Systematic Literature Review on Visual Analytics of Predictive Maintenance in the Manufacturing Industry
The widespread adoption of cyber-physical systems and other cutting-edge digital technology in manufacturing industry production facilities may motivate stakeholders to embrace the idea of Industry 4.0. Some industrial companies already have different sensors installed on their machines; however, wi...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 17; p. 6321 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.08.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The widespread adoption of cyber-physical systems and other cutting-edge digital technology in manufacturing industry production facilities may motivate stakeholders to embrace the idea of Industry 4.0. Some industrial companies already have different sensors installed on their machines; however, without proper analysis, the data collected is not useful. This systematic review’s main goal is to synthesize the existing evidence on the application of predictive maintenance (PdM) with visual aids and to identify the key knowledge gaps in areas including utilities, power generation, industry, and energy consumption. After a thorough search and evaluation for relevancy, 37 documents were identified. Moreover, we identified the visual analytics of PdM, including anomaly detection, planning/scheduling, exploratory data analysis (EDA), and explainable artificial intelligence (XAI). The findings revealed that anomaly detection was a major domain in PdM-related works. We conclude that most of the literature lacks depth in terms of an overall framework that combines data-driven and knowledge-driven techniques of PdM in the manufacturing industry. Some works that utilized both techniques indicated promising results, but there is insufficient research on involving maintenance personnel’s feedback in the latter stage of PdM architecture. Thus, there are still pertinent issues that need to be investigated, and limitations that need to be overcome before PdM is deployed with minimal human involvement. |
---|---|
AbstractList | The widespread adoption of cyber-physical systems and other cutting-edge digital technology in manufacturing industry production facilities may motivate stakeholders to embrace the idea of Industry 4.0. Some industrial companies already have different sensors installed on their machines; however, without proper analysis, the data collected is not useful. This systematic review’s main goal is to synthesize the existing evidence on the application of predictive maintenance (PdM) with visual aids and to identify the key knowledge gaps in areas including utilities, power generation, industry, and energy consumption. After a thorough search and evaluation for relevancy, 37 documents were identified. Moreover, we identified the visual analytics of PdM, including anomaly detection, planning/scheduling, exploratory data analysis (EDA), and explainable artificial intelligence (XAI). The findings revealed that anomaly detection was a major domain in PdM-related works. We conclude that most of the literature lacks depth in terms of an overall framework that combines data-driven and knowledge-driven techniques of PdM in the manufacturing industry. Some works that utilized both techniques indicated promising results, but there is insufficient research on involving maintenance personnel’s feedback in the latter stage of PdM architecture. Thus, there are still pertinent issues that need to be investigated, and limitations that need to be overcome before PdM is deployed with minimal human involvement. The widespread adoption of cyber-physical systems and other cutting-edge digital technology in manufacturing industry production facilities may motivate stakeholders to embrace the idea of Industry 4.0. Some industrial companies already have different sensors installed on their machines; however, without proper analysis, the data collected is not useful. This systematic review's main goal is to synthesize the existing evidence on the application of predictive maintenance (PdM) with visual aids and to identify the key knowledge gaps in areas including utilities, power generation, industry, and energy consumption. After a thorough search and evaluation for relevancy, 37 documents were identified. Moreover, we identified the visual analytics of PdM, including anomaly detection, planning/scheduling, exploratory data analysis (EDA), and explainable artificial intelligence (XAI). The findings revealed that anomaly detection was a major domain in PdM-related works. We conclude that most of the literature lacks depth in terms of an overall framework that combines data-driven and knowledge-driven techniques of PdM in the manufacturing industry. Some works that utilized both techniques indicated promising results, but there is insufficient research on involving maintenance personnel's feedback in the latter stage of PdM architecture. Thus, there are still pertinent issues that need to be investigated, and limitations that need to be overcome before PdM is deployed with minimal human involvement.The widespread adoption of cyber-physical systems and other cutting-edge digital technology in manufacturing industry production facilities may motivate stakeholders to embrace the idea of Industry 4.0. Some industrial companies already have different sensors installed on their machines; however, without proper analysis, the data collected is not useful. This systematic review's main goal is to synthesize the existing evidence on the application of predictive maintenance (PdM) with visual aids and to identify the key knowledge gaps in areas including utilities, power generation, industry, and energy consumption. After a thorough search and evaluation for relevancy, 37 documents were identified. Moreover, we identified the visual analytics of PdM, including anomaly detection, planning/scheduling, exploratory data analysis (EDA), and explainable artificial intelligence (XAI). The findings revealed that anomaly detection was a major domain in PdM-related works. We conclude that most of the literature lacks depth in terms of an overall framework that combines data-driven and knowledge-driven techniques of PdM in the manufacturing industry. Some works that utilized both techniques indicated promising results, but there is insufficient research on involving maintenance personnel's feedback in the latter stage of PdM architecture. Thus, there are still pertinent issues that need to be investigated, and limitations that need to be overcome before PdM is deployed with minimal human involvement. |
Audience | Academic |
Author | Sahrani, Shafrida Chaw, Jun Kit Goh, Kam Meng Ang, Mei Choo Cheng, Xiang Ting, Tin Tin Abdul Kadir, Rabiah Ahmad, Mohammad Nazir |
AuthorAffiliation | 1 Institute of IR4.0, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia 3 Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia 2 Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology, Tunku Abdul Rahman University College, Kampus Utama, Jalan Genting Kelang, Kuala Lumpur 53300, Malaysia |
AuthorAffiliation_xml | – name: 3 Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia – name: 1 Institute of IR4.0, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia – name: 2 Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology, Tunku Abdul Rahman University College, Kampus Utama, Jalan Genting Kelang, Kuala Lumpur 53300, Malaysia |
Author_xml | – sequence: 1 givenname: Xiang surname: Cheng fullname: Cheng, Xiang – sequence: 2 givenname: Jun Kit orcidid: 0000-0002-6839-0784 surname: Chaw fullname: Chaw, Jun Kit – sequence: 3 givenname: Kam Meng surname: Goh fullname: Goh, Kam Meng – sequence: 4 givenname: Tin Tin surname: Ting fullname: Ting, Tin Tin – sequence: 5 givenname: Shafrida orcidid: 0000-0003-4634-8021 surname: Sahrani fullname: Sahrani, Shafrida – sequence: 6 givenname: Mohammad Nazir orcidid: 0000-0003-3639-1157 surname: Ahmad fullname: Ahmad, Mohammad Nazir – sequence: 7 givenname: Rabiah surname: Abdul Kadir fullname: Abdul Kadir, Rabiah – sequence: 8 givenname: Mei Choo orcidid: 0000-0001-5316-3936 surname: Ang fullname: Ang, Mei Choo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36080780$$D View this record in MEDLINE/PubMed |
BookMark | eNplkktvGyEURkdVqubRLvoHKqRu2oUThsfAbCpZUR-WXLXqa4sYuGNjzUACjCv_--I4iZJULECXw4GLvtPqyAcPVfW6xueUtvgiEVKLhpL6WXVSM8JmkhB89GB9XJ2mtMGYUErli-qYNlhiIfFJtf65SxlGnZ1BS5ch6jxFQD9g6-AvCh79cWnSA5p7PewKlFDo0fcI1pnstoC-auczeO0NIOdRXu9Lfuq1KR7nV2jh7ZRy3L2snvd6SPDqdj6rfn_6-Ovyy2z57fPicr6cGY5lnumuIZ21FqyQlvYUZE048AY3XFvMiGh7KcFo0XFeKEOMIbYxDaaM91JoelYtDl4b9EZdRTfquFNBO3VTCHGldCyNDKCwBNowhltpNeuNaGXdAcUAArAmrCmuDwfX1dSNYA34HPXwSPp4x7u1WoWtaln5YIqL4N2tIIbrCVJWo0sGhkF7CFNSRNREclo3vKBvn6CbMMXy6zdUzVoueFuo8wO10qUB5_tQ7jVlWBidKanoXanPBSvGot6_4M3DFu7ffpeAAlwcABNDShF6ZVwucQj7jtygaqz2GVP3GSsn3j85cSf9n_0Hd9DRjA |
CitedBy_id | crossref_primary_10_1080_23311916_2024_2380344 crossref_primary_10_1016_j_procs_2023_03_082 crossref_primary_10_1007_s41471_024_00204_3 crossref_primary_10_1109_ACCESS_2023_3271748 crossref_primary_10_1016_j_procs_2024_01_154 crossref_primary_10_1016_j_ifacol_2024_09_119 crossref_primary_10_1016_j_jmsy_2025_02_006 crossref_primary_10_3390_s23031409 crossref_primary_10_1016_j_jmsy_2023_04_009 crossref_primary_10_3390_math11183816 crossref_primary_10_3390_su142114536 crossref_primary_10_1186_s40537_024_00947_0 crossref_primary_10_3390_s24227163 crossref_primary_10_1109_TIM_2024_3502814 |
Cites_doi | 10.1016/j.scs.2020.102283 10.1109/TII.2017.2670505 10.3390/s19092055 10.3390/su12114776 10.1016/j.eswa.2019.112869 10.1016/j.envsci.2020.07.003 10.1109/ACCESS.2020.3028146 10.1007/s12599-019-00596-1 10.1177/0739456X17723971 10.3390/a13090219 10.1016/j.buildenv.2020.107212 10.1109/ACCESS.2021.3069256 10.3390/app10124355 10.3390/s22010226 10.3390/s22041590 10.1007/s40747-020-00267-9 10.1109/TII.2021.3078193 10.3390/s19183884 10.3390/s21144676 10.3390/app11167376 10.3390/en14040968 10.3390/informatics8040085 10.3390/s19245370 10.1109/TII.2019.2915846 10.3390/s21072376 10.3390/info11040202 10.3390/machines6030035 10.3390/s21030932 10.3390/s22020613 10.1007/978-3-319-43742-2 10.1016/j.eswa.2021.114598 10.3390/s22010291 10.3390/electronics10101166 10.1109/ACCESS.2020.3006788 10.1109/ACCESS.2018.2859922 10.1016/j.apenergy.2021.116601 10.1109/ACCESS.2021.3118283 10.1177/1687814020919207 10.1016/j.jmsy.2021.02.006 10.1016/j.aei.2020.101054 10.1080/01621459.1987.10478427 10.1109/LGRS.2006.877949 10.1109/GPECOM49333.2020.9247901 10.3390/app112411725 10.1109/ACCESS.2021.3051583 10.1016/j.evalprogplan.2004.05.001 10.3390/s19194342 10.1109/INISTA.2013.6577666 10.1016/j.future.2020.10.015 10.1016/j.ijinfomgt.2018.10.006 10.3390/s19030571 10.7717/peerj-cs.795 10.3390/en13153834 10.1016/j.jmsy.2021.05.003 10.1007/s11042-019-7346-5 10.3390/en14030602 10.1136/bmj.b2535 10.3390/s21082762 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22176321 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Databases ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_08e3644098da4fc7981be30ee7e0a246 PMC9460830 A746531280 36080780 10_3390_s22176321 |
Genre | Systematic Review Journal Article |
GeographicLocations | Malaysia |
GeographicLocations_xml | – name: Malaysia |
GrantInformation_xml | – fundername: INTI International University |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c508t-ab62bddded78d3f3e8125e56065ad04279f88eca7b55ddec2cc2d6c60345f87a3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:21:31 EDT 2025 Thu Aug 21 13:48:15 EDT 2025 Fri Jul 11 05:50:46 EDT 2025 Sat Aug 23 14:51:29 EDT 2025 Tue Jul 01 05:43:16 EDT 2025 Mon Jul 21 06:05:19 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Tue Jul 01 02:42:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | explainable artificial intelligence visual analytics deep learning machine learning industry 4.0 predictive maintenance (PdM) |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-ab62bddded78d3f3e8125e56065ad04279f88eca7b55ddec2cc2d6c60345f87a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 ObjectType-Undefined-4 |
ORCID | 0000-0003-4634-8021 0000-0001-5316-3936 0000-0003-3639-1157 0000-0002-6839-0784 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22176321 |
PMID | 36080780 |
PQID | 2711495759 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_08e3644098da4fc7981be30ee7e0a246 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9460830 proquest_miscellaneous_2712853165 proquest_journals_2711495759 gale_infotracacademiconefile_A746531280 pubmed_primary_36080780 crossref_citationtrail_10_3390_s22176321 crossref_primary_10_3390_s22176321 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220823 |
PublicationDateYYYYMMDD | 2022-08-23 |
PublicationDate_xml | – month: 8 year: 2022 text: 20220823 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Fernandes (ref_32) 2019; 46 ref_58 ref_12 ref_56 ref_11 Wan (ref_60) 2017; 13 ref_10 ref_54 ref_52 ref_16 ref_15 ref_59 Steenwinckel (ref_22) 2021; 116 ref_25 ref_24 ref_23 Wang (ref_53) 2020; 8 Campbell (ref_17) 2005; 28 ref_21 Wang (ref_4) 2020; 112 Lundberg (ref_61) 2017; 30 Xiao (ref_18) 2017; 39 ref_29 ref_28 ref_27 ref_26 Kiangala (ref_45) 2020; 8 Cheng (ref_57) 2006; 3 Wu (ref_55) 2018; 6 ref_36 ref_35 ref_34 ref_33 Mazaev (ref_46) 2021; 17 ref_31 ref_30 ref_39 Kumar (ref_19) 2019; 79 ref_38 ref_37 Zschech (ref_51) 2019; 61 Yang (ref_1) 2021; 7 Aqueveque (ref_42) 2021; 9 ref_47 ref_41 ref_40 ref_3 Moher (ref_20) 2009; 339 ref_2 ref_48 ref_9 ref_8 Yu (ref_14) 2020; 16 ref_5 Aqueveque (ref_43) 2021; 9 Friedman (ref_62) 1987; 82 Liu (ref_44) 2021; 9 Zhai (ref_49) 2021; 61 ref_7 ref_6 Alfeo (ref_13) 2022; 62 |
References_xml | – ident: ref_5 doi: 10.1016/j.scs.2020.102283 – volume: 13 start-page: 2039 year: 2017 ident: ref_60 article-title: V A Manufacturing Big Data Solution for Active Preventive Maintenance publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2670505 – ident: ref_31 doi: 10.3390/s19092055 – ident: ref_23 doi: 10.3390/su12114776 – ident: ref_10 doi: 10.1016/j.eswa.2019.112869 – volume: 112 start-page: 381 year: 2020 ident: ref_4 article-title: Can Smart Energy Information Interventions Help Householders Save Electricity? A SVR Machine Learning Approach publication-title: Environ. Sci. Policy doi: 10.1016/j.envsci.2020.07.003 – volume: 8 start-page: 196515 year: 2020 ident: ref_53 article-title: Investigating the Construction, Training, and Verification Methods of k-Means Clustering Fault Recognition Model for Rotating Machinery publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3028146 – volume: 61 start-page: 327 year: 2019 ident: ref_51 article-title: Prognostic Model Development with Missing Labels: A Condition-Based Maintenance Approach Using Machine Learning publication-title: Bus. Inf. Syst. Eng. doi: 10.1007/s12599-019-00596-1 – volume: 39 start-page: 93 year: 2017 ident: ref_18 article-title: Guidance on Conducting a Systematic Literature Review publication-title: J. Plan. Educ. Res. doi: 10.1177/0739456X17723971 – ident: ref_30 doi: 10.3390/a13090219 – ident: ref_9 doi: 10.1016/j.buildenv.2020.107212 – volume: 9 start-page: 49557 year: 2021 ident: ref_44 article-title: A Novel Predictive Maintenance Method Based on Deep Adversarial Learning in the Intelligent Manufacturing System publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3069256 – ident: ref_58 – ident: ref_33 doi: 10.3390/app10124355 – ident: ref_36 doi: 10.3390/s22010226 – ident: ref_37 doi: 10.3390/s22041590 – volume: 7 start-page: 1311 year: 2021 ident: ref_1 article-title: Industry 4.0, a Revolution That Requires Technology and National Strategies publication-title: Complex Intell. Syst. doi: 10.1007/s40747-020-00267-9 – volume: 17 start-page: 8418 year: 2021 ident: ref_46 article-title: Bayesian Convolutional Neural Networks for Remaining Useful Life Prognostics of Solenoid Valves with Uncertainty Estimations publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3078193 – ident: ref_35 doi: 10.3390/s19183884 – ident: ref_52 doi: 10.3390/s21144676 – ident: ref_38 doi: 10.3390/app11167376 – ident: ref_2 doi: 10.3390/en14040968 – ident: ref_21 doi: 10.3390/informatics8040085 – ident: ref_6 doi: 10.3390/s19245370 – volume: 30 start-page: 4768 year: 2017 ident: ref_61 article-title: A Unified Approach to Interpreting Model Predictions publication-title: Adv. Neural Inf. Process. Syst. – volume: 16 start-page: 183 year: 2020 ident: ref_14 article-title: A Global Manufacturing Big Data Ecosystem for Fault Detection in Predictive Maintenance publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2915846 – ident: ref_7 doi: 10.3390/s21072376 – ident: ref_28 doi: 10.3390/info11040202 – ident: ref_39 doi: 10.3390/machines6030035 – ident: ref_26 doi: 10.3390/s21030932 – ident: ref_29 doi: 10.3390/s22020613 – ident: ref_59 doi: 10.1007/978-3-319-43742-2 – ident: ref_25 doi: 10.1016/j.eswa.2021.114598 – ident: ref_41 doi: 10.3390/s22010291 – ident: ref_54 doi: 10.3390/electronics10101166 – volume: 8 start-page: 121033 year: 2020 ident: ref_45 article-title: An Effective Predictive Maintenance Framework for Conveyor Motors Using Dual Time-Series Imaging and Convolutional Neural Network in an Industry 4.0 Environment publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006788 – volume: 6 start-page: 41676 year: 2018 ident: ref_55 article-title: K-PdM: KPI-Oriented Machinery Deterioration Estimation Framework for Predictive Maintenance Using Cluster-Based Hidden Markov Model publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2859922 – ident: ref_11 – ident: ref_3 doi: 10.1016/j.apenergy.2021.116601 – volume: 9 start-page: 145866 year: 2021 ident: ref_43 article-title: Development of a Cyber-Physical System to Monitor Early Failures Detection in Vibrating Screens publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3118283 – ident: ref_56 doi: 10.1177/1687814020919207 – volume: 61 start-page: 830 year: 2021 ident: ref_49 article-title: Enabling Predictive Maintenance Integrated Production Scheduling by Operation-Specific Health Prognostics with Generative Deep Learning publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.02.006 – ident: ref_50 doi: 10.1016/j.aei.2020.101054 – volume: 82 start-page: 249 year: 1987 ident: ref_62 article-title: Exploratory Projection Pursuit publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1987.10478427 – volume: 3 start-page: 491 year: 2006 ident: ref_57 article-title: Logistic Regression for Feature Selection and Soft Classification of Remote Sensing Data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2006.877949 – ident: ref_12 doi: 10.1109/GPECOM49333.2020.9247901 – ident: ref_34 doi: 10.3390/app112411725 – volume: 9 start-page: 17365 year: 2021 ident: ref_42 article-title: Data-Driven Condition Monitoring of Mining Mobile Machinery in Non-Stationary Operations Using Wireless Accelerometer Sensor Modules publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3051583 – volume: 28 start-page: 23 year: 2005 ident: ref_17 article-title: A Multiple Account Framework for Cost–Benefit Analysis publication-title: Eval. Program Plann. doi: 10.1016/j.evalprogplan.2004.05.001 – ident: ref_24 doi: 10.3390/s19194342 – ident: ref_16 doi: 10.1109/INISTA.2013.6577666 – volume: 116 start-page: 30 year: 2021 ident: ref_22 article-title: FLAGS: A Methodology for Adaptive Anomaly Detection and Root Cause Analysis on Sensor Data Streams by Fusing Expert Knowledge with Machine Learning publication-title: Futur. Gener. Comput. Syst. Int. J. Escience doi: 10.1016/j.future.2020.10.015 – volume: 46 start-page: 252 year: 2019 ident: ref_32 article-title: Data Analysis and Feature Selection for Predictive Maintenance: A Case-Study in the Metallurgic Industry publication-title: Int. J. Inf. Manag. doi: 10.1016/j.ijinfomgt.2018.10.006 – ident: ref_8 doi: 10.3390/s19030571 – ident: ref_47 doi: 10.7717/peerj-cs.795 – ident: ref_48 doi: 10.3390/en13153834 – volume: 62 start-page: 972 year: 2022 ident: ref_13 article-title: Degradation Stage Classification via Interpretable Feature Learning publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.05.003 – volume: 79 start-page: 15349 year: 2019 ident: ref_19 article-title: Systematic Literature Review on Context-Based Sentiment Analysis in Social Multimedia publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-7346-5 – ident: ref_15 – ident: ref_40 doi: 10.3390/en14030602 – volume: 339 start-page: 332 year: 2009 ident: ref_20 article-title: Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement publication-title: BMJ doi: 10.1136/bmj.b2535 – ident: ref_27 doi: 10.3390/s21082762 |
SSID | ssj0023338 |
Score | 2.453025 |
SecondaryResourceType | review_article |
Snippet | The widespread adoption of cyber-physical systems and other cutting-edge digital technology in manufacturing industry production facilities may motivate... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6321 |
SubjectTerms | Artificial Intelligence Decision making deep learning Electric power production Energy consumption Energy efficiency explainable artificial intelligence Factories Humans industry 4.0 Information management Literature reviews Machine learning Manufacturing Manufacturing Industry Mathematical programming Optimization predictive maintenance (PdM) Sensors Subject specialists Systematic Review visual analytics Visualization |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJzhU5dE25SGDKrWXCMeOHzkCAiEECKml4mY5zkSshLIVu3vg3zOTZKONWqkXrvHEsj1jzzdO5hvGvhW6JkVXaV4KSNHjh7SIEtIij5l2jnKr6Grg9s5cPeTXj_pxpdQX_RPW0QN3C3ciHCj02aJwVcjraAvEWaAEgAURZN6SbaPPWwZTfailMPLqeIQUBvUnM4nI2yiZjbxPS9L_91G84ovG_0muOJ7Lj-xDjxj5aTfSLbYGzTbbXOER3GFPPwc-Zn4z8CTz7t6fTxv-ezJbUB_EQEK8zHxa8_sX-kZDpx2_DcQaQdQbwCcNR0yIj5oFJT20WYy8L_DxusseLi9-nV-lfQmFNCLymqehNLKs8AirrKtUrQD9uQZEOUaHispsFLVzEIMttUapKGOUlYlGqFzXzgb1ia030wa-MC4N-lNQOtYiIIpxJWrACshUzKoMcWTCfiyX1seeX5zKXDx7jDNIC37QQsKOB9E_HanGv4TOSD-DAPFgtw_QOnxvHf5_1pGw76RdT7sVBxNDn3SAUyLeK39qiV8OfbRI2P7SAHy_jWde2owiSKtxdkdDM25A-qoSGpguWhmJmCczOmGfO3sZxqyMID5_7NyOLGk0qXFLM3lqSb6LHN9V4ut7rMIe25CUtSHwUFT7bH3-soADxFLz8rDdNm95SR5R priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9QwDLZgucAB8aawoICQ4FJtmjSPntCCGFaIRUiwaG9RmqbsSKhd5nHg32O3mTIViGvrRkkd218e_gzwolItKbrJy5rHHCO-z6sgYl6VoVDWUm4VbQ2cftInZ-WHc3WeNtzW6VrlzicOjrrpA-2RHwlTEJg3qnp9-TOnqlF0uppKaFyFawVGGrrSZRfvpwWXxPXXyCYkcWl_tBaIv7UUxSwGDVT9fzvkvYg0vy25F34Wt-Bmwo3seFT0bbgSuztwY49N8C5cfJlYmdnHiS2Zjbv_rO_Yt-V6S20QDwmxM7O-ZZ9XdFJDPo-deuKOIAKOyJYdQ2SIj7otpT4MuYwslfn4dQ_OFu--vj3JUyGFPCD-2uS-1qJu0JE1xjaylRGjuoqIdbTyDRXbqFprY_CmVgqlgghBNDpoLkvVWuPlfTjo-i4-BCY0RtUoVWi5Ryxj62ii4bGQoWgKRJMZvNr9WhcSyzgVu_jhcLVBWnCTFjJ4PolejtQa_xJ6Q_qZBIgNe3jQr767ZFyO2ygR1_HKNr5sg6kQi0fJI_aNe1HqDF6Sdh3ZLHYm-JR6gEMi9it3bIhlDiM1z-BwNwFcMua1-zP1Mng2vUYzpLMV38V-O8gIRD6FVhk8GOfL1GepObH6Y-NmNpNmg5q_6ZYXA9V3VeK3kj_6f7cew3VBWRkcnZ48hIPNahufIFba1E8Hg_gNttIWHw priority: 102 providerName: ProQuest |
Title | Systematic Literature Review on Visual Analytics of Predictive Maintenance in the Manufacturing Industry |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36080780 https://www.proquest.com/docview/2711495759 https://www.proquest.com/docview/2712853165 https://pubmed.ncbi.nlm.nih.gov/PMC9460830 https://doaj.org/article/08e3644098da4fc7981be30ee7e0a246 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gIHxLuBsjIICS4Bx44fOSDUoi4VYqsKWLS3yHEculKVhX1I9N8zk2SjjeiBSw7JJLEzY883duYbgFeZqkjRZZwWPMTo8V2ceRHiLPWJspZyq2hpYHKuz6bp55ma7cG2xmb3AVc3hnZUT2q6vHr75_f1Bxzw7ynixJD93UogrtaS0skP0CEZKmQwSfvNBCFlU9Ca3hujP-QtwdDw1oFbatj7_52jd5zU8AfKHY80vgd3OyjJjlvd34e9UD-AOzsEgw_h8ltP1My-9ATKrN0QYIua_ZivNvQMoiYhwma2qNjFkjZvaBpkE0d0EsTJEdi8ZggW8VS9oWyIJr2RdZU_rh_BdHz6_eNZ3NVWiD1CsnXsCi2KEue20thSVjKgo1cB4Y9WrqT6G1llbfDOFEqhlBfei1J7zWWqKmucfAz79aIOh8CERkcbpPIVdwhvbBFMMDwk0idlggAzgjfbT5v7jnic6l9c5RiAkBbyXgsRvOxFf7VsGzcJnZB-egEiyG5OLJY_82685dwGiVCPZ7Z0aeVNhvA8SB6wbdyJVEfwmrSbk2FhY7zrshGwS0SIlR8bIp5D580jONoaQL41z1yYhEJLo7B3L_rLODJpu8XVYbFpZASCoUSrCJ609tK3WWpORP_4cDOwpEGnhlfq-WXD_p2leK_kT__jvc_gtqBsDY6ToTyC_fVyE54jhloXI7hlZgaPdvxpBAcnp-cXX0fNesSoGTt_AVruH6w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BLVseM4OSBUHsuW7lZItFVvwXGcdqUqKfsQ6p_iNzKTFxuBuPUaTywn8_ocZ74BeJmoghSd-2HGnY8Z3_iJFc5PQhuoOKbaKvo0MN2Pxofhl2N1vAG_uloY-q2yi4l1oM4rS9_It4UOCMxrlbw7_-FT1yg6Xe1aaDRmsecufuKWbfF29yPq95UQo08HH8Z-21XAtwhGlr7JIpHl6NW5jnNZSIcpTjlM_JEyOXWeSIo4dtboTCmUssJakUc24jJURayNxHmvwNVQYianyvTR536DJ3G_17AX4SDfXgjE-5EUwSDn1a0B_k4Aaxlw-HfmWrob3YKbLU5lO41h3YYNV96BG2vshXfh9FvPAs0mPTsza04bWFWyo9liRXMQ7wmxQbOqYF_ndDJEMZZNDXFVEOGHY7OSIRLFS-WKSi3q2knWthW5uAeHl_KK78NmWZXuITARYRZ3UtmCG8ROcea009wF0gZ5gOjVgzfdq01ty2pOzTXOUtzdkBbSXgsevOhFzxsqj38JvSf99ALEvl1fqOYnaevMKY-dRBzJkzg3YWF1gtjfSe5wbdyIMPLgNWk3pRiBi7GmLXXARyK2rXRHE6sdIgPuwVZnAGkbPBbpH1P34Hk_jG5PZzmmdNWqlhGItIJIefCgsZd-zTLi1EUAJ9cDSxo81HCknJ3W1OJJiPdK_uj_y3oG18YH00k62d3fewzXBVWEcAy4cgs2l_OVe4I4bZk9rZ2DwffL9sbffKNUvQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHgTKGAQCC7ROnYcJweEWtpVS9vVCmjVW3Ach66EkrIPof41fh0zebErELdeE8dyMq9vYs83AK8SVZCgcz_MuPMx4hs_scL5SWgDFcdUW0W_Bo7H0f5J-PFMnW3Ar64Who5Vdj6xdtR5Zekf-VDogMC8VsmwaI9FTHZH7y9--NRBinZau3YajYocusufmL7N3x3soqxfCzHa-_Jh3287DPgWgcnCN1kkshwtPNdxLgvpMNwphyAgUianLhRJEcfOGp0phaOssFbkkY24DFURayNx3muwqSkrGsDmzt548qlP9yRmfw2XkZQJH84Fov9IimAtAtaNAv4OByvxcP2s5krwG92GWy1qZduNmt2BDVfehZsrXIb34PxzzwnNjnquZtbsPbCqZKfT-ZLmIBYU4oZmVcEmM9onIo_Ljg0xVxD9h2PTkiEuxUvlkgov6kpK1jYZubwPJ1fykR_AoKxK9wiYiDCmO6lswQ0iqThz2mnuAmmDPEAs68Hb7tOmtuU4p1Yb31PMdUgKaS8FD172Qy8aYo9_Ddoh-fQDiIu7vlDNvqWtaac8dhJRJU_i3ISF1QlmAk5yh2vjRoSRB29Iuil5DFyMNW3hA74ScW-l25o47hAncA-2OgVIW1cyT_8ovgcv-tvoBGhnx5SuWtZjBOKuIFIePGz0pV-zjDj1FMDJ9Zomrb3U-p1yel4TjSchPiv54_8v6zlcR0tMjw7Gh0_ghqDyEI7eV27BYDFbuqcI2hbZs9Y6GHy9aoP8DbJnWk8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+Literature+Review+on+Visual+Analytics+of+Predictive+Maintenance+in+the+Manufacturing+Industry&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Cheng%2C+Xiang&rft.au=Chaw%2C+Jun+Kit&rft.au=Goh%2C+Kam+Meng&rft.au=Ting%2C+Tin+Tin&rft.date=2022-08-23&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=17&rft_id=info:doi/10.3390%2Fs22176321&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |