Demonstration of a quantum error detection code using a square lattice of four superconducting qubits
The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any comp...
Saved in:
Published in | Nature communications Vol. 6; no. 1; p. 6979 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.04.2015
Nature Publishing Group Nature Pub. Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.
The physical realization of a quantum computer requires built-in error-correcting codes that compensate the disruption of quantum information arising from noise. Here, the authors demonstrate a quantum error detection scheme for arbitrary single-qubit errors on a four superconducting qubit lattice. |
---|---|
AbstractList | The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. The physical realization of a quantum computer requires built-in error-correcting codes that compensate the disruption of quantum information arising from noise. Here, the authors demonstrate a quantum error detection scheme for arbitrary single-qubit errors on a four superconducting qubit lattice. The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code. |
ArticleNumber | 6979 |
Author | Gambetta, Jay M. Magesan, Easwar Cross, Andrew W. Chow, Jerry M. Srinivasan, Srikanth J. Steffen, M. Córcoles, A.D. |
Author_xml | – sequence: 1 givenname: A.D. surname: Córcoles fullname: Córcoles, A.D. email: adcorcol@us.ibm.com organization: IBM T.J. Watson Research Center – sequence: 2 givenname: Easwar surname: Magesan fullname: Magesan, Easwar organization: IBM T.J. Watson Research Center – sequence: 3 givenname: Srikanth J. surname: Srinivasan fullname: Srinivasan, Srikanth J. organization: IBM T.J. Watson Research Center – sequence: 4 givenname: Andrew W. surname: Cross fullname: Cross, Andrew W. organization: IBM T.J. Watson Research Center – sequence: 5 givenname: M. surname: Steffen fullname: Steffen, M. organization: IBM T.J. Watson Research Center – sequence: 6 givenname: Jay M. surname: Gambetta fullname: Gambetta, Jay M. organization: IBM T.J. Watson Research Center – sequence: 7 givenname: Jerry M. surname: Chow fullname: Chow, Jerry M. organization: IBM T.J. Watson Research Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25923200$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtr3DAUhUVJaB7Npj8gGLoJCdNKli1Lm0CYPCHQTbsWsnQ9VbClGT0K_ffRZNJ0klQbCe53DufqHKAd5x0g9JngrwRT_s1pP02xE534gPZr3JAZ6Wq6s_XeQ0cxPuByqCC8aT6ivboVNa0x3kdwCZN3MQWVrHeVHypVrbJyKU8VhOBDZSCBfhpqb6DK0bpFgWKhAlSjSslqWAsHn0MV8xKC9s7koingKvc2xU9od1BjhKPn-xD9vL76Mb-d3X-_uZtf3M90i3maKWwU7ZXhWCihhpISSNcKAz3ujWGCayCMsLZnjGPMMNWDAcFUS9qmG8RAD9H5xneZ-wmMBlcWG-Uy2EmFP9IrK19PnP0lF_63bJqacCKKwcmzQfCrDDHJyUYN46gc-BwlYV3HOae4LeiXN-hD-QBX1ltTjK4tu0Idbyd6ifK3gQKcbgAdfIwBhheEYLluWP5ruMD4DaxtemqubGPH_0vONpJYfN0CwlbM9_Qjbuy7WQ |
CitedBy_id | crossref_primary_10_1038_s41534_019_0185_4 crossref_primary_10_1103_RevModPhys_94_015004 crossref_primary_10_1073_pnas_2419273122 crossref_primary_10_1103_PhysRevLett_121_060503 crossref_primary_10_1038_s41534_017_0039_x crossref_primary_10_1063_5_0173539 crossref_primary_10_1073_pnas_1618020114 crossref_primary_10_1088_0256_307X_38_6_060301 crossref_primary_10_1103_PhysRevA_95_042318 crossref_primary_10_1103_PhysRevLett_121_060501 crossref_primary_10_1039_C5TB01412C crossref_primary_10_1088_1742_5468_ab25de crossref_primary_10_1038_s41567_018_0414_3 crossref_primary_10_1140_epjp_s13360_024_05337_2 crossref_primary_10_1103_PhysRevA_93_012346 crossref_primary_10_1103_PhysRevLett_127_060505 crossref_primary_10_1007_s11433_019_9447_5 crossref_primary_10_1038_s41567_020_0806_z crossref_primary_10_1063_1_4979652 crossref_primary_10_1103_PhysRevB_92_224511 crossref_primary_10_1103_PhysRevApplied_6_034008 crossref_primary_10_1103_PhysRevApplied_9_054016 crossref_primary_10_1103_PhysRevLett_116_180501 crossref_primary_10_1038_s41534_018_0106_y crossref_primary_10_1103_PhysRevA_102_032411 crossref_primary_10_3390_sym11101259 crossref_primary_10_1103_PhysRevA_102_042206 crossref_primary_10_1038_s41467_021_21982_y crossref_primary_10_1103_PhysRevA_103_042603 crossref_primary_10_1038_s41534_023_00771_z crossref_primary_10_1088_1674_1056_ac0425 crossref_primary_10_1103_PhysRevA_101_052308 crossref_primary_10_1002_qute_201900052 crossref_primary_10_1109_MSP_2018_3761723 crossref_primary_10_1016_j_physa_2024_129986 crossref_primary_10_1038_s41534_020_00329_3 crossref_primary_10_1038_s41534_023_00706_8 crossref_primary_10_1007_s42979_020_00398_3 crossref_primary_10_1088_2058_9565_ab0ca8 crossref_primary_10_1126_science_aaf2581 crossref_primary_10_1007_s11128_018_2002_y crossref_primary_10_1039_C5CP05927E crossref_primary_10_1103_PhysRevX_10_011022 crossref_primary_10_1103_PhysRevA_95_042330 crossref_primary_10_1103_PhysRevA_96_022324 crossref_primary_10_1016_j_cosrev_2018_11_002 crossref_primary_10_1063_1_4934867 crossref_primary_10_1103_PhysRevA_93_060302 crossref_primary_10_1088_2058_9565_aab822 crossref_primary_10_1103_PhysRevA_96_062302 crossref_primary_10_1103_PhysRevLett_124_120501 crossref_primary_10_23919_ICN_2021_0019 crossref_primary_10_1088_1402_4896_ad753c crossref_primary_10_1103_PhysRevA_104_062401 crossref_primary_10_1039_C6RA19976C crossref_primary_10_1103_PhysRevLett_119_130502 crossref_primary_10_1088_2058_9565_aca92d crossref_primary_10_1016_j_physrep_2017_10_002 crossref_primary_10_1038_s41567_020_0920_y crossref_primary_10_1103_PhysRevX_7_031011 crossref_primary_10_1146_annurev_conmatphys_031119_050605 crossref_primary_10_1103_PhysRevA_94_032329 crossref_primary_10_1103_PhysRevLett_121_267002 crossref_primary_10_1038_nature18949 crossref_primary_10_1007_s11128_019_2285_7 crossref_primary_10_1088_2058_9565_aaea94 crossref_primary_10_1088_2632_2153_abc609 crossref_primary_10_1103_PhysRevApplied_8_064004 crossref_primary_10_1103_PhysRevApplied_9_064029 crossref_primary_10_1103_PhysRevA_107_012434 crossref_primary_10_1103_PhysRevA_99_052351 crossref_primary_10_1103_PhysRevA_99_042308 crossref_primary_10_1088_1367_2630_18_3_033032 crossref_primary_10_1002_advs_202300921 crossref_primary_10_1134_S0021364018130143 crossref_primary_10_1038_s41467_022_33923_4 crossref_primary_10_1103_PhysRevA_100_012338 crossref_primary_10_1103_PhysRevA_108_022403 crossref_primary_10_1103_PhysRevLett_121_110506 crossref_primary_10_1103_PhysRevApplied_7_054025 crossref_primary_10_1364_JOSAB_464741 crossref_primary_10_1109_TQE_2020_2981074 crossref_primary_10_1103_PhysRevA_94_063851 crossref_primary_10_1007_s11128_022_03571_0 crossref_primary_10_1103_PhysRevResearch_6_033107 crossref_primary_10_1038_s41598_024_62894_3 crossref_primary_10_1103_PhysRevA_96_062323 crossref_primary_10_1109_TCAD_2017_2693284 crossref_primary_10_1103_PhysRevLett_117_190503 crossref_primary_10_1103_PhysRevApplied_20_044054 crossref_primary_10_1103_PhysRevLett_119_190503 crossref_primary_10_1038_s41534_017_0036_0 crossref_primary_10_22331_q_2017_05_11_11 crossref_primary_10_1007_s11128_023_03979_2 crossref_primary_10_1038_npjqi_2016_34 crossref_primary_10_1103_PhysRevLett_120_150503 crossref_primary_10_1103_PhysRevLett_124_130501 crossref_primary_10_1103_PhysRevA_98_052318 crossref_primary_10_1103_PhysRevApplied_16_024023 crossref_primary_10_1063_5_0088155 crossref_primary_10_1103_PhysRevLett_121_050502 crossref_primary_10_1103_PhysRevB_99_134508 crossref_primary_10_1088_1367_2630_aaa372 crossref_primary_10_1103_PhysRevApplied_8_024004 crossref_primary_10_1103_PhysRevLett_120_050503 crossref_primary_10_1088_2399_6528_ad3b63 crossref_primary_10_1038_npjqi_2016_29 crossref_primary_10_1103_PhysRevResearch_1_033033 crossref_primary_10_1109_TQE_2023_3279379 crossref_primary_10_1103_RevModPhys_88_045005 crossref_primary_10_1088_0953_2048_29_4_044001 crossref_primary_10_1103_PhysRevA_93_063845 crossref_primary_10_1109_TASC_2015_2456109 crossref_primary_10_1103_PhysRevX_6_031030 crossref_primary_10_1109_TBDATA_2016_2621106 crossref_primary_10_1038_ncomms11059 crossref_primary_10_1049_qtc2_12043 crossref_primary_10_1103_PhysRevLett_128_110504 crossref_primary_10_1103_PhysRevA_92_052306 crossref_primary_10_1103_PhysRevA_94_042107 crossref_primary_10_1103_PhysRevX_8_021058 crossref_primary_10_1038_s41467_017_00045_1 crossref_primary_10_1088_1751_8121_ad5085 crossref_primary_10_1088_2058_9565_ab5887 crossref_primary_10_1103_PRXQuantum_2_040202 crossref_primary_10_1103_PhysRevApplied_21_024035 crossref_primary_10_1109_MCAS_2016_2549950 crossref_primary_10_1103_PhysRevLett_117_133601 crossref_primary_10_1109_MC_2019_2908621 crossref_primary_10_1103_PhysRevA_94_032321 crossref_primary_10_3938_jkps_73_841 crossref_primary_10_1088_0953_2048_29_6_064004 crossref_primary_10_1103_PhysRevLett_123_210501 crossref_primary_10_1063_5_0153617 crossref_primary_10_1103_PhysRevX_6_031045 crossref_primary_10_1016_j_laa_2018_06_026 crossref_primary_10_1103_PhysRevLett_131_200602 crossref_primary_10_1103_PhysRevLett_117_250502 crossref_primary_10_1038_s41534_021_00464_5 crossref_primary_10_1103_PhysRevApplied_8_034021 crossref_primary_10_1103_PhysRevX_6_031007 crossref_primary_10_1103_PhysRevX_6_031006 crossref_primary_10_1007_s41745_022_00330_z crossref_primary_10_1364_JOSAB_523965 crossref_primary_10_1103_PhysRevApplied_19_034011 crossref_primary_10_1038_s41586_021_03928_y crossref_primary_10_1007_s11128_020_02759_6 crossref_primary_10_1063_5_0196880 crossref_primary_10_1103_PhysRevResearch_2_013285 crossref_primary_10_1103_PhysRevA_100_012301 crossref_primary_10_1103_PhysRevX_12_011032 crossref_primary_10_1088_1572_9494_abf72f crossref_primary_10_1103_PhysRevX_11_041058 crossref_primary_10_1088_1361_6633_aa7e1a crossref_primary_10_1088_1674_1056_26_5_058402 crossref_primary_10_1088_2058_9565_ad7756 crossref_primary_10_1109_TIT_2016_2555700 crossref_primary_10_1103_PhysRevA_92_052329 crossref_primary_10_1126_sciadv_aau1695 crossref_primary_10_1103_PhysRevApplied_10_054004 crossref_primary_10_22331_q_2018_10_19_101 crossref_primary_10_1103_PhysRevApplied_6_044010 crossref_primary_10_1103_PhysRevLett_116_240503 crossref_primary_10_22331_q_2019_04_08_131 crossref_primary_10_1088_2058_9565_aa5c73 crossref_primary_10_1103_PhysRevLett_117_210505 crossref_primary_10_1103_PhysRevA_96_032338 crossref_primary_10_1038_ncomms11526 crossref_primary_10_1109_ACCESS_2020_3043497 crossref_primary_10_1103_PRXQuantum_3_020335 crossref_primary_10_1126_sciadv_aay3050 crossref_primary_10_1063_1_4976809 crossref_primary_10_1103_PhysRevResearch_2_033305 crossref_primary_10_1103_PhysRevA_97_042310 crossref_primary_10_22331_q_2024_02_12_1251 crossref_primary_10_1088_1674_1056_27_2_027401 crossref_primary_10_1103_PhysRevA_96_042316 crossref_primary_10_1103_PhysRevA_96_042315 crossref_primary_10_1590_1678_4499_20220121 crossref_primary_10_1103_PhysRevA_94_042316 crossref_primary_10_1103_PhysRevLett_119_180501 crossref_primary_10_1103_PhysRevA_94_012347 crossref_primary_10_1103_PhysRevApplied_5_011001 crossref_primary_10_1038_s41567_019_0437_4 crossref_primary_10_1038_s41534_018_0099_6 crossref_primary_10_2200_S00746ED1V01Y201612QMC010 crossref_primary_10_1103_PhysRevA_94_012340 crossref_primary_10_1109_TQE_2023_3303935 crossref_primary_10_1063_1_5089729 crossref_primary_10_1103_PhysRevA_105_032409 crossref_primary_10_1007_s11128_015_1152_4 crossref_primary_10_1103_PhysRevLett_119_150401 crossref_primary_10_1063_1_5003169 crossref_primary_10_1103_PhysRevA_102_042605 crossref_primary_10_1142_S0218126619500841 crossref_primary_10_1103_PhysRevApplied_20_014045 crossref_primary_10_1103_PhysRevB_96_195150 crossref_primary_10_1088_1367_2630_ad1e93 crossref_primary_10_1103_PRXQuantum_3_010310 crossref_primary_10_1103_PhysRevA_93_043812 crossref_primary_10_1103_PhysRevLett_131_210603 crossref_primary_10_1103_PhysRevB_110_045417 crossref_primary_10_1088_1572_9494_abe4cb crossref_primary_10_1103_PhysRevLett_133_150201 crossref_primary_10_1103_PhysRevLett_118_210504 crossref_primary_10_1103_PhysRevA_98_052348 crossref_primary_10_1103_PhysRevA_102_052410 crossref_primary_10_1103_PhysRevX_6_041035 crossref_primary_10_1038_s41586_020_2667_0 crossref_primary_10_1103_PhysRevA_95_032339 crossref_primary_10_1103_PhysRevX_7_021029 crossref_primary_10_1038_s42254_022_00494_8 crossref_primary_10_1103_PhysRevB_99_235420 crossref_primary_10_1088_1361_6463_ab96eb crossref_primary_10_1103_PRXQuantum_2_040336 crossref_primary_10_1016_j_physleta_2020_126353 crossref_primary_10_1140_epjqt_s40507_023_00161_6 crossref_primary_10_1103_PhysRevA_105_062404 crossref_primary_10_1103_PhysRevApplied_18_034057 crossref_primary_10_1063_1_4943602 crossref_primary_10_1126_sciadv_1701074 crossref_primary_10_1007_s11128_016_1412_y crossref_primary_10_1088_1751_8121_abb439 crossref_primary_10_1088_2058_9565_ac3386 crossref_primary_10_1007_s11128_015_1201_z crossref_primary_10_3390_app14209418 crossref_primary_10_1038_s41567_023_02226_w crossref_primary_10_1021_acs_jpclett_9b03131 crossref_primary_10_1088_1367_2630_acfba5 crossref_primary_10_1038_s41534_022_00542_2 crossref_primary_10_1103_PhysRevLett_126_090502 crossref_primary_10_1103_PhysRevX_8_011044 crossref_primary_10_1103_RevModPhys_95_045005 crossref_primary_10_1103_PhysRevA_93_062331 crossref_primary_10_1016_j_iswa_2024_200346 crossref_primary_10_46571_JCI_2017_1_7 crossref_primary_10_1103_PhysRevB_111_024420 crossref_primary_10_1103_PhysRevB_96_035441 crossref_primary_10_1063_1_4993577 crossref_primary_10_1103_PhysRevA_96_012313 crossref_primary_10_1103_PRXQuantum_2_040343 crossref_primary_10_1038_s41467_019_10727_7 crossref_primary_10_1063_1_4994661 crossref_primary_10_1088_1367_2630_aa8cef crossref_primary_10_1103_PhysRevA_93_032322 crossref_primary_10_1038_s41534_020_0275_3 crossref_primary_10_1103_PhysRevApplied_10_034040 crossref_primary_10_1103_PhysRevB_92_245139 crossref_primary_10_1142_S0217979219300032 crossref_primary_10_1038_s41467_024_47379_1 crossref_primary_10_1038_s41534_017_0044_0 crossref_primary_10_1103_PhysRevA_102_062426 crossref_primary_10_1063_1_5096262 crossref_primary_10_1063_1_4962172 crossref_primary_10_1038_s41586_019_1666_5 crossref_primary_10_1038_s41534_017_0017_3 crossref_primary_10_1109_TQE_2024_3486546 crossref_primary_10_1103_RevModPhys_91_025005 crossref_primary_10_1103_PhysRevApplied_8_044003 crossref_primary_10_1103_PhysRevResearch_2_023230 crossref_primary_10_1103_PhysRevB_99_024422 crossref_primary_10_1038_s41534_020_0261_9 crossref_primary_10_1038_s41534_020_0269_1 crossref_primary_10_1103_PhysRevResearch_6_023077 crossref_primary_10_1007_s11432_020_2881_9 crossref_primary_10_1103_PhysRevB_99_205114 crossref_primary_10_1103_PhysRevA_107_012602 crossref_primary_10_22331_q_2022_01_05_618 crossref_primary_10_1088_2399_6528_aadafc crossref_primary_10_1038_s42005_022_00875_6 crossref_primary_10_1088_0031_8949_T168_1_014002 crossref_primary_10_1103_PhysRevA_95_032303 crossref_primary_10_1103_PRXQuantum_2_030345 crossref_primary_10_1038_s41586_019_1040_7 crossref_primary_10_1103_PhysRevX_6_011022 crossref_primary_10_1103_PhysRevX_11_031066 crossref_primary_10_22331_q_2025_02_06_1623 crossref_primary_10_1103_PhysRevResearch_6_013024 crossref_primary_10_1103_PRXQuantum_2_020304 crossref_primary_10_1103_PhysRevResearch_2_033399 crossref_primary_10_1103_PhysRevApplied_16_064041 crossref_primary_10_1088_0953_4075_49_20_202001 crossref_primary_10_1103_PhysRevApplied_6_041001 crossref_primary_10_1103_PhysRevB_94_174514 crossref_primary_10_1007_s11128_018_2144_y crossref_primary_10_1038_nmat4306 crossref_primary_10_1038_s41586_023_05784_4 crossref_primary_10_1088_1361_6633_ab28ef crossref_primary_10_1088_1367_2630_18_9_093027 crossref_primary_10_1103_PhysRevLett_120_130503 crossref_primary_10_1088_2058_9565_aaa3a0 crossref_primary_10_1038_s41534_016_0002_2 crossref_primary_10_1103_PhysRevA_98_032323 crossref_primary_10_1103_PhysRevA_98_032322 crossref_primary_10_1103_PhysRevX_7_041061 crossref_primary_10_3389_frqst_2024_1462004 crossref_primary_10_1103_PhysRevA_102_062408 crossref_primary_10_1038_s41567_020_0931_8 crossref_primary_10_1098_rsta_2016_0236 crossref_primary_10_1103_PhysRevA_92_032314 crossref_primary_10_1103_PRXQuantum_2_030334 crossref_primary_10_1038_s41567_020_0992_8 crossref_primary_10_1103_PhysRevApplied_18_044025 crossref_primary_10_1103_PhysRevLett_118_147701 crossref_primary_10_1103_RevModPhys_93_025005 crossref_primary_10_1103_PhysRevLett_123_030503 crossref_primary_10_1103_PhysRevResearch_4_013010 crossref_primary_10_1103_PhysRevB_102_180303 crossref_primary_10_22331_q_2020_11_04_358 crossref_primary_10_1002_apxr_202400159 crossref_primary_10_1103_PhysRevResearch_6_033329 crossref_primary_10_1103_PhysRevA_93_042333 crossref_primary_10_3762_bjnano_13_37 crossref_primary_10_1103_PhysRevApplied_13_044017 crossref_primary_10_1109_JETCAS_2022_3205174 crossref_primary_10_1038_nature23460 crossref_primary_10_1063_1_5089550 crossref_primary_10_1103_PhysRevA_101_043842 crossref_primary_10_1103_PhysRevLett_118_140501 crossref_primary_10_1002_qute_202200008 crossref_primary_10_1103_PhysRevB_97_024518 crossref_primary_10_1088_2058_9565_abb6d9 crossref_primary_10_1088_2058_9565_aa9a06 crossref_primary_10_1103_PhysRevA_97_022335 crossref_primary_10_1088_0953_2048_29_8_084007 crossref_primary_10_1103_PhysRevA_94_012318 crossref_primary_10_1109_JPROC_2019_2954005 crossref_primary_10_1063_1_4939148 crossref_primary_10_1021_acsengineeringau_1c00033 crossref_primary_10_1088_2058_9565_aaa645 crossref_primary_10_1088_2058_9565_acbed7 crossref_primary_10_1103_PhysRevB_94_014506 crossref_primary_10_1103_PhysRevB_96_235434 crossref_primary_10_1088_2058_9565_aca21f crossref_primary_10_1103_PhysRevA_104_062434 crossref_primary_10_1038_s41534_021_00456_5 crossref_primary_10_1103_PhysRevB_97_161101 crossref_primary_10_1088_1367_2630_aa924b crossref_primary_10_1103_PhysRevA_99_012333 crossref_primary_10_1088_2058_9565_aa94fc crossref_primary_10_1016_j_aop_2016_06_024 crossref_primary_10_1088_1367_2630_ab5c51 crossref_primary_10_1103_PhysRevA_107_022421 crossref_primary_10_1103_PhysRevX_5_041038 crossref_primary_10_1088_1361_648X_ac6927 crossref_primary_10_1103_PhysRevA_95_032317 crossref_primary_10_1007_s11128_017_1662_3 crossref_primary_10_1126_sciadv_1500707 crossref_primary_10_1021_acscentsci_7b00586 crossref_primary_10_3390_businesses3040036 |
Cites_doi | 10.1103/PhysRevLett.103.110501 10.1103/PhysRevA.87.030301 10.1103/PhysRevLett.107.160501 10.1038/nature03074 10.1103/PhysRevLett.112.070502 10.1038/nature13171 10.1038/nature12802 10.1063/1.1499754 10.1103/PhysRevLett.109.240504 10.1103/PhysRevLett.107.240501 10.1103/PhysRevLett.108.070502 10.1126/science.1253742 10.1016/S0003-4916(02)00018-0 10.1103/PhysRevLett.98.190504 10.1126/science.1203329 10.1038/ncomms5015 10.1103/PhysRevLett.109.100503 10.1103/PhysRevLett.106.180504 10.1103/PhysRevLett.109.060501 10.1103/PhysRevLett.111.080502 10.1103/PhysRevA.86.032324 10.1063/1.4813269 10.1103/PhysRevLett.109.050506 10.1103/PhysRevLett.109.050507 10.1103/PhysRevLett.81.2152 10.1038/ncomms7983 10.1038/nature10786 |
ContentType | Journal Article |
Copyright | The Author(s) 2015 Copyright Nature Publishing Group Apr 2015 Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2015 – notice: Copyright Nature Publishing Group Apr 2015 – notice: Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM |
DOI | 10.1038/ncomms7979 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological science database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
ExternalDocumentID | PMC4421819 3668291631 25923200 10_1038_ncomms7979 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 4.4 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABAWZ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EJD EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c508t-a0da3bad809a9af259e1759deb0bdd698ce16165b66800603cfde96a51547f9f3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Thu Aug 21 18:13:45 EDT 2025 Thu Jul 10 18:01:45 EDT 2025 Sat Aug 23 13:17:20 EDT 2025 Wed Feb 19 02:32:55 EST 2025 Tue Jul 01 02:30:57 EDT 2025 Thu Apr 24 23:06:26 EDT 2025 Fri Feb 21 02:39:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-a0da3bad809a9af259e1759deb0bdd698ce16165b66800603cfde96a51547f9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/ncomms7979 |
PMID | 25923200 |
PQID | 1676344217 |
PQPubID | 546298 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4421819 proquest_miscellaneous_1677888305 proquest_journals_1676344217 pubmed_primary_25923200 crossref_primary_10_1038_ncomms7979 crossref_citationtrail_10_1038_ncomms7979 springer_journals_10_1038_ncomms7979 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150429 |
PublicationDateYYYYMMDD | 2015-04-29 |
PublicationDate_xml | – month: 4 year: 2015 text: 20150429 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Pub. Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Pub. Group |
References | Chiaverini (CR4) 2004; 432 Magesan, Gambetta, Emerson (CR30) 2011; 106 Raussendorf, Harrington (CR10) 2007; 98 Paik (CR15) 2011; 107 Moussa, Baugh, Ryan, Laflamme (CR3) 2011; 107 Barends (CR17) 2013; 111 CR11 Barends (CR18) 2014; 508 Corcoles (CR22) 2013; 87 Dennis, Kitaev, Landahl, Preskill (CR12) 2002; 43 Riste, van Leeuwen, Ku, Lehnert, DiCarlo (CR21) 2012; 109 Smolin, Gambetta, Smith (CR31) 2012; 108 Gambetta (CR23) 2012; 109 Cory (CR1) 1998; 81 Fowler, Mariantoni, Martinis, Cleland (CR13) 2012; 86 Zhang, Laflamme, Suter (CR2) 2012; 109 Johnson (CR20) 2012; 109 Chow (CR29) 2012; 109 Shankar (CR19) 2013; 504 CR8 CR7 CR27 CR26 CR25 Nigg (CR6) 2014; 345 Motzoi, Gambetta, Rebentrost, Wilhelm (CR28) 2009; 103 Saira (CR24) 2014; 112 Chang (CR16) 2013; 103 Schindler (CR5) 2011; 332 Kitaev (CR9) 1997; 303 Chow (CR14) 2014; 5 J Chiaverini (BFncomms7979_CR4) 2004; 432 A Kitaev (BFncomms7979_CR9) 1997; 303 BFncomms7979_CR27 BFncomms7979_CR26 BFncomms7979_CR25 D Nigg (BFncomms7979_CR6) 2014; 345 J Zhang (BFncomms7979_CR2) 2012; 109 AD Corcoles (BFncomms7979_CR22) 2013; 87 AG Fowler (BFncomms7979_CR13) 2012; 86 JM Chow (BFncomms7979_CR29) 2012; 109 H Paik (BFncomms7979_CR15) 2011; 107 JM Chow (BFncomms7979_CR14) 2014; 5 D Riste (BFncomms7979_CR21) 2012; 109 S Shankar (BFncomms7979_CR19) 2013; 504 DG Cory (BFncomms7979_CR1) 1998; 81 O Moussa (BFncomms7979_CR3) 2011; 107 BFncomms7979_CR7 R Barends (BFncomms7979_CR18) 2014; 508 BFncomms7979_CR8 P Schindler (BFncomms7979_CR5) 2011; 332 E Dennis (BFncomms7979_CR12) 2002; 43 O-P Saira (BFncomms7979_CR24) 2014; 112 JA Smolin (BFncomms7979_CR31) 2012; 108 R Barends (BFncomms7979_CR17) 2013; 111 E Magesan (BFncomms7979_CR30) 2011; 106 JE Johnson (BFncomms7979_CR20) 2012; 109 JM Gambetta (BFncomms7979_CR23) 2012; 109 JB Chang (BFncomms7979_CR16) 2013; 103 BFncomms7979_CR11 R Raussendorf (BFncomms7979_CR10) 2007; 98 F Motzoi (BFncomms7979_CR28) 2009; 103 |
References_xml | – volume: 103 start-page: 110501 year: 2009 ident: CR28 article-title: Simple pulses for elimination of leakage in weakly nonlinear qubits publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.110501 – volume: 87 start-page: 030301 year: 2013 ident: CR22 article-title: Process verification of two-qubit quantum gates by randomized benchmarking publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.030301 – volume: 107 start-page: 160501 year: 2011 ident: CR3 article-title: Demonstration of sufficient control for two rounds of quantum error correction in a solid state ensemble quantum information processor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.160501 – volume: 432 start-page: 602 year: 2004 end-page: 605 ident: CR4 article-title: Realization of quantum error correction publication-title: Nature doi: 10.1038/nature03074 – volume: 112 start-page: 070502 year: 2014 ident: CR24 article-title: Entanglement genesis by ancilla-based parity measurement in 2d circuit qed publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.070502 – volume: 508 start-page: 500 year: 2014 end-page: 503 ident: CR18 article-title: Superconducting quantum circuits at the surface code threshold for fault tolerance publication-title: Nature doi: 10.1038/nature13171 – volume: 504 start-page: 419 year: 2013 end-page: 422 ident: CR19 article-title: Autonomously stabilized entanglement between two superconducting quantum bits publication-title: Nature doi: 10.1038/nature12802 – volume: 43 start-page: 4452 year: 2002 end-page: 4505 ident: CR12 article-title: Topological quantum memory publication-title: J. Math. Phys. doi: 10.1063/1.1499754 – volume: 109 start-page: 240504 year: 2012 ident: CR23 article-title: Characterization of addressability by simultaneous randomized benchmarking publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.240504 – ident: CR8 – volume: 107 start-page: 240501 year: 2011 ident: CR15 article-title: Observation of high coherence in josephson junction qubits measured in a three-dimensional circuit qed architecture publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.240501 – ident: CR25 – ident: CR27 – volume: 108 start-page: 070502 year: 2012 ident: CR31 article-title: Efficient method for computing the maximum-likelihood quantum state from measurements with additive gaussian noise publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.070502 – volume: 345 start-page: 302 year: 2014 end-page: 305 ident: CR6 article-title: Quantum computations on a topologically encoded qubit publication-title: Science doi: 10.1126/science.1253742 – volume: 303 start-page: 2 year: 1997 end-page: 30 ident: CR9 article-title: Fault-tolerant quantum computation by anyons publication-title: Ann. Phys. doi: 10.1016/S0003-4916(02)00018-0 – volume: 98 start-page: 190504 year: 2007 ident: CR10 article-title: Fault-tolerant quantum computation with high threshold in two dimensions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.190504 – volume: 332 start-page: 1059 year: 2011 end-page: 1061 ident: CR5 article-title: Experimental repetitive quantum error correction publication-title: Science doi: 10.1126/science.1203329 – volume: 5 start-page: 500 year: 2014 ident: CR14 article-title: Implementing a strand of a scalable fault-tolerant quantum computing fabric publication-title: Nat. Commun. doi: 10.1038/ncomms5015 – ident: CR11 – volume: 109 start-page: 100503 year: 2012 ident: CR2 article-title: Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.100503 – volume: 106 start-page: 180504 year: 2011 ident: CR30 article-title: Scalable and robust randomized benchmarking of quantum processes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.180504 – volume: 109 start-page: 060501 year: 2012 ident: CR29 article-title: Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.060501 – ident: CR7 – volume: 111 start-page: 080502 year: 2013 ident: CR17 article-title: Coherent josephson qubit suitable for scalable quantum integrated circuits publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.080502 – volume: 86 start-page: 032324 year: 2012 ident: CR13 article-title: Surface codes: towards practical large-scale quantum computation publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.032324 – volume: 103 start-page: 012602 year: 2013 ident: CR16 article-title: Improved superconducting qubit coherence using titanium nitride publication-title: Appl. Phys. Lett. doi: 10.1063/1.4813269 – ident: CR26 – volume: 109 start-page: 050506 year: 2012 ident: CR20 article-title: Heralded state preparation in a superconducting qubit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.050506 – volume: 109 start-page: 050507 year: 2012 ident: CR21 article-title: Initialization by measurement of a superconducting quantum bit circuit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.050507 – volume: 81 start-page: 2152 year: 1998 end-page: 2155 ident: CR1 article-title: Experimental quantum error correction publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.2152 – volume: 86 start-page: 032324 year: 2012 ident: BFncomms7979_CR13 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.032324 – ident: BFncomms7979_CR26 doi: 10.1038/ncomms7983 – ident: BFncomms7979_CR11 – volume: 111 start-page: 080502 year: 2013 ident: BFncomms7979_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.080502 – volume: 43 start-page: 4452 year: 2002 ident: BFncomms7979_CR12 publication-title: J. Math. Phys. doi: 10.1063/1.1499754 – volume: 5 start-page: 500 year: 2014 ident: BFncomms7979_CR14 publication-title: Nat. Commun. doi: 10.1038/ncomms5015 – volume: 81 start-page: 2152 year: 1998 ident: BFncomms7979_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.2152 – volume: 112 start-page: 070502 year: 2014 ident: BFncomms7979_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.070502 – volume: 108 start-page: 070502 year: 2012 ident: BFncomms7979_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.070502 – volume: 109 start-page: 100503 year: 2012 ident: BFncomms7979_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.100503 – volume: 107 start-page: 240501 year: 2011 ident: BFncomms7979_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.240501 – volume: 98 start-page: 190504 year: 2007 ident: BFncomms7979_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.190504 – volume: 332 start-page: 1059 year: 2011 ident: BFncomms7979_CR5 publication-title: Science doi: 10.1126/science.1203329 – volume: 345 start-page: 302 year: 2014 ident: BFncomms7979_CR6 publication-title: Science doi: 10.1126/science.1253742 – ident: BFncomms7979_CR27 – volume: 103 start-page: 012602 year: 2013 ident: BFncomms7979_CR16 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4813269 – volume: 432 start-page: 602 year: 2004 ident: BFncomms7979_CR4 publication-title: Nature doi: 10.1038/nature03074 – ident: BFncomms7979_CR25 – volume: 103 start-page: 110501 year: 2009 ident: BFncomms7979_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.110501 – volume: 107 start-page: 160501 year: 2011 ident: BFncomms7979_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.160501 – volume: 508 start-page: 500 year: 2014 ident: BFncomms7979_CR18 publication-title: Nature doi: 10.1038/nature13171 – volume: 109 start-page: 050507 year: 2012 ident: BFncomms7979_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.050507 – volume: 303 start-page: 2 year: 1997 ident: BFncomms7979_CR9 publication-title: Ann. Phys. doi: 10.1016/S0003-4916(02)00018-0 – volume: 109 start-page: 050506 year: 2012 ident: BFncomms7979_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.050506 – volume: 87 start-page: 030301 year: 2013 ident: BFncomms7979_CR22 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.030301 – volume: 109 start-page: 060501 year: 2012 ident: BFncomms7979_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.060501 – ident: BFncomms7979_CR8 – volume: 106 start-page: 180504 year: 2011 ident: BFncomms7979_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.180504 – volume: 504 start-page: 419 year: 2013 ident: BFncomms7979_CR19 publication-title: Nature doi: 10.1038/nature12802 – ident: BFncomms7979_CR7 doi: 10.1038/nature10786 – volume: 109 start-page: 240504 year: 2012 ident: BFncomms7979_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.240504 |
SSID | ssj0000391844 |
Score | 2.626736 |
Snippet | The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6979 |
SubjectTerms | 639/766/119/1003 639/766/25 639/766/483/2802 Coding Demolition Dimensional tolerances Error correcting codes Error correction Error correction & detection Error detection codes Fault tolerance Humanities and Social Sciences Lattices multidisciplinary Quantum computing Quantum theory Qubits (quantum computing) Science Science (multidisciplinary) Superconductivity |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT90wDLcY06RdJvbdjaFM47JDRXlp85oTmrY9ENI4gcStShOHIfHa9_px4L_H7hcfb9q5bmLZSfxz7NgA-5gbBroqnHlvQ7LQKsyTVIZeJoieILrqXnj_OVMnF_HpZXI5XLjVQ1rleCZ2B7UrLd-RHxwq2glxTAMfrdYhd43i6OrQQuMZPD8kS8MpXenieLpj4ernaRyPVUllelDQkMt6rjlz66Ed2gCXmzmSTwKlnf1Z7MCrATiKH72mX8MWFm_gRd9K8vYt4C9cMtTrFSpKL4xYtyS2dimwqspKOGy6tKtC8DN2wQnvV0RUE1WF4sY0nAbHP3qaStTtCivylbkcLBOu2_y6qd_BxeL3-c-TcGihEFpCXk1oImdkblwaaaONJ18HCS9oh3mUO6d0apEgn0pyEh6XZpHWO9TKEMqJ5157-R62i7LAjyAYikR2pqy2SSwluYUz5zmt02rlySkK4Pso0MwO9cW5zcVN1sW5ZZrdCz-AbxPtqq-q8U-q3VEv2bCz6ux-HQTwdfpMe4IDHabAsu1o2LOXzNSHXo3TNCQCApFRFMD8kYInAq63_fhLcf23q7vNsxKACmB_XAoP2Nrg_tP_uf8MLwl7JRyYmuld2G6qFr8QvmnyvW4R3wHx8_-v priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BIiQuqC1Q0tLKCC4cIsI68cbHVQGtVioXQOIWOc64ILFZyOPAv-9MXmW7PfQYeSyPZsb2N_H4M8AppoaBrvLHzlmfdmjlp1EsfScjREcQXTU3vH_eqNl9OH-IHjqanLIrq2wpLZtluq8OO8_pa1FO9ERvwhZTtFNMb02n89v58EeFuc7jMOw5SGX8rtPqrrMGJdcrIv86Fm12m-sPsNvBRDFtFfsIG5h_gu324ci3PcBLXDCwa90nlk4Y8VqTkeqFwKJYFiLDqimyygVfWhdc3v6LhEqSKlA8m4qL3rijo6FEWb9gQZkxk7-y4GudPlXlPtxfX939mPndgwm-JZxV-SbIjExNFgfaaOMos0FCBzrDNEizTOnYIgE8FaVKxUzEIq3LUCtDmCacOO3kAYzyZY6HIBh4BHasrLZRKCUlgePMcRGn1cpRCuTBWW_QxHZs4vyoxXPSnGrLOPljfA9OBtmXlkPjn1JHvV-Sbh6VyYWi9S8MKZw8OB6aaQbwsYbJcVk3MpzHS1bqc-vGYRgyAUHGIPBgsuLgQYDZtVdb8qfHhmWbRyW45MFpHwrv1FrT_sv_iX2FHUJcER9HjfURjKqixm-Eaqr0exfOvwF2f_1w priority: 102 providerName: Springer Nature |
Title | Demonstration of a quantum error detection code using a square lattice of four superconducting qubits |
URI | https://link.springer.com/article/10.1038/ncomms7979 https://www.ncbi.nlm.nih.gov/pubmed/25923200 https://www.proquest.com/docview/1676344217 https://www.proquest.com/docview/1677888305 https://pubmed.ncbi.nlm.nih.gov/PMC4421819 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_tQ0i8IL7JNioj9sJDIKsTJ35AqJSVqdImBFTqW-Q4Nkxq0zUfEvvvuXOSQunESyLFZ_l054_f5c53AKcmUwR0hT-0Vvt4Qgs_ixLuWx4ZYxGiC3fD-_JKXMzC6Tya70Ffv7MTYHWnaUf1pGbl4u2v9e0HXPDv2yvjybsCdbOsYhnLfTjEEymmSgaXHcx3OzKXaMiEfXbSrS7b59EOyNyNlfzHYerOoclDeNABSDZqNf4I9kzxGO61JSVvn4D5ZJYE-VrFspVliq0bFF-zZKYsVyXLTe3CrwpG19kZBb7_QKIKqUrDFqqmcDjqaHEoVjU3pkSbmdLCEuG6ya7r6inMJuffxxd-V0rB14jAal8FueKZypNAKqks2jwGcYPMTRZkeS5kog1CPxFlQiSUooVrmxspFKKdMLbS8mdwUKwK8wIYQZJAD4WWOgo5R_NwmFsK79RSWDSOPHjTCzTVXZ5xKnexSJ2_myfpH-F78HpDe9Nm17iT6qTXS9pPkPRM4M4YhjjRPHi1aca1QQ4PVZhV42jIwufE1PNWjZthUAQIJoPAg3hLwRsCyru93VJc_3T5t2lUBFIenPZT4S-2drg_-j_3x3AfMVhEDqqhPIGDumzMS8Q5dTaA_Xge4zOZfB7A4Wg0_TbF98fzqy9f8etYjAfuD8LATfbfKwsJSQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviHcDLRhRDhyihjjxxgdUVS3Llj5OrdRbcPyASt1kNw-h_il-IzPJJm1ZxK1nT2xnZuz57BnPAGzZTBHQFX7onPbRQgs_ixPuOx5b6xCii_aF9_GJmJxF387j8xX43b-FobDKfk9sN2pTaLoj3_4kcCVEEXa8M5v7VDWKvKt9CY1OLQ7t1S88slWfD_ZRvh_CcPzldG_iL6oK-BrBSO2rwCieKZMEUknlEP5bNKHS2CzIjBEy0RZRkIgzIRLKVsK1M1YKhYY_GjnpOPZ7D-5HHC05vUwffx3udCjbehJFfRZUnmzn-AvTaiQpUuym3VsCs8sxmX85Zlt7N34MjxZAle12mvUEVmz-FB50pSuvnoHdt1OClp0CscIxxeYNiqmZMluWRcmMrdswr5zRs3lGAfY_kKhCqtKyS1VT2B196HAoVjUzW-LZnNLPEuG8yS7q6jmc3QlzX8BqXuR2HRhBn0CHQksdI7PxGBoaR2GkWgqHhzAPPvYMTfUinzmV1bhMW786T9Jr5nvwfqCddVk8_km10cslXazkKr3WOw_eDc24BsmxonJbNC0N3SRwmtTLTozDMMgCBK1B4MHoloAHAsrvfbslv_jZ5vmmURGwebDVq8KNaS3N_tX_Z_8WHk5Oj4_So4OTw9ewhrgvJqdYKDdgtS4bu4nYqs7etArN4Ptdr6A_l0g9Qg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUC9IN4NFDCiHDhEG-LEGx8QArarlsKqQlTqLTiODZW6yW4eQv1r_Dpm8mrLIm49e2I7nhn7G894BmDXJIqArnB9a7WLJ7RwkzDiruWhMRYhumheeH-Zi_3j4NNJeLIBv_u3MBRW2e-JzUad5pruyMdvBGpCEGDHY9uFRRxNZ--WK5cqSJGntS-n0YrIoTn_heZb-fZgirx-5fuzvW8f992uwoCrEZhUrvJSxROVRp5UUlk0BQwepzI1iZekqZCRNoiIRJgIEVHmEq5taqRQCAKCiZWWY783YHNCVtEINj_szY--Djc8lHs9CoI-JyqPxhn-0KKcSIobu3wKrkHb9QjNv9y0zek3uwO3O9jK3rdydhc2THYPbraFLM_vg5maBQHNVpxYbpliqxqZVi-YKYq8YKmpmqCvjNEjekbh9j-QqESqwrAzVVEQHn1ocShW1ktToKVOyWiJcFUnp1X5AI6vZXkfwijLM7MNjICQp32hpQ4DztEo9VNLQaVaCosmmQOv-wWNdZfdnIpsnMWNl51H8cXiO_ByoF22OT3-SbXT8yXu9LqML6TQgRdDM2okuVlUZvK6oaF7BU6TetSycRgGlwAhrOc5MLnC4IGAsn1fbclOfzZZv2lUhG8O7PaicGlaa7N__P_ZP4dbqD3x54P54RPYQhAYkofMlzswqoraPEWgVSXPOolm8P26legPMDtC1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Demonstration+of+a+quantum+error+detection+code+using+a+square+lattice+of+four+superconducting+qubits&rft.jtitle=Nature+communications&rft.au=C%C3%B3rcoles%2C+Ad&rft.au=Magesan%2C+Easwar&rft.au=Srinivasan%2C+Srikanth+J&rft.au=Cross%2C+Andrew+W&rft.date=2015-04-29&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=6&rft.spage=6979&rft_id=info:doi/10.1038%2Fncomms7979&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3668291631 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |