Role of Rostral Fastigial Neurons in Encoding a Body-Centered Representation of Translation in Three Dimensions
Many daily behaviors rely critically on estimates of our body motion. Such estimates must be computed by combining neck proprioceptive signals with vestibular signals that have been transformed from a head- to a body-centered reference frame. Recent studies showed that deep cerebellar neurons in the...
Saved in:
Published in | The Journal of neuroscience Vol. 38; no. 14; pp. 3584 - 3602 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
04.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many daily behaviors rely critically on estimates of our body motion. Such estimates must be computed by combining neck proprioceptive signals with vestibular signals that have been transformed from a head- to a body-centered reference frame. Recent studies showed that deep cerebellar neurons in the rostral fastigial nucleus (rFN) reflect these computations, but whether they explicitly encode estimates of body motion remains unclear. A key limitation in addressing this question is that, to date, cell tuning properties have only been characterized for a restricted set of motions across head-re-body orientations in the horizontal plane. Here we examined, for the first time, how 3D spatiotemporal tuning for translational motion varies with head-re-body orientation in both horizontal and vertical planes in the rFN of male macaques. While vestibular coding was profoundly influenced by head-re-body position in both planes, neurons typically reflected at most a partial transformation. However, their tuning shifts were not random but followed the specific spatial trajectories predicted for a 3D transformation. We show that these properties facilitate the linear decoding of fully body-centered motion representations in 3D with a broad range of temporal characteristics from small groups of 5-7 cells. These results demonstrate that the vestibular reference frame transformation required to compute body motion is indeed encoded by cerebellar neurons. We propose that maintaining partially transformed rFN responses with different spatiotemporal properties facilitates the creation of downstream body motion representations with a range of dynamic characteristics, consistent with the functional requirements for tasks such as postural control and reaching.
Estimates of body motion are essential for many daily activities. Vestibular signals are important contributors to such estimates but must be transformed from a head- to a body-centered reference frame. Here, we provide the first direct demonstration that the cerebellum computes this transformation fully in 3D. We show that the output of these computations is reflected in the tuning properties of deep cerebellar rostral fastigial nucleus neurons in a specific distributed fashion that facilitates the efficient creation of body-centered translation estimates with a broad range of temporal properties (i.e., from acceleration to position). These findings support an important role for the rostral fastigial nucleus as a source of body translation estimates functionally relevant for behaviors ranging from postural control to perception. |
---|---|
AbstractList | Many daily behaviors rely critically on estimates of our body motion. Such estimates must be computed by combining neck proprioceptive signals with vestibular signals that have been transformed from a head- to a body-centered reference frame. Recent studies showed that deep cerebellar neurons in the rostral fastigial nucleus (rFN) reflect these computations, but whether they explicitly encode estimates of body motion remains unclear. A key limitation in addressing this question is that, to date, cell tuning properties have only been characterized for a restricted set of motions across head-re-body orientations in the horizontal plane. Here we examined, for the first time, how 3D spatiotemporal tuning for translational motion varies with head-re-body orientation in both horizontal and vertical planes in the rFN of male macaques. While vestibular coding was profoundly influenced by head-re-body position in both planes, neurons typically reflected at most a partial transformation. However, their tuning shifts were not random but followed the specific spatial trajectories predicted for a 3D transformation. We show that these properties facilitate the linear decoding of fully body-centered motion representations in 3D with a broad range of temporal characteristics from small groups of 5–7 cells. These results demonstrate that the vestibular reference frame transformation required to compute body motion is indeed encoded by cerebellar neurons. We propose that maintaining partially transformed rFN responses with different spatiotemporal properties facilitates the creation of downstream body motion representations with a range of dynamic characteristics, consistent with the functional requirements for tasks such as postural control and reaching.
SIGNIFICANCE STATEMENT
Estimates of body motion are essential for many daily activities. Vestibular signals are important contributors to such estimates but must be transformed from a head- to a body-centered reference frame. Here, we provide the first direct demonstration that the cerebellum computes this transformation fully in 3D. We show that the output of these computations is reflected in the tuning properties of deep cerebellar rostral fastigial nucleus neurons in a specific distributed fashion that facilitates the efficient creation of body-centered translation estimates with a broad range of temporal properties (i.e., from acceleration to position). These findings support an important role for the rostral fastigial nucleus as a source of body translation estimates functionally relevant for behaviors ranging from postural control to perception. Many daily behaviors rely critically on estimates of our body motion. Such estimates must be computed by combining neck proprioceptive signals with vestibular signals that have been transformed from a head- to a body-centered reference frame. Recent studies showed that deep cerebellar neurons in the rostral fastigial nucleus (rFN) reflect these computations, but whether they explicitly encode estimates of body motion remains unclear. A key limitation in addressing this question is that, to date, cell tuning properties have only been characterized for a restricted set of motions across head-re-body orientations in the horizontal plane. Here we examined, for the first time, how 3D spatiotemporal tuning for translational motion varies with head-re-body orientation in both horizontal and vertical planes in the rFN of male macaques. While vestibular coding was profoundly influenced by head-re-body position in both planes, neurons typically reflected at most a partial transformation. However, their tuning shifts were not random but followed the specific spatial trajectories predicted for a 3D transformation. We show that these properties facilitate the linear decoding of fully body-centered motion representations in 3D with a broad range of temporal characteristics from small groups of 5-7 cells. These results demonstrate that the vestibular reference frame transformation required to compute body motion is indeed encoded by cerebellar neurons. We propose that maintaining partially transformed rFN responses with different spatiotemporal properties facilitates the creation of downstream body motion representations with a range of dynamic characteristics, consistent with the functional requirements for tasks such as postural control and reaching. Estimates of body motion are essential for many daily activities. Vestibular signals are important contributors to such estimates but must be transformed from a head- to a body-centered reference frame. Here, we provide the first direct demonstration that the cerebellum computes this transformation fully in 3D. We show that the output of these computations is reflected in the tuning properties of deep cerebellar rostral fastigial nucleus neurons in a specific distributed fashion that facilitates the efficient creation of body-centered translation estimates with a broad range of temporal properties (i.e., from acceleration to position). These findings support an important role for the rostral fastigial nucleus as a source of body translation estimates functionally relevant for behaviors ranging from postural control to perception. Many daily behaviors rely critically on estimates of our body motion. Such estimates must be computed by combining neck proprioceptive signals with vestibular signals that have been transformed from a head- to a body-centered reference frame. Recent studies showed that deep cerebellar neurons in the rostral fastigial nucleus (rFN) reflect these computations, but whether they explicitly encode estimates of body motion remains unclear. A key limitation in addressing this question is that, to date, cell tuning properties have only been characterized for a restricted set of motions across head-re-body orientations in the horizontal plane. Here we examined, for the first time, how 3D spatiotemporal tuning for translational motion varies with head-re-body orientation in both horizontal and vertical planes in the rFN of male macaques. While vestibular coding was profoundly influenced by head-re-body position in both planes, neurons typically reflected at most a partial transformation. However, their tuning shifts were not random but followed the specific spatial trajectories predicted for a 3D transformation. We show that these properties facilitate the linear decoding of fully body-centered motion representations in 3D with a broad range of temporal characteristics from small groups of 5–7 cells. These results demonstrate that the vestibular reference frame transformation required to compute body motion is indeed encoded by cerebellar neurons. We propose that maintaining partially transformed rFN responses with different spatiotemporal properties facilitates the creation of downstream body motion representations with a range of dynamic characteristics, consistent with the functional requirements for tasks such as postural control and reaching. SIGNIFICANCE STATEMENT Estimates of body motion are essential for many daily activities. Vestibular signals are important contributors to such estimates but must be transformed from a head- to a body-centered reference frame. Here, we provide the first direct demonstration that the cerebellum computes this transformation fully in 3D. We show that the output of these computations is reflected in the tuning properties of deep cerebellar rostral fastigial nucleus neurons in a specific distributed fashion that facilitates the efficient creation of body-centered translation estimates with a broad range of temporal properties (i.e., from acceleration to position). These findings support an important role for the rostral fastigial nucleus as a source of body translation estimates functionally relevant for behaviors ranging from postural control to perception. |
Author | Brooks, Jessica X Martin, Christophe Z Green, Andrea M |
Author_xml | – sequence: 1 givenname: Christophe Z surname: Martin fullname: Martin, Christophe Z organization: Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada – sequence: 2 givenname: Jessica X surname: Brooks fullname: Brooks, Jessica X organization: Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada – sequence: 3 givenname: Andrea M surname: Green fullname: Green, Andrea M email: andrea.green@umontreal.ca organization: Département de Neurosciences, Université de Montréal, Montréal, Québec H3C 3J7, Canada andrea.green@umontreal.ca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29487123$$D View this record in MEDLINE/PubMed |
BookMark | eNpdUV1v3CAQRFWq5pL0L0SW-tIXX1jAxrxUai-XjypKpMvlGWEMF04-uIJdKf--WJdGaZ9gd2dmdzQn6MgHbxA6BzyHitCLrTdjDEm7OQGoS-BzgqH5gGZ5KkrCMByhGSYclzXj7BidpLTFGHMM_BM6JoI1HAidobAKvSmCLVYhDVH1xZVKg9u4_LufNvhUOF8svQ6d85tCFT9C91IujB9MNF2xMvtoUq7U4IKfdNZR-dQfysxcP0djiku3Mz7lVjpDH63qk_n8-p6ip6vlenFT3j1c3y6-35W6ws1QKtY1LaZcQIcbUIQQ2uC2BQvWco0taytbN1S1kDFW8xo4FRQaaAWpdFPRU_TtoLsf253pdD4xu5P76HYqvsignPx34t2z3ITfsq5EjRnJAl9fBWL4NZo0yJ1L2vS98iaMSRKMBQHC-bTry3_QbRijz_YySjAmKCEio-oDSufcUjT27RjAcspU_rxfPq0eHhe3cspUApdTppl4_t7KG-1viPQP0Jqhpg |
CitedBy_id | crossref_primary_10_1016_j_tins_2023_08_009 crossref_primary_10_1152_jn_00688_2019 crossref_primary_10_1007_s12311_020_01190_y crossref_primary_10_1016_j_cophys_2020_12_001 crossref_primary_10_1038_s41583_019_0153_1 crossref_primary_10_1073_pnas_1915873117 crossref_primary_10_7554_eLife_75018 crossref_primary_10_1016_j_conb_2018_04_004 crossref_primary_10_3389_fncel_2018_00456 |
Cites_doi | 10.1038/nn.2357 10.1152/jn.1999.82.1.34 10.1152/jn.01260.2003 10.1523/JNEUROSCI.15-10-06461.1995 10.1152/jn.00021.2005 10.1007/s00422-001-0290-1 10.1523/JNEUROSCI.6472-10.2011 10.1016/S0957-4271(97)00077-3 10.1038/331679a0 10.1523/JNEUROSCI.4476-10.2011 10.1523/JNEUROSCI.3822-06.2007 10.1038/nn1382 10.1007/s00422-001-0289-7 10.1126/science.285.5425.257 10.1038/nn1480 10.1002/cne.901740206 10.1152/jn.00419.2013 10.1016/0168-0102(95)00932-J 10.1093/cercor/bhn177 10.1038/375232a0 10.1016/S0074-7742(08)60347-5 10.1523/JNEUROSCI.3553-06.2007 10.1152/jn.00879.2004 10.1002/cne.903260308 10.1007/BF00229416 10.1016/j.neuron.2007.06.003 10.1016/S0079-6123(06)65010-3 10.1152/jn.01338.2006 10.1038/29777 10.1038/nn1935 10.1109/10.99068 10.1002/1096-9861(20001204)428:1<112::AID-CNE8>3.0.CO;2-9 10.1152/jn.00306.2004 10.1523/JNEUROSCI.0395-11.2011 10.1152/jn.01234.2003 10.1016/j.neuron.2009.11.005 10.1162/jocn.1997.9.2.222 10.1146/annurev-neuro-061010-113749 10.1163/22134808-00002501 10.1038/nn.3530 10.1038/nature02754 10.1007/978-1-4899-4541-9 10.1111/j.1749-6632.1999.tb09211.x 10.1016/j.neuron.2013.09.006 10.1152/jn.01110.2007 10.1007/s00221-005-0098-7 10.1152/jn.00485.2001 10.1007/s002210100747 10.1016/0165-0173(83)90015-2 10.1038/90541 10.1523/JNEUROSCI.10-04-01176.1990 10.1126/science.4048942 10.1146/annurev.ne.15.030192.002155 10.1016/S0306-4522(99)00275-4 10.1038/416632a 10.1073/pnas.0913209107 10.1152/jn.1976.39.5.996 10.1214/aos/1176346577 10.1523/JNEUROSCI.3931-07.2007 10.1152/jn.1976.39.5.970 10.1152/jn.00518.2002 10.1016/j.cub.2006.05.063 10.1152/jn.00983.2003 10.1177/107385840100700512 10.1523/JNEUROSCI.0109-04.2004 10.1038/nn.4077 10.1523/JNEUROSCI.3460-12.2013 10.1152/jn.1953.16.5.451 10.1152/jn.2000.84.4.2113 10.1152/jn.1991.65.6.1360 10.1523/JNEUROSCI.2485-15.2016 10.1007/s00221-007-0997-x 10.1523/JNEUROSCI.0990-11.2011 10.1007/s00221-005-0256-y 10.3233/VES-1993-3204 10.1088/1741-2560/2/3/S02 10.1038/19303 10.1016/j.cub.2013.04.029 10.1523/JNEUROSCI.4029-09.2010 10.1152/jn.00849.2003 10.3389/fnint.2014.00032 10.1523/JNEUROSCI.1937-09.2009 10.1016/j.conb.2010.04.009 10.1038/nn1986 10.1073/pnas.93.21.11956 10.1016/j.cub.2005.08.009 10.1162/089892900562363 10.1523/JNEUROSCI.2030-14.2014 10.1016/j.neuroscience.2008.07.079 |
ContentType | Journal Article |
Copyright | Copyright © 2018 the authors 0270-6474/18/383584-19$15.00/0. Copyright Society for Neuroscience Apr 4, 2018 Copyright © 2018 the authors 0270-6474/18/383584-19$15.00/0 2018 |
Copyright_xml | – notice: Copyright © 2018 the authors 0270-6474/18/383584-19$15.00/0. – notice: Copyright Society for Neuroscience Apr 4, 2018 – notice: Copyright © 2018 the authors 0270-6474/18/383584-19$15.00/0 2018 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 5PM |
DOI | 10.1523/jneurosci.2116-17.2018 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Toxicology Abstracts Animal Behavior Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 3602 |
ExternalDocumentID | 10_1523_JNEUROSCI_2116_17_2018 29487123 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CIHR grantid: MOP-93548 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 53G 5GY 5RE 5VS AAFWJ ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW AENEX AFCFT AFHIN AFOSN AHWXS AIZTS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P GX1 H13 HYE H~9 KQ8 L7B NPM OK1 P0W P2P QZG R.V RHF RHI RPM TFN TR2 W8F WH7 WOQ X7M YBU YHG YKV YNH YSK AAYXX CITATION 7QG 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 5PM |
ID | FETCH-LOGICAL-c508t-a4d8b03791d081a222380bb1f1ff7c0f4b5f683ab1379fc7617393181b925c853 |
IEDL.DBID | RPM |
ISSN | 0270-6474 |
IngestDate | Tue Sep 17 21:26:20 EDT 2024 Fri Oct 25 07:22:13 EDT 2024 Thu Oct 10 22:02:21 EDT 2024 Fri Aug 23 03:05:40 EDT 2024 Tue Aug 27 13:44:35 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | motion estimation reference frame vestibular cerebellum computation |
Language | English |
License | Copyright © 2018 the authors 0270-6474/18/383584-19$15.00/0. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-a4d8b03791d081a222380bb1f1ff7c0f4b5f683ab1379fc7617393181b925c853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: A.M.G. designed research; C.Z.M., J.X.B., and A.M.G. performed research; C.Z.M., J.X.B., and A.M.G. analyzed data; C.Z.M. and A.M.G. wrote the paper. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/38/14/3584.full.pdf |
PMID | 29487123 |
PQID | 2094493229 |
PQPubID | 2049535 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6596042 proquest_miscellaneous_2009212775 proquest_journals_2094493229 crossref_primary_10_1523_JNEUROSCI_2116_17_2018 pubmed_primary_29487123 |
PublicationCentury | 2000 |
PublicationDate | 2018-04-04 |
PublicationDateYYYYMMDD | 2018-04-04 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Baltimore |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2018 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2023041803302617000_38.14.3584.48 Merfeld (2023041803302617000_38.14.3584.63) 1993; 3 2023041803302617000_38.14.3584.47 2023041803302617000_38.14.3584.46 2023041803302617000_38.14.3584.45 2023041803302617000_38.14.3584.89 2023041803302617000_38.14.3584.44 2023041803302617000_38.14.3584.88 2023041803302617000_38.14.3584.43 2023041803302617000_38.14.3584.87 2023041803302617000_38.14.3584.42 2023041803302617000_38.14.3584.86 2023041803302617000_38.14.3584.41 2023041803302617000_38.14.3584.85 2023041803302617000_38.14.3584.40 2023041803302617000_38.14.3584.84 2023041803302617000_38.14.3584.83 2023041803302617000_38.14.3584.82 2023041803302617000_38.14.3584.81 2023041803302617000_38.14.3584.80 2023041803302617000_38.14.3584.49 2023041803302617000_38.14.3584.37 2023041803302617000_38.14.3584.36 2023041803302617000_38.14.3584.35 2023041803302617000_38.14.3584.79 Berens (2023041803302617000_38.14.3584.12) 2009; 31 2023041803302617000_38.14.3584.34 2023041803302617000_38.14.3584.78 2023041803302617000_38.14.3584.33 2023041803302617000_38.14.3584.77 2023041803302617000_38.14.3584.32 2023041803302617000_38.14.3584.76 2023041803302617000_38.14.3584.31 2023041803302617000_38.14.3584.75 2023041803302617000_38.14.3584.30 2023041803302617000_38.14.3584.74 2023041803302617000_38.14.3584.73 2023041803302617000_38.14.3584.72 2023041803302617000_38.14.3584.70 Robinson (2023041803302617000_38.14.3584.71) 1963; 10 2023041803302617000_38.14.3584.39 2023041803302617000_38.14.3584.38 2023041803302617000_38.14.3584.26 2023041803302617000_38.14.3584.25 2023041803302617000_38.14.3584.69 2023041803302617000_38.14.3584.24 2023041803302617000_38.14.3584.68 2023041803302617000_38.14.3584.23 2023041803302617000_38.14.3584.67 2023041803302617000_38.14.3584.22 2023041803302617000_38.14.3584.21 2023041803302617000_38.14.3584.65 2023041803302617000_38.14.3584.20 2023041803302617000_38.14.3584.64 2023041803302617000_38.14.3584.62 2023041803302617000_38.14.3584.61 2023041803302617000_38.14.3584.60 Asanuma (2023041803302617000_38.14.3584.7) 1983; 286 2023041803302617000_38.14.3584.29 2023041803302617000_38.14.3584.28 2023041803302617000_38.14.3584.27 2023041803302617000_38.14.3584.15 2023041803302617000_38.14.3584.59 2023041803302617000_38.14.3584.9 2023041803302617000_38.14.3584.14 2023041803302617000_38.14.3584.58 2023041803302617000_38.14.3584.8 2023041803302617000_38.14.3584.13 2023041803302617000_38.14.3584.57 2023041803302617000_38.14.3584.56 2023041803302617000_38.14.3584.6 2023041803302617000_38.14.3584.11 2023041803302617000_38.14.3584.55 2023041803302617000_38.14.3584.5 2023041803302617000_38.14.3584.10 2023041803302617000_38.14.3584.54 2023041803302617000_38.14.3584.4 2023041803302617000_38.14.3584.53 2023041803302617000_38.14.3584.3 2023041803302617000_38.14.3584.52 2023041803302617000_38.14.3584.2 2023041803302617000_38.14.3584.51 2023041803302617000_38.14.3584.1 2023041803302617000_38.14.3584.50 2023041803302617000_38.14.3584.91 2023041803302617000_38.14.3584.90 2023041803302617000_38.14.3584.19 Mergner (2023041803302617000_38.14.3584.66) 1991; 85 2023041803302617000_38.14.3584.18 2023041803302617000_38.14.3584.17 2023041803302617000_38.14.3584.16 |
References_xml | – volume: 31 start-page: 1 year: 2009 ident: 2023041803302617000_38.14.3584.12 article-title: CircStat: a MATLAB toolbox for circular statistics publication-title: Stat Softw contributor: fullname: Berens – ident: 2023041803302617000_38.14.3584.60 doi: 10.1038/nn.2357 – ident: 2023041803302617000_38.14.3584.79 doi: 10.1152/jn.1999.82.1.34 – ident: 2023041803302617000_38.14.3584.11 doi: 10.1152/jn.01260.2003 – ident: 2023041803302617000_38.14.3584.73 doi: 10.1523/JNEUROSCI.15-10-06461.1995 – ident: 2023041803302617000_38.14.3584.69 doi: 10.1152/jn.00021.2005 – ident: 2023041803302617000_38.14.3584.91 doi: 10.1007/s00422-001-0290-1 – ident: 2023041803302617000_38.14.3584.31 doi: 10.1523/JNEUROSCI.6472-10.2011 – ident: 2023041803302617000_38.14.3584.57 doi: 10.1016/S0957-4271(97)00077-3 – ident: 2023041803302617000_38.14.3584.90 doi: 10.1038/331679a0 – ident: 2023041803302617000_38.14.3584.26 doi: 10.1523/JNEUROSCI.4476-10.2011 – ident: 2023041803302617000_38.14.3584.45 doi: 10.1523/JNEUROSCI.3822-06.2007 – ident: 2023041803302617000_38.14.3584.81 doi: 10.1038/nn1382 – ident: 2023041803302617000_38.14.3584.16 doi: 10.1007/s00422-001-0289-7 – ident: 2023041803302617000_38.14.3584.9 doi: 10.1126/science.285.5425.257 – ident: 2023041803302617000_38.14.3584.8 doi: 10.1038/nn1480 – ident: 2023041803302617000_38.14.3584.10 doi: 10.1002/cne.901740206 – ident: 2023041803302617000_38.14.3584.68 doi: 10.1152/jn.00419.2013 – ident: 2023041803302617000_38.14.3584.48 doi: 10.1016/0168-0102(95)00932-J – ident: 2023041803302617000_38.14.3584.13 doi: 10.1093/cercor/bhn177 – ident: 2023041803302617000_38.14.3584.20 doi: 10.1038/375232a0 – ident: 2023041803302617000_38.14.3584.67 doi: 10.1016/S0074-7742(08)60347-5 – ident: 2023041803302617000_38.14.3584.39 doi: 10.1523/JNEUROSCI.3553-06.2007 – ident: 2023041803302617000_38.14.3584.77 doi: 10.1152/jn.00879.2004 – ident: 2023041803302617000_38.14.3584.1 doi: 10.1002/cne.903260308 – volume: 85 start-page: 389 year: 1991 ident: 2023041803302617000_38.14.3584.66 article-title: Human perception of horizontal trunk and head rotation in space during vestibular and neck stimulation publication-title: Exp Brain Res doi: 10.1007/BF00229416 contributor: fullname: Mergner – ident: 2023041803302617000_38.14.3584.87 doi: 10.1016/j.neuron.2007.06.003 – ident: 2023041803302617000_38.14.3584.42 doi: 10.1016/S0079-6123(06)65010-3 – ident: 2023041803302617000_38.14.3584.56 doi: 10.1152/jn.01338.2006 – ident: 2023041803302617000_38.14.3584.82 doi: 10.1038/29777 – ident: 2023041803302617000_38.14.3584.46 doi: 10.1038/nn1935 – ident: 2023041803302617000_38.14.3584.4 doi: 10.1109/10.99068 – ident: 2023041803302617000_38.14.3584.53 doi: 10.1002/1096-9861(20001204)428:1<112::AID-CNE8>3.0.CO;2-9 – ident: 2023041803302617000_38.14.3584.80 doi: 10.1152/jn.00306.2004 – ident: 2023041803302617000_38.14.3584.27 doi: 10.1523/JNEUROSCI.0395-11.2011 – ident: 2023041803302617000_38.14.3584.41 doi: 10.1152/jn.01234.2003 – ident: 2023041803302617000_38.14.3584.24 doi: 10.1016/j.neuron.2009.11.005 – ident: 2023041803302617000_38.14.3584.70 doi: 10.1162/jocn.1997.9.2.222 – ident: 2023041803302617000_38.14.3584.32 doi: 10.1146/annurev-neuro-061010-113749 – ident: 2023041803302617000_38.14.3584.14 doi: 10.1163/22134808-00002501 – ident: 2023041803302617000_38.14.3584.52 doi: 10.1038/nn.3530 – ident: 2023041803302617000_38.14.3584.6 doi: 10.1038/nature02754 – ident: 2023041803302617000_38.14.3584.36 doi: 10.1007/978-1-4899-4541-9 – ident: 2023041803302617000_38.14.3584.65 doi: 10.1111/j.1749-6632.1999.tb09211.x – ident: 2023041803302617000_38.14.3584.29 doi: 10.1016/j.neuron.2013.09.006 – volume: 10 start-page: 137 year: 1963 ident: 2023041803302617000_38.14.3584.71 article-title: A method of measuring eye movement using a scleral search coil in a magnetic field publication-title: IEEE Trans Biomed Eng contributor: fullname: Robinson – ident: 2023041803302617000_38.14.3584.85 doi: 10.1152/jn.01110.2007 – ident: 2023041803302617000_38.14.3584.30 doi: 10.1007/s00221-005-0098-7 – ident: 2023041803302617000_38.14.3584.62 doi: 10.1152/jn.00485.2001 – ident: 2023041803302617000_38.14.3584.89 doi: 10.1007/s002210100747 – volume: 286 start-page: 237 year: 1983 ident: 2023041803302617000_38.14.3584.7 article-title: Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey publication-title: Brain Res doi: 10.1016/0165-0173(83)90015-2 contributor: fullname: Asanuma – ident: 2023041803302617000_38.14.3584.33 doi: 10.1038/90541 – ident: 2023041803302617000_38.14.3584.3 doi: 10.1523/JNEUROSCI.10-04-01176.1990 – ident: 2023041803302617000_38.14.3584.2 doi: 10.1126/science.4048942 – ident: 2023041803302617000_38.14.3584.84 doi: 10.1146/annurev.ne.15.030192.002155 – ident: 2023041803302617000_38.14.3584.58 doi: 10.1016/S0306-4522(99)00275-4 – ident: 2023041803302617000_38.14.3584.21 doi: 10.1038/416632a – ident: 2023041803302617000_38.14.3584.23 doi: 10.1073/pnas.0913209107 – ident: 2023041803302617000_38.14.3584.38 doi: 10.1152/jn.1976.39.5.996 – ident: 2023041803302617000_38.14.3584.47 doi: 10.1214/aos/1176346577 – ident: 2023041803302617000_38.14.3584.61 doi: 10.1523/JNEUROSCI.3931-07.2007 – ident: 2023041803302617000_38.14.3584.37 doi: 10.1152/jn.1976.39.5.970 – ident: 2023041803302617000_38.14.3584.35 doi: 10.1152/jn.00518.2002 – ident: 2023041803302617000_38.14.3584.40 doi: 10.1016/j.cub.2006.05.063 – ident: 2023041803302617000_38.14.3584.49 doi: 10.1152/jn.00983.2003 – ident: 2023041803302617000_38.14.3584.75 doi: 10.1177/107385840100700512 – ident: 2023041803302617000_38.14.3584.76 doi: 10.1523/JNEUROSCI.0109-04.2004 – ident: 2023041803302617000_38.14.3584.19 doi: 10.1038/nn.4077 – ident: 2023041803302617000_38.14.3584.55 doi: 10.1523/JNEUROSCI.3460-12.2013 – ident: 2023041803302617000_38.14.3584.83 doi: 10.1152/jn.1953.16.5.451 – ident: 2023041803302617000_38.14.3584.5 doi: 10.1152/jn.2000.84.4.2113 – ident: 2023041803302617000_38.14.3584.22 doi: 10.1152/jn.1991.65.6.1360 – ident: 2023041803302617000_38.14.3584.28 doi: 10.1523/JNEUROSCI.2485-15.2016 – ident: 2023041803302617000_38.14.3584.15 doi: 10.1007/s00221-007-0997-x – ident: 2023041803302617000_38.14.3584.34 doi: 10.1523/JNEUROSCI.0990-11.2011 – ident: 2023041803302617000_38.14.3584.59 doi: 10.1007/s00221-005-0256-y – volume: 3 start-page: 141 year: 1993 ident: 2023041803302617000_38.14.3584.63 article-title: A multidimensional model of the effect of gravity on the spatial orientation of the monkey publication-title: J Vestib Res doi: 10.3233/VES-1993-3204 contributor: fullname: Merfeld – ident: 2023041803302617000_38.14.3584.44 doi: 10.1088/1741-2560/2/3/S02 – ident: 2023041803302617000_38.14.3584.64 doi: 10.1038/19303 – ident: 2023041803302617000_38.14.3584.18 doi: 10.1016/j.cub.2013.04.029 – ident: 2023041803302617000_38.14.3584.25 doi: 10.1523/JNEUROSCI.4029-09.2010 – ident: 2023041803302617000_38.14.3584.50 doi: 10.1152/jn.00849.2003 – ident: 2023041803302617000_38.14.3584.88 doi: 10.3389/fnint.2014.00032 – ident: 2023041803302617000_38.14.3584.17 doi: 10.1523/JNEUROSCI.1937-09.2009 – ident: 2023041803302617000_38.14.3584.43 doi: 10.1016/j.conb.2010.04.009 – ident: 2023041803302617000_38.14.3584.54 doi: 10.1038/nn1986 – ident: 2023041803302617000_38.14.3584.74 doi: 10.1073/pnas.93.21.11956 – ident: 2023041803302617000_38.14.3584.78 doi: 10.1016/j.cub.2005.08.009 – ident: 2023041803302617000_38.14.3584.86 doi: 10.1162/089892900562363 – ident: 2023041803302617000_38.14.3584.72 doi: 10.1523/JNEUROSCI.2030-14.2014 – ident: 2023041803302617000_38.14.3584.51 doi: 10.1016/j.neuroscience.2008.07.079 |
SSID | ssj0007017 |
Score | 2.3718507 |
Snippet | Many daily behaviors rely critically on estimates of our body motion. Such estimates must be computed by combining neck proprioceptive signals with vestibular... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 3584 |
SubjectTerms | Animals Body Image Cerebellar Nuclei - cytology Cerebellar Nuclei - physiology Cerebellum Coding Decoding Dynamic characteristics Estimates Head Head Movements Horizontal orientation Macaca mulatta Male Neck Neural coding Neurons Neurons - physiology Orientation, Spatial Planes Posture Product design Properties (attributes) Proprioception Representations Spatial discrimination Three dimensional motion Translation Translational motion Tuning Vestibular system Vestibule, Labyrinth - physiology |
Title | Role of Rostral Fastigial Neurons in Encoding a Body-Centered Representation of Translation in Three Dimensions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29487123 https://www.proquest.com/docview/2094493229 https://search.proquest.com/docview/2009212775 https://pubmed.ncbi.nlm.nih.gov/PMC6596042 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6xnHqp2tJHWopcqerNmzhx4uQICyugArVbkLhFsWOLlVgHdZcD_54Zb7Ji2xunHGznNePMN5NvZgC-J5mjPm-C51q2XOo24aWWGXeNkFqYSjQhfezisji9luc3-c0O5EMuTCDtGz0f-7vF2M9vA7fyfmHigScW_7qYFDmVFEnjEYxQQQcXvf_8qiS02UV3C_0iqWSfFowOV3x-SfS4P5OzMbo9BReKqF3UsS-tELeLNNs2Tv8hzn-Jk88s0fQNvO4hJDtc3-pb2LH-HewdenSfF4_sBwukzhAt34Nu1t1Z1jk260JMg00bqqqBSsdCWQ6_ZHPPTrzpyIaxhh117SOnkC_18GSzwJPt05M8nSfYtjV_jlZeoSpYdkwtAijstnwP19OTq8kp73sscIPQbMUb2ZY6yVQlWgQHDaGFMtFaOOGcMomTOndFmTVa4BxnFAKerMLvgNBVmhu09R9g13fefgImUnI2U5drPNq20KokvKSdLYy2WRlBPLzc-n5dSqMmFwQlU28kU5NkaqFqkkwE-4MM6n5rLXGgkhJRZ1pF8G0zjJuC_nQ03nYPNCepqHS9yiP4uBbZ5pKDrCNQW8LcTKCC29sjqIeh8Havd59fvPILvKLnCswfuQ-7q78P9iuCmpU-gNHP3-VBUOUnHED11w |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa67rBdhm7dw23XasCwm2PLli372GUN0q4JhiwFejMsWcICNHKxpIf--5KKHSzbbScfJPlFyvxIfyQBPseppT5vPMyUaEKhmjgslEhDW3OhuC557dPHJtN8fCOubrPbPcj6XBhP2tdqMXB3y4Fb_PLcyvuljnqeWPRjMswzKimSRM_gOe7XWPROevcBlrFvtIsOF3pGQoouMRhdruhqSgS5n8PLATo-ecglkbuoZ19SInLnSbprnv7BnH9TJ_-wRaMDeNWBSHa-udnXsGfcGzg8d-hALx_ZF-ZpnT5efgjtrL0zrLVs1vqoBhvVVFcD1Y75whxuxRaOXTjdkhVjNfvaNo8hBX2piyebeaZsl6Dk6Dzeum0YdLRyjspg2DdqEkCBt9VbuBldzIfjsOuyEGoEZ-uwFk2h4lSWvEF4UBNeKGKluOXWSh1boTKbF2mtOM6xWiLkSUv8EnBVJplGa_8O9l3rzAdgPCF3M7GZwqNpciULQkzKmlwrkxYBRP3Lre43xTQqckJQMtVWMhVJpuKyIskEcNLLoOo21woHSiEQdyZlAJ-2w7gt6F9H7Uz7QHPikorXyyyA9xuRbS_ZyzoAuSPM7QQqub07gproS293mnf03yvP4MV4Prmuri-n34_hJT2j5wGJE9hf_34wHxHirNWpV-gnaTr4OA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BkRAXBJSPQAEjIW7exIkTJ8ey7aotdFUtrdRbFDu2ulLXWbHbQ_89M95k1YUbpxxs5-uNM2-c5xmAr0nmqM6b4LmWLZe6TXipZcZdI6QWphJN2D52Pi1OruTZdX79oNRXEO0bPR_528XIz2-CtnK5MPGgE4svzsdFTilF0njZuvgxPME5mxRDoN5_hFUSiu1i0IXRkVSy3xyMYVd8NiWR3K_x6QiDn4ILRQIvqtuXVsjeRZrtuqh_eOff8skH_mjyAp73RJIdbm74JTyy_hXsH3oMohf37BsL0s6wZr4P3ay7taxzbNaFlQ02aSi3BpoeC8k5_IrNPTv2piNPxhr2vWvvOS38UiVPNgtq2X6TkqfzBA-3UdHRyEs0CMuOqFAALb6tXsPV5PhyfML7SgvcIEFb80a2pU4yVYkWKUJDnKFMtBZOOKdM4qTOXVFmjRbYxxmFtCer8GsgdJXmBj3-G9jznbfvgImUQs7U5RqPti20Kok1aWcLo21WRhAPL7debhJq1BSIIDL1FpmakKmFqgmZCA4GDOp-gq2woZISuWdaRfBl24xTg_53NN52d9QnqSiBvcojeLuBbHvJAesI1A6Y2w6Udnu3Ba0xpN_ure_9f4_8DE8vjib1z9Ppjw_wjB4xSIHkAeytf9_Zj8hy1vpTsOc_BkD5Sw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+Rostral+Fastigial+Neurons+in+Encoding+a+Body-Centered+Representation+of+Translation+in+Three+Dimensions&rft.jtitle=The+Journal+of+neuroscience&rft.au=Martin%2C+Christophe+Z&rft.au=Brooks%2C+Jessica+X&rft.au=Green%2C+Andrea+M&rft.date=2018-04-04&rft.eissn=1529-2401&rft.volume=38&rft.issue=14&rft.spage=3584&rft.epage=3602&rft_id=info:doi/10.1523%2FJNEUROSCI.2116-17.2018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |