Human Activity Recognition Based on Residual Network and BiLSTM

Due to the wide application of human activity recognition (HAR) in sports and health, a large number of HAR models based on deep learning have been proposed. However, many existing models ignore the effective extraction of spatial and temporal features of human activity data. This paper proposes a d...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 2; p. 635
Main Authors Li, Yong, Wang, Luping
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the wide application of human activity recognition (HAR) in sports and health, a large number of HAR models based on deep learning have been proposed. However, many existing models ignore the effective extraction of spatial and temporal features of human activity data. This paper proposes a deep learning model based on residual block and bi-directional LSTM (BiLSTM). The model first extracts spatial features of multidimensional signals of MEMS inertial sensors automatically using the residual block, and then obtains the forward and backward dependencies of feature sequence using BiLSTM. Finally, the obtained features are fed into the Softmax layer to complete the human activity recognition. The optimal parameters of the model are obtained by experiments. A homemade dataset containing six common human activities of sitting, standing, walking, running, going upstairs and going downstairs is developed. The proposed model is evaluated on our dataset and two public datasets, WISDM and PAMAP2. The experimental results show that the proposed model achieves the accuracy of 96.95%, 97.32% and 97.15% on our dataset, WISDM and PAMAP2, respectively. Compared with some existing models, the proposed model has better performance and fewer parameters.
AbstractList Due to the wide application of human activity recognition (HAR) in sports and health, a large number of HAR models based on deep learning have been proposed. However, many existing models ignore the effective extraction of spatial and temporal features of human activity data. This paper proposes a deep learning model based on residual block and bi-directional LSTM (BiLSTM). The model first extracts spatial features of multidimensional signals of MEMS inertial sensors automatically using the residual block, and then obtains the forward and backward dependencies of feature sequence using BiLSTM. Finally, the obtained features are fed into the Softmax layer to complete the human activity recognition. The optimal parameters of the model are obtained by experiments. A homemade dataset containing six common human activities of sitting, standing, walking, running, going upstairs and going downstairs is developed. The proposed model is evaluated on our dataset and two public datasets, WISDM and PAMAP2. The experimental results show that the proposed model achieves the accuracy of 96.95%, 97.32% and 97.15% on our dataset, WISDM and PAMAP2, respectively. Compared with some existing models, the proposed model has better performance and fewer parameters.
Due to the wide application of human activity recognition (HAR) in sports and health, a large number of HAR models based on deep learning have been proposed. However, many existing models ignore the effective extraction of spatial and temporal features of human activity data. This paper proposes a deep learning model based on residual block and bi-directional LSTM (BiLSTM). The model first extracts spatial features of multidimensional signals of MEMS inertial sensors automatically using the residual block, and then obtains the forward and backward dependencies of feature sequence using BiLSTM. Finally, the obtained features are fed into the Softmax layer to complete the human activity recognition. The optimal parameters of the model are obtained by experiments. A homemade dataset containing six common human activities of sitting, standing, walking, running, going upstairs and going downstairs is developed. The proposed model is evaluated on our dataset and two public datasets, WISDM and PAMAP2. The experimental results show that the proposed model achieves the accuracy of 96.95%, 97.32% and 97.15% on our dataset, WISDM and PAMAP2, respectively. Compared with some existing models, the proposed model has better performance and fewer parameters.Due to the wide application of human activity recognition (HAR) in sports and health, a large number of HAR models based on deep learning have been proposed. However, many existing models ignore the effective extraction of spatial and temporal features of human activity data. This paper proposes a deep learning model based on residual block and bi-directional LSTM (BiLSTM). The model first extracts spatial features of multidimensional signals of MEMS inertial sensors automatically using the residual block, and then obtains the forward and backward dependencies of feature sequence using BiLSTM. Finally, the obtained features are fed into the Softmax layer to complete the human activity recognition. The optimal parameters of the model are obtained by experiments. A homemade dataset containing six common human activities of sitting, standing, walking, running, going upstairs and going downstairs is developed. The proposed model is evaluated on our dataset and two public datasets, WISDM and PAMAP2. The experimental results show that the proposed model achieves the accuracy of 96.95%, 97.32% and 97.15% on our dataset, WISDM and PAMAP2, respectively. Compared with some existing models, the proposed model has better performance and fewer parameters.
Audience Academic
Author Wang, Luping
Li, Yong
AuthorAffiliation 1 School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; liyong67@mail2.sysu.edu.cn
2 School of Electronics and Communication Engineering, Sun Yat-sen University, Guangzhou 510006, China
AuthorAffiliation_xml – name: 2 School of Electronics and Communication Engineering, Sun Yat-sen University, Guangzhou 510006, China
– name: 1 School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China; liyong67@mail2.sysu.edu.cn
Author_xml – sequence: 1
  givenname: Yong
  surname: Li
  fullname: Li, Yong
– sequence: 2
  givenname: Luping
  surname: Wang
  fullname: Wang, Luping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35062604$$D View this record in MEDLINE/PubMed
BookMark eNptkktvFDEMxyNURB9w4AugkbjAYds8J5kL1bYqtNICUinnyJPHkmUmKZOZon77Zrtl1VYoh1jOz3_bsffRTkzRIfSW4EPGGnyUKcUU10y8QHuEUz5TxbHzyN5F-zmvMKaMMfUK7TKBa1pjvoeOz6ceYjU3Y7gJ42116UxaxjCGFKsTyM5Wxbh0OdgJuuqbG_-m4XcF0VYnYfHj6utr9NJDl92bh_sA_fx8dnV6Plt8_3JxOl_MjMBqnAGDpvFGWBC4kZIq0tScc2JaRnzrVaOwk1ZwCkZ5YxzlIDkvPRlCsMUtO0AXG12bYKWvh9DDcKsTBH3vSMNSwzAG0zktQAIRFFtPLJeMg3MSs0Z5R0Xd1rJofdpoXU9t76xxcRygeyL69CWGX3qZbrSSUhFGi8CHB4Eh_ZlcHnUfsnFdB9GlKWtaU1paFAQX9P0zdJWmIZavWlOECdbcU4cbagmlgRB9KnlNOdb1wZRh-1D885KdNkTJpgS8e9zCtvZ_gy3Axw1ghpTz4PwWIVivl0Zvl6awR89YE0ZYr0CpInT_ibgDFfm_jw
CitedBy_id crossref_primary_10_1080_03772063_2024_2402881
crossref_primary_10_1016_j_patcog_2023_110054
crossref_primary_10_32604_cmc_2023_035512
crossref_primary_10_1016_j_iot_2023_100925
crossref_primary_10_46604_peti_2024_13900
crossref_primary_10_1007_s12530_022_09480_y
crossref_primary_10_1186_s12885_023_11364_6
crossref_primary_10_1016_j_imavis_2024_105234
crossref_primary_10_3390_s24020681
crossref_primary_10_1109_ACCESS_2024_3493389
crossref_primary_10_1109_JSEN_2024_3450499
crossref_primary_10_1109_JSEN_2024_3422272
crossref_primary_10_1007_s40747_024_01555_4
crossref_primary_10_32604_cmc_2023_040506
crossref_primary_10_1016_j_aiia_2024_04_002
crossref_primary_10_3390_electronics12234772
crossref_primary_10_1142_S021951942250066X
crossref_primary_10_1007_s13369_024_08840_x
crossref_primary_10_1186_s42408_023_00203_5
crossref_primary_10_3389_frai_2024_1424190
crossref_primary_10_3390_s22103865
crossref_primary_10_3390_s23010006
crossref_primary_10_1016_j_jocs_2024_102377
crossref_primary_10_1371_journal_pone_0290912
crossref_primary_10_3233_AIS_220125
crossref_primary_10_1186_s40538_024_00681_y
crossref_primary_10_3390_bios12060393
crossref_primary_10_1109_JBHI_2024_3455426
crossref_primary_10_1007_s11042_023_17289_3
crossref_primary_10_1111_coin_12565
crossref_primary_10_1007_s00521_023_08863_9
crossref_primary_10_1109_ACCESS_2024_3517417
crossref_primary_10_1109_JSEN_2023_3267243
crossref_primary_10_3390_electronics13091739
crossref_primary_10_1007_s10586_024_04998_z
crossref_primary_10_3390_mi14112050
crossref_primary_10_3390_s25020311
crossref_primary_10_1109_JSEN_2024_3402314
crossref_primary_10_1016_j_procs_2023_09_011
crossref_primary_10_1109_ACCESS_2023_3282439
crossref_primary_10_3390_a16020077
crossref_primary_10_1007_s42979_024_02794_5
crossref_primary_10_3390_mi14061170
crossref_primary_10_1088_1361_6579_ad0ab8
crossref_primary_10_1109_ACCESS_2024_3468470
crossref_primary_10_1109_ACCESS_2022_3225652
crossref_primary_10_3233_AIS_230174
crossref_primary_10_32604_cmc_2023_040528
crossref_primary_10_3390_app14209170
crossref_primary_10_1109_OJCS_2023_3334528
crossref_primary_10_3390_s22083094
crossref_primary_10_1016_j_bspc_2024_107254
crossref_primary_10_1080_21642583_2024_2328549
crossref_primary_10_3390_s23094319
crossref_primary_10_1016_j_patrec_2024_06_017
crossref_primary_10_1109_JIOT_2022_3195777
crossref_primary_10_3390_s22218109
crossref_primary_10_1109_ACCESS_2023_3248509
crossref_primary_10_48084_etasr_8861
crossref_primary_10_3390_s23239339
crossref_primary_10_1109_JSEN_2023_3242603
crossref_primary_10_1016_j_jiixd_2024_01_003
crossref_primary_10_3390_s24051610
crossref_primary_10_3390_s23104650
crossref_primary_10_2478_jsiot_2024_0003
crossref_primary_10_3390_s23052593
crossref_primary_10_1109_ACCESS_2023_3314492
crossref_primary_10_3390_s22051911
crossref_primary_10_54751_revistafoco_v16n3_112
Cites_doi 10.3390/s21062141
10.1109/JSEN.2020.3045135
10.1109/IJCNN.2019.8851889
10.3390/s20247109
10.1109/JIOT.2020.3033430
10.1109/JBHI.2019.2909688
10.3390/s19173731
10.3390/s20247195
10.1109/ACCESS.2018.2890004
10.1109/ISMS.2016.51
10.1016/j.asoc.2017.09.027
10.3390/electronics10141685
10.1109/ISWC.2012.13
10.3233/JIFS-169699
10.1109/72.279181
10.3390/s21082814
10.1145/2733373.2806333
10.1016/j.inffus.2017.01.004
10.1109/JSEN.2021.3069927
10.1007/s12652-019-01380-5
10.1109/CVPR.2016.90
10.1016/j.asoc.2021.107728
10.1007/s00607-021-00928-8
10.1145/1964897.1964918
10.1109/EUVIP47703.2019.8946180
10.1007/s11036-019-01445-x
10.1109/PerComWorkshops48775.2020.9156264
10.3390/s21041214
10.2196/jmir.2208
10.1155/2018/7316954
10.1109/JIOT.2018.2846359
10.1109/ACCESS.2019.2920969
10.1109/ACCESS.2020.2982225
10.1007/978-3-642-21257-4_36
10.3390/s21051636
10.1007/s00521-021-05916-9
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22020635
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New)
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_5a7a1520df1d4734aee70398fe256b67
PMC8778132
A781291879
35062604
10_3390_s22020635
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c508t-a3a99fc5da50977281964441cb31fbf8980e7d542ac8fcce24a744206c110d0b3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:45 EDT 2025
Thu Aug 21 18:23:14 EDT 2025
Fri Jul 11 10:00:58 EDT 2025
Sat Aug 23 14:52:42 EDT 2025
Tue Jun 10 21:15:27 EDT 2025
Wed Feb 19 02:26:54 EST 2025
Thu Apr 24 23:03:35 EDT 2025
Tue Jul 01 02:41:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords inertial measurement unit
residual network
BiLSTM
human activity recognition
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-a3a99fc5da50977281964441cb31fbf8980e7d542ac8fcce24a744206c110d0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22020635
PMID 35062604
PQID 2621353910
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_5a7a1520df1d4734aee70398fe256b67
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8778132
proquest_miscellaneous_2622281510
proquest_journals_2621353910
gale_infotracacademiconefile_A781291879
pubmed_primary_35062604
crossref_primary_10_3390_s22020635
crossref_citationtrail_10_3390_s22020635
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Gao (ref_39) 2021; 111
Qi (ref_1) 2019; 6
Panwar (ref_16) 2017; 2017
Hawash (ref_28) 2021; 8
ref_35
ref_12
ref_34
Dang (ref_3) 2020; 108
ref_10
Bengio (ref_31) 1994; 5
ref_32
ref_30
Ignatov (ref_15) 2018; 62
Ramanujam (ref_13) 2021; 21
ref_19
ref_18
Huang (ref_17) 2020; 24
Radman (ref_33) 2021; 33
Wang (ref_11) 2017; 37
Wan (ref_41) 2020; 25
Kwapisz (ref_7) 2011; 12
Zhao (ref_23) 2018; 2018
Asghari (ref_2) 2020; 11
Yang (ref_36) 2019; 7
Zhang (ref_8) 2019; 7
ref_25
Wu (ref_9) 2012; 14
ref_24
ref_22
ref_20
Singh (ref_37) 2021; 21
Almaslukh (ref_14) 2018; 35
Shi (ref_38) 2020; 21
ref_29
Xia (ref_40) 2020; 8
ref_27
ref_26
Dua (ref_21) 2021; 103
Zhang (ref_4) 2017; 2017
ref_5
ref_6
References_xml – ident: ref_25
  doi: 10.3390/s21062141
– volume: 21
  start-page: 8575
  year: 2021
  ident: ref_37
  article-title: Deep ConvLSTM With Self-Attention for Human Activity Decoding Using Wearable Sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3045135
– ident: ref_20
  doi: 10.1109/IJCNN.2019.8851889
– ident: ref_35
  doi: 10.3390/s20247109
– volume: 108
  start-page: 1
  year: 2020
  ident: ref_3
  article-title: Sensor-based and vision-based human activity recognition: A comprehensive survey
  publication-title: Pattern. Recogn.
– volume: 8
  start-page: 4969
  year: 2021
  ident: ref_28
  article-title: ST-DeepHAR: Deep Learning Model for Human Activity Recognition in IoHT Applications
  publication-title: IEEE Internet Things
  doi: 10.1109/JIOT.2020.3033430
– volume: 24
  start-page: 292
  year: 2020
  ident: ref_17
  article-title: TSE-CNN: A Two-Stage End-to-End CNN for Human Activity Recognition
  publication-title: IEEE J. Biomed. Health
  doi: 10.1109/JBHI.2019.2909688
– ident: ref_19
  doi: 10.3390/s19173731
– ident: ref_26
  doi: 10.3390/s20247195
– volume: 7
  start-page: 6611
  year: 2019
  ident: ref_36
  article-title: A Wearable Activity Recognition Device Using Air-Pressure and IMU Sensors
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890004
– ident: ref_12
  doi: 10.1109/ISMS.2016.51
– volume: 62
  start-page: 915
  year: 2018
  ident: ref_15
  article-title: Real-time human activity recognition from accelerometer data using Convolutional Neural Networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.09.027
– volume: 2017
  start-page: 1
  year: 2017
  ident: ref_4
  article-title: A Review on Human Activity Recognition Using Vision-Based Method
  publication-title: J. Healthc. Eng.
– ident: ref_27
  doi: 10.3390/electronics10141685
– ident: ref_34
  doi: 10.1109/ISWC.2012.13
– volume: 35
  start-page: 1609
  year: 2018
  ident: ref_14
  article-title: A robust convolutional neural network for online smartphone-based human activity recognition
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-169699
– volume: 5
  start-page: 157
  year: 1994
  ident: ref_31
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– ident: ref_6
  doi: 10.3390/s21082814
– ident: ref_18
  doi: 10.1145/2733373.2806333
– volume: 37
  start-page: 1
  year: 2017
  ident: ref_11
  article-title: Kernel fusion based extreme learning machine for cross-location activity recognition
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2017.01.004
– volume: 21
  start-page: 13029
  year: 2021
  ident: ref_13
  article-title: Human Activity Recognition With Smartphone and Wearable Sensors Using Deep Learning Techniques: A Review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3069927
– volume: 11
  start-page: 1141
  year: 2020
  ident: ref_2
  article-title: Online human activity recognition employing hierarchical hidden Markov models
  publication-title: J. Amb. Intel. Hum. Comp.
  doi: 10.1007/s12652-019-01380-5
– ident: ref_30
  doi: 10.1109/CVPR.2016.90
– volume: 2017
  start-page: 2438
  year: 2017
  ident: ref_16
  article-title: CNN based approach for activity recognition using a wrist-worn accelerometer
  publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
– volume: 111
  start-page: 107728
  year: 2021
  ident: ref_39
  article-title: DanHAR: Dual Attention Network for multimodal human activity recognition using wearable sensors
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107728
– volume: 103
  start-page: 1461
  year: 2021
  ident: ref_21
  article-title: Multi-input CNN-GRU based human activity recognition using wearable sensors
  publication-title: Computing
  doi: 10.1007/s00607-021-00928-8
– volume: 12
  start-page: 74
  year: 2011
  ident: ref_7
  article-title: Activity recognition using cell phone accelerometers
  publication-title: SIGKDD Explor.
  doi: 10.1145/1964897.1964918
– ident: ref_29
– ident: ref_22
  doi: 10.1109/EUVIP47703.2019.8946180
– volume: 25
  start-page: 743
  year: 2020
  ident: ref_41
  article-title: Deep Learning Models for Real-time Human Activity Recognition with Smartphones
  publication-title: Mobile Netw. Appl.
  doi: 10.1007/s11036-019-01445-x
– ident: ref_24
  doi: 10.1109/PerComWorkshops48775.2020.9156264
– ident: ref_10
  doi: 10.3390/s21041214
– volume: 14
  start-page: 1
  year: 2012
  ident: ref_9
  article-title: Classification Accuracies of Physical Activities Using Smartphone Motion Sensors
  publication-title: J. Med. Internet Res.
  doi: 10.2196/jmir.2208
– volume: 2018
  start-page: 1
  year: 2018
  ident: ref_23
  article-title: Deep Residual Bidir-LSTM for Human Activity Recognition Using Wearable Sensors
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2018/7316954
– volume: 6
  start-page: 1384
  year: 2019
  ident: ref_1
  article-title: A Hybrid Hierarchical Framework for Gym Physical Activity Recognition and Measurement Using Wearable Sensors
  publication-title: IEEE Internet Things
  doi: 10.1109/JIOT.2018.2846359
– volume: 7
  start-page: 75213
  year: 2019
  ident: ref_8
  article-title: Human Activity Recognition Based on Motion Sensor Using U-Net
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920969
– volume: 8
  start-page: 56855
  year: 2020
  ident: ref_40
  article-title: LSTM-CNN Architecture for Human Activity Recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982225
– ident: ref_5
  doi: 10.1007/978-3-642-21257-4_36
– ident: ref_32
  doi: 10.3390/s21051636
– volume: 21
  start-page: 667
  year: 2020
  ident: ref_38
  article-title: Real-Time Human Activity Recognition System Based on Capsule and LoRa
  publication-title: IEEE Sens. J.
– volume: 33
  start-page: 12689
  year: 2021
  ident: ref_33
  article-title: BiLSTM regression model for face sketch synthesis using sequential patterns
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-021-05916-9
SSID ssj0023338
Score 2.6304023
Snippet Due to the wide application of human activity recognition (HAR) in sports and health, a large number of HAR models based on deep learning have been proposed....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 635
SubjectTerms Accuracy
Analysis
BiLSTM
Cameras
Classification
Datasets
Deep Learning
Human Activities
human activity recognition
Humans
inertial measurement unit
Machine learning
Neural networks
Neural Networks, Computer
Older people
Physical fitness
Rehabilitation
residual network
Running
Sensors
Smartphones
Support vector machines
Time series
Walking
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KTukhNGmbOF8opZBeTLyyZFmnsBsaltDNIR-Qm5DHEg0Ub8nu_v-MZK9Zk0AvvS3rOchvNH4z9ugNwHdpNXKrilRXjgoUhz4tEXXqvaV0QKB0sYlmdltMH8XNk3zaGPUVesJaeeAWuAtplSWOyWo_qoXKhXWONqkuvSOyrop4jpw4b11MdaVWTpVXqyOUU1F_seBU4xMZywH7RJH-t4_iDS4a9kluEM_1J9jpMkY2ble6Cx9cswcfN3QEP8NlfBXPxtiOgmB3666gecMmRFM1ox93bhEPXrHbtvOb2aZmk-df9w-zL_B4_fPhapp2kxFSJASXqc2t1h5lTYBSAhc-hlFeI0ZY5SNf-VKXmVO1FNxi6REdF1YJQQggsX2dVflX2GrmjTsAVlAE2gKL0nItKiF16bwLGvdCYVY7m8CPNWIGO9nwML3ij6HyIYBrenAT-Nab_m21Mt4zmgTYe4Mgbx3_IKebzunmX05P4Dw4zYQgpMWg7c4S0C0FOSszVpS36DBIPYHjtV9NF50Lwwsexn1QppTAWX-Z4ip8LLGNm6-iDSdcZbDZb7dBv-ZcZqEOFAmowQYZ3NTwSvP8O2p3l4qWlvPD_4HCEWzzcBgjvhA6hq3ly8qdUIq0rE5jNLwCpc8NaQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKe4ED4k2gVAYhwSVq1rFj-1Ttoi4Voj2UVurNcvyASigp3e3_Z8bxho1A3KJ4DuOxx_Pw-BtC3gurHbOyKXUbIEAJLpbKOV3GaMEd4E6EVERzetacXPIvV-IqJ9xWuaxycyamg9r3DnPkh6xh2KIBrNvRza8Su0bh7WpuoXGP7M3A0mBJl1p-HgOuGuKvAU2ohtD-cMUg0geTLCY2KEH1_30gb1mkabXklvlZPiIPs99I58NCPyY7oXtCHmyhCT4lRykhT-duaAhBzze1QX1HF2CsPIWP87BKz6_o2VD_TW3n6eL667eL02fkcnl88emkzP0RSgdyXJe2tlpHJzyIFdw4vBID74bPXFvPYhuVVlWQXnBmnYrOBcat5Bwk4MDm-6qtn5Pdru_CS0Ib0EPbuEZZpnnLhVYhBkS659JVPtiCfNxIzLgMHo49LH4aCCJQuGYUbkHejaQ3A2LGv4gWKPaRAEGu04_-9rvJOmOElRbci8rHmeey5jYEOJ-0igH8tLaRBfmAi2ZQFYEZZ_OLApgSglqZuQTvRWM79YLsb9bVZB1dmT87qiBvx2HQLrwysV3o7xINA7kKpHkxbIOR51pUGA3ygsjJBplMajrSXf9ICN5KAms1e_V_tl6T-wwfW6SEzz7ZXd_ehTfgAq3bg7TPfwNy2QUZ
  priority: 102
  providerName: ProQuest
Title Human Activity Recognition Based on Residual Network and BiLSTM
URI https://www.ncbi.nlm.nih.gov/pubmed/35062604
https://www.proquest.com/docview/2621353910
https://www.proquest.com/docview/2622281510
https://pubmed.ncbi.nlm.nih.gov/PMC8778132
https://doaj.org/article/5a7a1520df1d4734aee70398fe256b67
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB71cYEDorxqaCODkOBicNa7Xu8BVUnVUCESodBIuVnr9S5UqhxIUgn-PTPrh2K1By5RFE-k3dkdzzf7-D6At0Irw7RMI1VYLFCscVFmjIqc0wgHuBHWH6KZztLLBf-yFMs9aDU2Gwdu7i3tSE9qsb758Of33zMM-E9UcWLJ_nHDsILHVCv24RATkiQhgynvNhNYknhBa7rTFWE-jGuCof5fe2nJs_fffUfvJKn-AcqdjDR5DI8aKBmO6rE_gj1bPYGHOwSDT-HMr9GHI1NrRITz9rjQqgrHmL_KEL_M7cbfyApn9ZHwUFdlOL7--v1q-gwWk4ur88uokUyIDLp2G-lEK-WMKNHTiOxolwwBDx-aIhm6wmUqi60sBWfaZM4Yy7iWnKMHDMKAMi6S53BQrSp7DGGKoalTk2aaKV5woTLrLJHfc2ni0uoA3rcey03DJ06yFjc51hXk3LxzbgBvOtNfNYnGfUZjcntnQLzX_ofV-kfehFEutNSIOOLSDUsuE66txVeWypxF6FakMoB3NGg5zRdsjNHNJQPsEvFc5SOJgEaRwnoAJ-245u2sy1nKSAcEIVQAr7vHGHC0i6Iru7r1Ngz9KsjmRT0NujYnIqYCkQcgexOk16n-k-r6pyf1ziQ2LWEv_7sDr-ABo6sYfjnoBA6261t7igBpWwxgXy4lfmaTzwM4HF_Mvs0HfrFh4APjH20lEOo
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N8QA8IL4JDDAIBC_RUseJkwc0tUDpWNuH0Ul7M45jwySUjLUT4p_ib-TO-VgrEG97q-pTeznf-e7iu_sBvEx0briWaZgXFhMUa1yYGZOHzmkMB4RJrC-imc3TyZH4dJwcb8HvrheGyiq7M9Ef1GVt6B35Lk85QTSgd9s7_RESahTdrnYQGo1aHNhfPzFlW77df4_7-4rz8YfFu0nYogqEBv99FepY57kzSYnMYPBDF0kYE4iBKeKBK1yWZ5GVZSK4NpkzxnKhpRA8Sg16yjIqYvzdK3BVxOjJqTN9_LFP8GLM95rpRbgY7S45x2As9UhyFz7PQwP87QDWPOBmdeaauxvfgpttnMqGjWLdhi1b3YEba9ML78KevwBgQ9MAULDDrhaprtgInWPJ8MOhXfp2LzZv6s2Zrko2Opl-XszuwdGlSO4-bFd1ZR8CS9HudWrSTPNcFCLJM-ssTdYX0kSl1QG86SSmTDusnDAzvitMWki4qhduAC960tNmQse_iEYk9p6Ahmr7L-qzr6q1UZVoqTGciUo3KIWMhbYWz8M8cxbjwiKVAbymTVNk-siM0W0HAz4SDdFSQ4nRUk7w7QHsdPuq2jNhqS40OIDn_TJaM13R6MrW556Go1wTonnQqEHPc5xElH2KAOSGgmw81OZKdfLNTwzPJLIW80f_Z-sZXJssZlM13Z8fPIbrnBo9_MumHdhenZ3bJxh-rYqnXucZfLlsI_sDt5JBWQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgmMCAgELxETR0njh_Q1LJVG9uqqWzS3ozj2NsklI61E-Jf46_jzvlYKxBve4uSU3Q-n-9-Z5_vAN6lWhqmRRbJwmKAYo2LcmNk5JxGOMBNan0SzcEk2znmX07SkzX43d6FobTK1iZ6Q13ODO2R91nGqEUDere-a9IiDrfGmxc_IuogRSetbTuNWkX27K-fGL7NP-1u4Vy_Z2y8ffR5J2o6DEQGOVlEOtFSOpOWyBgCITpUQnzAB6ZIBq5wucxjK8qUM21yZ4xlXAvOWZwZ9JplXCT431uwLigq6sH6aHtyOO3CvQSjv7qWUZLIuD9nDKFZ5vvKXXtA3yjgb3ew5A9XczWXnN_4PtxrUGs4rNXsAazZ6iHcXapl-Ag2_XFAODR1O4pw2mYmzapwhK6yDPFhauf-8lc4qbPPQ12V4eh8_-vRwWM4vhHZPYFeNavsMwgztAI6M1mumeQFT2VunaU6-1yYuLQ6gI-txJRpSpdTB43vCkMYEq7qhBvA2470oq7X8S-iEYm9I6AS2_7F7PJUNStWpVpoBDdx6QYlFwnX1qJ1lLmziBKLTATwgSZNkSFAZoxu7jPgkKiklhoKxE6SmrkHsNHOq2osxFxd63MAb7rPuLbpwEZXdnblaRjKNSWap7UadDwnaUyxKA9ArCjIyqBWv1TnZ75-eC6QtYQ9_z9br-E2LjC1vzvZewF3GN368DtPG9BbXF7Zl4jFFsWrRulD-HbT6-wPFNxG6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Activity+Recognition+Based+on+Residual+Network+and+BiLSTM&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Yong&rft.au=Wang%2C+Luping&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=2&rft_id=info:doi/10.3390%2Fs22020635&rft.externalDocID=A781291879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon