Demonstration of a quantum error detection code using a square lattice of four superconducting qubits

The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any comp...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 6; no. 1; p. 6979
Main Authors Córcoles, A.D., Magesan, Easwar, Srinivasan, Srikanth J., Cross, Andrew W., Steffen, M., Gambetta, Jay M., Chow, Jerry M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.04.2015
Nature Publishing Group
Nature Pub. Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. The physical realization of a quantum computer requires built-in error-correcting codes that compensate the disruption of quantum information arising from noise. Here, the authors demonstrate a quantum error detection scheme for arbitrary single-qubit errors on a four superconducting qubit lattice.
AbstractList The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. The physical realization of a quantum computer requires built-in error-correcting codes that compensate the disruption of quantum information arising from noise. Here, the authors demonstrate a quantum error detection scheme for arbitrary single-qubit errors on a four superconducting qubit lattice.
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.
ArticleNumber 6979
Author Gambetta, Jay M.
Magesan, Easwar
Cross, Andrew W.
Chow, Jerry M.
Srinivasan, Srikanth J.
Steffen, M.
Córcoles, A.D.
Author_xml – sequence: 1
  givenname: A.D.
  surname: Córcoles
  fullname: Córcoles, A.D.
  email: adcorcol@us.ibm.com
  organization: IBM T.J. Watson Research Center
– sequence: 2
  givenname: Easwar
  surname: Magesan
  fullname: Magesan, Easwar
  organization: IBM T.J. Watson Research Center
– sequence: 3
  givenname: Srikanth J.
  surname: Srinivasan
  fullname: Srinivasan, Srikanth J.
  organization: IBM T.J. Watson Research Center
– sequence: 4
  givenname: Andrew W.
  surname: Cross
  fullname: Cross, Andrew W.
  organization: IBM T.J. Watson Research Center
– sequence: 5
  givenname: M.
  surname: Steffen
  fullname: Steffen, M.
  organization: IBM T.J. Watson Research Center
– sequence: 6
  givenname: Jay M.
  surname: Gambetta
  fullname: Gambetta, Jay M.
  organization: IBM T.J. Watson Research Center
– sequence: 7
  givenname: Jerry M.
  surname: Chow
  fullname: Chow, Jerry M.
  organization: IBM T.J. Watson Research Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25923200$$D View this record in MEDLINE/PubMed
BookMark eNptkUtr3DAUhUVJaB7Npj8gGLoJCdNKli1Lm0CYPCHQTbsWsnQ9VbClGT0K_ffRZNJ0klQbCe53DufqHKAd5x0g9JngrwRT_s1pP02xE534gPZr3JAZ6Wq6s_XeQ0cxPuByqCC8aT6ivboVNa0x3kdwCZN3MQWVrHeVHypVrbJyKU8VhOBDZSCBfhpqb6DK0bpFgWKhAlSjSslqWAsHn0MV8xKC9s7koingKvc2xU9od1BjhKPn-xD9vL76Mb-d3X-_uZtf3M90i3maKWwU7ZXhWCihhpISSNcKAz3ujWGCayCMsLZnjGPMMNWDAcFUS9qmG8RAD9H5xneZ-wmMBlcWG-Uy2EmFP9IrK19PnP0lF_63bJqacCKKwcmzQfCrDDHJyUYN46gc-BwlYV3HOae4LeiXN-hD-QBX1ltTjK4tu0Idbyd6ifK3gQKcbgAdfIwBhheEYLluWP5ruMD4DaxtemqubGPH_0vONpJYfN0CwlbM9_Qjbuy7WQ
CitedBy_id crossref_primary_10_1038_s41534_019_0185_4
crossref_primary_10_1103_RevModPhys_94_015004
crossref_primary_10_1073_pnas_2419273122
crossref_primary_10_1103_PhysRevLett_121_060503
crossref_primary_10_1038_s41534_017_0039_x
crossref_primary_10_1063_5_0173539
crossref_primary_10_1073_pnas_1618020114
crossref_primary_10_1088_0256_307X_38_6_060301
crossref_primary_10_1103_PhysRevA_95_042318
crossref_primary_10_1103_PhysRevLett_121_060501
crossref_primary_10_1039_C5TB01412C
crossref_primary_10_1088_1742_5468_ab25de
crossref_primary_10_1038_s41567_018_0414_3
crossref_primary_10_1140_epjp_s13360_024_05337_2
crossref_primary_10_1103_PhysRevA_93_012346
crossref_primary_10_1103_PhysRevLett_127_060505
crossref_primary_10_1007_s11433_019_9447_5
crossref_primary_10_1038_s41567_020_0806_z
crossref_primary_10_1063_1_4979652
crossref_primary_10_1103_PhysRevB_92_224511
crossref_primary_10_1103_PhysRevApplied_6_034008
crossref_primary_10_1103_PhysRevApplied_9_054016
crossref_primary_10_1103_PhysRevLett_116_180501
crossref_primary_10_1038_s41534_018_0106_y
crossref_primary_10_1103_PhysRevA_102_032411
crossref_primary_10_3390_sym11101259
crossref_primary_10_1103_PhysRevA_102_042206
crossref_primary_10_1038_s41467_021_21982_y
crossref_primary_10_1103_PhysRevA_103_042603
crossref_primary_10_1038_s41534_023_00771_z
crossref_primary_10_1088_1674_1056_ac0425
crossref_primary_10_1103_PhysRevA_101_052308
crossref_primary_10_1002_qute_201900052
crossref_primary_10_1109_MSP_2018_3761723
crossref_primary_10_1016_j_physa_2024_129986
crossref_primary_10_1038_s41534_020_00329_3
crossref_primary_10_1038_s41534_023_00706_8
crossref_primary_10_1007_s42979_020_00398_3
crossref_primary_10_1088_2058_9565_ab0ca8
crossref_primary_10_1126_science_aaf2581
crossref_primary_10_1007_s11128_018_2002_y
crossref_primary_10_1039_C5CP05927E
crossref_primary_10_1103_PhysRevX_10_011022
crossref_primary_10_1103_PhysRevA_95_042330
crossref_primary_10_1103_PhysRevA_96_022324
crossref_primary_10_1016_j_cosrev_2018_11_002
crossref_primary_10_1063_1_4934867
crossref_primary_10_1103_PhysRevA_93_060302
crossref_primary_10_1088_2058_9565_aab822
crossref_primary_10_1103_PhysRevA_96_062302
crossref_primary_10_1103_PhysRevLett_124_120501
crossref_primary_10_23919_ICN_2021_0019
crossref_primary_10_1088_1402_4896_ad753c
crossref_primary_10_1103_PhysRevA_104_062401
crossref_primary_10_1039_C6RA19976C
crossref_primary_10_1103_PhysRevLett_119_130502
crossref_primary_10_1088_2058_9565_aca92d
crossref_primary_10_1016_j_physrep_2017_10_002
crossref_primary_10_1038_s41567_020_0920_y
crossref_primary_10_1103_PhysRevX_7_031011
crossref_primary_10_1146_annurev_conmatphys_031119_050605
crossref_primary_10_1103_PhysRevA_94_032329
crossref_primary_10_1103_PhysRevLett_121_267002
crossref_primary_10_1038_nature18949
crossref_primary_10_1007_s11128_019_2285_7
crossref_primary_10_1088_2058_9565_aaea94
crossref_primary_10_1088_2632_2153_abc609
crossref_primary_10_1103_PhysRevApplied_8_064004
crossref_primary_10_1103_PhysRevApplied_9_064029
crossref_primary_10_1103_PhysRevA_107_012434
crossref_primary_10_1103_PhysRevA_99_052351
crossref_primary_10_1103_PhysRevA_99_042308
crossref_primary_10_1088_1367_2630_18_3_033032
crossref_primary_10_1002_advs_202300921
crossref_primary_10_1134_S0021364018130143
crossref_primary_10_1038_s41467_022_33923_4
crossref_primary_10_1103_PhysRevA_100_012338
crossref_primary_10_1103_PhysRevA_108_022403
crossref_primary_10_1103_PhysRevLett_121_110506
crossref_primary_10_1103_PhysRevApplied_7_054025
crossref_primary_10_1364_JOSAB_464741
crossref_primary_10_1109_TQE_2020_2981074
crossref_primary_10_1103_PhysRevA_94_063851
crossref_primary_10_1007_s11128_022_03571_0
crossref_primary_10_1103_PhysRevResearch_6_033107
crossref_primary_10_1038_s41598_024_62894_3
crossref_primary_10_1103_PhysRevA_96_062323
crossref_primary_10_1109_TCAD_2017_2693284
crossref_primary_10_1103_PhysRevLett_117_190503
crossref_primary_10_1103_PhysRevApplied_20_044054
crossref_primary_10_1103_PhysRevLett_119_190503
crossref_primary_10_1038_s41534_017_0036_0
crossref_primary_10_22331_q_2017_05_11_11
crossref_primary_10_1007_s11128_023_03979_2
crossref_primary_10_1038_npjqi_2016_34
crossref_primary_10_1103_PhysRevLett_120_150503
crossref_primary_10_1103_PhysRevLett_124_130501
crossref_primary_10_1103_PhysRevA_98_052318
crossref_primary_10_1103_PhysRevApplied_16_024023
crossref_primary_10_1063_5_0088155
crossref_primary_10_1103_PhysRevLett_121_050502
crossref_primary_10_1103_PhysRevB_99_134508
crossref_primary_10_1088_1367_2630_aaa372
crossref_primary_10_1103_PhysRevApplied_8_024004
crossref_primary_10_1103_PhysRevLett_120_050503
crossref_primary_10_1088_2399_6528_ad3b63
crossref_primary_10_1038_npjqi_2016_29
crossref_primary_10_1103_PhysRevResearch_1_033033
crossref_primary_10_1109_TQE_2023_3279379
crossref_primary_10_1103_RevModPhys_88_045005
crossref_primary_10_1088_0953_2048_29_4_044001
crossref_primary_10_1103_PhysRevA_93_063845
crossref_primary_10_1109_TASC_2015_2456109
crossref_primary_10_1103_PhysRevX_6_031030
crossref_primary_10_1109_TBDATA_2016_2621106
crossref_primary_10_1038_ncomms11059
crossref_primary_10_1049_qtc2_12043
crossref_primary_10_1103_PhysRevLett_128_110504
crossref_primary_10_1103_PhysRevA_92_052306
crossref_primary_10_1103_PhysRevA_94_042107
crossref_primary_10_1103_PhysRevX_8_021058
crossref_primary_10_1038_s41467_017_00045_1
crossref_primary_10_1088_1751_8121_ad5085
crossref_primary_10_1088_2058_9565_ab5887
crossref_primary_10_1103_PRXQuantum_2_040202
crossref_primary_10_1103_PhysRevApplied_21_024035
crossref_primary_10_1109_MCAS_2016_2549950
crossref_primary_10_1103_PhysRevLett_117_133601
crossref_primary_10_1109_MC_2019_2908621
crossref_primary_10_1103_PhysRevA_94_032321
crossref_primary_10_3938_jkps_73_841
crossref_primary_10_1088_0953_2048_29_6_064004
crossref_primary_10_1103_PhysRevLett_123_210501
crossref_primary_10_1063_5_0153617
crossref_primary_10_1103_PhysRevX_6_031045
crossref_primary_10_1016_j_laa_2018_06_026
crossref_primary_10_1103_PhysRevLett_131_200602
crossref_primary_10_1103_PhysRevLett_117_250502
crossref_primary_10_1038_s41534_021_00464_5
crossref_primary_10_1103_PhysRevApplied_8_034021
crossref_primary_10_1103_PhysRevX_6_031007
crossref_primary_10_1103_PhysRevX_6_031006
crossref_primary_10_1007_s41745_022_00330_z
crossref_primary_10_1364_JOSAB_523965
crossref_primary_10_1103_PhysRevApplied_19_034011
crossref_primary_10_1038_s41586_021_03928_y
crossref_primary_10_1007_s11128_020_02759_6
crossref_primary_10_1063_5_0196880
crossref_primary_10_1103_PhysRevResearch_2_013285
crossref_primary_10_1103_PhysRevA_100_012301
crossref_primary_10_1103_PhysRevX_12_011032
crossref_primary_10_1088_1572_9494_abf72f
crossref_primary_10_1103_PhysRevX_11_041058
crossref_primary_10_1088_1361_6633_aa7e1a
crossref_primary_10_1088_1674_1056_26_5_058402
crossref_primary_10_1088_2058_9565_ad7756
crossref_primary_10_1109_TIT_2016_2555700
crossref_primary_10_1103_PhysRevA_92_052329
crossref_primary_10_1126_sciadv_aau1695
crossref_primary_10_1103_PhysRevApplied_10_054004
crossref_primary_10_22331_q_2018_10_19_101
crossref_primary_10_1103_PhysRevApplied_6_044010
crossref_primary_10_1103_PhysRevLett_116_240503
crossref_primary_10_22331_q_2019_04_08_131
crossref_primary_10_1088_2058_9565_aa5c73
crossref_primary_10_1103_PhysRevLett_117_210505
crossref_primary_10_1103_PhysRevA_96_032338
crossref_primary_10_1038_ncomms11526
crossref_primary_10_1109_ACCESS_2020_3043497
crossref_primary_10_1103_PRXQuantum_3_020335
crossref_primary_10_1126_sciadv_aay3050
crossref_primary_10_1063_1_4976809
crossref_primary_10_1103_PhysRevResearch_2_033305
crossref_primary_10_1103_PhysRevA_97_042310
crossref_primary_10_22331_q_2024_02_12_1251
crossref_primary_10_1088_1674_1056_27_2_027401
crossref_primary_10_1103_PhysRevA_96_042316
crossref_primary_10_1103_PhysRevA_96_042315
crossref_primary_10_1590_1678_4499_20220121
crossref_primary_10_1103_PhysRevA_94_042316
crossref_primary_10_1103_PhysRevLett_119_180501
crossref_primary_10_1103_PhysRevA_94_012347
crossref_primary_10_1103_PhysRevApplied_5_011001
crossref_primary_10_1038_s41567_019_0437_4
crossref_primary_10_1038_s41534_018_0099_6
crossref_primary_10_2200_S00746ED1V01Y201612QMC010
crossref_primary_10_1103_PhysRevA_94_012340
crossref_primary_10_1109_TQE_2023_3303935
crossref_primary_10_1063_1_5089729
crossref_primary_10_1103_PhysRevA_105_032409
crossref_primary_10_1007_s11128_015_1152_4
crossref_primary_10_1103_PhysRevLett_119_150401
crossref_primary_10_1063_1_5003169
crossref_primary_10_1103_PhysRevA_102_042605
crossref_primary_10_1142_S0218126619500841
crossref_primary_10_1103_PhysRevApplied_20_014045
crossref_primary_10_1103_PhysRevB_96_195150
crossref_primary_10_1088_1367_2630_ad1e93
crossref_primary_10_1103_PRXQuantum_3_010310
crossref_primary_10_1103_PhysRevA_93_043812
crossref_primary_10_1103_PhysRevLett_131_210603
crossref_primary_10_1103_PhysRevB_110_045417
crossref_primary_10_1088_1572_9494_abe4cb
crossref_primary_10_1103_PhysRevLett_133_150201
crossref_primary_10_1103_PhysRevLett_118_210504
crossref_primary_10_1103_PhysRevA_98_052348
crossref_primary_10_1103_PhysRevA_102_052410
crossref_primary_10_1103_PhysRevX_6_041035
crossref_primary_10_1038_s41586_020_2667_0
crossref_primary_10_1103_PhysRevA_95_032339
crossref_primary_10_1103_PhysRevX_7_021029
crossref_primary_10_1038_s42254_022_00494_8
crossref_primary_10_1103_PhysRevB_99_235420
crossref_primary_10_1088_1361_6463_ab96eb
crossref_primary_10_1103_PRXQuantum_2_040336
crossref_primary_10_1016_j_physleta_2020_126353
crossref_primary_10_1140_epjqt_s40507_023_00161_6
crossref_primary_10_1103_PhysRevA_105_062404
crossref_primary_10_1103_PhysRevApplied_18_034057
crossref_primary_10_1063_1_4943602
crossref_primary_10_1126_sciadv_1701074
crossref_primary_10_1007_s11128_016_1412_y
crossref_primary_10_1088_1751_8121_abb439
crossref_primary_10_1088_2058_9565_ac3386
crossref_primary_10_1007_s11128_015_1201_z
crossref_primary_10_3390_app14209418
crossref_primary_10_1038_s41567_023_02226_w
crossref_primary_10_1021_acs_jpclett_9b03131
crossref_primary_10_1088_1367_2630_acfba5
crossref_primary_10_1038_s41534_022_00542_2
crossref_primary_10_1103_PhysRevLett_126_090502
crossref_primary_10_1103_PhysRevX_8_011044
crossref_primary_10_1103_RevModPhys_95_045005
crossref_primary_10_1103_PhysRevA_93_062331
crossref_primary_10_1016_j_iswa_2024_200346
crossref_primary_10_46571_JCI_2017_1_7
crossref_primary_10_1103_PhysRevB_111_024420
crossref_primary_10_1103_PhysRevB_96_035441
crossref_primary_10_1063_1_4993577
crossref_primary_10_1103_PhysRevA_96_012313
crossref_primary_10_1103_PRXQuantum_2_040343
crossref_primary_10_1038_s41467_019_10727_7
crossref_primary_10_1063_1_4994661
crossref_primary_10_1088_1367_2630_aa8cef
crossref_primary_10_1103_PhysRevA_93_032322
crossref_primary_10_1038_s41534_020_0275_3
crossref_primary_10_1103_PhysRevApplied_10_034040
crossref_primary_10_1103_PhysRevB_92_245139
crossref_primary_10_1142_S0217979219300032
crossref_primary_10_1038_s41467_024_47379_1
crossref_primary_10_1038_s41534_017_0044_0
crossref_primary_10_1103_PhysRevA_102_062426
crossref_primary_10_1063_1_5096262
crossref_primary_10_1063_1_4962172
crossref_primary_10_1038_s41586_019_1666_5
crossref_primary_10_1038_s41534_017_0017_3
crossref_primary_10_1109_TQE_2024_3486546
crossref_primary_10_1103_RevModPhys_91_025005
crossref_primary_10_1103_PhysRevApplied_8_044003
crossref_primary_10_1103_PhysRevResearch_2_023230
crossref_primary_10_1103_PhysRevB_99_024422
crossref_primary_10_1038_s41534_020_0261_9
crossref_primary_10_1038_s41534_020_0269_1
crossref_primary_10_1103_PhysRevResearch_6_023077
crossref_primary_10_1007_s11432_020_2881_9
crossref_primary_10_1103_PhysRevB_99_205114
crossref_primary_10_1103_PhysRevA_107_012602
crossref_primary_10_22331_q_2022_01_05_618
crossref_primary_10_1088_2399_6528_aadafc
crossref_primary_10_1038_s42005_022_00875_6
crossref_primary_10_1088_0031_8949_T168_1_014002
crossref_primary_10_1103_PhysRevA_95_032303
crossref_primary_10_1103_PRXQuantum_2_030345
crossref_primary_10_1038_s41586_019_1040_7
crossref_primary_10_1103_PhysRevX_6_011022
crossref_primary_10_1103_PhysRevX_11_031066
crossref_primary_10_22331_q_2025_02_06_1623
crossref_primary_10_1103_PhysRevResearch_6_013024
crossref_primary_10_1103_PRXQuantum_2_020304
crossref_primary_10_1103_PhysRevResearch_2_033399
crossref_primary_10_1103_PhysRevApplied_16_064041
crossref_primary_10_1088_0953_4075_49_20_202001
crossref_primary_10_1103_PhysRevApplied_6_041001
crossref_primary_10_1103_PhysRevB_94_174514
crossref_primary_10_1007_s11128_018_2144_y
crossref_primary_10_1038_nmat4306
crossref_primary_10_1038_s41586_023_05784_4
crossref_primary_10_1088_1361_6633_ab28ef
crossref_primary_10_1088_1367_2630_18_9_093027
crossref_primary_10_1103_PhysRevLett_120_130503
crossref_primary_10_1088_2058_9565_aaa3a0
crossref_primary_10_1038_s41534_016_0002_2
crossref_primary_10_1103_PhysRevA_98_032323
crossref_primary_10_1103_PhysRevA_98_032322
crossref_primary_10_1103_PhysRevX_7_041061
crossref_primary_10_3389_frqst_2024_1462004
crossref_primary_10_1103_PhysRevA_102_062408
crossref_primary_10_1038_s41567_020_0931_8
crossref_primary_10_1098_rsta_2016_0236
crossref_primary_10_1103_PhysRevA_92_032314
crossref_primary_10_1103_PRXQuantum_2_030334
crossref_primary_10_1038_s41567_020_0992_8
crossref_primary_10_1103_PhysRevApplied_18_044025
crossref_primary_10_1103_PhysRevLett_118_147701
crossref_primary_10_1103_RevModPhys_93_025005
crossref_primary_10_1103_PhysRevLett_123_030503
crossref_primary_10_1103_PhysRevResearch_4_013010
crossref_primary_10_1103_PhysRevB_102_180303
crossref_primary_10_22331_q_2020_11_04_358
crossref_primary_10_1002_apxr_202400159
crossref_primary_10_1103_PhysRevResearch_6_033329
crossref_primary_10_1103_PhysRevA_93_042333
crossref_primary_10_3762_bjnano_13_37
crossref_primary_10_1103_PhysRevApplied_13_044017
crossref_primary_10_1109_JETCAS_2022_3205174
crossref_primary_10_1038_nature23460
crossref_primary_10_1063_1_5089550
crossref_primary_10_1103_PhysRevA_101_043842
crossref_primary_10_1103_PhysRevLett_118_140501
crossref_primary_10_1002_qute_202200008
crossref_primary_10_1103_PhysRevB_97_024518
crossref_primary_10_1088_2058_9565_abb6d9
crossref_primary_10_1088_2058_9565_aa9a06
crossref_primary_10_1103_PhysRevA_97_022335
crossref_primary_10_1088_0953_2048_29_8_084007
crossref_primary_10_1103_PhysRevA_94_012318
crossref_primary_10_1109_JPROC_2019_2954005
crossref_primary_10_1063_1_4939148
crossref_primary_10_1021_acsengineeringau_1c00033
crossref_primary_10_1088_2058_9565_aaa645
crossref_primary_10_1088_2058_9565_acbed7
crossref_primary_10_1103_PhysRevB_94_014506
crossref_primary_10_1103_PhysRevB_96_235434
crossref_primary_10_1088_2058_9565_aca21f
crossref_primary_10_1103_PhysRevA_104_062434
crossref_primary_10_1038_s41534_021_00456_5
crossref_primary_10_1103_PhysRevB_97_161101
crossref_primary_10_1088_1367_2630_aa924b
crossref_primary_10_1103_PhysRevA_99_012333
crossref_primary_10_1088_2058_9565_aa94fc
crossref_primary_10_1016_j_aop_2016_06_024
crossref_primary_10_1088_1367_2630_ab5c51
crossref_primary_10_1103_PhysRevA_107_022421
crossref_primary_10_1103_PhysRevX_5_041038
crossref_primary_10_1088_1361_648X_ac6927
crossref_primary_10_1103_PhysRevA_95_032317
crossref_primary_10_1007_s11128_017_1662_3
crossref_primary_10_1126_sciadv_1500707
crossref_primary_10_1021_acscentsci_7b00586
crossref_primary_10_3390_businesses3040036
Cites_doi 10.1103/PhysRevLett.103.110501
10.1103/PhysRevA.87.030301
10.1103/PhysRevLett.107.160501
10.1038/nature03074
10.1103/PhysRevLett.112.070502
10.1038/nature13171
10.1038/nature12802
10.1063/1.1499754
10.1103/PhysRevLett.109.240504
10.1103/PhysRevLett.107.240501
10.1103/PhysRevLett.108.070502
10.1126/science.1253742
10.1016/S0003-4916(02)00018-0
10.1103/PhysRevLett.98.190504
10.1126/science.1203329
10.1038/ncomms5015
10.1103/PhysRevLett.109.100503
10.1103/PhysRevLett.106.180504
10.1103/PhysRevLett.109.060501
10.1103/PhysRevLett.111.080502
10.1103/PhysRevA.86.032324
10.1063/1.4813269
10.1103/PhysRevLett.109.050506
10.1103/PhysRevLett.109.050507
10.1103/PhysRevLett.81.2152
10.1038/ncomms7983
10.1038/nature10786
ContentType Journal Article
Copyright The Author(s) 2015
Copyright Nature Publishing Group Apr 2015
Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
Copyright_xml – notice: The Author(s) 2015
– notice: Copyright Nature Publishing Group Apr 2015
– notice: Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOI 10.1038/ncomms7979
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological science database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
ExternalDocumentID PMC4421819
3668291631
25923200
10_1038_ncomms7979
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
0R~
39C
3V.
4.4
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABAWZ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c508t-a0da3bad809a9af259e1759deb0bdd698ce16165b66800603cfde96a51547f9f3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Thu Aug 21 18:13:45 EDT 2025
Thu Jul 10 18:01:45 EDT 2025
Sat Aug 23 13:17:20 EDT 2025
Wed Feb 19 02:32:55 EST 2025
Tue Jul 01 02:30:57 EDT 2025
Thu Apr 24 23:06:26 EDT 2025
Fri Feb 21 02:39:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-a0da3bad809a9af259e1759deb0bdd698ce16165b66800603cfde96a51547f9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/ncomms7979
PMID 25923200
PQID 1676344217
PQPubID 546298
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4421819
proquest_miscellaneous_1677888305
proquest_journals_1676344217
pubmed_primary_25923200
crossref_primary_10_1038_ncomms7979
crossref_citationtrail_10_1038_ncomms7979
springer_journals_10_1038_ncomms7979
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150429
PublicationDateYYYYMMDD 2015-04-29
PublicationDate_xml – month: 4
  year: 2015
  text: 20150429
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2015
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Pub. Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Pub. Group
References Chiaverini (CR4) 2004; 432
Magesan, Gambetta, Emerson (CR30) 2011; 106
Raussendorf, Harrington (CR10) 2007; 98
Paik (CR15) 2011; 107
Moussa, Baugh, Ryan, Laflamme (CR3) 2011; 107
Barends (CR17) 2013; 111
CR11
Barends (CR18) 2014; 508
Corcoles (CR22) 2013; 87
Dennis, Kitaev, Landahl, Preskill (CR12) 2002; 43
Riste, van Leeuwen, Ku, Lehnert, DiCarlo (CR21) 2012; 109
Smolin, Gambetta, Smith (CR31) 2012; 108
Gambetta (CR23) 2012; 109
Cory (CR1) 1998; 81
Fowler, Mariantoni, Martinis, Cleland (CR13) 2012; 86
Zhang, Laflamme, Suter (CR2) 2012; 109
Johnson (CR20) 2012; 109
Chow (CR29) 2012; 109
Shankar (CR19) 2013; 504
CR8
CR7
CR27
CR26
CR25
Nigg (CR6) 2014; 345
Motzoi, Gambetta, Rebentrost, Wilhelm (CR28) 2009; 103
Saira (CR24) 2014; 112
Chang (CR16) 2013; 103
Schindler (CR5) 2011; 332
Kitaev (CR9) 1997; 303
Chow (CR14) 2014; 5
J Chiaverini (BFncomms7979_CR4) 2004; 432
A Kitaev (BFncomms7979_CR9) 1997; 303
BFncomms7979_CR27
BFncomms7979_CR26
BFncomms7979_CR25
D Nigg (BFncomms7979_CR6) 2014; 345
J Zhang (BFncomms7979_CR2) 2012; 109
AD Corcoles (BFncomms7979_CR22) 2013; 87
AG Fowler (BFncomms7979_CR13) 2012; 86
JM Chow (BFncomms7979_CR29) 2012; 109
H Paik (BFncomms7979_CR15) 2011; 107
JM Chow (BFncomms7979_CR14) 2014; 5
D Riste (BFncomms7979_CR21) 2012; 109
S Shankar (BFncomms7979_CR19) 2013; 504
DG Cory (BFncomms7979_CR1) 1998; 81
O Moussa (BFncomms7979_CR3) 2011; 107
BFncomms7979_CR7
R Barends (BFncomms7979_CR18) 2014; 508
BFncomms7979_CR8
P Schindler (BFncomms7979_CR5) 2011; 332
E Dennis (BFncomms7979_CR12) 2002; 43
O-P Saira (BFncomms7979_CR24) 2014; 112
JA Smolin (BFncomms7979_CR31) 2012; 108
R Barends (BFncomms7979_CR17) 2013; 111
E Magesan (BFncomms7979_CR30) 2011; 106
JE Johnson (BFncomms7979_CR20) 2012; 109
JM Gambetta (BFncomms7979_CR23) 2012; 109
JB Chang (BFncomms7979_CR16) 2013; 103
BFncomms7979_CR11
R Raussendorf (BFncomms7979_CR10) 2007; 98
F Motzoi (BFncomms7979_CR28) 2009; 103
References_xml – volume: 103
  start-page: 110501
  year: 2009
  ident: CR28
  article-title: Simple pulses for elimination of leakage in weakly nonlinear qubits
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.110501
– volume: 87
  start-page: 030301
  year: 2013
  ident: CR22
  article-title: Process verification of two-qubit quantum gates by randomized benchmarking
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.030301
– volume: 107
  start-page: 160501
  year: 2011
  ident: CR3
  article-title: Demonstration of sufficient control for two rounds of quantum error correction in a solid state ensemble quantum information processor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.160501
– volume: 432
  start-page: 602
  year: 2004
  end-page: 605
  ident: CR4
  article-title: Realization of quantum error correction
  publication-title: Nature
  doi: 10.1038/nature03074
– volume: 112
  start-page: 070502
  year: 2014
  ident: CR24
  article-title: Entanglement genesis by ancilla-based parity measurement in 2d circuit qed
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.070502
– volume: 508
  start-page: 500
  year: 2014
  end-page: 503
  ident: CR18
  article-title: Superconducting quantum circuits at the surface code threshold for fault tolerance
  publication-title: Nature
  doi: 10.1038/nature13171
– volume: 504
  start-page: 419
  year: 2013
  end-page: 422
  ident: CR19
  article-title: Autonomously stabilized entanglement between two superconducting quantum bits
  publication-title: Nature
  doi: 10.1038/nature12802
– volume: 43
  start-page: 4452
  year: 2002
  end-page: 4505
  ident: CR12
  article-title: Topological quantum memory
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1499754
– volume: 109
  start-page: 240504
  year: 2012
  ident: CR23
  article-title: Characterization of addressability by simultaneous randomized benchmarking
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.240504
– ident: CR8
– volume: 107
  start-page: 240501
  year: 2011
  ident: CR15
  article-title: Observation of high coherence in josephson junction qubits measured in a three-dimensional circuit qed architecture
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.240501
– ident: CR25
– ident: CR27
– volume: 108
  start-page: 070502
  year: 2012
  ident: CR31
  article-title: Efficient method for computing the maximum-likelihood quantum state from measurements with additive gaussian noise
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.070502
– volume: 345
  start-page: 302
  year: 2014
  end-page: 305
  ident: CR6
  article-title: Quantum computations on a topologically encoded qubit
  publication-title: Science
  doi: 10.1126/science.1253742
– volume: 303
  start-page: 2
  year: 1997
  end-page: 30
  ident: CR9
  article-title: Fault-tolerant quantum computation by anyons
  publication-title: Ann. Phys.
  doi: 10.1016/S0003-4916(02)00018-0
– volume: 98
  start-page: 190504
  year: 2007
  ident: CR10
  article-title: Fault-tolerant quantum computation with high threshold in two dimensions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.190504
– volume: 332
  start-page: 1059
  year: 2011
  end-page: 1061
  ident: CR5
  article-title: Experimental repetitive quantum error correction
  publication-title: Science
  doi: 10.1126/science.1203329
– volume: 5
  start-page: 500
  year: 2014
  ident: CR14
  article-title: Implementing a strand of a scalable fault-tolerant quantum computing fabric
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5015
– ident: CR11
– volume: 109
  start-page: 100503
  year: 2012
  ident: CR2
  article-title: Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.100503
– volume: 106
  start-page: 180504
  year: 2011
  ident: CR30
  article-title: Scalable and robust randomized benchmarking of quantum processes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.180504
– volume: 109
  start-page: 060501
  year: 2012
  ident: CR29
  article-title: Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.060501
– ident: CR7
– volume: 111
  start-page: 080502
  year: 2013
  ident: CR17
  article-title: Coherent josephson qubit suitable for scalable quantum integrated circuits
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.080502
– volume: 86
  start-page: 032324
  year: 2012
  ident: CR13
  article-title: Surface codes: towards practical large-scale quantum computation
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.032324
– volume: 103
  start-page: 012602
  year: 2013
  ident: CR16
  article-title: Improved superconducting qubit coherence using titanium nitride
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4813269
– ident: CR26
– volume: 109
  start-page: 050506
  year: 2012
  ident: CR20
  article-title: Heralded state preparation in a superconducting qubit
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.050506
– volume: 109
  start-page: 050507
  year: 2012
  ident: CR21
  article-title: Initialization by measurement of a superconducting quantum bit circuit
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.050507
– volume: 81
  start-page: 2152
  year: 1998
  end-page: 2155
  ident: CR1
  article-title: Experimental quantum error correction
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2152
– volume: 86
  start-page: 032324
  year: 2012
  ident: BFncomms7979_CR13
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.032324
– ident: BFncomms7979_CR26
  doi: 10.1038/ncomms7983
– ident: BFncomms7979_CR11
– volume: 111
  start-page: 080502
  year: 2013
  ident: BFncomms7979_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.080502
– volume: 43
  start-page: 4452
  year: 2002
  ident: BFncomms7979_CR12
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1499754
– volume: 5
  start-page: 500
  year: 2014
  ident: BFncomms7979_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5015
– volume: 81
  start-page: 2152
  year: 1998
  ident: BFncomms7979_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2152
– volume: 112
  start-page: 070502
  year: 2014
  ident: BFncomms7979_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.070502
– volume: 108
  start-page: 070502
  year: 2012
  ident: BFncomms7979_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.070502
– volume: 109
  start-page: 100503
  year: 2012
  ident: BFncomms7979_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.100503
– volume: 107
  start-page: 240501
  year: 2011
  ident: BFncomms7979_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.240501
– volume: 98
  start-page: 190504
  year: 2007
  ident: BFncomms7979_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.190504
– volume: 332
  start-page: 1059
  year: 2011
  ident: BFncomms7979_CR5
  publication-title: Science
  doi: 10.1126/science.1203329
– volume: 345
  start-page: 302
  year: 2014
  ident: BFncomms7979_CR6
  publication-title: Science
  doi: 10.1126/science.1253742
– ident: BFncomms7979_CR27
– volume: 103
  start-page: 012602
  year: 2013
  ident: BFncomms7979_CR16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4813269
– volume: 432
  start-page: 602
  year: 2004
  ident: BFncomms7979_CR4
  publication-title: Nature
  doi: 10.1038/nature03074
– ident: BFncomms7979_CR25
– volume: 103
  start-page: 110501
  year: 2009
  ident: BFncomms7979_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.110501
– volume: 107
  start-page: 160501
  year: 2011
  ident: BFncomms7979_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.160501
– volume: 508
  start-page: 500
  year: 2014
  ident: BFncomms7979_CR18
  publication-title: Nature
  doi: 10.1038/nature13171
– volume: 109
  start-page: 050507
  year: 2012
  ident: BFncomms7979_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.050507
– volume: 303
  start-page: 2
  year: 1997
  ident: BFncomms7979_CR9
  publication-title: Ann. Phys.
  doi: 10.1016/S0003-4916(02)00018-0
– volume: 109
  start-page: 050506
  year: 2012
  ident: BFncomms7979_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.050506
– volume: 87
  start-page: 030301
  year: 2013
  ident: BFncomms7979_CR22
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.030301
– volume: 109
  start-page: 060501
  year: 2012
  ident: BFncomms7979_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.060501
– ident: BFncomms7979_CR8
– volume: 106
  start-page: 180504
  year: 2011
  ident: BFncomms7979_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.180504
– volume: 504
  start-page: 419
  year: 2013
  ident: BFncomms7979_CR19
  publication-title: Nature
  doi: 10.1038/nature12802
– ident: BFncomms7979_CR7
  doi: 10.1038/nature10786
– volume: 109
  start-page: 240504
  year: 2012
  ident: BFncomms7979_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.240504
SSID ssj0000391844
Score 2.626736
Snippet The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6979
SubjectTerms 639/766/119/1003
639/766/25
639/766/483/2802
Coding
Demolition
Dimensional tolerances
Error correcting codes
Error correction
Error correction & detection
Error detection codes
Fault tolerance
Humanities and Social Sciences
Lattices
multidisciplinary
Quantum computing
Quantum theory
Qubits (quantum computing)
Science
Science (multidisciplinary)
Superconductivity
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT90wDLcY06RdJvbdjaFM47JDRXlp85oTmrY9ENI4gcStShOHIfHa9_px4L_H7hcfb9q5bmLZSfxz7NgA-5gbBroqnHlvQ7LQKsyTVIZeJoieILrqXnj_OVMnF_HpZXI5XLjVQ1rleCZ2B7UrLd-RHxwq2glxTAMfrdYhd43i6OrQQuMZPD8kS8MpXenieLpj4ernaRyPVUllelDQkMt6rjlz66Ed2gCXmzmSTwKlnf1Z7MCrATiKH72mX8MWFm_gRd9K8vYt4C9cMtTrFSpKL4xYtyS2dimwqspKOGy6tKtC8DN2wQnvV0RUE1WF4sY0nAbHP3qaStTtCivylbkcLBOu2_y6qd_BxeL3-c-TcGihEFpCXk1oImdkblwaaaONJ18HCS9oh3mUO6d0apEgn0pyEh6XZpHWO9TKEMqJ5157-R62i7LAjyAYikR2pqy2SSwluYUz5zmt02rlySkK4Pso0MwO9cW5zcVN1sW5ZZrdCz-AbxPtqq-q8U-q3VEv2bCz6ux-HQTwdfpMe4IDHabAsu1o2LOXzNSHXo3TNCQCApFRFMD8kYInAq63_fhLcf23q7vNsxKACmB_XAoP2Nrg_tP_uf8MLwl7JRyYmuld2G6qFr8QvmnyvW4R3wHx8_-v
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BIiQuqC1Q0tLKCC4cIsI68cbHVQGtVioXQOIWOc64ILFZyOPAv-9MXmW7PfQYeSyPZsb2N_H4M8AppoaBrvLHzlmfdmjlp1EsfScjREcQXTU3vH_eqNl9OH-IHjqanLIrq2wpLZtluq8OO8_pa1FO9ERvwhZTtFNMb02n89v58EeFuc7jMOw5SGX8rtPqrrMGJdcrIv86Fm12m-sPsNvBRDFtFfsIG5h_gu324ci3PcBLXDCwa90nlk4Y8VqTkeqFwKJYFiLDqimyygVfWhdc3v6LhEqSKlA8m4qL3rijo6FEWb9gQZkxk7-y4GudPlXlPtxfX939mPndgwm-JZxV-SbIjExNFgfaaOMos0FCBzrDNEizTOnYIgE8FaVKxUzEIq3LUCtDmCacOO3kAYzyZY6HIBh4BHasrLZRKCUlgePMcRGn1cpRCuTBWW_QxHZs4vyoxXPSnGrLOPljfA9OBtmXlkPjn1JHvV-Sbh6VyYWi9S8MKZw8OB6aaQbwsYbJcVk3MpzHS1bqc-vGYRgyAUHGIPBgsuLgQYDZtVdb8qfHhmWbRyW45MFpHwrv1FrT_sv_iX2FHUJcER9HjfURjKqixm-Eaqr0exfOvwF2f_1w
  priority: 102
  providerName: Springer Nature
Title Demonstration of a quantum error detection code using a square lattice of four superconducting qubits
URI https://link.springer.com/article/10.1038/ncomms7979
https://www.ncbi.nlm.nih.gov/pubmed/25923200
https://www.proquest.com/docview/1676344217
https://www.proquest.com/docview/1677888305
https://pubmed.ncbi.nlm.nih.gov/PMC4421819
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_tQ0i8IL7JNioj9sJDIKsTJ35AqJSVqdImBFTqW-Q4Nkxq0zUfEvvvuXOSQunESyLFZ_l054_f5c53AKcmUwR0hT-0Vvt4Qgs_ixLuWx4ZYxGiC3fD-_JKXMzC6Tya70Ffv7MTYHWnaUf1pGbl4u2v9e0HXPDv2yvjybsCdbOsYhnLfTjEEymmSgaXHcx3OzKXaMiEfXbSrS7b59EOyNyNlfzHYerOoclDeNABSDZqNf4I9kzxGO61JSVvn4D5ZJYE-VrFspVliq0bFF-zZKYsVyXLTe3CrwpG19kZBb7_QKIKqUrDFqqmcDjqaHEoVjU3pkSbmdLCEuG6ya7r6inMJuffxxd-V0rB14jAal8FueKZypNAKqks2jwGcYPMTRZkeS5kog1CPxFlQiSUooVrmxspFKKdMLbS8mdwUKwK8wIYQZJAD4WWOgo5R_NwmFsK79RSWDSOPHjTCzTVXZ5xKnexSJ2_myfpH-F78HpDe9Nm17iT6qTXS9pPkPRM4M4YhjjRPHi1aca1QQ4PVZhV42jIwufE1PNWjZthUAQIJoPAg3hLwRsCyru93VJc_3T5t2lUBFIenPZT4S-2drg_-j_3x3AfMVhEDqqhPIGDumzMS8Q5dTaA_Xge4zOZfB7A4Wg0_TbF98fzqy9f8etYjAfuD8LATfbfKwsJSQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviHcDLRhRDhyihjjxxgdUVS3Llj5OrdRbcPyASt1kNw-h_il-IzPJJm1ZxK1nT2xnZuz57BnPAGzZTBHQFX7onPbRQgs_ixPuOx5b6xCii_aF9_GJmJxF387j8xX43b-FobDKfk9sN2pTaLoj3_4kcCVEEXa8M5v7VDWKvKt9CY1OLQ7t1S88slWfD_ZRvh_CcPzldG_iL6oK-BrBSO2rwCieKZMEUknlEP5bNKHS2CzIjBEy0RZRkIgzIRLKVsK1M1YKhYY_GjnpOPZ7D-5HHC05vUwffx3udCjbehJFfRZUnmzn-AvTaiQpUuym3VsCs8sxmX85Zlt7N34MjxZAle12mvUEVmz-FB50pSuvnoHdt1OClp0CscIxxeYNiqmZMluWRcmMrdswr5zRs3lGAfY_kKhCqtKyS1VT2B196HAoVjUzW-LZnNLPEuG8yS7q6jmc3QlzX8BqXuR2HRhBn0CHQksdI7PxGBoaR2GkWgqHhzAPPvYMTfUinzmV1bhMW786T9Jr5nvwfqCddVk8_km10cslXazkKr3WOw_eDc24BsmxonJbNC0N3SRwmtTLTozDMMgCBK1B4MHoloAHAsrvfbslv_jZ5vmmURGwebDVq8KNaS3N_tX_Z_8WHk5Oj4_So4OTw9ewhrgvJqdYKDdgtS4bu4nYqs7etArN4Ptdr6A_l0g9Qg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUC9IN4NFDCiHDhEG-LEGx8QArarlsKqQlTqLTiODZW6yW4eQv1r_Dpm8mrLIm49e2I7nhn7G894BmDXJIqArnB9a7WLJ7RwkzDiruWhMRYhumheeH-Zi_3j4NNJeLIBv_u3MBRW2e-JzUad5pruyMdvBGpCEGDHY9uFRRxNZ--WK5cqSJGntS-n0YrIoTn_heZb-fZgirx-5fuzvW8f992uwoCrEZhUrvJSxROVRp5UUlk0BQwepzI1iZekqZCRNoiIRJgIEVHmEq5taqRQCAKCiZWWY783YHNCVtEINj_szY--Djc8lHs9CoI-JyqPxhn-0KKcSIobu3wKrkHb9QjNv9y0zek3uwO3O9jK3rdydhc2THYPbraFLM_vg5maBQHNVpxYbpliqxqZVi-YKYq8YKmpmqCvjNEjekbh9j-QqESqwrAzVVEQHn1ocShW1ktToKVOyWiJcFUnp1X5AI6vZXkfwijLM7MNjICQp32hpQ4DztEo9VNLQaVaCosmmQOv-wWNdZfdnIpsnMWNl51H8cXiO_ByoF22OT3-SbXT8yXu9LqML6TQgRdDM2okuVlUZvK6oaF7BU6TetSycRgGlwAhrOc5MLnC4IGAsn1fbclOfzZZv2lUhG8O7PaicGlaa7N__P_ZP4dbqD3x54P54RPYQhAYkofMlzswqoraPEWgVSXPOolm8P26legPMDtC1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Demonstration+of+a+quantum+error+detection+code+using+a+square+lattice+of+four+superconducting+qubits&rft.jtitle=Nature+communications&rft.au=C%C3%B3rcoles%2C+Ad&rft.au=Magesan%2C+Easwar&rft.au=Srinivasan%2C+Srikanth+J&rft.au=Cross%2C+Andrew+W&rft.date=2015-04-29&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=6&rft.spage=6979&rft_id=info:doi/10.1038%2Fncomms7979&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3668291631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon