Systematic Literature Review on Visual Analytics of Predictive Maintenance in the Manufacturing Industry

The widespread adoption of cyber-physical systems and other cutting-edge digital technology in manufacturing industry production facilities may motivate stakeholders to embrace the idea of Industry 4.0. Some industrial companies already have different sensors installed on their machines; however, wi...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 17; p. 6321
Main Authors Cheng, Xiang, Chaw, Jun Kit, Goh, Kam Meng, Ting, Tin Tin, Sahrani, Shafrida, Ahmad, Mohammad Nazir, Abdul Kadir, Rabiah, Ang, Mei Choo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.08.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The widespread adoption of cyber-physical systems and other cutting-edge digital technology in manufacturing industry production facilities may motivate stakeholders to embrace the idea of Industry 4.0. Some industrial companies already have different sensors installed on their machines; however, without proper analysis, the data collected is not useful. This systematic review’s main goal is to synthesize the existing evidence on the application of predictive maintenance (PdM) with visual aids and to identify the key knowledge gaps in areas including utilities, power generation, industry, and energy consumption. After a thorough search and evaluation for relevancy, 37 documents were identified. Moreover, we identified the visual analytics of PdM, including anomaly detection, planning/scheduling, exploratory data analysis (EDA), and explainable artificial intelligence (XAI). The findings revealed that anomaly detection was a major domain in PdM-related works. We conclude that most of the literature lacks depth in terms of an overall framework that combines data-driven and knowledge-driven techniques of PdM in the manufacturing industry. Some works that utilized both techniques indicated promising results, but there is insufficient research on involving maintenance personnel’s feedback in the latter stage of PdM architecture. Thus, there are still pertinent issues that need to be investigated, and limitations that need to be overcome before PdM is deployed with minimal human involvement.
AbstractList The widespread adoption of cyber-physical systems and other cutting-edge digital technology in manufacturing industry production facilities may motivate stakeholders to embrace the idea of Industry 4.0. Some industrial companies already have different sensors installed on their machines; however, without proper analysis, the data collected is not useful. This systematic review’s main goal is to synthesize the existing evidence on the application of predictive maintenance (PdM) with visual aids and to identify the key knowledge gaps in areas including utilities, power generation, industry, and energy consumption. After a thorough search and evaluation for relevancy, 37 documents were identified. Moreover, we identified the visual analytics of PdM, including anomaly detection, planning/scheduling, exploratory data analysis (EDA), and explainable artificial intelligence (XAI). The findings revealed that anomaly detection was a major domain in PdM-related works. We conclude that most of the literature lacks depth in terms of an overall framework that combines data-driven and knowledge-driven techniques of PdM in the manufacturing industry. Some works that utilized both techniques indicated promising results, but there is insufficient research on involving maintenance personnel’s feedback in the latter stage of PdM architecture. Thus, there are still pertinent issues that need to be investigated, and limitations that need to be overcome before PdM is deployed with minimal human involvement.
The widespread adoption of cyber-physical systems and other cutting-edge digital technology in manufacturing industry production facilities may motivate stakeholders to embrace the idea of Industry 4.0. Some industrial companies already have different sensors installed on their machines; however, without proper analysis, the data collected is not useful. This systematic review's main goal is to synthesize the existing evidence on the application of predictive maintenance (PdM) with visual aids and to identify the key knowledge gaps in areas including utilities, power generation, industry, and energy consumption. After a thorough search and evaluation for relevancy, 37 documents were identified. Moreover, we identified the visual analytics of PdM, including anomaly detection, planning/scheduling, exploratory data analysis (EDA), and explainable artificial intelligence (XAI). The findings revealed that anomaly detection was a major domain in PdM-related works. We conclude that most of the literature lacks depth in terms of an overall framework that combines data-driven and knowledge-driven techniques of PdM in the manufacturing industry. Some works that utilized both techniques indicated promising results, but there is insufficient research on involving maintenance personnel's feedback in the latter stage of PdM architecture. Thus, there are still pertinent issues that need to be investigated, and limitations that need to be overcome before PdM is deployed with minimal human involvement.The widespread adoption of cyber-physical systems and other cutting-edge digital technology in manufacturing industry production facilities may motivate stakeholders to embrace the idea of Industry 4.0. Some industrial companies already have different sensors installed on their machines; however, without proper analysis, the data collected is not useful. This systematic review's main goal is to synthesize the existing evidence on the application of predictive maintenance (PdM) with visual aids and to identify the key knowledge gaps in areas including utilities, power generation, industry, and energy consumption. After a thorough search and evaluation for relevancy, 37 documents were identified. Moreover, we identified the visual analytics of PdM, including anomaly detection, planning/scheduling, exploratory data analysis (EDA), and explainable artificial intelligence (XAI). The findings revealed that anomaly detection was a major domain in PdM-related works. We conclude that most of the literature lacks depth in terms of an overall framework that combines data-driven and knowledge-driven techniques of PdM in the manufacturing industry. Some works that utilized both techniques indicated promising results, but there is insufficient research on involving maintenance personnel's feedback in the latter stage of PdM architecture. Thus, there are still pertinent issues that need to be investigated, and limitations that need to be overcome before PdM is deployed with minimal human involvement.
Audience Academic
Author Sahrani, Shafrida
Chaw, Jun Kit
Goh, Kam Meng
Ang, Mei Choo
Cheng, Xiang
Ting, Tin Tin
Abdul Kadir, Rabiah
Ahmad, Mohammad Nazir
AuthorAffiliation 1 Institute of IR4.0, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
3 Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia
2 Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology, Tunku Abdul Rahman University College, Kampus Utama, Jalan Genting Kelang, Kuala Lumpur 53300, Malaysia
AuthorAffiliation_xml – name: 3 Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia
– name: 1 Institute of IR4.0, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
– name: 2 Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology, Tunku Abdul Rahman University College, Kampus Utama, Jalan Genting Kelang, Kuala Lumpur 53300, Malaysia
Author_xml – sequence: 1
  givenname: Xiang
  surname: Cheng
  fullname: Cheng, Xiang
– sequence: 2
  givenname: Jun Kit
  orcidid: 0000-0002-6839-0784
  surname: Chaw
  fullname: Chaw, Jun Kit
– sequence: 3
  givenname: Kam Meng
  surname: Goh
  fullname: Goh, Kam Meng
– sequence: 4
  givenname: Tin Tin
  surname: Ting
  fullname: Ting, Tin Tin
– sequence: 5
  givenname: Shafrida
  orcidid: 0000-0003-4634-8021
  surname: Sahrani
  fullname: Sahrani, Shafrida
– sequence: 6
  givenname: Mohammad Nazir
  orcidid: 0000-0003-3639-1157
  surname: Ahmad
  fullname: Ahmad, Mohammad Nazir
– sequence: 7
  givenname: Rabiah
  surname: Abdul Kadir
  fullname: Abdul Kadir, Rabiah
– sequence: 8
  givenname: Mei Choo
  orcidid: 0000-0001-5316-3936
  surname: Ang
  fullname: Ang, Mei Choo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36080780$$D View this record in MEDLINE/PubMed
BookMark eNplkktvGyEURkdVqubRLvoHKqRu2oUThsfAbCpZUR-WXLXqa4sYuGNjzUACjCv_--I4iZJULECXw4GLvtPqyAcPVfW6xueUtvgiEVKLhpL6WXVSM8JmkhB89GB9XJ2mtMGYUErli-qYNlhiIfFJtf65SxlGnZ1BS5ch6jxFQD9g6-AvCh79cWnSA5p7PewKlFDo0fcI1pnstoC-auczeO0NIOdRXu9Lfuq1KR7nV2jh7ZRy3L2snvd6SPDqdj6rfn_6-Ovyy2z57fPicr6cGY5lnumuIZ21FqyQlvYUZE048AY3XFvMiGh7KcFo0XFeKEOMIbYxDaaM91JoelYtDl4b9EZdRTfquFNBO3VTCHGldCyNDKCwBNowhltpNeuNaGXdAcUAArAmrCmuDwfX1dSNYA34HPXwSPp4x7u1WoWtaln5YIqL4N2tIIbrCVJWo0sGhkF7CFNSRNREclo3vKBvn6CbMMXy6zdUzVoueFuo8wO10qUB5_tQ7jVlWBidKanoXanPBSvGot6_4M3DFu7ffpeAAlwcABNDShF6ZVwucQj7jtygaqz2GVP3GSsn3j85cSf9n_0Hd9DRjA
CitedBy_id crossref_primary_10_1080_23311916_2024_2380344
crossref_primary_10_1016_j_procs_2023_03_082
crossref_primary_10_1007_s41471_024_00204_3
crossref_primary_10_1109_ACCESS_2023_3271748
crossref_primary_10_1016_j_procs_2024_01_154
crossref_primary_10_1016_j_ifacol_2024_09_119
crossref_primary_10_1016_j_jmsy_2025_02_006
crossref_primary_10_3390_s23031409
crossref_primary_10_1016_j_jmsy_2023_04_009
crossref_primary_10_3390_math11183816
crossref_primary_10_3390_su142114536
crossref_primary_10_1186_s40537_024_00947_0
crossref_primary_10_3390_s24227163
crossref_primary_10_1109_TIM_2024_3502814
Cites_doi 10.1016/j.scs.2020.102283
10.1109/TII.2017.2670505
10.3390/s19092055
10.3390/su12114776
10.1016/j.eswa.2019.112869
10.1016/j.envsci.2020.07.003
10.1109/ACCESS.2020.3028146
10.1007/s12599-019-00596-1
10.1177/0739456X17723971
10.3390/a13090219
10.1016/j.buildenv.2020.107212
10.1109/ACCESS.2021.3069256
10.3390/app10124355
10.3390/s22010226
10.3390/s22041590
10.1007/s40747-020-00267-9
10.1109/TII.2021.3078193
10.3390/s19183884
10.3390/s21144676
10.3390/app11167376
10.3390/en14040968
10.3390/informatics8040085
10.3390/s19245370
10.1109/TII.2019.2915846
10.3390/s21072376
10.3390/info11040202
10.3390/machines6030035
10.3390/s21030932
10.3390/s22020613
10.1007/978-3-319-43742-2
10.1016/j.eswa.2021.114598
10.3390/s22010291
10.3390/electronics10101166
10.1109/ACCESS.2020.3006788
10.1109/ACCESS.2018.2859922
10.1016/j.apenergy.2021.116601
10.1109/ACCESS.2021.3118283
10.1177/1687814020919207
10.1016/j.jmsy.2021.02.006
10.1016/j.aei.2020.101054
10.1080/01621459.1987.10478427
10.1109/LGRS.2006.877949
10.1109/GPECOM49333.2020.9247901
10.3390/app112411725
10.1109/ACCESS.2021.3051583
10.1016/j.evalprogplan.2004.05.001
10.3390/s19194342
10.1109/INISTA.2013.6577666
10.1016/j.future.2020.10.015
10.1016/j.ijinfomgt.2018.10.006
10.3390/s19030571
10.7717/peerj-cs.795
10.3390/en13153834
10.1016/j.jmsy.2021.05.003
10.1007/s11042-019-7346-5
10.3390/en14030602
10.1136/bmj.b2535
10.3390/s21082762
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22176321
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Databases
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_08e3644098da4fc7981be30ee7e0a246
PMC9460830
A746531280
36080780
10_3390_s22176321
Genre Systematic Review
Journal Article
GeographicLocations Malaysia
GeographicLocations_xml – name: Malaysia
GrantInformation_xml – fundername: INTI International University
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c508t-ab62bddded78d3f3e8125e56065ad04279f88eca7b55ddec2cc2d6c60345f87a3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:21:31 EDT 2025
Thu Aug 21 13:48:15 EDT 2025
Fri Jul 11 05:50:46 EDT 2025
Sat Aug 23 14:51:29 EDT 2025
Tue Jul 01 05:43:16 EDT 2025
Mon Jul 21 06:05:19 EDT 2025
Thu Apr 24 23:02:52 EDT 2025
Tue Jul 01 02:42:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords explainable artificial intelligence
visual analytics
deep learning
machine learning
industry 4.0
predictive maintenance (PdM)
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-ab62bddded78d3f3e8125e56065ad04279f88eca7b55ddec2cc2d6c60345f87a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ObjectType-Undefined-4
ORCID 0000-0003-4634-8021
0000-0001-5316-3936
0000-0003-3639-1157
0000-0002-6839-0784
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22176321
PMID 36080780
PQID 2711495759
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_08e3644098da4fc7981be30ee7e0a246
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9460830
proquest_miscellaneous_2712853165
proquest_journals_2711495759
gale_infotracacademiconefile_A746531280
pubmed_primary_36080780
crossref_citationtrail_10_3390_s22176321
crossref_primary_10_3390_s22176321
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220823
PublicationDateYYYYMMDD 2022-08-23
PublicationDate_xml – month: 8
  year: 2022
  text: 20220823
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Fernandes (ref_32) 2019; 46
ref_58
ref_12
ref_56
ref_11
Wan (ref_60) 2017; 13
ref_10
ref_54
ref_52
ref_16
ref_15
ref_59
Steenwinckel (ref_22) 2021; 116
ref_25
ref_24
ref_23
Wang (ref_53) 2020; 8
Campbell (ref_17) 2005; 28
ref_21
Wang (ref_4) 2020; 112
Lundberg (ref_61) 2017; 30
Xiao (ref_18) 2017; 39
ref_29
ref_28
ref_27
ref_26
Kiangala (ref_45) 2020; 8
Cheng (ref_57) 2006; 3
Wu (ref_55) 2018; 6
ref_36
ref_35
ref_34
ref_33
Mazaev (ref_46) 2021; 17
ref_31
ref_30
ref_39
Kumar (ref_19) 2019; 79
ref_38
ref_37
Zschech (ref_51) 2019; 61
Yang (ref_1) 2021; 7
Aqueveque (ref_42) 2021; 9
ref_47
ref_41
ref_40
ref_3
Moher (ref_20) 2009; 339
ref_2
ref_48
ref_9
ref_8
Yu (ref_14) 2020; 16
ref_5
Aqueveque (ref_43) 2021; 9
Friedman (ref_62) 1987; 82
Liu (ref_44) 2021; 9
Zhai (ref_49) 2021; 61
ref_7
ref_6
Alfeo (ref_13) 2022; 62
References_xml – ident: ref_5
  doi: 10.1016/j.scs.2020.102283
– volume: 13
  start-page: 2039
  year: 2017
  ident: ref_60
  article-title: V A Manufacturing Big Data Solution for Active Preventive Maintenance
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2670505
– ident: ref_31
  doi: 10.3390/s19092055
– ident: ref_23
  doi: 10.3390/su12114776
– ident: ref_10
  doi: 10.1016/j.eswa.2019.112869
– volume: 112
  start-page: 381
  year: 2020
  ident: ref_4
  article-title: Can Smart Energy Information Interventions Help Householders Save Electricity? A SVR Machine Learning Approach
  publication-title: Environ. Sci. Policy
  doi: 10.1016/j.envsci.2020.07.003
– volume: 8
  start-page: 196515
  year: 2020
  ident: ref_53
  article-title: Investigating the Construction, Training, and Verification Methods of k-Means Clustering Fault Recognition Model for Rotating Machinery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3028146
– volume: 61
  start-page: 327
  year: 2019
  ident: ref_51
  article-title: Prognostic Model Development with Missing Labels: A Condition-Based Maintenance Approach Using Machine Learning
  publication-title: Bus. Inf. Syst. Eng.
  doi: 10.1007/s12599-019-00596-1
– volume: 39
  start-page: 93
  year: 2017
  ident: ref_18
  article-title: Guidance on Conducting a Systematic Literature Review
  publication-title: J. Plan. Educ. Res.
  doi: 10.1177/0739456X17723971
– ident: ref_30
  doi: 10.3390/a13090219
– ident: ref_9
  doi: 10.1016/j.buildenv.2020.107212
– volume: 9
  start-page: 49557
  year: 2021
  ident: ref_44
  article-title: A Novel Predictive Maintenance Method Based on Deep Adversarial Learning in the Intelligent Manufacturing System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3069256
– ident: ref_58
– ident: ref_33
  doi: 10.3390/app10124355
– ident: ref_36
  doi: 10.3390/s22010226
– ident: ref_37
  doi: 10.3390/s22041590
– volume: 7
  start-page: 1311
  year: 2021
  ident: ref_1
  article-title: Industry 4.0, a Revolution That Requires Technology and National Strategies
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-020-00267-9
– volume: 17
  start-page: 8418
  year: 2021
  ident: ref_46
  article-title: Bayesian Convolutional Neural Networks for Remaining Useful Life Prognostics of Solenoid Valves with Uncertainty Estimations
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3078193
– ident: ref_35
  doi: 10.3390/s19183884
– ident: ref_52
  doi: 10.3390/s21144676
– ident: ref_38
  doi: 10.3390/app11167376
– ident: ref_2
  doi: 10.3390/en14040968
– ident: ref_21
  doi: 10.3390/informatics8040085
– ident: ref_6
  doi: 10.3390/s19245370
– volume: 30
  start-page: 4768
  year: 2017
  ident: ref_61
  article-title: A Unified Approach to Interpreting Model Predictions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 16
  start-page: 183
  year: 2020
  ident: ref_14
  article-title: A Global Manufacturing Big Data Ecosystem for Fault Detection in Predictive Maintenance
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2915846
– ident: ref_7
  doi: 10.3390/s21072376
– ident: ref_28
  doi: 10.3390/info11040202
– ident: ref_39
  doi: 10.3390/machines6030035
– ident: ref_26
  doi: 10.3390/s21030932
– ident: ref_29
  doi: 10.3390/s22020613
– ident: ref_59
  doi: 10.1007/978-3-319-43742-2
– ident: ref_25
  doi: 10.1016/j.eswa.2021.114598
– ident: ref_41
  doi: 10.3390/s22010291
– ident: ref_54
  doi: 10.3390/electronics10101166
– volume: 8
  start-page: 121033
  year: 2020
  ident: ref_45
  article-title: An Effective Predictive Maintenance Framework for Conveyor Motors Using Dual Time-Series Imaging and Convolutional Neural Network in an Industry 4.0 Environment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006788
– volume: 6
  start-page: 41676
  year: 2018
  ident: ref_55
  article-title: K-PdM: KPI-Oriented Machinery Deterioration Estimation Framework for Predictive Maintenance Using Cluster-Based Hidden Markov Model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2859922
– ident: ref_11
– ident: ref_3
  doi: 10.1016/j.apenergy.2021.116601
– volume: 9
  start-page: 145866
  year: 2021
  ident: ref_43
  article-title: Development of a Cyber-Physical System to Monitor Early Failures Detection in Vibrating Screens
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3118283
– ident: ref_56
  doi: 10.1177/1687814020919207
– volume: 61
  start-page: 830
  year: 2021
  ident: ref_49
  article-title: Enabling Predictive Maintenance Integrated Production Scheduling by Operation-Specific Health Prognostics with Generative Deep Learning
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.02.006
– ident: ref_50
  doi: 10.1016/j.aei.2020.101054
– volume: 82
  start-page: 249
  year: 1987
  ident: ref_62
  article-title: Exploratory Projection Pursuit
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1987.10478427
– volume: 3
  start-page: 491
  year: 2006
  ident: ref_57
  article-title: Logistic Regression for Feature Selection and Soft Classification of Remote Sensing Data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2006.877949
– ident: ref_12
  doi: 10.1109/GPECOM49333.2020.9247901
– ident: ref_34
  doi: 10.3390/app112411725
– volume: 9
  start-page: 17365
  year: 2021
  ident: ref_42
  article-title: Data-Driven Condition Monitoring of Mining Mobile Machinery in Non-Stationary Operations Using Wireless Accelerometer Sensor Modules
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3051583
– volume: 28
  start-page: 23
  year: 2005
  ident: ref_17
  article-title: A Multiple Account Framework for Cost–Benefit Analysis
  publication-title: Eval. Program Plann.
  doi: 10.1016/j.evalprogplan.2004.05.001
– ident: ref_24
  doi: 10.3390/s19194342
– ident: ref_16
  doi: 10.1109/INISTA.2013.6577666
– volume: 116
  start-page: 30
  year: 2021
  ident: ref_22
  article-title: FLAGS: A Methodology for Adaptive Anomaly Detection and Root Cause Analysis on Sensor Data Streams by Fusing Expert Knowledge with Machine Learning
  publication-title: Futur. Gener. Comput. Syst. Int. J. Escience
  doi: 10.1016/j.future.2020.10.015
– volume: 46
  start-page: 252
  year: 2019
  ident: ref_32
  article-title: Data Analysis and Feature Selection for Predictive Maintenance: A Case-Study in the Metallurgic Industry
  publication-title: Int. J. Inf. Manag.
  doi: 10.1016/j.ijinfomgt.2018.10.006
– ident: ref_8
  doi: 10.3390/s19030571
– ident: ref_47
  doi: 10.7717/peerj-cs.795
– ident: ref_48
  doi: 10.3390/en13153834
– volume: 62
  start-page: 972
  year: 2022
  ident: ref_13
  article-title: Degradation Stage Classification via Interpretable Feature Learning
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.05.003
– volume: 79
  start-page: 15349
  year: 2019
  ident: ref_19
  article-title: Systematic Literature Review on Context-Based Sentiment Analysis in Social Multimedia
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-7346-5
– ident: ref_15
– ident: ref_40
  doi: 10.3390/en14030602
– volume: 339
  start-page: 332
  year: 2009
  ident: ref_20
  article-title: Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement
  publication-title: BMJ
  doi: 10.1136/bmj.b2535
– ident: ref_27
  doi: 10.3390/s21082762
SSID ssj0023338
Score 2.453025
SecondaryResourceType review_article
Snippet The widespread adoption of cyber-physical systems and other cutting-edge digital technology in manufacturing industry production facilities may motivate...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6321
SubjectTerms Artificial Intelligence
Decision making
deep learning
Electric power production
Energy consumption
Energy efficiency
explainable artificial intelligence
Factories
Humans
industry 4.0
Information management
Literature reviews
Machine learning
Manufacturing
Manufacturing Industry
Mathematical programming
Optimization
predictive maintenance (PdM)
Sensors
Subject specialists
Systematic Review
visual analytics
Visualization
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJzhU5dE25SGDKrWXCMeOHzkCAiEECKml4mY5zkSshLIVu3vg3zOTZKONWqkXrvHEsj1jzzdO5hvGvhW6JkVXaV4KSNHjh7SIEtIij5l2jnKr6Grg9s5cPeTXj_pxpdQX_RPW0QN3C3ciHCj02aJwVcjraAvEWaAEgAURZN6SbaPPWwZTfailMPLqeIQUBvUnM4nI2yiZjbxPS9L_91G84ovG_0muOJ7Lj-xDjxj5aTfSLbYGzTbbXOER3GFPPwc-Zn4z8CTz7t6fTxv-ezJbUB_EQEK8zHxa8_sX-kZDpx2_DcQaQdQbwCcNR0yIj5oFJT20WYy8L_DxusseLi9-nV-lfQmFNCLymqehNLKs8AirrKtUrQD9uQZEOUaHispsFLVzEIMttUapKGOUlYlGqFzXzgb1ia030wa-MC4N-lNQOtYiIIpxJWrACshUzKoMcWTCfiyX1seeX5zKXDx7jDNIC37QQsKOB9E_HanGv4TOSD-DAPFgtw_QOnxvHf5_1pGw76RdT7sVBxNDn3SAUyLeK39qiV8OfbRI2P7SAHy_jWde2owiSKtxdkdDM25A-qoSGpguWhmJmCczOmGfO3sZxqyMID5_7NyOLGk0qXFLM3lqSb6LHN9V4ut7rMIe25CUtSHwUFT7bH3-soADxFLz8rDdNm95SR5R
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9QwDLZgucAB8aawoICQ4FJtmjSPntCCGFaIRUiwaG9RmqbsSKhd5nHg32O3mTIViGvrRkkd218e_gzwolItKbrJy5rHHCO-z6sgYl6VoVDWUm4VbQ2cftInZ-WHc3WeNtzW6VrlzicOjrrpA-2RHwlTEJg3qnp9-TOnqlF0uppKaFyFawVGGrrSZRfvpwWXxPXXyCYkcWl_tBaIv7UUxSwGDVT9fzvkvYg0vy25F34Wt-Bmwo3seFT0bbgSuztwY49N8C5cfJlYmdnHiS2Zjbv_rO_Yt-V6S20QDwmxM7O-ZZ9XdFJDPo-deuKOIAKOyJYdQ2SIj7otpT4MuYwslfn4dQ_OFu--vj3JUyGFPCD-2uS-1qJu0JE1xjaylRGjuoqIdbTyDRXbqFprY_CmVgqlgghBNDpoLkvVWuPlfTjo-i4-BCY0RtUoVWi5Ryxj62ii4bGQoWgKRJMZvNr9WhcSyzgVu_jhcLVBWnCTFjJ4PolejtQa_xJ6Q_qZBIgNe3jQr767ZFyO2ygR1_HKNr5sg6kQi0fJI_aNe1HqDF6Sdh3ZLHYm-JR6gEMi9it3bIhlDiM1z-BwNwFcMua1-zP1Mng2vUYzpLMV38V-O8gIRD6FVhk8GOfL1GepObH6Y-NmNpNmg5q_6ZYXA9V3VeK3kj_6f7cew3VBWRkcnZ48hIPNahufIFba1E8Hg_gNttIWHw
  priority: 102
  providerName: ProQuest
Title Systematic Literature Review on Visual Analytics of Predictive Maintenance in the Manufacturing Industry
URI https://www.ncbi.nlm.nih.gov/pubmed/36080780
https://www.proquest.com/docview/2711495759
https://www.proquest.com/docview/2712853165
https://pubmed.ncbi.nlm.nih.gov/PMC9460830
https://doaj.org/article/08e3644098da4fc7981be30ee7e0a246
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gIHxLuBsjIICS4Bx44fOSDUoi4VYqsKWLS3yHEculKVhX1I9N8zk2SjjeiBSw7JJLEzY883duYbgFeZqkjRZZwWPMTo8V2ceRHiLPWJspZyq2hpYHKuz6bp55ma7cG2xmb3AVc3hnZUT2q6vHr75_f1Bxzw7ynixJD93UogrtaS0skP0CEZKmQwSfvNBCFlU9Ca3hujP-QtwdDw1oFbatj7_52jd5zU8AfKHY80vgd3OyjJjlvd34e9UD-AOzsEgw_h8ltP1My-9ATKrN0QYIua_ZivNvQMoiYhwma2qNjFkjZvaBpkE0d0EsTJEdi8ZggW8VS9oWyIJr2RdZU_rh_BdHz6_eNZ3NVWiD1CsnXsCi2KEue20thSVjKgo1cB4Y9WrqT6G1llbfDOFEqhlBfei1J7zWWqKmucfAz79aIOh8CERkcbpPIVdwhvbBFMMDwk0idlggAzgjfbT5v7jnic6l9c5RiAkBbyXgsRvOxFf7VsGzcJnZB-egEiyG5OLJY_82685dwGiVCPZ7Z0aeVNhvA8SB6wbdyJVEfwmrSbk2FhY7zrshGwS0SIlR8bIp5D580jONoaQL41z1yYhEJLo7B3L_rLODJpu8XVYbFpZASCoUSrCJ609tK3WWpORP_4cDOwpEGnhlfq-WXD_p2leK_kT__jvc_gtqBsDY6ToTyC_fVyE54jhloXI7hlZgaPdvxpBAcnp-cXX0fNesSoGTt_AVruH6w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BLVseM4OSBUHsuW7lZItFVvwXGcdqUqKfsQ6p_iNzKTFxuBuPUaTywn8_ocZ74BeJmoghSd-2HGnY8Z3_iJFc5PQhuoOKbaKvo0MN2Pxofhl2N1vAG_uloY-q2yi4l1oM4rS9_It4UOCMxrlbw7_-FT1yg6Xe1aaDRmsecufuKWbfF29yPq95UQo08HH8Z-21XAtwhGlr7JIpHl6NW5jnNZSIcpTjlM_JEyOXWeSIo4dtboTCmUssJakUc24jJURayNxHmvwNVQYianyvTR536DJ3G_17AX4SDfXgjE-5EUwSDn1a0B_k4Aaxlw-HfmWrob3YKbLU5lO41h3YYNV96BG2vshXfh9FvPAs0mPTsza04bWFWyo9liRXMQ7wmxQbOqYF_ndDJEMZZNDXFVEOGHY7OSIRLFS-WKSi3q2knWthW5uAeHl_KK78NmWZXuITARYRZ3UtmCG8ROcea009wF0gZ5gOjVgzfdq01ty2pOzTXOUtzdkBbSXgsevOhFzxsqj38JvSf99ALEvl1fqOYnaevMKY-dRBzJkzg3YWF1gtjfSe5wbdyIMPLgNWk3pRiBi7GmLXXARyK2rXRHE6sdIgPuwVZnAGkbPBbpH1P34Hk_jG5PZzmmdNWqlhGItIJIefCgsZd-zTLi1EUAJ9cDSxo81HCknJ3W1OJJiPdK_uj_y3oG18YH00k62d3fewzXBVWEcAy4cgs2l_OVe4I4bZk9rZ2DwffL9sbffKNUvQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKGAQCC7ROnYcJweEWtpVS9vVCmjVW3Ach66EkrIPof41fh0zebErELdeE8dyMq9vYs83AK8SVZCgcz_MuPMx4hs_scL5SWgDFcdUW0W_Bo7H0f5J-PFMnW3Ar64Who5Vdj6xdtR5Zekf-VDogMC8VsmwaI9FTHZH7y9--NRBinZau3YajYocusufmL7N3x3soqxfCzHa-_Jh3287DPgWgcnCN1kkshwtPNdxLgvpMNwphyAgUianLhRJEcfOGp0phaOssFbkkY24DFURayNx3muwqSkrGsDmzt548qlP9yRmfw2XkZQJH84Fov9IimAtAtaNAv4OByvxcP2s5krwG92GWy1qZduNmt2BDVfehZsrXIb34PxzzwnNjnquZtbsPbCqZKfT-ZLmIBYU4oZmVcEmM9onIo_Ljg0xVxD9h2PTkiEuxUvlkgov6kpK1jYZubwPJ1fykR_AoKxK9wiYiDCmO6lswQ0iqThz2mnuAmmDPEAs68Hb7tOmtuU4p1Yb31PMdUgKaS8FD172Qy8aYo9_Ddoh-fQDiIu7vlDNvqWtaac8dhJRJU_i3ISF1QlmAk5yh2vjRoSRB29Iuil5DFyMNW3hA74ScW-l25o47hAncA-2OgVIW1cyT_8ovgcv-tvoBGhnx5SuWtZjBOKuIFIePGz0pV-zjDj1FMDJ9Zomrb3U-p1yel4TjSchPiv54_8v6zlcR0tMjw7Gh0_ghqDyEI7eV27BYDFbuqcI2hbZs9Y6GHy9aoP8DbJnWk8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+Literature+Review+on+Visual+Analytics+of+Predictive+Maintenance+in+the+Manufacturing+Industry&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cheng%2C+Xiang&rft.au=Chaw%2C+Jun+Kit&rft.au=Goh%2C+Kam+Meng&rft.au=Ting%2C+Tin+Tin&rft.date=2022-08-23&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=17&rft_id=info:doi/10.3390%2Fs22176321&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon