Efficient purification of ethene by an ethane-trapping metal-organic framework

Separating ethene (C 2 H 4 ) from ethane (C 2 H 6 ) is of paramount importance and difficulty. Here we show that C 2 H 4 can be efficiently purified by trapping the inert C 2 H 6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 6; no. 1; p. 8697
Main Authors Liao, Pei-Qin, Zhang, Wei-Xiong, Zhang, Jie-Peng, Chen, Xiao-Ming
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.10.2015
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Separating ethene (C 2 H 4 ) from ethane (C 2 H 6 ) is of paramount importance and difficulty. Here we show that C 2 H 4 can be efficiently purified by trapping the inert C 2 H 6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C 2 H 4 /C 2 H 6 ) through 1 litre of this C 2 H 6 selective adsorbent directly produces 56 litres of C 2 H 4 with 99.95%+ purity (required by the C 2 H 4 polymerization reactor) at the outlet, with a single breakthrough operation, while other C 2 H 6 selective materials can only produce ca . ⩽ litre, and conventional C 2 H 4 selective adsorbents require at least four adsorption–desorption cycles to achieve the same C 2 H 4 purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C 2 H 6 selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C–H···N hydrogen bonds with C 2 H 6 instead of the more polar competitor C 2 H 4 . The separation of high purity ethene from the mixed gaseous products of cracking poses significant obstacles. Here, the authors present a metal-organic framework which, in contrast to most absorbents, selectively binds the less polar ethane thus allowing the efficient collection of the target product.
AbstractList Separating ethene (C 2 H 4 ) from ethane (C 2 H 6 ) is of paramount importance and difficulty. Here we show that C 2 H 4 can be efficiently purified by trapping the inert C 2 H 6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C 2 H 4 /C 2 H 6 ) through 1 litre of this C 2 H 6 selective adsorbent directly produces 56 litres of C 2 H 4 with 99.95%+ purity (required by the C 2 H 4 polymerization reactor) at the outlet, with a single breakthrough operation, while other C 2 H 6 selective materials can only produce ca . ⩽ litre, and conventional C 2 H 4 selective adsorbents require at least four adsorption–desorption cycles to achieve the same C 2 H 4 purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C 2 H 6 selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C–H···N hydrogen bonds with C 2 H 6 instead of the more polar competitor C 2 H 4 . The separation of high purity ethene from the mixed gaseous products of cracking poses significant obstacles. Here, the authors present a metal-organic framework which, in contrast to most absorbents, selectively binds the less polar ethane thus allowing the efficient collection of the target product.
Separating ethene (C2H4) from ethane (C2H6) is of paramount importance and difficulty. Here we show that C2H4 can be efficiently purified by trapping the inert C2H6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C2H4/C2H6) through 1 litre of this C2H6 selective adsorbent directly produces 56 litres of C2H4 with 99.95%+ purity (required by the C2H4 polymerization reactor) at the outlet, with a single breakthrough operation, while other C2H6 selective materials can only produce ca. ⩽  litre, and conventional C2H4 selective adsorbents require at least four adsorption-desorption cycles to achieve the same C2H4 purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C2H6 selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C-H···N hydrogen bonds with C2H6 instead of the more polar competitor C2H4.Separating ethene (C2H4) from ethane (C2H6) is of paramount importance and difficulty. Here we show that C2H4 can be efficiently purified by trapping the inert C2H6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C2H4/C2H6) through 1 litre of this C2H6 selective adsorbent directly produces 56 litres of C2H4 with 99.95%+ purity (required by the C2H4 polymerization reactor) at the outlet, with a single breakthrough operation, while other C2H6 selective materials can only produce ca. ⩽  litre, and conventional C2H4 selective adsorbents require at least four adsorption-desorption cycles to achieve the same C2H4 purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C2H6 selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C-H···N hydrogen bonds with C2H6 instead of the more polar competitor C2H4.
Separating ethene (C2H4) from ethane (C2H6) is of paramount importance and difficulty. Here we show that C2H4 can be efficiently purified by trapping the inert C2H6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C2H4/C2H6) through 1 litre of this C2H6 selective adsorbent directly produces 56 litres of C2H4 with 99.95%+ purity (required by the C2H4 polymerization reactor) at the outlet, with a single breakthrough operation, while other C2H6 selective materials can only produce ca. ⩽  litre, and conventional C2H4 selective adsorbents require at least four adsorption-desorption cycles to achieve the same C2H4 purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C2H6 selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C-H···N hydrogen bonds with C2H6 instead of the more polar competitor C2H4.
Separating ethene (C 2 H 4 ) from ethane (C 2 H 6 ) is of paramount importance and difficulty. Here we show that C 2 H 4 can be efficiently purified by trapping the inert C 2 H 6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C 2 H 4 /C 2 H 6 ) through 1 litre of this C 2 H 6 selective adsorbent directly produces 56 litres of C 2 H 4 with 99.95%+ purity (required by the C 2 H 4 polymerization reactor) at the outlet, with a single breakthrough operation, while other C 2 H 6 selective materials can only produce ca . ⩽ litre, and conventional C 2 H 4 selective adsorbents require at least four adsorption–desorption cycles to achieve the same C 2 H 4 purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C 2 H 6 selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C–H···N hydrogen bonds with C 2 H 6 instead of the more polar competitor C 2 H 4 . The separation of high purity ethene from the mixed gaseous products of cracking poses significant obstacles. Here, the authors present a metal-organic framework which, in contrast to most absorbents, selectively binds the less polar ethane thus allowing the efficient collection of the target product.
Separating ethene (C2 H4 ) from ethane (C2 H6 ) is of paramount importance and difficulty. Here we show that C2 H4 can be efficiently purified by trapping the inert C2 H6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C2 H4 /C2 H6 ) through 1 litre of this C2 H6 selective adsorbent directly produces 56 litres of C2 H4 with 99.95%+ purity (required by the C2 H4 polymerization reactor) at the outlet, with a single breakthrough operation, while other C2 H6 selective materials can only produce ca. [els] litre, and conventional C2 H4 selective adsorbents require at least four adsorption-desorption cycles to achieve the same C2 H4 purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C2 H6 selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C-H···N hydrogen bonds with C2 H6 instead of the more polar competitor C2 H4 .
Separating ethene (C 2 H 4 ) from ethane (C 2 H 6 ) is of paramount importance and difficulty. Here we show that C 2 H 4 can be efficiently purified by trapping the inert C 2 H 6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C 2 H 4 /C 2 H 6 ) through 1 litre of this C 2 H 6 selective adsorbent directly produces 56 litres of C 2 H 4 with 99.95%+ purity (required by the C 2 H 4 polymerization reactor) at the outlet, with a single breakthrough operation, while other C 2 H 6 selective materials can only produce ca . ⩽ litre, and conventional C 2 H 4 selective adsorbents require at least four adsorption–desorption cycles to achieve the same C 2 H 4 purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C 2 H 6 selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C–H···N hydrogen bonds with C 2 H 6 instead of the more polar competitor C 2 H 4 .
ArticleNumber 8697
Author Chen, Xiao-Ming
Zhang, Jie-Peng
Liao, Pei-Qin
Zhang, Wei-Xiong
Author_xml – sequence: 1
  givenname: Pei-Qin
  surname: Liao
  fullname: Liao, Pei-Qin
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University
– sequence: 2
  givenname: Wei-Xiong
  surname: Zhang
  fullname: Zhang, Wei-Xiong
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University
– sequence: 3
  givenname: Jie-Peng
  surname: Zhang
  fullname: Zhang, Jie-Peng
  email: zhangjp7@mail.sysu.edu.cn
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University
– sequence: 4
  givenname: Xiao-Ming
  surname: Chen
  fullname: Chen, Xiao-Ming
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26510376$$D View this record in MEDLINE/PubMed
BookMark eNptkUtv1TAQhS1URB90ww9AkdigooBfsZMNEqrKQ6pgA2tr4oxvXRI72Amo_x5fbimXgjcey98cnTNzTA5CDEjIE0ZfMiraV8HGacqd6vQDcsSpZDXTXBzs1YfkNOdrWo7oWCvlI3LIVVOatToiHy-c89ZjWKp5Tb7UsPgYqugqXK4wYNXfVBC2DwhYLwnm2YdNNeECYx3TBoK3lUsw4Y-Yvj4mDx2MGU9v7xPy5e3F5_P39eWndx_O31zWtqHtUoNF11gEJfqBcZRcDq3SynbtoLR0uulBQsdcD1oJYHoQTcek48iBQttJcUJe73TntZ9wsMV_gtHMyU-QbkwEb_7-Cf7KbOJ3I1upBKdF4PmtQIrfVsyLmXy2OI4lZVyzKYPbOpItL-ize-h1XFMo8baU7rSgVBXq6b6jOyu_R12Asx1gU8w5obtDGDXbVZo_qywwvQdbv_zaTEnjx_-3vNi15KIbNpj2bP5L_wQHzrJf
CitedBy_id crossref_primary_10_1016_j_cej_2023_144851
crossref_primary_10_1016_j_micromeso_2021_111096
crossref_primary_10_6023_A20100494
crossref_primary_10_1002_ange_201610914
crossref_primary_10_1021_acsami_2c00118
crossref_primary_10_1039_C6CP00001K
crossref_primary_10_1002_anie_202210343
crossref_primary_10_1016_j_chempr_2022_08_014
crossref_primary_10_1039_D4TA06869F
crossref_primary_10_1039_D3QM00430A
crossref_primary_10_1039_C9TA12671F
crossref_primary_10_1016_j_jssc_2018_12_061
crossref_primary_10_1039_D2TA04835C
crossref_primary_10_1016_j_cej_2024_149587
crossref_primary_10_1021_acs_inorgchem_8b02199
crossref_primary_10_1016_j_jct_2018_12_024
crossref_primary_10_1002_anie_202302564
crossref_primary_10_1039_C9TA06329C
crossref_primary_10_1021_acsami_0c07800
crossref_primary_10_1002_anie_202100707
crossref_primary_10_1016_j_seppur_2021_119284
crossref_primary_10_1021_acs_jpcc_0c02280
crossref_primary_10_1002_anie_202312029
crossref_primary_10_1021_acs_iecr_4c04219
crossref_primary_10_1021_acs_cgd_0c00388
crossref_primary_10_1021_acsami_9b07115
crossref_primary_10_1021_acs_chemmater_1c01723
crossref_primary_10_1002_aic_15837
crossref_primary_10_1021_acs_inorgchem_9b00550
crossref_primary_10_1016_j_ccr_2022_214714
crossref_primary_10_1021_acs_energyfuels_4c04024
crossref_primary_10_1007_s12274_020_2714_z
crossref_primary_10_1021_acs_iecr_8b00950
crossref_primary_10_1039_C9CC00976K
crossref_primary_10_1002_advs_202003141
crossref_primary_10_1016_j_jct_2017_10_002
crossref_primary_10_1021_acsami_3c04225
crossref_primary_10_1016_j_xcrp_2022_100913
crossref_primary_10_1021_acs_energyfuels_5c00552
crossref_primary_10_1002_anie_202208134
crossref_primary_10_1021_acsami_1c01810
crossref_primary_10_1002_ange_201902209
crossref_primary_10_1021_acs_inorgchem_1c02614
crossref_primary_10_1002_anie_202213959
crossref_primary_10_1016_j_seppur_2021_120126
crossref_primary_10_1016_j_seppur_2021_119385
crossref_primary_10_3390_compounds4010007
crossref_primary_10_1016_j_cej_2023_143858
crossref_primary_10_1002_ange_202207579
crossref_primary_10_1016_j_jcis_2019_12_127
crossref_primary_10_1107_S205322961800205X
crossref_primary_10_1021_jacs_6b01414
crossref_primary_10_1021_acs_langmuir_3c00474
crossref_primary_10_1016_j_seppur_2020_116819
crossref_primary_10_1002_cplu_202100482
crossref_primary_10_1016_j_poly_2018_06_025
crossref_primary_10_1039_D1CC06261A
crossref_primary_10_1002_anie_201907772
crossref_primary_10_1039_C9TA09928J
crossref_primary_10_1002_ange_202313855
crossref_primary_10_1007_s11426_024_2458_3
crossref_primary_10_1021_acsami_9b22410
crossref_primary_10_1039_D1TA09467J
crossref_primary_10_1016_j_cej_2024_157054
crossref_primary_10_1002_adsu_201800080
crossref_primary_10_1016_j_chempr_2019_10_012
crossref_primary_10_1021_jacs_8b07563
crossref_primary_10_1039_C9QI00922A
crossref_primary_10_1360_TB_2023_0594
crossref_primary_10_1039_C9CP00137A
crossref_primary_10_1039_C9QI01262A
crossref_primary_10_1002_ange_202309108
crossref_primary_10_1021_jacs_9b00232
crossref_primary_10_1021_acs_cgd_6b01382
crossref_primary_10_1002_anie_202418853
crossref_primary_10_1002_ange_202204046
crossref_primary_10_1021_acs_inorgchem_2c03368
crossref_primary_10_1126_science_aat0586
crossref_primary_10_1002_ange_201708769
crossref_primary_10_1039_C6RA14268K
crossref_primary_10_1016_j_seppur_2020_116635
crossref_primary_10_1021_acs_iecr_3c00620
crossref_primary_10_1021_acs_chemmater_2c03645
crossref_primary_10_1021_acs_iecr_9b00183
crossref_primary_10_1016_j_cjsc_2023_100147
crossref_primary_10_1021_acsami_9b08487
crossref_primary_10_1021_acs_inorgchem_1c00863
crossref_primary_10_1002_adsu_201700092
crossref_primary_10_1007_s41061_019_0257_0
crossref_primary_10_1021_acsami_2c21261
crossref_primary_10_1070_RCR5026
crossref_primary_10_1021_jacs_7b04268
crossref_primary_10_1002_aic_17094
crossref_primary_10_1002_ange_202418853
crossref_primary_10_1039_C9TA02822F
crossref_primary_10_1002_ange_202100707
crossref_primary_10_1016_j_seppur_2022_121330
crossref_primary_10_1038_s41467_020_19677_x
crossref_primary_10_1021_acs_inorgchem_2c03236
crossref_primary_10_1002_anie_202317648
crossref_primary_10_1002_smll_201900426
crossref_primary_10_1021_acs_cgd_8b00385
crossref_primary_10_1021_acs_iecr_4c02483
crossref_primary_10_1039_C9TA13322D
crossref_primary_10_1021_jacs_1c02108
crossref_primary_10_1021_jacs_9b12428
crossref_primary_10_1021_acssuschemeng_8b03685
crossref_primary_10_1021_acs_inorgchem_1c00753
crossref_primary_10_1016_j_cjsc_2023_100012
crossref_primary_10_1039_D0NR04860G
crossref_primary_10_1039_D1CC02350K
crossref_primary_10_1021_accountsmr_4c00316
crossref_primary_10_1039_D4TA04528A
crossref_primary_10_1021_acs_inorgchem_4c02473
crossref_primary_10_1007_s11051_022_05569_2
crossref_primary_10_1016_j_seppur_2024_131049
crossref_primary_10_1080_01496395_2016_1243130
crossref_primary_10_1016_j_isci_2021_103042
crossref_primary_10_1039_D1SC01827B
crossref_primary_10_1016_j_seppur_2023_124109
crossref_primary_10_1039_D2TA06783H
crossref_primary_10_3390_nano14191602
crossref_primary_10_1021_acsami_0c15267
crossref_primary_10_1016_j_cej_2024_151146
crossref_primary_10_1016_j_ccr_2020_213485
crossref_primary_10_1002_adma_202207955
crossref_primary_10_1016_j_seppur_2023_125791
crossref_primary_10_1016_j_ccr_2021_213998
crossref_primary_10_1021_acs_chemmater_9b04177
crossref_primary_10_1016_j_seppur_2023_124465
crossref_primary_10_1016_j_cej_2021_133208
crossref_primary_10_1039_C7EE00830A
crossref_primary_10_1039_D2SC01180H
crossref_primary_10_1021_cbe_4c00113
crossref_primary_10_1039_D1CP05931A
crossref_primary_10_1016_j_coche_2018_04_004
crossref_primary_10_1002_cjoc_202400977
crossref_primary_10_1016_j_ces_2020_115604
crossref_primary_10_1021_accountsmr_4c00336
crossref_primary_10_1126_sciadv_aaz4322
crossref_primary_10_1016_j_micromeso_2019_109784
crossref_primary_10_1039_C6EE01886F
crossref_primary_10_1016_j_cjche_2021_09_032
crossref_primary_10_1002_anie_202319978
crossref_primary_10_1039_D1TA04096K
crossref_primary_10_1016_j_trechm_2024_10_004
crossref_primary_10_1002_anie_201902209
crossref_primary_10_1021_acs_inorgchem_4c03371
crossref_primary_10_1002_anie_202100782
crossref_primary_10_1039_C8QM00029H
crossref_primary_10_1039_C9CS00756C
crossref_primary_10_1002_aic_18021
crossref_primary_10_1021_acs_iecr_9b00997
crossref_primary_10_1021_acs_chemmater_2c01097
crossref_primary_10_1021_acsaem_7b00245
crossref_primary_10_1002_anie_202423496
crossref_primary_10_1002_smll_202402382
crossref_primary_10_1016_j_seppur_2024_129738
crossref_primary_10_1021_jacs_0c11247
crossref_primary_10_1021_acsomega_0c02218
crossref_primary_10_1039_C6CS00362A
crossref_primary_10_1016_j_mtsust_2022_100296
crossref_primary_10_1016_j_trechm_2023_11_001
crossref_primary_10_1021_acsmaterialslett_1c00013
crossref_primary_10_1002_ange_202008132
crossref_primary_10_1016_j_fuel_2020_119647
crossref_primary_10_1039_D3CC01296D
crossref_primary_10_1002_ange_202500783
crossref_primary_10_1007_s11426_020_9929_8
crossref_primary_10_1039_C8ME00024G
crossref_primary_10_1002_adma_201704210
crossref_primary_10_1016_j_seppur_2021_119424
crossref_primary_10_1016_j_cej_2022_139296
crossref_primary_10_1016_j_seppur_2018_06_064
crossref_primary_10_1002_chem_201703745
crossref_primary_10_1016_j_jechem_2022_05_023
crossref_primary_10_1021_acsami_7b19414
crossref_primary_10_1021_cbe_3c00115
crossref_primary_10_1002_chem_202000008
crossref_primary_10_1016_j_seppur_2022_121804
crossref_primary_10_1002_ange_202210343
crossref_primary_10_1016_j_seppur_2024_129609
crossref_primary_10_1002_aic_16182
crossref_primary_10_1002_ange_202114132
crossref_primary_10_1021_jacs_2c09487
crossref_primary_10_1002_smll_201700632
crossref_primary_10_1021_jacs_0c09466
crossref_primary_10_1016_j_cej_2020_126428
crossref_primary_10_3390_nano12050869
crossref_primary_10_1021_acsami_3c18858
crossref_primary_10_1002_anie_202213015
crossref_primary_10_1002_asia_202101220
crossref_primary_10_3390_nano12234281
crossref_primary_10_1002_aic_17025
crossref_primary_10_1002_ange_202106625
crossref_primary_10_1016_j_inoche_2022_109198
crossref_primary_10_1021_acsami_1c25005
crossref_primary_10_1039_D3QI01595E
crossref_primary_10_1016_j_cej_2018_03_163
crossref_primary_10_1016_j_micromeso_2023_112532
crossref_primary_10_1021_acs_iecr_0c01726
crossref_primary_10_1002_ange_201806732
crossref_primary_10_1002_ange_202421753
crossref_primary_10_20517_cs_2024_83
crossref_primary_10_1002_ange_202011300
crossref_primary_10_1002_ange_202213959
crossref_primary_10_1039_C8TA00264A
crossref_primary_10_1021_jacs_9b07807
crossref_primary_10_1039_D4DT02209B
crossref_primary_10_1002_aic_17385
crossref_primary_10_1039_D3SC01134H
crossref_primary_10_1002_chem_201802123
crossref_primary_10_1002_anie_201904312
crossref_primary_10_1021_acscentsci_9b00423
crossref_primary_10_1016_j_seppur_2023_124390
crossref_primary_10_1016_j_cherd_2020_03_013
crossref_primary_10_1016_j_seppur_2024_129821
crossref_primary_10_1016_j_jece_2022_108300
crossref_primary_10_1002_ange_202208134
crossref_primary_10_1002_adma_201606929
crossref_primary_10_1002_ange_202104318
crossref_primary_10_1021_jacs_8b13463
crossref_primary_10_1002_ange_202302564
crossref_primary_10_1021_acsmaterialslett_2c00370
crossref_primary_10_1002_ange_202312029
crossref_primary_10_1002_adma_201907601
crossref_primary_10_1002_anie_202308418
crossref_primary_10_1021_acsami_0c16575
crossref_primary_10_1016_j_jcis_2023_11_096
crossref_primary_10_1002_ange_202011678
crossref_primary_10_1016_j_seppur_2025_132033
crossref_primary_10_1016_j_enchem_2019_100006
crossref_primary_10_1021_acsaenm_2c00079
crossref_primary_10_1039_D1DT04149E
crossref_primary_10_1002_eom2_12057
crossref_primary_10_1016_j_xcrp_2022_100830
crossref_primary_10_1039_D3SC04119K
crossref_primary_10_1021_acsami_7b06491
crossref_primary_10_1016_j_ccr_2022_214628
crossref_primary_10_1016_j_seppur_2023_125252
crossref_primary_10_1016_j_ccr_2024_216291
crossref_primary_10_1002_anie_202425638
crossref_primary_10_1016_j_seppur_2023_125256
crossref_primary_10_1039_C8QI00469B
crossref_primary_10_1021_acs_accounts_8b00658
crossref_primary_10_1039_C8ME00004B
crossref_primary_10_1016_j_jcis_2021_09_043
crossref_primary_10_1016_j_micromeso_2023_112631
crossref_primary_10_1021_acsami_9b19438
crossref_primary_10_1038_s41467_021_25980_y
crossref_primary_10_1016_j_seppur_2025_132141
crossref_primary_10_1016_j_cej_2020_124137
crossref_primary_10_1016_j_micromeso_2019_109724
crossref_primary_10_1039_C7TA01179B
crossref_primary_10_1021_acsami_0c04228
crossref_primary_10_1007_s40820_024_01487_1
crossref_primary_10_1016_j_seppur_2024_127863
crossref_primary_10_1039_D0TA08498K
crossref_primary_10_1039_C6SC00836D
crossref_primary_10_1016_j_cjche_2023_01_001
crossref_primary_10_1038_s41557_021_00740_z
crossref_primary_10_1126_science_aax8666
crossref_primary_10_1016_j_fuel_2024_131673
crossref_primary_10_1021_acssuschemeng_3c01468
crossref_primary_10_1021_acsami_1c17818
crossref_primary_10_1021_acs_inorgchem_8b02507
crossref_primary_10_1039_D4SC00424H
crossref_primary_10_1002_anie_202011300
crossref_primary_10_1002_anie_202305041
crossref_primary_10_1002_anie_202217662
crossref_primary_10_1016_j_enchem_2022_100080
crossref_primary_10_1039_C7TA05598F
crossref_primary_10_1016_j_ccr_2020_213518
crossref_primary_10_1016_j_cej_2024_157653
crossref_primary_10_1002_zaac_202200151
crossref_primary_10_1021_jacs_9b12924
crossref_primary_10_1016_j_cclet_2024_109729
crossref_primary_10_1126_science_aam7232
crossref_primary_10_1002_aic_18676
crossref_primary_10_1002_aic_18312
crossref_primary_10_1002_ange_201808716
crossref_primary_10_1021_acs_iecr_7b00517
crossref_primary_10_1016_j_cjche_2021_07_027
crossref_primary_10_1002_ange_202004072
crossref_primary_10_1039_D3TA01598J
crossref_primary_10_1021_jacs_1c10973
crossref_primary_10_1021_acscatal_6b01293
crossref_primary_10_1021_jacs_7b13706
crossref_primary_10_1021_acssuschemeng_9b00062
crossref_primary_10_1016_j_cej_2024_148707
crossref_primary_10_1016_j_seppur_2018_11_005
crossref_primary_10_1039_C7CC06530B
crossref_primary_10_1039_C5CC10598F
crossref_primary_10_1039_D3CC02880A
crossref_primary_10_1016_j_ces_2017_07_020
crossref_primary_10_1021_acs_inorgchem_0c00558
crossref_primary_10_1002_anie_202008132
crossref_primary_10_1002_chem_201903952
crossref_primary_10_1002_smll_202003167
crossref_primary_10_1002_advs_202400101
crossref_primary_10_1002_anie_202009446
crossref_primary_10_1002_adma_201705374
crossref_primary_10_1002_ange_201807652
crossref_primary_10_1039_D0QI01138J
crossref_primary_10_1021_acs_inorgchem_3c02670
crossref_primary_10_1021_acs_iecr_3c04499
crossref_primary_10_1038_s41467_022_32677_3
crossref_primary_10_1021_acs_cgd_4c01065
crossref_primary_10_1002_chem_202102234
crossref_primary_10_1002_ange_202100342
crossref_primary_10_1016_j_cej_2021_132654
crossref_primary_10_1016_j_seppur_2023_125972
crossref_primary_10_1021_acs_inorgchem_1c02179
crossref_primary_10_1002_ange_201702484
crossref_primary_10_1002_adma_201800643
crossref_primary_10_1016_j_jcis_2024_04_227
crossref_primary_10_3390_ma16010154
crossref_primary_10_1016_j_micromeso_2025_113600
crossref_primary_10_1016_j_cej_2023_143056
crossref_primary_10_1016_j_cej_2023_147656
crossref_primary_10_1016_j_ccr_2023_215413
crossref_primary_10_1021_jacs_9b00913
crossref_primary_10_1002_adma_201601133
crossref_primary_10_1021_acs_inorgchem_6b00136
crossref_primary_10_1002_anie_202205427
crossref_primary_10_1021_acs_inorgchem_4c03193
crossref_primary_10_1002_anie_201702484
crossref_primary_10_1021_acs_langmuir_4c01308
crossref_primary_10_1002_smll_202208182
crossref_primary_10_1016_j_poly_2018_10_025
crossref_primary_10_1002_anie_201809884
crossref_primary_10_1016_j_seppur_2024_128116
crossref_primary_10_1002_adma_201606949
crossref_primary_10_1039_C8CC07064D
crossref_primary_10_1002_aic_18401
crossref_primary_10_1002_zaac_202200248
crossref_primary_10_1021_acsami_8b12728
crossref_primary_10_1002_ejic_202300548
crossref_primary_10_1016_j_cej_2018_10_109
crossref_primary_10_1016_j_isci_2023_106239
crossref_primary_10_1002_adma_202002603
crossref_primary_10_1002_aic_18759
crossref_primary_10_1007_s40843_020_1471_0
crossref_primary_10_1016_j_seppur_2024_127011
crossref_primary_10_1039_D1NJ00414J
crossref_primary_10_1002_advs_202004940
crossref_primary_10_1039_D2NR04187A
crossref_primary_10_1016_j_seppur_2024_129311
crossref_primary_10_1002_anie_201807652
crossref_primary_10_1002_ange_202009446
crossref_primary_10_1021_acsmaterialslett_4c01406
crossref_primary_10_1039_D4SC02659D
crossref_primary_10_1016_j_compchemeng_2022_107739
crossref_primary_10_1021_acs_inorgchem_2c00890
crossref_primary_10_1002_ange_202317648
crossref_primary_10_1021_acsami_1c13786
crossref_primary_10_1021_acscentsci_4c02155
crossref_primary_10_1016_j_ces_2016_04_016
crossref_primary_10_1016_j_cej_2020_126937
crossref_primary_10_1016_j_ccr_2021_213852
crossref_primary_10_1039_D0TA09678D
crossref_primary_10_1002_anie_202311654
crossref_primary_10_1016_j_seppur_2024_128696
crossref_primary_10_1021_acs_inorgchem_2c00409
crossref_primary_10_1016_j_ces_2019_115355
crossref_primary_10_1002_anie_202100342
crossref_primary_10_1007_s11705_019_1872_6
crossref_primary_10_1039_C8CC00130H
crossref_primary_10_1002_ange_202100114
crossref_primary_10_1021_acs_energyfuels_2c02749
crossref_primary_10_1021_acs_inorgchem_1c02363
crossref_primary_10_1016_j_cej_2020_125873
crossref_primary_10_1002_anie_202309108
crossref_primary_10_1021_acsami_2c07686
crossref_primary_10_1002_ange_202319978
crossref_primary_10_1021_jacs_9b10923
crossref_primary_10_1016_j_cej_2022_138272
crossref_primary_10_1021_acsami_3c03971
crossref_primary_10_1002_smll_202500937
crossref_primary_10_1016_j_cej_2022_139006
crossref_primary_10_1021_acs_cgd_7b00287
crossref_primary_10_1016_j_cej_2021_133786
crossref_primary_10_1002_adma_201805293
crossref_primary_10_1016_j_mattod_2023_03_004
crossref_primary_10_1016_j_ccr_2019_05_020
crossref_primary_10_1002_anie_202100114
crossref_primary_10_1016_j_seppur_2023_124324
crossref_primary_10_1039_D2CC00177B
crossref_primary_10_1021_acs_inorgchem_0c02965
crossref_primary_10_1039_D0QM00721H
crossref_primary_10_1039_D2SC05742E
crossref_primary_10_1002_anie_202313855
crossref_primary_10_3390_molecules23040906
crossref_primary_10_1039_D4CC05393A
crossref_primary_10_1021_acs_langmuir_4c03534
crossref_primary_10_1002_adma_201705189
crossref_primary_10_1002_ange_201907772
crossref_primary_10_1038_s41467_021_26473_8
crossref_primary_10_1039_D0CC04645K
crossref_primary_10_1007_s12274_024_6883_z
crossref_primary_10_1021_jacs_0c02594
crossref_primary_10_1038_s41467_024_47377_3
crossref_primary_10_1039_D0DT03013A
crossref_primary_10_1039_D0DT03279D
crossref_primary_10_1039_D4ME00066H
crossref_primary_10_1002_aic_17752
crossref_primary_10_1016_j_micromeso_2021_111572
crossref_primary_10_1021_jacs_7b10265
crossref_primary_10_1002_anie_202004072
crossref_primary_10_1002_adma_202403834
crossref_primary_10_1021_acs_inorgchem_4c01733
crossref_primary_10_1002_anie_202207579
crossref_primary_10_1016_j_ccr_2024_215660
crossref_primary_10_1021_acs_jpcc_7b01278
crossref_primary_10_1002_bkcs_12179
crossref_primary_10_1039_D1TA00366F
crossref_primary_10_1016_j_trechm_2020_02_013
crossref_primary_10_1038_s41467_020_16960_9
crossref_primary_10_1016_j_carbon_2021_02_043
crossref_primary_10_1002_adma_201806445
crossref_primary_10_1021_acs_inorgchem_0c02229
crossref_primary_10_1002_anie_202114132
crossref_primary_10_1002_ange_202425638
crossref_primary_10_1016_j_ces_2017_01_003
crossref_primary_10_1021_acs_iecr_4c02431
crossref_primary_10_1021_acsomega_2c07517
crossref_primary_10_1126_sciadv_abn9231
crossref_primary_10_1002_chem_202101779
crossref_primary_10_1021_acs_iecr_9b06765
crossref_primary_10_1021_acs_chemmater_1c03620
crossref_primary_10_1016_j_cej_2022_139713
crossref_primary_10_1016_j_mtchem_2022_100794
crossref_primary_10_1016_j_seppur_2022_122318
crossref_primary_10_1002_ange_202311654
crossref_primary_10_1002_anie_201808716
crossref_primary_10_1002_anie_202500783
crossref_primary_10_1016_j_cej_2021_130985
crossref_primary_10_1039_C7CC04160H
crossref_primary_10_1002_anie_202421753
crossref_primary_10_1039_C8CC04139C
crossref_primary_10_1002_anie_202204046
crossref_primary_10_1016_j_enchem_2021_100057
crossref_primary_10_1021_acs_iecr_7b05260
crossref_primary_10_1016_j_micromeso_2021_110975
crossref_primary_10_1002_cphc_202400801
crossref_primary_10_1021_acsomega_1c06309
crossref_primary_10_1016_j_cej_2022_139849
crossref_primary_10_1002_ange_202217662
crossref_primary_10_1002_ange_201809884
crossref_primary_10_1021_acs_inorgchem_1c01245
crossref_primary_10_1039_C6DT00238B
crossref_primary_10_1016_j_cej_2021_131726
crossref_primary_10_1021_acs_iecr_2c02472
crossref_primary_10_1021_acs_iecr_1c01291
crossref_primary_10_1016_j_jtice_2016_10_047
crossref_primary_10_1016_j_seppur_2022_122332
crossref_primary_10_1002_zaac_201600108
crossref_primary_10_1016_j_jcis_2025_02_088
crossref_primary_10_1021_acsami_4c20772
crossref_primary_10_1016_j_jcis_2023_08_140
crossref_primary_10_3390_separations10030196
crossref_primary_10_1002_smll_201900058
crossref_primary_10_4019_bjscc_77_3
crossref_primary_10_1002_smll_202410680
crossref_primary_10_1021_acsami_2c13500
crossref_primary_10_1021_acsami_2c13905
crossref_primary_10_1021_jacs_0c00805
crossref_primary_10_1002_asia_202401529
crossref_primary_10_1039_D4DT02592J
crossref_primary_10_1002_ange_202205427
crossref_primary_10_1016_j_mtnano_2018_09_003
crossref_primary_10_1016_j_seppur_2024_131239
crossref_primary_10_1016_j_ces_2016_08_026
crossref_primary_10_1002_aic_16616
crossref_primary_10_1021_acs_inorgchem_0c00003
crossref_primary_10_1002_advs_202001398
crossref_primary_10_1002_ange_202308418
crossref_primary_10_1021_acs_iecr_1c02220
crossref_primary_10_1016_j_micromeso_2020_110473
crossref_primary_10_1021_acs_chemmater_1c01892
crossref_primary_10_1039_D2TA01466A
crossref_primary_10_1021_jacs_6b12847
crossref_primary_10_1039_D1DT01477C
crossref_primary_10_1002_ange_202305041
crossref_primary_10_1021_acs_inorgchem_3c04602
crossref_primary_10_1021_acs_jpcc_8b00909
crossref_primary_10_1021_acs_inorgchem_2c01343
crossref_primary_10_1021_acs_inorgchem_3c02308
crossref_primary_10_1016_j_ccr_2023_215111
crossref_primary_10_1002_ange_202423496
crossref_primary_10_1039_C9NR10092J
crossref_primary_10_1039_D3MH00697B
crossref_primary_10_1016_j_jssc_2018_09_001
crossref_primary_10_1016_j_seppur_2024_131343
crossref_primary_10_1021_acsanm_0c00162
crossref_primary_10_1021_acs_inorgchem_0c02893
crossref_primary_10_3390_molecules29020424
crossref_primary_10_1016_j_cej_2022_139756
crossref_primary_10_1016_S1872_5805_24_60859_0
crossref_primary_10_1039_D1TA05960B
crossref_primary_10_1016_j_cjche_2019_09_005
crossref_primary_10_1016_j_ccr_2020_213709
crossref_primary_10_1038_s41467_024_45081_w
crossref_primary_10_1039_D3TA03852A
crossref_primary_10_1039_D0FD00103A
crossref_primary_10_1016_j_trechm_2019_02_012
crossref_primary_10_1016_j_cej_2022_139642
crossref_primary_10_1039_D0TA05469K
crossref_primary_10_1039_D3MA01085F
crossref_primary_10_1016_j_ccr_2024_215881
crossref_primary_10_1021_acs_inorgchem_2c01218
crossref_primary_10_1002_ange_201904312
crossref_primary_10_1021_acs_jpcc_8b08855
crossref_primary_10_1021_acsami_0c20000
crossref_primary_10_1002_ange_202100782
crossref_primary_10_1016_j_gee_2022_03_015
crossref_primary_10_1016_j_eng_2024_01_024
crossref_primary_10_1039_D4SC04387A
crossref_primary_10_1021_acs_inorgchem_1c01560
crossref_primary_10_1002_anie_202104318
crossref_primary_10_1002_adfm_202312150
crossref_primary_10_1002_anie_202011678
crossref_primary_10_1021_jacs_3c06754
crossref_primary_10_1016_j_seppur_2022_122378
crossref_primary_10_1016_j_seppur_2022_122011
crossref_primary_10_1002_anie_201610914
crossref_primary_10_1021_acs_iecr_2c02438
crossref_primary_10_1021_jacs_9b08322
crossref_primary_10_1002_anie_202106625
crossref_primary_10_1021_acsami_1c03923
crossref_primary_10_1021_acs_inorgchem_0c00134
crossref_primary_10_1002_ange_202213015
crossref_primary_10_1021_acsanm_0c03336
crossref_primary_10_1016_j_seppur_2023_123642
crossref_primary_10_1016_j_mtchem_2022_100856
crossref_primary_10_1002_anie_201806732
crossref_primary_10_1038_ncomms13300
crossref_primary_10_1016_j_ces_2017_09_032
crossref_primary_10_1039_D0QM00186D
Cites_doi 10.1021/cm202976e
10.1126/science.1217544
10.1126/science.283.5405.1148
10.1021/cr200139g
10.1002/anie.201310004
10.1021/la2030473
10.1021/ja302043u
10.1016/j.energy.2005.04.001
10.1021/la401471g
10.1039/c1cc12802g
10.1016/S1004-9541(11)60019-0
10.1016/j.memsci.2010.12.001
10.1002/chem.201100958
10.1021/ie970897h
10.1002/aic.690440405
10.1039/c2ee22858k
10.1016/S0376-7388(96)00182-2
10.1039/c2cc31792c
10.1007/s00340-006-2313-z
10.1039/c2cc34689c
10.1021/ja1089765
10.1021/ie0108088
10.1021/am502686g
10.1002/aic.690470212
10.1021/cr200190s
10.1039/c3sc00032j
10.1002/chem.201102734
10.1038/nchem.2114
10.1021/ja502119z
10.2172/773773
10.1021/ja8036096
10.1002/anie.200503778
10.1038/ncomms7350
10.1021/ef050182o
10.1021/cg400164m
10.1002/aic.690110125
10.1039/C4EE02717E
10.1021/ja305663k
10.1039/c2cc35729a
10.1021/ie9900317
10.1021/ja801453c
10.1021/cm402897c
10.1021/ja8057953
10.1039/C4CC09774B
10.1002/047144409X
ContentType Journal Article
Copyright The Author(s) 2015
Copyright Nature Publishing Group Oct 2015
Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
Copyright_xml – notice: The Author(s) 2015
– notice: Copyright Nature Publishing Group Oct 2015
– notice: Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOI 10.1038/ncomms9697
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
ExternalDocumentID PMC4846320
3850039301
26510376
10_1038_ncomms9697
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
4.4
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
ABAWZ
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c508t-acef5cea63bd12e424d8676c98d674f75ba4a91fba763a17d35914f2e2a0a8943
IEDL.DBID C6C
ISSN 2041-1723
IngestDate Thu Aug 21 14:05:15 EDT 2025
Mon Jul 21 11:34:08 EDT 2025
Wed Aug 13 10:59:06 EDT 2025
Wed Feb 19 02:32:55 EST 2025
Thu Apr 24 23:13:00 EDT 2025
Tue Jul 01 02:31:07 EDT 2025
Fri Feb 21 02:39:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-acef5cea63bd12e424d8676c98d674f75ba4a91fba763a17d35914f2e2a0a8943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/ncomms9697
PMID 26510376
PQID 1727973006
PQPubID 546298
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4846320
proquest_miscellaneous_1728676482
proquest_journals_1727973006
pubmed_primary_26510376
crossref_primary_10_1038_ncomms9697
crossref_citationtrail_10_1038_ncomms9697
springer_journals_10_1038_ncomms9697
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20151029
PublicationDateYYYYMMDD 2015-10-29
PublicationDate_xml – month: 10
  year: 2015
  text: 20151029
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2015
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References DenysenkoDGrzywaMJelicJReuterKVolkmerDScorpionate-type coordination in MFU-4l metal–organic frameworks: small-molecule binding and activation upon the thermally activated formation of open metal sitesAngew. Chem. Int. Ed.201453583258361:CAS:528:DC%2BC2cXot1Smsbw%3D10.1002/anie.201310004
van den BerghJUnderstanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixturesChem. Eur. J.201117883288401:CAS:528:DC%2BC3MXoslCktL4%3D10.1002/chem.201100958
LiaoP-QMonodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gasEnergy Environ. Sci.20158101110161:CAS:528:DC%2BC2MXjtVKmug%3D%3D10.1039/C4EE02717E
HermZRBlochEDLongJ RHydrocarbon separations in metal–organic frameworksChem. Mater.2014263233381:CAS:528:DC%2BC3sXhvVGkt77J10.1021/cm402897c
DippoldAAFellerMKlapoetkeTM5,5'-dinitrimino-3,3'-methylene-1H-1,2,4-bistriazole - a metal free primary explosive combining excellent thermal stability and high performanceCent. Eur. J. Energ. Mater.201182612781:CAS:528:DC%2BC38XlvFSiu7w%3D
Yang, R. T. Adsorbents: Fundamentals and Applications 191–230John Wiley & Sons, Inc. (2003).
YangSSupramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic frameworkNat. Chem.201571211291:CAS:528:DC%2BC2cXitVCksrnP10.1038/nchem.2114
RegeSUPadinJYangR TOlefin/paraffin separations by adsorption: π-Complexation vs. kinetic separationAIChE J.1998447998091:CAS:528:DyaK1cXisFyku7w%3D10.1002/aic.690440405
RenTPatelMBlokKOlefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processesEnergy2006314254511:CAS:528:DC%2BD2MXhtFOmsLjJ10.1016/j.energy.2005.04.001
PiresJPintoMLSainiV KEthane selective IRMOF-8 and its significance in ethane–ethylene separation by adsorptionACS Appl. Mater. Interfaces2014612093120991:CAS:528:DC%2BC2cXhtFensrbE10.1021/am502686g
HorikeSDense coordination network capable of selective CO2 capture from C1 and C2 hydrocarbonsJ. Am. Chem. Soc.2012134985298551:CAS:528:DC%2BC38XotFGltbg%3D10.1021/ja302043u
LiBIntroduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethaneJ. Am. Chem. Soc.2014136865486601:CAS:528:DC%2BC2cXptlyqsL8%3D10.1021/ja502119z
ZhangJ-PZhangY-BLinJ-BChenX-MMetal azolate frameworks: from crystal engineering to functional materialsChem. Rev.2012112100110331:CAS:528:DC%2BC3MXht1SrsrnE10.1021/cr200139g
AguadoSBergeretGDanielCFarrussengDAbsolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite AJ. Am. Chem. Soc.201213414635146371:CAS:528:DC%2BC38Xht1CisrnJ10.1021/ja305663k
BlochEDHydrocarbon separations in a metal-organic framework with open iron(ii) coordination sitesScience2012335160616101:CAS:528:DC%2BC38XksVyqsLc%3D2012Sci...335.1606B10.1126/science.1217544
GeierSJSelective adsorption of ethylene over ethane and propylene over propane in the metal-organic frameworks M2(dobdc) (M=Mg, Mn, Fe, Co, Ni, Zn)Chem. Sci.20134205420611:CAS:528:DC%2BC3sXltVOltbo%3D10.1039/c3sc00032j
SedighiMKeyvanlooKDarianTJOlefin production from heavy liquid hydrocarbon thermal cracking: kinetics and product distributionIran. J. Chem. Chem. Eng.2010291351471:CAS:528:DC%2BC3MXht1Shs7rL
HuangX-CLinY-YZhangJ-PChenX-MLigand-directed strategy for zeolite-type metal–organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologiesAngew. Chem. Int. Ed.200645155715591:CAS:528:DC%2BD28XisVahsL0%3D10.1002/anie.200503778
LiJ-RSculleyJZhouH-CMetal–organic frameworks for separationsChem. Rev.201111286993210.1021/cr200190s
Matar, S. & Hatch, L. F. Chemistry of Petrochemical Processes 2nd edn Gulf Publishing Company (2000).
LiaoP-QZhuA-XZhangW-XZhangJ-PChenX-MSelf-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behavioursNat. Commun.2015663501:CAS:528:DC%2BC2MXhtF2ksr%2FJ10.1038/ncomms7350
MyersALPrausnitzJMThermodynamics of mixed-gas adsorptionAIChE. J.1965111211261:CAS:528:DyaF2MXnvVKmsA%3D%3D10.1002/aic.690110125
GuoJWuXJingSZhangQZhengDVapor-liquid equilibrium of ethylene+mesitylene system and process simulation for ethylene recoveryChin. J. Chem. Eng.2011195435481:CAS:528:DC%2BC3MXhtFOjtbjI10.1016/S1004-9541(11)60019-0
BaoZAdsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal–organic frameworkLangmuir20112713554135621:CAS:528:DC%2BC3MXhtlSlurjM10.1021/la2030473
SilvaFADRodriguesAEPropylene/propane separation by vacuum swing adsorption using 13X zeoliteAIChE J.20014734135710.1002/aic.690470212
CaiJA doubly interpenetrated metal–organic framework with open metal sites and suitable pore sizes for highly selective separation of small hydrocarbons at room temperatureCryst. Growth Des.201313209420971:CAS:528:DC%2BC3sXktlyktrc%3D10.1021/cg400164m
SafarikDJEldridgeRBOlefin/paraffin separations by reactive absorption: a reviewInd. Eng. Chem. Res.199837257125811:CAS:528:DyaK1cXjvVKks7o%3D10.1021/ie970897h
DasMCA Zn4O-containing doubly interpenetrated porous metal-organic framework for photocatalytic decomposition of methyl orangeChem. Commun.20114711715117171:CAS:528:DC%2BC3MXhtlejtrjO10.1039/c1cc12802g
HeYA microporous lanthanide-tricarboxylate framework with the potential for purification of natural gasChem. Commun.20124810856108581:CAS:528:DC%2BC38XhsVyhs7nO10.1039/c2cc35729a
CavkaJHA new zirconium inorganic building brick forming metal organic frameworks with exceptional stabilityJ. Am. Chem. Soc.2008130138501385110.1021/ja8057953
Worrell, E., Phylipsen, D., Einstein, D. & Martin, N. Energy Use and Energy Intensity of the U.S. Chemical Industry. Report No. LBNL-44314 (Energy Analysis Department, Environmental Energy Technologies Division, Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, California 9472, USA, 2000).
UchidaSSelective sorption of olefins by halogen-substituted macrocation-polyoxometalate porous ionic crystalsChem. Mater.2012243253301:CAS:528:DC%2BC3MXhsFCisb3N10.1021/cm202976e
HeYA robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbonsChem. Commun.201248649364951:CAS:528:DC%2BC38XotFyjtrw%3D10.1039/c2cc31792c
GücüyenerCvan den BerghJGasconJKapteijnFEthane/ethene separation turned on its head: selective ethane adsorption on the metal−organic Framework ZIF-7 through a gate-opening mechanismJ. Am. Chem. Soc.2010132177041770610.1021/ja1089765
UchidaSKawamotoRTagamiHNakagawaYMizunoNHighly selective sorption of small unsaturated hydrocarbons by nonporous flexible framework with silver ionJ. Am. Chem. Soc.200813012370123761:CAS:528:DC%2BD1cXhtVeit7jI10.1021/ja801453c
FeldblyumJIWong-FoyAGMatzgerAJNon-interpenetrated IRMOF-8: synthesis, activation, and gas sorptionChem. Commun.201248982898301:CAS:528:DC%2BC38XhtleitrzL10.1039/c2cc34689c
ZhangYHighly selective adsorption of ethylene over ethane in a MOF featuring the combination of open metal site and π-complexationChem. Commun.201551271427171:CAS:528:DC%2BC2MXntVWmsA%3D%3D10.1039/C4CC09774B
CaskeySRWong-FoyAGMatzgerAJDramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical poresJ. Am. Chem. Soc.200813010870108711:CAS:528:DC%2BD1cXptVGjtrw%3D10.1021/ja8036096
TanakaKTaguchiAHaoJKitaHOkamotoKPermeation and separation properties of polyimide membranes to olefins and paraffinsJ. Membr. Sci.19961211972071:CAS:528:DyaK28Xms1Knsbk%3D10.1016/S0376-7388(96)00182-2
BuxHChmelikCKrishnaRCaroJEthene/ethane separation by the MOF membrane ZIF-8: molecular correlation of permeation, adsorption, diffusionJ. Membr. Sci.20113692842891:CAS:528:DC%2BC3MXhtlGmtL8%3D10.1016/j.memsci.2010.12.001
Brookhart, M., Findlater, M., Guironnet, D. & Lyons, T. W. Synthesis of para-xylene and toluene. US Patent 13/875,610 (2013).
MarquevichMCollRMontanéDSteam reforming of sunflower oil for hydrogen productionInd. Eng. Chem. Res.200039214021471:CAS:528:DC%2BD3cXjs1Kms7w%3D10.1021/ie9900317
ZhouJRemoval of C2H4 from a CO2 stream by adsorption: a study in combination of ab initio calculation and experimental approachEnergy Fuels20062077878210.1021/ef050182o
VoglerDESigristMWNear-infrared laser based cavity ringdown spectroscopy for applications in petrochemical industryAppl. Phys. B2006853493541:CAS:528:DC%2BD28XhtVSju7vE2006ApPhB..85..349V10.1007/s00340-006-2313-z
BöhmeUEthene/ethane and propene/propane separation via the olefin and paraffin selective metal–organic framework adsorbents CPO-27 and ZIF-8Langmuir2013298592860010.1021/la401471g
ChuiSS-YLoSM-FCharmantJP HOrpenAGWilliamsIDA chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]nScience1999283114811501:CAS:528:DyaK1MXhsFeitLc%3D1999Sci...283.1148C10.1126/science.283.5405.1148
HeYKrishnaRChenBMetal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbonsEnergy Environ. Sci.20125910791201:CAS:528:DC%2BC38Xhtlyqs7nJ10.1039/c2ee22858k
Meyers, R. & Meyers, R. A. Handbook of Petrochemicals Production Processes McGraw-Hill Prof Med/Tech (2005).
BakerRWFuture directions of membrane gas separation technologyInd. Eng. Chem. Res.200241139314111:CAS:528:DC%2BD38XhtlCmtLw%3D10.1021/ie0108088
HeYA microporous metal–organic framework for highly selective separation of acetylene, ethylene, and ethane from methane at room temperatureChem. Eur. J.2012186136191:CAS:528:DC%2BC3MXhsF2lurnF10.1002/chem.201102734
Y Zhang (BFncomms9697_CR20) 2015; 51
AL Myers (BFncomms9697_CR39) 1965; 11
H Bux (BFncomms9697_CR11) 2011; 369
U Böhme (BFncomms9697_CR29) 2013; 29
Z Bao (BFncomms9697_CR21) 2011; 27
K Tanaka (BFncomms9697_CR10) 1996; 121
S Aguado (BFncomms9697_CR16) 2012; 134
C Gücüyener (BFncomms9697_CR30) 2010; 132
MC Das (BFncomms9697_CR35) 2011; 47
JH Cavka (BFncomms9697_CR50) 2008; 130
J Zhou (BFncomms9697_CR4) 2006; 20
BFncomms9697_CR26
BFncomms9697_CR28
ED Bloch (BFncomms9697_CR17) 2012; 335
Y He (BFncomms9697_CR33) 2012; 18
SU Rege (BFncomms9697_CR24) 1998; 44
SS-Y Chui (BFncomms9697_CR48) 1999; 283
S Uchida (BFncomms9697_CR12) 2012; 24
AA Dippold (BFncomms9697_CR45) 2011; 8
DJ Safarik (BFncomms9697_CR8) 1998; 37
ZR Herm (BFncomms9697_CR18) 2014; 26
RW Baker (BFncomms9697_CR2) 2002; 41
DE Vogler (BFncomms9697_CR27) 2006; 85
Y He (BFncomms9697_CR34) 2012; 48
S Uchida (BFncomms9697_CR14) 2008; 130
J Guo (BFncomms9697_CR43) 2011; 19
SJ Geier (BFncomms9697_CR19) 2013; 4
J-P Zhang (BFncomms9697_CR38) 2012; 112
BFncomms9697_CR9
S Yang (BFncomms9697_CR22) 2015; 7
J van den Bergh (BFncomms9697_CR44) 2011; 17
BFncomms9697_CR6
P-Q Liao (BFncomms9697_CR5) 2015; 6
Y He (BFncomms9697_CR23) 2012; 5
JI Feldblyum (BFncomms9697_CR47) 2012; 48
SR Caskey (BFncomms9697_CR49) 2008; 130
FAD Silva (BFncomms9697_CR25) 2001; 47
J-R Li (BFncomms9697_CR37) 2011; 112
M Marquevich (BFncomms9697_CR42) 2000; 39
J Cai (BFncomms9697_CR32) 2013; 13
B Li (BFncomms9697_CR13) 2014; 136
S Horike (BFncomms9697_CR3) 2012; 134
P-Q Liao (BFncomms9697_CR40) 2015; 8
T Ren (BFncomms9697_CR7) 2006; 31
X-C Huang (BFncomms9697_CR46) 2006; 45
M Sedighi (BFncomms9697_CR41) 2010; 29
Y He (BFncomms9697_CR36) 2012; 48
J Pires (BFncomms9697_CR31) 2014; 6
D Denysenko (BFncomms9697_CR15) 2014; 53
BFncomms9697_CR1
References_xml – reference: HermZRBlochEDLongJ RHydrocarbon separations in metal–organic frameworksChem. Mater.2014263233381:CAS:528:DC%2BC3sXhvVGkt77J10.1021/cm402897c
– reference: BakerRWFuture directions of membrane gas separation technologyInd. Eng. Chem. Res.200241139314111:CAS:528:DC%2BD38XhtlCmtLw%3D10.1021/ie0108088
– reference: Meyers, R. & Meyers, R. A. Handbook of Petrochemicals Production Processes McGraw-Hill Prof Med/Tech (2005).
– reference: FeldblyumJIWong-FoyAGMatzgerAJNon-interpenetrated IRMOF-8: synthesis, activation, and gas sorptionChem. Commun.201248982898301:CAS:528:DC%2BC38XhtleitrzL10.1039/c2cc34689c
– reference: HeYKrishnaRChenBMetal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbonsEnergy Environ. Sci.20125910791201:CAS:528:DC%2BC38Xhtlyqs7nJ10.1039/c2ee22858k
– reference: Matar, S. & Hatch, L. F. Chemistry of Petrochemical Processes 2nd edn Gulf Publishing Company (2000).
– reference: HeYA robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbonsChem. Commun.201248649364951:CAS:528:DC%2BC38XotFyjtrw%3D10.1039/c2cc31792c
– reference: BlochEDHydrocarbon separations in a metal-organic framework with open iron(ii) coordination sitesScience2012335160616101:CAS:528:DC%2BC38XksVyqsLc%3D2012Sci...335.1606B10.1126/science.1217544
– reference: LiJ-RSculleyJZhouH-CMetal–organic frameworks for separationsChem. Rev.201111286993210.1021/cr200190s
– reference: CavkaJHA new zirconium inorganic building brick forming metal organic frameworks with exceptional stabilityJ. Am. Chem. Soc.2008130138501385110.1021/ja8057953
– reference: ZhouJRemoval of C2H4 from a CO2 stream by adsorption: a study in combination of ab initio calculation and experimental approachEnergy Fuels20062077878210.1021/ef050182o
– reference: LiaoP-QMonodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gasEnergy Environ. Sci.20158101110161:CAS:528:DC%2BC2MXjtVKmug%3D%3D10.1039/C4EE02717E
– reference: SilvaFADRodriguesAEPropylene/propane separation by vacuum swing adsorption using 13X zeoliteAIChE J.20014734135710.1002/aic.690470212
– reference: LiBIntroduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethaneJ. Am. Chem. Soc.2014136865486601:CAS:528:DC%2BC2cXptlyqsL8%3D10.1021/ja502119z
– reference: HeYA microporous metal–organic framework for highly selective separation of acetylene, ethylene, and ethane from methane at room temperatureChem. Eur. J.2012186136191:CAS:528:DC%2BC3MXhsF2lurnF10.1002/chem.201102734
– reference: ZhangYHighly selective adsorption of ethylene over ethane in a MOF featuring the combination of open metal site and π-complexationChem. Commun.201551271427171:CAS:528:DC%2BC2MXntVWmsA%3D%3D10.1039/C4CC09774B
– reference: GeierSJSelective adsorption of ethylene over ethane and propylene over propane in the metal-organic frameworks M2(dobdc) (M=Mg, Mn, Fe, Co, Ni, Zn)Chem. Sci.20134205420611:CAS:528:DC%2BC3sXltVOltbo%3D10.1039/c3sc00032j
– reference: BaoZAdsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal–organic frameworkLangmuir20112713554135621:CAS:528:DC%2BC3MXhtlSlurjM10.1021/la2030473
– reference: Worrell, E., Phylipsen, D., Einstein, D. & Martin, N. Energy Use and Energy Intensity of the U.S. Chemical Industry. Report No. LBNL-44314 (Energy Analysis Department, Environmental Energy Technologies Division, Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, California 9472, USA, 2000).
– reference: Brookhart, M., Findlater, M., Guironnet, D. & Lyons, T. W. Synthesis of para-xylene and toluene. US Patent 13/875,610 (2013).
– reference: BöhmeUEthene/ethane and propene/propane separation via the olefin and paraffin selective metal–organic framework adsorbents CPO-27 and ZIF-8Langmuir2013298592860010.1021/la401471g
– reference: ChuiSS-YLoSM-FCharmantJP HOrpenAGWilliamsIDA chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]nScience1999283114811501:CAS:528:DyaK1MXhsFeitLc%3D1999Sci...283.1148C10.1126/science.283.5405.1148
– reference: PiresJPintoMLSainiV KEthane selective IRMOF-8 and its significance in ethane–ethylene separation by adsorptionACS Appl. Mater. Interfaces2014612093120991:CAS:528:DC%2BC2cXhtFensrbE10.1021/am502686g
– reference: HuangX-CLinY-YZhangJ-PChenX-MLigand-directed strategy for zeolite-type metal–organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologiesAngew. Chem. Int. Ed.200645155715591:CAS:528:DC%2BD28XisVahsL0%3D10.1002/anie.200503778
– reference: CaskeySRWong-FoyAGMatzgerAJDramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical poresJ. Am. Chem. Soc.200813010870108711:CAS:528:DC%2BD1cXptVGjtrw%3D10.1021/ja8036096
– reference: HeYA microporous lanthanide-tricarboxylate framework with the potential for purification of natural gasChem. Commun.20124810856108581:CAS:528:DC%2BC38XhsVyhs7nO10.1039/c2cc35729a
– reference: VoglerDESigristMWNear-infrared laser based cavity ringdown spectroscopy for applications in petrochemical industryAppl. Phys. B2006853493541:CAS:528:DC%2BD28XhtVSju7vE2006ApPhB..85..349V10.1007/s00340-006-2313-z
– reference: GuoJWuXJingSZhangQZhengDVapor-liquid equilibrium of ethylene+mesitylene system and process simulation for ethylene recoveryChin. J. Chem. Eng.2011195435481:CAS:528:DC%2BC3MXhtFOjtbjI10.1016/S1004-9541(11)60019-0
– reference: MarquevichMCollRMontanéDSteam reforming of sunflower oil for hydrogen productionInd. Eng. Chem. Res.200039214021471:CAS:528:DC%2BD3cXjs1Kms7w%3D10.1021/ie9900317
– reference: SedighiMKeyvanlooKDarianTJOlefin production from heavy liquid hydrocarbon thermal cracking: kinetics and product distributionIran. J. Chem. Chem. Eng.2010291351471:CAS:528:DC%2BC3MXht1Shs7rL
– reference: YangSSupramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic frameworkNat. Chem.201571211291:CAS:528:DC%2BC2cXitVCksrnP10.1038/nchem.2114
– reference: DasMCA Zn4O-containing doubly interpenetrated porous metal-organic framework for photocatalytic decomposition of methyl orangeChem. Commun.20114711715117171:CAS:528:DC%2BC3MXhtlejtrjO10.1039/c1cc12802g
– reference: HorikeSDense coordination network capable of selective CO2 capture from C1 and C2 hydrocarbonsJ. Am. Chem. Soc.2012134985298551:CAS:528:DC%2BC38XotFGltbg%3D10.1021/ja302043u
– reference: MyersALPrausnitzJMThermodynamics of mixed-gas adsorptionAIChE. J.1965111211261:CAS:528:DyaF2MXnvVKmsA%3D%3D10.1002/aic.690110125
– reference: van den BerghJUnderstanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixturesChem. Eur. J.201117883288401:CAS:528:DC%2BC3MXoslCktL4%3D10.1002/chem.201100958
– reference: RenTPatelMBlokKOlefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processesEnergy2006314254511:CAS:528:DC%2BD2MXhtFOmsLjJ10.1016/j.energy.2005.04.001
– reference: TanakaKTaguchiAHaoJKitaHOkamotoKPermeation and separation properties of polyimide membranes to olefins and paraffinsJ. Membr. Sci.19961211972071:CAS:528:DyaK28Xms1Knsbk%3D10.1016/S0376-7388(96)00182-2
– reference: CaiJA doubly interpenetrated metal–organic framework with open metal sites and suitable pore sizes for highly selective separation of small hydrocarbons at room temperatureCryst. Growth Des.201313209420971:CAS:528:DC%2BC3sXktlyktrc%3D10.1021/cg400164m
– reference: LiaoP-QZhuA-XZhangW-XZhangJ-PChenX-MSelf-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behavioursNat. Commun.2015663501:CAS:528:DC%2BC2MXhtF2ksr%2FJ10.1038/ncomms7350
– reference: BuxHChmelikCKrishnaRCaroJEthene/ethane separation by the MOF membrane ZIF-8: molecular correlation of permeation, adsorption, diffusionJ. Membr. Sci.20113692842891:CAS:528:DC%2BC3MXhtlGmtL8%3D10.1016/j.memsci.2010.12.001
– reference: AguadoSBergeretGDanielCFarrussengDAbsolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite AJ. Am. Chem. Soc.201213414635146371:CAS:528:DC%2BC38Xht1CisrnJ10.1021/ja305663k
– reference: Yang, R. T. Adsorbents: Fundamentals and Applications 191–230John Wiley & Sons, Inc. (2003).
– reference: RegeSUPadinJYangR TOlefin/paraffin separations by adsorption: π-Complexation vs. kinetic separationAIChE J.1998447998091:CAS:528:DyaK1cXisFyku7w%3D10.1002/aic.690440405
– reference: UchidaSSelective sorption of olefins by halogen-substituted macrocation-polyoxometalate porous ionic crystalsChem. Mater.2012243253301:CAS:528:DC%2BC3MXhsFCisb3N10.1021/cm202976e
– reference: DenysenkoDGrzywaMJelicJReuterKVolkmerDScorpionate-type coordination in MFU-4l metal–organic frameworks: small-molecule binding and activation upon the thermally activated formation of open metal sitesAngew. Chem. Int. Ed.201453583258361:CAS:528:DC%2BC2cXot1Smsbw%3D10.1002/anie.201310004
– reference: GücüyenerCvan den BerghJGasconJKapteijnFEthane/ethene separation turned on its head: selective ethane adsorption on the metal−organic Framework ZIF-7 through a gate-opening mechanismJ. Am. Chem. Soc.2010132177041770610.1021/ja1089765
– reference: DippoldAAFellerMKlapoetkeTM5,5'-dinitrimino-3,3'-methylene-1H-1,2,4-bistriazole - a metal free primary explosive combining excellent thermal stability and high performanceCent. Eur. J. Energ. Mater.201182612781:CAS:528:DC%2BC38XlvFSiu7w%3D
– reference: SafarikDJEldridgeRBOlefin/paraffin separations by reactive absorption: a reviewInd. Eng. Chem. Res.199837257125811:CAS:528:DyaK1cXjvVKks7o%3D10.1021/ie970897h
– reference: ZhangJ-PZhangY-BLinJ-BChenX-MMetal azolate frameworks: from crystal engineering to functional materialsChem. Rev.2012112100110331:CAS:528:DC%2BC3MXht1SrsrnE10.1021/cr200139g
– reference: UchidaSKawamotoRTagamiHNakagawaYMizunoNHighly selective sorption of small unsaturated hydrocarbons by nonporous flexible framework with silver ionJ. Am. Chem. Soc.200813012370123761:CAS:528:DC%2BD1cXhtVeit7jI10.1021/ja801453c
– volume: 24
  start-page: 325
  year: 2012
  ident: BFncomms9697_CR12
  publication-title: Chem. Mater.
  doi: 10.1021/cm202976e
– volume: 335
  start-page: 1606
  year: 2012
  ident: BFncomms9697_CR17
  publication-title: Science
  doi: 10.1126/science.1217544
– volume: 283
  start-page: 1148
  year: 1999
  ident: BFncomms9697_CR48
  publication-title: Science
  doi: 10.1126/science.283.5405.1148
– ident: BFncomms9697_CR28
– volume: 112
  start-page: 1001
  year: 2012
  ident: BFncomms9697_CR38
  publication-title: Chem. Rev.
  doi: 10.1021/cr200139g
– volume: 53
  start-page: 5832
  year: 2014
  ident: BFncomms9697_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201310004
– volume: 8
  start-page: 261
  year: 2011
  ident: BFncomms9697_CR45
  publication-title: Cent. Eur. J. Energ. Mater.
– volume: 27
  start-page: 13554
  year: 2011
  ident: BFncomms9697_CR21
  publication-title: Langmuir
  doi: 10.1021/la2030473
– volume: 29
  start-page: 135
  year: 2010
  ident: BFncomms9697_CR41
  publication-title: Iran. J. Chem. Chem. Eng.
– volume: 134
  start-page: 9852
  year: 2012
  ident: BFncomms9697_CR3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja302043u
– volume: 31
  start-page: 425
  year: 2006
  ident: BFncomms9697_CR7
  publication-title: Energy
  doi: 10.1016/j.energy.2005.04.001
– volume: 29
  start-page: 8592
  year: 2013
  ident: BFncomms9697_CR29
  publication-title: Langmuir
  doi: 10.1021/la401471g
– volume: 47
  start-page: 11715
  year: 2011
  ident: BFncomms9697_CR35
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc12802g
– volume: 19
  start-page: 543
  year: 2011
  ident: BFncomms9697_CR43
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(11)60019-0
– volume: 369
  start-page: 284
  year: 2011
  ident: BFncomms9697_CR11
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.12.001
– volume: 17
  start-page: 8832
  year: 2011
  ident: BFncomms9697_CR44
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201100958
– volume: 37
  start-page: 2571
  year: 1998
  ident: BFncomms9697_CR8
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie970897h
– volume: 44
  start-page: 799
  year: 1998
  ident: BFncomms9697_CR24
  publication-title: AIChE J.
  doi: 10.1002/aic.690440405
– volume: 5
  start-page: 9107
  year: 2012
  ident: BFncomms9697_CR23
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22858k
– volume: 121
  start-page: 197
  year: 1996
  ident: BFncomms9697_CR10
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(96)00182-2
– volume: 48
  start-page: 6493
  year: 2012
  ident: BFncomms9697_CR34
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc31792c
– volume: 85
  start-page: 349
  year: 2006
  ident: BFncomms9697_CR27
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-006-2313-z
– volume: 48
  start-page: 9828
  year: 2012
  ident: BFncomms9697_CR47
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc34689c
– ident: BFncomms9697_CR26
– volume: 132
  start-page: 17704
  year: 2010
  ident: BFncomms9697_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1089765
– volume: 41
  start-page: 1393
  year: 2002
  ident: BFncomms9697_CR2
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0108088
– volume: 6
  start-page: 12093
  year: 2014
  ident: BFncomms9697_CR31
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am502686g
– volume: 47
  start-page: 341
  year: 2001
  ident: BFncomms9697_CR25
  publication-title: AIChE J.
  doi: 10.1002/aic.690470212
– volume: 112
  start-page: 869
  year: 2011
  ident: BFncomms9697_CR37
  publication-title: Chem. Rev.
  doi: 10.1021/cr200190s
– volume: 4
  start-page: 2054
  year: 2013
  ident: BFncomms9697_CR19
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc00032j
– volume: 18
  start-page: 613
  year: 2012
  ident: BFncomms9697_CR33
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201102734
– volume: 7
  start-page: 121
  year: 2015
  ident: BFncomms9697_CR22
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2114
– volume: 136
  start-page: 8654
  year: 2014
  ident: BFncomms9697_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502119z
– ident: BFncomms9697_CR6
  doi: 10.2172/773773
– volume: 130
  start-page: 10870
  year: 2008
  ident: BFncomms9697_CR49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8036096
– volume: 45
  start-page: 1557
  year: 2006
  ident: BFncomms9697_CR46
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200503778
– volume: 6
  start-page: 6350
  year: 2015
  ident: BFncomms9697_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7350
– volume: 20
  start-page: 778
  year: 2006
  ident: BFncomms9697_CR4
  publication-title: Energy Fuels
  doi: 10.1021/ef050182o
– volume: 13
  start-page: 2094
  year: 2013
  ident: BFncomms9697_CR32
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg400164m
– volume: 11
  start-page: 121
  year: 1965
  ident: BFncomms9697_CR39
  publication-title: AIChE. J.
  doi: 10.1002/aic.690110125
– volume: 8
  start-page: 1011
  year: 2015
  ident: BFncomms9697_CR40
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02717E
– volume: 134
  start-page: 14635
  year: 2012
  ident: BFncomms9697_CR16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja305663k
– volume: 48
  start-page: 10856
  year: 2012
  ident: BFncomms9697_CR36
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc35729a
– volume: 39
  start-page: 2140
  year: 2000
  ident: BFncomms9697_CR42
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9900317
– volume: 130
  start-page: 12370
  year: 2008
  ident: BFncomms9697_CR14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801453c
– volume: 26
  start-page: 323
  year: 2014
  ident: BFncomms9697_CR18
  publication-title: Chem. Mater.
  doi: 10.1021/cm402897c
– volume: 130
  start-page: 13850
  year: 2008
  ident: BFncomms9697_CR50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8057953
– volume: 51
  start-page: 2714
  year: 2015
  ident: BFncomms9697_CR20
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC09774B
– ident: BFncomms9697_CR1
– ident: BFncomms9697_CR9
  doi: 10.1002/047144409X
SSID ssj0000391844
Score 2.635216
Snippet Separating ethene (C 2 H 4 ) from ethane (C 2 H 6 ) is of paramount importance and difficulty. Here we show that C 2 H 4 can be efficiently purified by...
Separating ethene (C2H4) from ethane (C2H6) is of paramount importance and difficulty. Here we show that C2H4 can be efficiently purified by trapping the inert...
Separating ethene (C2 H4 ) from ethane (C2 H6 ) is of paramount importance and difficulty. Here we show that C2 H4 can be efficiently purified by trapping the...
Separating ethene (C 2 H 4 ) from ethane (C 2 H 6 ) is of paramount importance and difficulty. Here we show that C 2 H 4 can be efficiently purified by...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8697
SubjectTerms 119/118
639/301/299/921
639/638/263
Adsorbents
Adsorption
Computer simulation
Design
Electronegativity
Electropositivity
Energy consumption
Ethane
Ethylene
Functional groups
Gas mixtures
Gases
Humanities and Social Sciences
Hydrogen bonds
Ligands
Materials selection
Metal-organic frameworks
Monte Carlo simulation
multidisciplinary
Natural gas
Nitrogen
Physical properties
Polymerization
Porous materials
Purity
Science
Science (multidisciplinary)
Selectivity
Single crystals
Trapping
X-ray diffraction
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ1LT8QgEIAnPmLixfi2voLRiwdiSynQkzFGYzx40mRvDaWgJtpd3d2D_16GPnys8dgwBcpQmDLTbwBO0LXHjIypZrGknFtOlWWV_2otnVC530BMoH3eiZsHfjvIBu2B27gNq-zWxLBQV0ODZ-RnuNHmCFcX56M3ilmj0LvaptCYh0VEl2FIlxzI_owF6eeK845Kmqqz2lf5Os4FMp6-70MzxuVsjOQvR2nYf65XYaU1HMlFo-k1mLP1Oiw1qSQ_NuDuKrAgfDVkNH3H-J8w5GToCP7SW1tSfhBd44WuLfWNIZjhkbxab33TJreTIa4L1dqEh-ur-8sb2uZKoMabWBOqjXWZsVqkZZUwyxmvlJDC5KoSkjuZlZrrPHGl9guKTmSVZnnCHbNMxxoZ7FuwUA9ruwNE8NKmXlBlJuVeWCPTL85covOSxy6N4LQbucK0IHHMZ_FSBId2qoqvUY7guJcdNfiMP6X2OwUU7Ss0Lr4UHsFRX-wnP3o0_EgNp0EGn5IrFsF2o6--GSYQFij93fKHJnsBBGv_LKmfnwJgm3ujLGVxBCedzr91a6b3u__3fg-WvZEVcK8s34eFyfvUHnhDZlIehtn6CfhZ9uw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB58IHgR39YXEb14qLZpmjQHERFFBD254K2kaaLC2tV1F9x_7yRtV9f14LFk0iQzSeYLk3wDcORCe1SLKFQ0EiFjhoWZoSWeWgvLM4kORHu2z3t-02G3j-njDLT5OxsFfvx5tHP5pDr97snn--gcF_xZ_WQ8O63QNq8fkksxC_PokYRboHcNzPc7ciLxIMNadtKJKpP-aApkTt-V_BUw9X7oehmWGgBJLmqLr8CMqVZhoU4pOVqD-yvPCYG_IW_DvrsH5FVPepa4p72VIcWIqMp9qMqE2JgjaHgirwYVENY5njSx7ZWtdehcXz1c3oRNzoRQI9QahEobm2qjeFKUMTWMsjLjgmuZlVwwK9JCMSVjWyjcWFQsyiSVMbPUUBUpx8W-AXNVrzJbQDgrTIKCWaoThsLKcftFqY2VLFhkkwCOW83luiEUd3kturkPbCdZ_q3lAA7Hsm81jcafUrutAfJ2JuQOYUnHqs8DOBgX4yJwkQ3UVG_oZdwoWUYD2KztNW6GckcaKLC2mLDkWMARbE-WVC_PnmibIThLaBTAUWvzH92a6v32_8R2YBFBl6d_pXIX5gb9odlDYDMo9v2s_QIGKfzo
  priority: 102
  providerName: Scholars Portal
Title Efficient purification of ethene by an ethane-trapping metal-organic framework
URI https://link.springer.com/article/10.1038/ncomms9697
https://www.ncbi.nlm.nih.gov/pubmed/26510376
https://www.proquest.com/docview/1727973006
https://www.proquest.com/docview/1728676482
https://pubmed.ncbi.nlm.nih.gov/PMC4846320
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NT9swFMCfBmjSLtMYbMsGlRFcOERLHMcfx65qQZWopm1IvUWOY49JI0W0PfDf79n5GKUcuDiy_Bw7tmO_-L38DHDmTXvUiCTWNBExY5bF0tIKv1pLx6XCBcQE2ueMX16z6Tyft5icZetW2SAtwzTdeYd9rTF2u1RciR3Y88h2P5pHfNTvp3jSuWSsI5Bm8lGWzTVnS5Hc9od8YhQNa83kHbxtlUQybKq1D69s_R5eN8dGPhzAbBy4D3gbcre-974-oXnJwhH_-25tSflAdO0jurYxFuYhDL_JrUVNO27OcTLEdW5Zh3A9Gf8aXcbtuQixQXVqFWtjXW6s5llZpdQyyirJBTdKVlwwJ_JSM61SV2qcPHQqqixXKXPUUp1oz1v_ALv1orafgHBW2gwFZW4yhsLa8_uS3KValSxxWQTnXcsVpoWG-7Mr_hbBeJ3J4n8rR3Day941qIxnpY66Dija12VZeC1KeXI-j-CkT8aB7q0X2FKLdZDxT8kkjeBj0199MZR7MKDA3GKjJ3sBD9HeTKn_3ASYNkMFLKNJBGddnz-q1lbtP79M7Au8QcUqIF6pOoLd1f3aHqPysioHsCPmAkM5uRjA3nA4_TnF67fx7PuPQRjRg7AtgOEVk_8AR8r6DA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXVJ4NFDCiHDhETRzHdg5VVUGrLS17aqW9BcexAanNLt1dof1T_EZmnE3asohbj5Enfo3HM_aMvwHYJtcetyqJDU9ULIQTsXa8xlNr5aUuUIHYgPY5lIMz8XmUj9bgd_cWhsIquz0xbNT12NId-Q4p2oLA1eXe5GdMWaPIu9ql0GiXxbFb_MIj23T36BPy9z3nhwenHwfxMqtAbNEYmcXGOp9bZ2RW1Sl3gotaSyVtoWuphFd5ZYQpUl8ZFD2TqjrLi1R47rhJDKGVY7134C4q3oQkSo1Uf6dDaOtaiA4FNdM7DQ7hYlpIwpS6rvdWjNnVmMy_HLNB3x1uwMOlocr225X1CNZc8xjutakrF09geBCwJ7AaNplfUrxRYDEbe0ZPiBvHqgUzDX2YxsXYGAFBfGMXDq39uM0lZZnvQsOewtmtzOIzWG_GjdsEJkXlMiTUuc0EEhvCEExyn5qiEonPIvjQzVxpl8DllD_jvAwO9EyXV7McwbuedtLCdfyTaqtjQLkU2Wl5tcAieNsXo7CRBwVnajwPNDRKoXkEz1t-9c1wSeCECv9WNzjZExCQ982S5sf3AOgt0AjMeBLBdsfza91a6f2L__f-DdwfnH45KU-Ohscv4QEaeAFqlhdbsD67nLtXaETNqtdh5TL4etui8gd03DRq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLMEChhRDhyiTRzHdg4IIdpVS9GKA5X2FhzHBiSaXbq7QvvX-HXMOI-2LOLWY-SJHzMee-wZfwOwR649blUSG56oWAgnYu14jafWyktd4AZiA9rnRB6eiA_TfLoFv_u3MBRW2a-JYaGuZ5buyEe00RYEri5HvguL-LQ_fjv_GVMGKfK09uk02ily7Na_8Pi2eHO0j7J-xfn44PP7w7jLMBBbNEyWsbHO59YZmVV1yp3gotZSSVvoWirhVV4ZYYrUVwbV0KSqzvIiFZ47bhJDyOVY7zW4rrI8JR1TUzXc7xDyuhaiR0TN9KjB4ZwuCkn4Uhf3wA3DdjM-8y8nbdj7xnfgdme0snftLLsLW665BzfaNJbr-zA5CDgUWA2br84o9iiIm808o-fEjWPVmpmGPkzjYmyMQCG-slOHln_c5pWyzPdhYg_g5Eq4-BC2m1njHgGTonIZEurcZgKJDeEJJrlPTVGJxGcRvO45V9oOxJxyafwogzM90-U5lyN4OdDOW-iOf1Lt9gIoO_VdlOeTLYIXQzEqHnlTkFOzVaChUQrNI9hp5TU0wyUBFSr8W12S5EBAoN6XS5rv3wK4t0CDMONJBHu9zC90a6P3j__f--dwE5Wk_Hg0OX4Ct9DWC6izvNiF7eXZyj1Fe2pZPQsTl8GXq9aUP2E3OKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+purification+of+ethene+by+an+ethane-trapping+metal-organic+framework&rft.jtitle=Nature+communications&rft.au=Liao%2C+Pei-Qin&rft.au=Zhang%2C+Wei-Xiong&rft.au=Zhang%2C+Jie-Peng&rft.au=Chen%2C+Xiao-Ming&rft.date=2015-10-29&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1038%2Fncomms9697&rft.externalDocID=10_1038_ncomms9697
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon