0 BaoZAdsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal–organic frameworkLangmuir20112713554135621:CAS:528:DC%2BC3MXhtlSlurjM10.1021/la2030473 SilvaFADRodriguesAEPropylene/propane separation by vacuum swing adsorption using 13X zeoliteAIChE J.20014734135710.1002/aic.690470212 CaiJA doubly interpenetrated metal–organic framework with open metal sites and suitable pore sizes for highly selective separation of small hydrocarbons at room temperatureCryst. Growth Des.201313209420971:CAS:528:DC%2BC3sXktlyktrc%3D10.1021/cg400164m SafarikDJEldridgeRBOlefin/paraffin separations by reactive absorption: a reviewInd. Eng. Chem. Res.199837257125811:CAS:528:DyaK1cXjvVKks7o%3D10.1021/ie970897h DasMCA Zn4O-containing doubly interpenetrated porous metal-organic framework for photocatalytic decomposition of methyl orangeChem. Commun.20114711715117171:CAS:528:DC%2BC3MXhtlejtrjO10.1039/c1cc12802g HeYA microporous lanthanide-tricarboxylate framework with the potential for purification of natural gasChem. Commun.20124810856108581:CAS:528:DC%2BC38XhsVyhs7nO10.1039/c2cc35729a CavkaJHA new zirconium inorganic building brick forming metal organic frameworks with exceptional stabilityJ. Am. Chem. Soc.2008130138501385110.1021/ja8057953 Worrell, E., Phylipsen, D., Einstein, D. & Martin, N. Energy Use and Energy Intensity of the U.S. Chemical Industry. Report No. LBNL-44314 (Energy Analysis Department, Environmental Energy Technologies Division, Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, California 9472, USA, 2000). UchidaSSelective sorption of olefins by halogen-substituted macrocation-polyoxometalate porous ionic crystalsChem. Mater.2012243253301:CAS:528:DC%2BC3MXhsFCisb3N10.1021/cm202976e HeYA robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbonsChem. Commun.201248649364951:CAS:528:DC%2BC38XotFyjtrw%3D10.1039/c2cc31792c GücüyenerCvan den BerghJGasconJKapteijnFEthane/ethene separation turned on its head: selective ethane adsorption on the metal−organic Framework ZIF-7 through a gate-opening mechanismJ. Am. Chem. Soc.2010132177041770610.1021/ja1089765 UchidaSKawamotoRTagamiHNakagawaYMizunoNHighly selective sorption of small unsaturated hydrocarbons by nonporous flexible framework with silver ionJ. Am. Chem. Soc.200813012370123761:CAS:528:DC%2BD1cXhtVeit7jI10.1021/ja801453c FeldblyumJIWong-FoyAGMatzgerAJNon-interpenetrated IRMOF-8: synthesis, activation, and gas sorptionChem. Commun.201248982898301:CAS:528:DC%2BC38XhtleitrzL10.1039/c2cc34689c ZhangYHighly selective adsorption of ethylene over ethane in a MOF featuring the combination of open metal site and π-complexationChem. Commun.201551271427171:CAS:528:DC%2BC2MXntVWmsA%3D%3D10.1039/C4CC09774B CaskeySRWong-FoyAGMatzgerAJDramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical poresJ. Am. Chem. Soc.200813010870108711:CAS:528:DC%2BD1cXptVGjtrw%3D10.1021/ja8036096 TanakaKTaguchiAHaoJKitaHOkamotoKPermeation and separation properties of polyimide membranes to olefins and paraffinsJ. Membr. Sci.19961211972071:CAS:528:DyaK28Xms1Knsbk%3D10.1016/S0376-7388(96)00182-2 BuxHChmelikCKrishnaRCaroJEthene/ethane separation by the MOF membrane ZIF-8: molecular correlation of permeation, adsorption, diffusionJ. Membr. Sci.20113692842891:CAS:528:DC%2BC3MXhtlGmtL8%3D10.1016/j.memsci.2010.12.001 Brookhart, M., Findlater, M., Guironnet, D. & Lyons, T. W. Synthesis of para-xylene and toluene. US Patent 13/875,610 (2013). MarquevichMCollRMontanéDSteam reforming of sunflower oil for hydrogen productionInd. Eng. Chem. Res.200039214021471:CAS:528:DC%2BD3cXjs1Kms7w%3D10.1021/ie9900317 ZhouJRemoval of C2H4 from a CO2 stream by adsorption: a study in combination of ab initio calculation and experimental approachEnergy Fuels20062077878210.1021/ef050182o VoglerDESigristMWNear-infrared laser based cavity ringdown spectroscopy for applications in petrochemical industryAppl. Phys. B2006853493541:CAS:528:DC%2BD28XhtVSju7vE2006ApPhB..85..349V10.1007/s00340-006-2313-z BöhmeUEthene/ethane and propene/propane separation via the olefin and paraffin selective metal–organic framework adsorbents CPO-27 and ZIF-8Langmuir2013298592860010.1021/la401471g ChuiSS-YLoSM-FCharmantJP HOrpenAGWilliamsIDA chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]nScience1999283114811501:CAS:528:DyaK1MXhsFeitLc%3D1999Sci...283.1148C10.1126/science.283.5405.1148 HeYKrishnaRChenBMetal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbonsEnergy Environ. Sci.20125910791201:CAS:528:DC%2BC38Xhtlyqs7nJ10.1039/c2ee22858k Meyers, R. & Meyers, R. A. Handbook of Petrochemicals Production Processes McGraw-Hill Prof Med/Tech (2005). BakerRWFuture directions of membrane gas separation technologyInd. Eng. Chem. Res.200241139314111:CAS:528:DC%2BD38XhtlCmtLw%3D10.1021/ie0108088 HeYA microporous metal–organic framework for highly selective separation of acetylene, ethylene, and ethane from methane at room temperatureChem. Eur. J.2012186136191:CAS:528:DC%2BC3MXhsF2lurnF10.1002/chem.201102734 Y Zhang (BFncomms9697_CR20) 2015; 51 AL Myers (BFncomms9697_CR39) 1965; 11 H Bux (BFncomms9697_CR11) 2011; 369 U Böhme (BFncomms9697_CR29) 2013; 29 Z Bao (BFncomms9697_CR21) 2011; 27 K Tanaka (BFncomms9697_CR10) 1996; 121 S Aguado (BFncomms9697_CR16) 2012; 134 C Gücüyener (BFncomms9697_CR30) 2010; 132 MC Das (BFncomms9697_CR35) 2011; 47 JH Cavka (BFncomms9697_CR50) 2008; 130 J Zhou (BFncomms9697_CR4) 2006; 20 BFncomms9697_CR26 BFncomms9697_CR28 ED Bloch (BFncomms9697_CR17) 2012; 335 Y He (BFncomms9697_CR33) 2012; 18 SU Rege (BFncomms9697_CR24) 1998; 44 SS-Y Chui (BFncomms9697_CR48) 1999; 283 S Uchida (BFncomms9697_CR12) 2012; 24 AA Dippold (BFncomms9697_CR45) 2011; 8 DJ Safarik (BFncomms9697_CR8) 1998; 37 ZR Herm (BFncomms9697_CR18) 2014; 26 RW Baker (BFncomms9697_CR2) 2002; 41 DE Vogler (BFncomms9697_CR27) 2006; 85 Y He (BFncomms9697_CR34) 2012; 48 S Uchida (BFncomms9697_CR14) 2008; 130 J Guo (BFncomms9697_CR43) 2011; 19 SJ Geier (BFncomms9697_CR19) 2013; 4 J-P Zhang (BFncomms9697_CR38) 2012; 112 BFncomms9697_CR9 S Yang (BFncomms9697_CR22) 2015; 7 J van den Bergh (BFncomms9697_CR44) 2011; 17 BFncomms9697_CR6 P-Q Liao (BFncomms9697_CR5) 2015; 6 Y He (BFncomms9697_CR23) 2012; 5 JI Feldblyum (BFncomms9697_CR47) 2012; 48 SR Caskey (BFncomms9697_CR49) 2008; 130 FAD Silva (BFncomms9697_CR25) 2001; 47 J-R Li (BFncomms9697_CR37) 2011; 112 M Marquevich (BFncomms9697_CR42) 2000; 39 J Cai (BFncomms9697_CR32) 2013; 13 B Li (BFncomms9697_CR13) 2014; 136 S Horike (BFncomms9697_CR3) 2012; 134 P-Q Liao (BFncomms9697_CR40) 2015; 8 T Ren (BFncomms9697_CR7) 2006; 31 X-C Huang (BFncomms9697_CR46) 2006; 45 M Sedighi (BFncomms9697_CR41) 2010; 29 Y He (BFncomms9697_CR36) 2012; 48 J Pires (BFncomms9697_CR31) 2014; 6 D Denysenko (BFncomms9697_CR15) 2014; 53 BFncomms9697_CR1 |
References_xml | – reference: HermZRBlochEDLongJ RHydrocarbon separations in metal–organic frameworksChem. Mater.2014263233381:CAS:528:DC%2BC3sXhvVGkt77J10.1021/cm402897c – reference: BakerRWFuture directions of membrane gas separation technologyInd. Eng. Chem. Res.200241139314111:CAS:528:DC%2BD38XhtlCmtLw%3D10.1021/ie0108088 – reference: Meyers, R. & Meyers, R. A. Handbook of Petrochemicals Production Processes McGraw-Hill Prof Med/Tech (2005). – reference: FeldblyumJIWong-FoyAGMatzgerAJNon-interpenetrated IRMOF-8: synthesis, activation, and gas sorptionChem. Commun.201248982898301:CAS:528:DC%2BC38XhtleitrzL10.1039/c2cc34689c – reference: HeYKrishnaRChenBMetal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbonsEnergy Environ. Sci.20125910791201:CAS:528:DC%2BC38Xhtlyqs7nJ10.1039/c2ee22858k – reference: Matar, S. & Hatch, L. F. Chemistry of Petrochemical Processes 2nd edn Gulf Publishing Company (2000). – reference: HeYA robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbonsChem. Commun.201248649364951:CAS:528:DC%2BC38XotFyjtrw%3D10.1039/c2cc31792c – reference: BlochEDHydrocarbon separations in a metal-organic framework with open iron(ii) coordination sitesScience2012335160616101:CAS:528:DC%2BC38XksVyqsLc%3D2012Sci...335.1606B10.1126/science.1217544 – reference: LiJ-RSculleyJZhouH-CMetal–organic frameworks for separationsChem. Rev.201111286993210.1021/cr200190s – reference: CavkaJHA new zirconium inorganic building brick forming metal organic frameworks with exceptional stabilityJ. Am. Chem. Soc.2008130138501385110.1021/ja8057953 – reference: ZhouJRemoval of C2H4 from a CO2 stream by adsorption: a study in combination of ab initio calculation and experimental approachEnergy Fuels20062077878210.1021/ef050182o – reference: LiaoP-QMonodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gasEnergy Environ. Sci.20158101110161:CAS:528:DC%2BC2MXjtVKmug%3D%3D10.1039/C4EE02717E – reference: SilvaFADRodriguesAEPropylene/propane separation by vacuum swing adsorption using 13X zeoliteAIChE J.20014734135710.1002/aic.690470212 – reference: LiBIntroduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethaneJ. Am. Chem. Soc.2014136865486601:CAS:528:DC%2BC2cXptlyqsL8%3D10.1021/ja502119z – reference: HeYA microporous metal–organic framework for highly selective separation of acetylene, ethylene, and ethane from methane at room temperatureChem. Eur. J.2012186136191:CAS:528:DC%2BC3MXhsF2lurnF10.1002/chem.201102734 – reference: ZhangYHighly selective adsorption of ethylene over ethane in a MOF featuring the combination of open metal site and π-complexationChem. Commun.201551271427171:CAS:528:DC%2BC2MXntVWmsA%3D%3D10.1039/C4CC09774B – reference: GeierSJSelective adsorption of ethylene over ethane and propylene over propane in the metal-organic frameworks M2(dobdc) (M=Mg, Mn, Fe, Co, Ni, Zn)Chem. Sci.20134205420611:CAS:528:DC%2BC3sXltVOltbo%3D10.1039/c3sc00032j – reference: BaoZAdsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal–organic frameworkLangmuir20112713554135621:CAS:528:DC%2BC3MXhtlSlurjM10.1021/la2030473 – reference: Worrell, E., Phylipsen, D., Einstein, D. & Martin, N. Energy Use and Energy Intensity of the U.S. Chemical Industry. Report No. LBNL-44314 (Energy Analysis Department, Environmental Energy Technologies Division, Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, California 9472, USA, 2000). – reference: Brookhart, M., Findlater, M., Guironnet, D. & Lyons, T. W. Synthesis of para-xylene and toluene. US Patent 13/875,610 (2013). – reference: BöhmeUEthene/ethane and propene/propane separation via the olefin and paraffin selective metal–organic framework adsorbents CPO-27 and ZIF-8Langmuir2013298592860010.1021/la401471g – reference: ChuiSS-YLoSM-FCharmantJP HOrpenAGWilliamsIDA chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]nScience1999283114811501:CAS:528:DyaK1MXhsFeitLc%3D1999Sci...283.1148C10.1126/science.283.5405.1148 – reference: PiresJPintoMLSainiV KEthane selective IRMOF-8 and its significance in ethane–ethylene separation by adsorptionACS Appl. Mater. Interfaces2014612093120991:CAS:528:DC%2BC2cXhtFensrbE10.1021/am502686g – reference: HuangX-CLinY-YZhangJ-PChenX-MLigand-directed strategy for zeolite-type metal–organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologiesAngew. Chem. Int. Ed.200645155715591:CAS:528:DC%2BD28XisVahsL0%3D10.1002/anie.200503778 – reference: CaskeySRWong-FoyAGMatzgerAJDramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical poresJ. Am. Chem. Soc.200813010870108711:CAS:528:DC%2BD1cXptVGjtrw%3D10.1021/ja8036096 – reference: HeYA microporous lanthanide-tricarboxylate framework with the potential for purification of natural gasChem. Commun.20124810856108581:CAS:528:DC%2BC38XhsVyhs7nO10.1039/c2cc35729a – reference: VoglerDESigristMWNear-infrared laser based cavity ringdown spectroscopy for applications in petrochemical industryAppl. Phys. B2006853493541:CAS:528:DC%2BD28XhtVSju7vE2006ApPhB..85..349V10.1007/s00340-006-2313-z – reference: GuoJWuXJingSZhangQZhengDVapor-liquid equilibrium of ethylene+mesitylene system and process simulation for ethylene recoveryChin. J. Chem. Eng.2011195435481:CAS:528:DC%2BC3MXhtFOjtbjI10.1016/S1004-9541(11)60019-0 – reference: MarquevichMCollRMontanéDSteam reforming of sunflower oil for hydrogen productionInd. Eng. Chem. Res.200039214021471:CAS:528:DC%2BD3cXjs1Kms7w%3D10.1021/ie9900317 – reference: SedighiMKeyvanlooKDarianTJOlefin production from heavy liquid hydrocarbon thermal cracking: kinetics and product distributionIran. J. Chem. Chem. Eng.2010291351471:CAS:528:DC%2BC3MXht1Shs7rL – reference: YangSSupramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic frameworkNat. Chem.201571211291:CAS:528:DC%2BC2cXitVCksrnP10.1038/nchem.2114 – reference: DasMCA Zn4O-containing doubly interpenetrated porous metal-organic framework for photocatalytic decomposition of methyl orangeChem. Commun.20114711715117171:CAS:528:DC%2BC3MXhtlejtrjO10.1039/c1cc12802g – reference: HorikeSDense coordination network capable of selective CO2 capture from C1 and C2 hydrocarbonsJ. Am. Chem. Soc.2012134985298551:CAS:528:DC%2BC38XotFGltbg%3D10.1021/ja302043u – reference: MyersALPrausnitzJMThermodynamics of mixed-gas adsorptionAIChE. J.1965111211261:CAS:528:DyaF2MXnvVKmsA%3D%3D10.1002/aic.690110125 – reference: van den BerghJUnderstanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixturesChem. Eur. J.201117883288401:CAS:528:DC%2BC3MXoslCktL4%3D10.1002/chem.201100958 – reference: RenTPatelMBlokKOlefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processesEnergy2006314254511:CAS:528:DC%2BD2MXhtFOmsLjJ10.1016/j.energy.2005.04.001 – reference: TanakaKTaguchiAHaoJKitaHOkamotoKPermeation and separation properties of polyimide membranes to olefins and paraffinsJ. Membr. Sci.19961211972071:CAS:528:DyaK28Xms1Knsbk%3D10.1016/S0376-7388(96)00182-2 – reference: CaiJA doubly interpenetrated metal–organic framework with open metal sites and suitable pore sizes for highly selective separation of small hydrocarbons at room temperatureCryst. Growth Des.201313209420971:CAS:528:DC%2BC3sXktlyktrc%3D10.1021/cg400164m – reference: LiaoP-QZhuA-XZhangW-XZhangJ-PChenX-MSelf-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behavioursNat. Commun.2015663501:CAS:528:DC%2BC2MXhtF2ksr%2FJ10.1038/ncomms7350 – reference: BuxHChmelikCKrishnaRCaroJEthene/ethane separation by the MOF membrane ZIF-8: molecular correlation of permeation, adsorption, diffusionJ. Membr. Sci.20113692842891:CAS:528:DC%2BC3MXhtlGmtL8%3D10.1016/j.memsci.2010.12.001 – reference: AguadoSBergeretGDanielCFarrussengDAbsolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite AJ. Am. Chem. Soc.201213414635146371:CAS:528:DC%2BC38Xht1CisrnJ10.1021/ja305663k – reference: Yang, R. T. Adsorbents: Fundamentals and Applications 191–230John Wiley & Sons, Inc. (2003). – reference: RegeSUPadinJYangR TOlefin/paraffin separations by adsorption: π-Complexation vs. kinetic separationAIChE J.1998447998091:CAS:528:DyaK1cXisFyku7w%3D10.1002/aic.690440405 – reference: UchidaSSelective sorption of olefins by halogen-substituted macrocation-polyoxometalate porous ionic crystalsChem. Mater.2012243253301:CAS:528:DC%2BC3MXhsFCisb3N10.1021/cm202976e – reference: DenysenkoDGrzywaMJelicJReuterKVolkmerDScorpionate-type coordination in MFU-4l metal–organic frameworks: small-molecule binding and activation upon the thermally activated formation of open metal sitesAngew. Chem. Int. Ed.201453583258361:CAS:528:DC%2BC2cXot1Smsbw%3D10.1002/anie.201310004 – reference: GücüyenerCvan den BerghJGasconJKapteijnFEthane/ethene separation turned on its head: selective ethane adsorption on the metal−organic Framework ZIF-7 through a gate-opening mechanismJ. Am. Chem. Soc.2010132177041770610.1021/ja1089765 – reference: DippoldAAFellerMKlapoetkeTM5,5'-dinitrimino-3,3'-methylene-1H-1,2,4-bistriazole - a metal free primary explosive combining excellent thermal stability and high performanceCent. Eur. J. Energ. Mater.201182612781:CAS:528:DC%2BC38XlvFSiu7w%3D – reference: SafarikDJEldridgeRBOlefin/paraffin separations by reactive absorption: a reviewInd. Eng. Chem. Res.199837257125811:CAS:528:DyaK1cXjvVKks7o%3D10.1021/ie970897h – reference: ZhangJ-PZhangY-BLinJ-BChenX-MMetal azolate frameworks: from crystal engineering to functional materialsChem. Rev.2012112100110331:CAS:528:DC%2BC3MXht1SrsrnE10.1021/cr200139g – reference: UchidaSKawamotoRTagamiHNakagawaYMizunoNHighly selective sorption of small unsaturated hydrocarbons by nonporous flexible framework with silver ionJ. Am. Chem. Soc.200813012370123761:CAS:528:DC%2BD1cXhtVeit7jI10.1021/ja801453c – volume: 24 start-page: 325 year: 2012 ident: BFncomms9697_CR12 publication-title: Chem. Mater. doi: 10.1021/cm202976e – volume: 335 start-page: 1606 year: 2012 ident: BFncomms9697_CR17 publication-title: Science doi: 10.1126/science.1217544 – volume: 283 start-page: 1148 year: 1999 ident: BFncomms9697_CR48 publication-title: Science doi: 10.1126/science.283.5405.1148 – ident: BFncomms9697_CR28 – volume: 112 start-page: 1001 year: 2012 ident: BFncomms9697_CR38 publication-title: Chem. Rev. doi: 10.1021/cr200139g – volume: 53 start-page: 5832 year: 2014 ident: BFncomms9697_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201310004 – volume: 8 start-page: 261 year: 2011 ident: BFncomms9697_CR45 publication-title: Cent. Eur. J. Energ. Mater. – volume: 27 start-page: 13554 year: 2011 ident: BFncomms9697_CR21 publication-title: Langmuir doi: 10.1021/la2030473 – volume: 29 start-page: 135 year: 2010 ident: BFncomms9697_CR41 publication-title: Iran. J. Chem. Chem. Eng. – volume: 134 start-page: 9852 year: 2012 ident: BFncomms9697_CR3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja302043u – volume: 31 start-page: 425 year: 2006 ident: BFncomms9697_CR7 publication-title: Energy doi: 10.1016/j.energy.2005.04.001 – volume: 29 start-page: 8592 year: 2013 ident: BFncomms9697_CR29 publication-title: Langmuir doi: 10.1021/la401471g – volume: 47 start-page: 11715 year: 2011 ident: BFncomms9697_CR35 publication-title: Chem. Commun. doi: 10.1039/c1cc12802g – volume: 19 start-page: 543 year: 2011 ident: BFncomms9697_CR43 publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(11)60019-0 – volume: 369 start-page: 284 year: 2011 ident: BFncomms9697_CR11 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.12.001 – volume: 17 start-page: 8832 year: 2011 ident: BFncomms9697_CR44 publication-title: Chem. Eur. J. doi: 10.1002/chem.201100958 – volume: 37 start-page: 2571 year: 1998 ident: BFncomms9697_CR8 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie970897h – volume: 44 start-page: 799 year: 1998 ident: BFncomms9697_CR24 publication-title: AIChE J. doi: 10.1002/aic.690440405 – volume: 5 start-page: 9107 year: 2012 ident: BFncomms9697_CR23 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22858k – volume: 121 start-page: 197 year: 1996 ident: BFncomms9697_CR10 publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(96)00182-2 – volume: 48 start-page: 6493 year: 2012 ident: BFncomms9697_CR34 publication-title: Chem. Commun. doi: 10.1039/c2cc31792c – volume: 85 start-page: 349 year: 2006 ident: BFncomms9697_CR27 publication-title: Appl. Phys. B doi: 10.1007/s00340-006-2313-z – volume: 48 start-page: 9828 year: 2012 ident: BFncomms9697_CR47 publication-title: Chem. Commun. doi: 10.1039/c2cc34689c – ident: BFncomms9697_CR26 – volume: 132 start-page: 17704 year: 2010 ident: BFncomms9697_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1089765 – volume: 41 start-page: 1393 year: 2002 ident: BFncomms9697_CR2 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0108088 – volume: 6 start-page: 12093 year: 2014 ident: BFncomms9697_CR31 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am502686g – volume: 47 start-page: 341 year: 2001 ident: BFncomms9697_CR25 publication-title: AIChE J. doi: 10.1002/aic.690470212 – volume: 112 start-page: 869 year: 2011 ident: BFncomms9697_CR37 publication-title: Chem. Rev. doi: 10.1021/cr200190s – volume: 4 start-page: 2054 year: 2013 ident: BFncomms9697_CR19 publication-title: Chem. Sci. doi: 10.1039/c3sc00032j – volume: 18 start-page: 613 year: 2012 ident: BFncomms9697_CR33 publication-title: Chem. Eur. J. doi: 10.1002/chem.201102734 – volume: 7 start-page: 121 year: 2015 ident: BFncomms9697_CR22 publication-title: Nat. Chem. doi: 10.1038/nchem.2114 – volume: 136 start-page: 8654 year: 2014 ident: BFncomms9697_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502119z – ident: BFncomms9697_CR6 doi: 10.2172/773773 – volume: 130 start-page: 10870 year: 2008 ident: BFncomms9697_CR49 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8036096 – volume: 45 start-page: 1557 year: 2006 ident: BFncomms9697_CR46 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200503778 – volume: 6 start-page: 6350 year: 2015 ident: BFncomms9697_CR5 publication-title: Nat. Commun. doi: 10.1038/ncomms7350 – volume: 20 start-page: 778 year: 2006 ident: BFncomms9697_CR4 publication-title: Energy Fuels doi: 10.1021/ef050182o – volume: 13 start-page: 2094 year: 2013 ident: BFncomms9697_CR32 publication-title: Cryst. Growth Des. doi: 10.1021/cg400164m – volume: 11 start-page: 121 year: 1965 ident: BFncomms9697_CR39 publication-title: AIChE. J. doi: 10.1002/aic.690110125 – volume: 8 start-page: 1011 year: 2015 ident: BFncomms9697_CR40 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02717E – volume: 134 start-page: 14635 year: 2012 ident: BFncomms9697_CR16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305663k – volume: 48 start-page: 10856 year: 2012 ident: BFncomms9697_CR36 publication-title: Chem. Commun. doi: 10.1039/c2cc35729a – volume: 39 start-page: 2140 year: 2000 ident: BFncomms9697_CR42 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9900317 – volume: 130 start-page: 12370 year: 2008 ident: BFncomms9697_CR14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801453c – volume: 26 start-page: 323 year: 2014 ident: BFncomms9697_CR18 publication-title: Chem. Mater. doi: 10.1021/cm402897c – volume: 130 start-page: 13850 year: 2008 ident: BFncomms9697_CR50 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8057953 – volume: 51 start-page: 2714 year: 2015 ident: BFncomms9697_CR20 publication-title: Chem. Commun. doi: 10.1039/C4CC09774B – ident: BFncomms9697_CR1 – ident: BFncomms9697_CR9 doi: 10.1002/047144409X |
SSID | ssj0000391844 |
Score | 2.635216 |
Snippet | Separating ethene (C
2
H
4
) from ethane (C
2
H
6
) is of paramount importance and difficulty. Here we show that C
2
H
4
can be efficiently purified by... Separating ethene (C2H4) from ethane (C2H6) is of paramount importance and difficulty. Here we show that C2H4 can be efficiently purified by trapping the inert... Separating ethene (C2 H4 ) from ethane (C2 H6 ) is of paramount importance and difficulty. Here we show that C2 H4 can be efficiently purified by trapping the... Separating ethene (C 2 H 4 ) from ethane (C 2 H 6 ) is of paramount importance and difficulty. Here we show that C 2 H 4 can be efficiently purified by... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8697 |
SubjectTerms | 119/118 639/301/299/921 639/638/263 Adsorbents Adsorption Computer simulation Design Electronegativity Electropositivity Energy consumption Ethane Ethylene Functional groups Gas mixtures Gases Humanities and Social Sciences Hydrogen bonds Ligands Materials selection Metal-organic frameworks Monte Carlo simulation multidisciplinary Natural gas Nitrogen Physical properties Polymerization Porous materials Purity Science Science (multidisciplinary) Selectivity Single crystals Trapping X-ray diffraction |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ1LT8QgEIAnPmLixfi2voLRiwdiSynQkzFGYzx40mRvDaWgJtpd3d2D_16GPnys8dgwBcpQmDLTbwBO0LXHjIypZrGknFtOlWWV_2otnVC530BMoH3eiZsHfjvIBu2B27gNq-zWxLBQV0ODZ-RnuNHmCFcX56M3ilmj0LvaptCYh0VEl2FIlxzI_owF6eeK845Kmqqz2lf5Os4FMp6-70MzxuVsjOQvR2nYf65XYaU1HMlFo-k1mLP1Oiw1qSQ_NuDuKrAgfDVkNH3H-J8w5GToCP7SW1tSfhBd44WuLfWNIZjhkbxab33TJreTIa4L1dqEh-ur-8sb2uZKoMabWBOqjXWZsVqkZZUwyxmvlJDC5KoSkjuZlZrrPHGl9guKTmSVZnnCHbNMxxoZ7FuwUA9ruwNE8NKmXlBlJuVeWCPTL85covOSxy6N4LQbucK0IHHMZ_FSBId2qoqvUY7guJcdNfiMP6X2OwUU7Ss0Lr4UHsFRX-wnP3o0_EgNp0EGn5IrFsF2o6--GSYQFij93fKHJnsBBGv_LKmfnwJgm3ujLGVxBCedzr91a6b3u__3fg-WvZEVcK8s34eFyfvUHnhDZlIehtn6CfhZ9uw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58IHgR39YXEb14qLZpmjQHERFFBD254K2kaaLC2tV1F9x_7yRtV9f14LFk0iQzSeYLk3wDcORCe1SLKFQ0EiFjhoWZoSWeWgvLM4kORHu2z3t-02G3j-njDLT5OxsFfvx5tHP5pDr97snn--gcF_xZ_WQ8O63QNq8fkksxC_PokYRboHcNzPc7ciLxIMNadtKJKpP-aApkTt-V_BUw9X7oehmWGgBJLmqLr8CMqVZhoU4pOVqD-yvPCYG_IW_DvrsH5FVPepa4p72VIcWIqMp9qMqE2JgjaHgirwYVENY5njSx7ZWtdehcXz1c3oRNzoRQI9QahEobm2qjeFKUMTWMsjLjgmuZlVwwK9JCMSVjWyjcWFQsyiSVMbPUUBUpx8W-AXNVrzJbQDgrTIKCWaoThsLKcftFqY2VLFhkkwCOW83luiEUd3kturkPbCdZ_q3lAA7Hsm81jcafUrutAfJ2JuQOYUnHqs8DOBgX4yJwkQ3UVG_oZdwoWUYD2KztNW6GckcaKLC2mLDkWMARbE-WVC_PnmibIThLaBTAUWvzH92a6v32_8R2YBFBl6d_pXIX5gb9odlDYDMo9v2s_QIGKfzo priority: 102 providerName: Scholars Portal |
Title | Efficient purification of ethene by an ethane-trapping metal-organic framework |
URI | https://link.springer.com/article/10.1038/ncomms9697 https://www.ncbi.nlm.nih.gov/pubmed/26510376 https://www.proquest.com/docview/1727973006 https://www.proquest.com/docview/1728676482 https://pubmed.ncbi.nlm.nih.gov/PMC4846320 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NT9swFMCfBmjSLtMYbMsGlRFcOERLHMcfx65qQZWopm1IvUWOY49JI0W0PfDf79n5GKUcuDiy_Bw7tmO_-L38DHDmTXvUiCTWNBExY5bF0tIKv1pLx6XCBcQE2ueMX16z6Tyft5icZetW2SAtwzTdeYd9rTF2u1RciR3Y88h2P5pHfNTvp3jSuWSsI5Bm8lGWzTVnS5Hc9od8YhQNa83kHbxtlUQybKq1D69s_R5eN8dGPhzAbBy4D3gbcre-974-oXnJwhH_-25tSflAdO0jurYxFuYhDL_JrUVNO27OcTLEdW5Zh3A9Gf8aXcbtuQixQXVqFWtjXW6s5llZpdQyyirJBTdKVlwwJ_JSM61SV2qcPHQqqixXKXPUUp1oz1v_ALv1orafgHBW2gwFZW4yhsLa8_uS3KValSxxWQTnXcsVpoWG-7Mr_hbBeJ3J4n8rR3Day941qIxnpY66Dija12VZeC1KeXI-j-CkT8aB7q0X2FKLdZDxT8kkjeBj0199MZR7MKDA3GKjJ3sBD9HeTKn_3ASYNkMFLKNJBGddnz-q1lbtP79M7Au8QcUqIF6pOoLd1f3aHqPysioHsCPmAkM5uRjA3nA4_TnF67fx7PuPQRjRg7AtgOEVk_8AR8r6DA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXVJ4NFDCiHDhETRzHdg5VVUGrLS17aqW9BcexAanNLt1dof1T_EZmnE3asohbj5Enfo3HM_aMvwHYJtcetyqJDU9ULIQTsXa8xlNr5aUuUIHYgPY5lIMz8XmUj9bgd_cWhsIquz0xbNT12NId-Q4p2oLA1eXe5GdMWaPIu9ql0GiXxbFb_MIj23T36BPy9z3nhwenHwfxMqtAbNEYmcXGOp9bZ2RW1Sl3gotaSyVtoWuphFd5ZYQpUl8ZFD2TqjrLi1R47rhJDKGVY7134C4q3oQkSo1Uf6dDaOtaiA4FNdM7DQ7hYlpIwpS6rvdWjNnVmMy_HLNB3x1uwMOlocr225X1CNZc8xjutakrF09geBCwJ7AaNplfUrxRYDEbe0ZPiBvHqgUzDX2YxsXYGAFBfGMXDq39uM0lZZnvQsOewtmtzOIzWG_GjdsEJkXlMiTUuc0EEhvCEExyn5qiEonPIvjQzVxpl8DllD_jvAwO9EyXV7McwbuedtLCdfyTaqtjQLkU2Wl5tcAieNsXo7CRBwVnajwPNDRKoXkEz1t-9c1wSeCECv9WNzjZExCQ982S5sf3AOgt0AjMeBLBdsfza91a6f2L__f-DdwfnH45KU-Ohscv4QEaeAFqlhdbsD67nLtXaETNqtdh5TL4etui8gd03DRq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLMEChhRDhyiTRzHdg4IIdpVS9GKA5X2FhzHBiSaXbq7QvvX-HXMOI-2LOLWY-SJHzMee-wZfwOwR649blUSG56oWAgnYu14jafWyktd4AZiA9rnRB6eiA_TfLoFv_u3MBRW2a-JYaGuZ5buyEe00RYEri5HvguL-LQ_fjv_GVMGKfK09uk02ily7Na_8Pi2eHO0j7J-xfn44PP7w7jLMBBbNEyWsbHO59YZmVV1yp3gotZSSVvoWirhVV4ZYYrUVwbV0KSqzvIiFZ47bhJDyOVY7zW4rrI8JR1TUzXc7xDyuhaiR0TN9KjB4ZwuCkn4Uhf3wA3DdjM-8y8nbdj7xnfgdme0snftLLsLW665BzfaNJbr-zA5CDgUWA2br84o9iiIm808o-fEjWPVmpmGPkzjYmyMQCG-slOHln_c5pWyzPdhYg_g5Eq4-BC2m1njHgGTonIZEurcZgKJDeEJJrlPTVGJxGcRvO45V9oOxJxyafwogzM90-U5lyN4OdDOW-iOf1Lt9gIoO_VdlOeTLYIXQzEqHnlTkFOzVaChUQrNI9hp5TU0wyUBFSr8W12S5EBAoN6XS5rv3wK4t0CDMONJBHu9zC90a6P3j__f--dwE5Wk_Hg0OX4Ct9DWC6izvNiF7eXZyj1Fe2pZPQsTl8GXq9aUP2E3OKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+purification+of+ethene+by+an+ethane-trapping+metal-organic+framework&rft.jtitle=Nature+communications&rft.au=Liao%2C+Pei-Qin&rft.au=Zhang%2C+Wei-Xiong&rft.au=Zhang%2C+Jie-Peng&rft.au=Chen%2C+Xiao-Ming&rft.date=2015-10-29&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1038%2Fncomms9697&rft.externalDocID=10_1038_ncomms9697 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |