Subjective Assessment of Objective Image Quality Metrics Range Guaranteeing Visually Lossless Compression

The usage of media such as images and videos has been extensively increased in recent years. It has become impractical to store images and videos acquired by camera sensors in their raw form due to their huge storage size. Generally, image data is compressed with a compression algorithm and then sto...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 3; p. 1297
Main Authors Afnan, Afnan, Ullah, Faiz, Yaseen, Yaseen, Lee, Jinhee, Jamil, Sonain, Kwon, Oh-Jin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.01.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The usage of media such as images and videos has been extensively increased in recent years. It has become impractical to store images and videos acquired by camera sensors in their raw form due to their huge storage size. Generally, image data is compressed with a compression algorithm and then stored or transmitted to another platform. Thus, image compression helps to reduce the storage size and transmission cost of the images and videos. However, image compression might cause visual artifacts, depending on the compression level. In this regard, performance evaluation of the compression algorithms is an essential task needed to reconstruct images with visually or near-visually lossless quality in case of lossy compression. The performance of the compression algorithms is assessed by both subjective and objective image quality assessment (IQA) methodologies. In this paper, subjective and objective IQA methods are integrated to evaluate the range of the image quality metrics (IQMs) values that guarantee the visually or near-visually lossless compression performed by the JPEG 1 standard (ISO/IEC 10918). A novel “Flicker Test Software” is developed for conducting the proposed subjective and objective evaluation study. In the flicker test, the selected test images are subjectively analyzed by subjects at different compression levels. The IQMs are calculated at the previous compression level, when the images were visually lossless for each subject. The results analysis shows that the objective IQMs with more closely packed values having the least standard deviation that guaranteed the visually lossless compression of the images with JPEG 1 are the feature similarity index measure (FSIM), the multiscale structural similarity index measure (MS-SSIM), and the information content weighted SSIM (IW-SSIM), with average values of 0.9997, 0.9970, and 0.9970 respectively.
AbstractList The usage of media such as images and videos has been extensively increased in recent years. It has become impractical to store images and videos acquired by camera sensors in their raw form due to their huge storage size. Generally, image data is compressed with a compression algorithm and then stored or transmitted to another platform. Thus, image compression helps to reduce the storage size and transmission cost of the images and videos. However, image compression might cause visual artifacts, depending on the compression level. In this regard, performance evaluation of the compression algorithms is an essential task needed to reconstruct images with visually or near-visually lossless quality in case of lossy compression. The performance of the compression algorithms is assessed by both subjective and objective image quality assessment (IQA) methodologies. In this paper, subjective and objective IQA methods are integrated to evaluate the range of the image quality metrics (IQMs) values that guarantee the visually or near-visually lossless compression performed by the JPEG 1 standard (ISO/IEC 10918). A novel “Flicker Test Software” is developed for conducting the proposed subjective and objective evaluation study. In the flicker test, the selected test images are subjectively analyzed by subjects at different compression levels. The IQMs are calculated at the previous compression level, when the images were visually lossless for each subject. The results analysis shows that the objective IQMs with more closely packed values having the least standard deviation that guaranteed the visually lossless compression of the images with JPEG 1 are the feature similarity index measure (FSIM), the multiscale structural similarity index measure (MS-SSIM), and the information content weighted SSIM (IW-SSIM), with average values of 0.9997, 0.9970, and 0.9970 respectively.
The usage of media such as images and videos has been extensively increased in recent years. It has become impractical to store images and videos acquired by camera sensors in their raw form due to their huge storage size. Generally, image data is compressed with a compression algorithm and then stored or transmitted to another platform. Thus, image compression helps to reduce the storage size and transmission cost of the images and videos. However, image compression might cause visual artifacts, depending on the compression level. In this regard, performance evaluation of the compression algorithms is an essential task needed to reconstruct images with visually or near-visually lossless quality in case of lossy compression. The performance of the compression algorithms is assessed by both subjective and objective image quality assessment (IQA) methodologies. In this paper, subjective and objective IQA methods are integrated to evaluate the range of the image quality metrics (IQMs) values that guarantee the visually or near-visually lossless compression performed by the JPEG 1 standard (ISO/IEC 10918). A novel "Flicker Test Software" is developed for conducting the proposed subjective and objective evaluation study. In the flicker test, the selected test images are subjectively analyzed by subjects at different compression levels. The IQMs are calculated at the previous compression level, when the images were visually lossless for each subject. The results analysis shows that the objective IQMs with more closely packed values having the least standard deviation that guaranteed the visually lossless compression of the images with JPEG 1 are the feature similarity index measure (FSIM), the multiscale structural similarity index measure (MS-SSIM), and the information content weighted SSIM (IW-SSIM), with average values of 0.9997, 0.9970, and 0.9970 respectively.The usage of media such as images and videos has been extensively increased in recent years. It has become impractical to store images and videos acquired by camera sensors in their raw form due to their huge storage size. Generally, image data is compressed with a compression algorithm and then stored or transmitted to another platform. Thus, image compression helps to reduce the storage size and transmission cost of the images and videos. However, image compression might cause visual artifacts, depending on the compression level. In this regard, performance evaluation of the compression algorithms is an essential task needed to reconstruct images with visually or near-visually lossless quality in case of lossy compression. The performance of the compression algorithms is assessed by both subjective and objective image quality assessment (IQA) methodologies. In this paper, subjective and objective IQA methods are integrated to evaluate the range of the image quality metrics (IQMs) values that guarantee the visually or near-visually lossless compression performed by the JPEG 1 standard (ISO/IEC 10918). A novel "Flicker Test Software" is developed for conducting the proposed subjective and objective evaluation study. In the flicker test, the selected test images are subjectively analyzed by subjects at different compression levels. The IQMs are calculated at the previous compression level, when the images were visually lossless for each subject. The results analysis shows that the objective IQMs with more closely packed values having the least standard deviation that guaranteed the visually lossless compression of the images with JPEG 1 are the feature similarity index measure (FSIM), the multiscale structural similarity index measure (MS-SSIM), and the information content weighted SSIM (IW-SSIM), with average values of 0.9997, 0.9970, and 0.9970 respectively.
Audience Academic
Author Ullah, Faiz
Kwon, Oh-Jin
Lee, Jinhee
Yaseen, Yaseen
Jamil, Sonain
Afnan, Afnan
AuthorAffiliation Department of Electronics Engineering, Sejong University, Seoul 05006, Republic of Korea
AuthorAffiliation_xml – name: Department of Electronics Engineering, Sejong University, Seoul 05006, Republic of Korea
Author_xml – sequence: 1
  givenname: Afnan
  orcidid: 0000-0002-9201-5028
  surname: Afnan
  fullname: Afnan, Afnan
– sequence: 2
  givenname: Faiz
  orcidid: 0000-0002-6175-889X
  surname: Ullah
  fullname: Ullah, Faiz
– sequence: 3
  givenname: Yaseen
  orcidid: 0000-0001-9684-423X
  surname: Yaseen
  fullname: Yaseen, Yaseen
– sequence: 4
  givenname: Jinhee
  surname: Lee
  fullname: Lee, Jinhee
– sequence: 5
  givenname: Sonain
  orcidid: 0000-0002-7139-7389
  surname: Jamil
  fullname: Jamil, Sonain
– sequence: 6
  givenname: Oh-Jin
  orcidid: 0000-0002-9877-8982
  surname: Kwon
  fullname: Kwon, Oh-Jin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36772337$$D View this record in MEDLINE/PubMed
BookMark eNptkktr3DAQx01JaR7toV-gGHppD5voYVn2pbAsbbqwJfR5FWN5tNViWxvJDuy372w3XZJQdNAw89Nf8zrPToYwYJa95uxSyppdJSGZ5KLWz7IzXohiVgnBTh7Yp9l5ShvGhJSyepGdylJrsvVZ5r9PzQbt6O8wn6eEKfU4jHlw-c3Rv-xhjfnXCTo_7vIvOEZvU_4NBvJeTxBhGBH9sM5_-URQt8tXIaWOtPJF6LeRDB-Gl9lzB13CV_f3Rfbz08cfi8-z1c31cjFfzaxi1TirAVuExjZOuda6WhQOhFZtaV2jK1mgAFEozVjLHahWcgAulFMUQVegkhfZ8qDbBtiYbfQ9xJ0J4M1fR4hrA3H0tkODpFeUYMu2rArRqEZj3XCBlVASrALS-nDQ2k5Nj62l1kToHok-jgz-t1mHO1PXvKpLRgLv7gViuJ0wjab3yWLXwYBhSkZorUpRal4R-vYJuglTHKhVe6qota5LTdTlgVoDFeAHF-hfS6fF3ltaC-fJP9eFlGXF-D6DNw9LOOb-bwUIeH8AbKSpRXRHhDOzXy9zXC9ir56w1o8w0nQpC9_958UfudzS3g
CitedBy_id crossref_primary_10_3389_aot_2024_1306142
crossref_primary_10_3390_electronics12071615
crossref_primary_10_1155_2023_8831371
Cites_doi 10.1503/cmaj.190434
10.1109/TCSVT.2022.3163860
10.1016/j.ijleo.2015.02.093
10.1109/TIP.2014.2346028
10.1002/jsid.297
10.2307/1419876
10.3390/jimaging8060160
10.1016/j.image.2011.08.002
10.1109/QoMEX.2016.7498930
10.1016/j.ins.2016.02.043
10.1109/TIP.2013.2293423
10.1109/ICIP.2019.8803824
10.1080/02564602.2016.1151385
10.1109/ACCESS.2022.3195891
10.1109/TIP.2010.2092435
10.1145/1631272.1631339
10.1109/TBC.2014.2344471
10.1109/TIP.2011.2109730
10.1145/3394171.3413804
10.1109/ICIP.2013.6738079
10.1109/TMM.2022.3152942
10.1016/j.image.2017.11.001
10.3390/s22062209
10.1109/TBC.2022.3221689
10.1117/1.3267105
10.3390/s21010282
10.1007/s11432-019-2757-1
10.1109/TCSVT.2020.3041639
10.1117/1.JEI.27.4.040901
10.1109/TCSVT.2021.3073410
10.1109/83.841940
10.1109/TIP.2003.819861
10.1109/CVPR42600.2020.00363
10.1109/QoMEX51781.2021.9465445
10.1109/ACCESS.2016.2604042
10.3390/s22020499
10.3390/s22062199
10.1109/TIP.2006.881959
10.1109/CVPR.2018.00068
10.1109/ACCESS.2017.2694038
10.1109/ICASSP.2017.7952357
10.1016/j.neucom.2019.12.015
10.1109/TIP.2012.2214050
10.1109/CVPR42600.2020.00372
10.1371/journal.pone.0266021
10.1109/WACV51458.2022.00404
10.1016/j.dsp.2018.05.010
10.1109/LSP.2012.2227726
10.3390/s22010197
10.1109/CVPR.2018.00194
10.1007/978-3-031-02238-8
10.3390/s20051308
10.1109/TMM.2022.3190700
10.3390/s22186775
10.1016/j.image.2014.10.009
10.3390/s21165322
10.15623/ijret.2013.0212052
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s23031297
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_e83446ac6d6842b5b7e9b12e8253ac5a
PMC9918960
A743368010
36772337
10_3390_s23031297
Genre Journal Article
GeographicLocations Switzerland
Massachusetts
GeographicLocations_xml – name: Switzerland
– name: Massachusetts
GrantInformation_xml – fundername: This research was supported by the Institute for Information and Communications Technology Promotion (IITP) funded by the Korean Government, development of JPEG systems standard for snack culture content.
  grantid: 2020-0-00347
– fundername: the Institute for Information and Communications Technology Promotion (IITP) funded by the Korean Government
  grantid: 2020-0-00347
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c508t-9aedeabcbf5fdcf924fa275d6cfb7834e2a245700d1fa5d31aa125f534eef4e53
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:41 EDT 2025
Thu Aug 21 18:38:39 EDT 2025
Tue Aug 05 10:21:23 EDT 2025
Fri Jul 25 20:52:45 EDT 2025
Tue Jul 01 05:44:25 EDT 2025
Mon Jul 21 05:58:46 EDT 2025
Tue Jul 01 01:19:46 EDT 2025
Thu Apr 24 22:57:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords image quality assessment
subjective and objective evaluation
visually lossless
image compression
JPEG 1
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-9aedeabcbf5fdcf924fa275d6cfb7834e2a245700d1fa5d31aa125f534eef4e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9684-423X
0000-0002-9201-5028
0000-0002-6175-889X
0000-0002-9877-8982
0000-0002-7139-7389
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23031297
PMID 36772337
PQID 2774977967
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_e83446ac6d6842b5b7e9b12e8253ac5a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9918960
proquest_miscellaneous_2775626718
proquest_journals_2774977967
gale_infotracacademiconefile_A743368010
pubmed_primary_36772337
crossref_primary_10_3390_s23031297
crossref_citationtrail_10_3390_s23031297
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230123
PublicationDateYYYYMMDD 2023-01-23
PublicationDate_xml – month: 1
  year: 2023
  text: 20230123
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhang (ref_38) 2022; Early Access
Wang (ref_47) 2004; 13
Wang (ref_48) 2006; 2
ref_14
ref_58
ref_57
ref_12
Zhu (ref_33) 2021; 32
ref_56
ref_55
ref_54
Nafchi (ref_66) 2016; 4
Testolina (ref_13) 2021; 11842
ref_19
Gu (ref_50) 2014; 60
Cornsweet (ref_79) 1962; 75
ref_17
Ascenso (ref_74) 2020; 11353
ref_16
ref_15
ref_59
Xu (ref_24) 2017; 34
Xue (ref_61) 2013; 23
Ma (ref_34) 2018; 80
Ding (ref_67) 2020; 44
Wang (ref_52) 2010; 20
ref_69
ref_68
ref_23
ref_22
ref_21
Kite (ref_51) 2000; 9
ref_62
Liu (ref_60) 2011; 21
Zhang (ref_63) 2011; 20
Hudson (ref_80) 2018; 27
Opozda (ref_10) 2014; 26
Lee (ref_29) 2012; 27
ref_28
ref_27
ref_26
Sheikh (ref_20) 2006; 15
Mittal (ref_31) 2012; 20
ref_72
ref_71
ref_70
Lin (ref_11) 2022; 32
ref_36
ref_35
ref_32
ref_76
George (ref_45) 2013; 2
ref_75
ref_73
Ponomarenko (ref_49) 2015; 30
ref_39
ref_37
Zhai (ref_9) 2020; 63
Kamble (ref_25) 2015; 126
Mittal (ref_30) 2012; 21
Sun (ref_6) 2020; 384
Hoffman (ref_78) 2014; 22
Lungisani (ref_3) 2022; 10
ref_82
Reisenhofer (ref_65) 2018; 61
ref_81
Mahmoudpour (ref_77) 2018; 10752
Zhang (ref_64) 2014; 23
ref_46
ref_44
Choi (ref_83) 2017; 5
ref_42
ref_41
ref_40
ref_84
ref_2
Larson (ref_53) 2010; 19
Naylor (ref_1) 2020; 192
Zhang (ref_18) 2020; 31
ref_8
ref_5
ref_4
ref_7
Wu (ref_43) 2016; 351
References_xml – volume: 44
  start-page: 2567
  year: 2020
  ident: ref_67
  article-title: Image quality assessment: Unifying structure and texture similarity
  publication-title: IEEE Trans. Pattern Anal.Mach. Intell..
– volume: 192
  start-page: E136
  year: 2020
  ident: ref_1
  article-title: Smartphones, social media use and youth mental health
  publication-title: Can. Med. Assoc. J.
  doi: 10.1503/cmaj.190434
– volume: Early Access
  start-page: 1
  year: 2022
  ident: ref_38
  article-title: Continual learning for blind image quality assessment
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 32
  start-page: 5859
  year: 2022
  ident: ref_11
  article-title: Large-scale crowdsourced subjective assessment of picture wise just noticeable difference
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2022.3163860
– volume: 126
  start-page: 1090
  year: 2015
  ident: ref_25
  article-title: No-reference image quality assessment algorithms: A survey
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.02.093
– ident: ref_5
– volume: 23
  start-page: 4270
  year: 2014
  ident: ref_64
  article-title: VSI: A visual saliency-induced index for perceptual image quality assessment
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2346028
– volume: 22
  start-page: 631
  year: 2014
  ident: ref_78
  article-title: A new standard method of subjective assessment of barely visible image artifacts and a new public database
  publication-title: J. Soc. Inf. Disp..
  doi: 10.1002/jsid.297
– volume: 75
  start-page: 485
  year: 1962
  ident: ref_79
  article-title: The staircase-method in psychophysics
  publication-title: Am. J. Psychol.
  doi: 10.2307/1419876
– ident: ref_23
  doi: 10.3390/jimaging8060160
– volume: 27
  start-page: 31
  year: 2012
  ident: ref_29
  article-title: A new image quality assessment method to detect and measure strength of blocking artifacts
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2011.08.002
– ident: ref_40
  doi: 10.1109/QoMEX.2016.7498930
– ident: ref_68
– ident: ref_84
– volume: 351
  start-page: 18
  year: 2016
  ident: ref_43
  article-title: Orientation selectivity based visual pattern for reduced-reference image quality assessment
  publication-title: Inf. Sci..
  doi: 10.1016/j.ins.2016.02.043
– volume: 23
  start-page: 684
  year: 2013
  ident: ref_61
  article-title: Gradient magnitude similarity deviation: A highly efficient perceptual image quality index
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2293423
– ident: ref_73
  doi: 10.1109/ICIP.2019.8803824
– volume: 34
  start-page: 223
  year: 2017
  ident: ref_24
  article-title: No-reference/blind image quality assessment: A survey
  publication-title: IETE Tech. Rev.
  doi: 10.1080/02564602.2016.1151385
– ident: ref_71
– volume: 10
  start-page: 82511
  year: 2022
  ident: ref_3
  article-title: Image compression techniques in wireless sensor networks: A survey and comparison
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3195891
– volume: 20
  start-page: 1185
  year: 2010
  ident: ref_52
  article-title: Information content weighting for perceptual image quality assessment
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2092435
– ident: ref_58
– ident: ref_76
  doi: 10.1145/1631272.1631339
– volume: 60
  start-page: 555
  year: 2014
  ident: ref_50
  article-title: Hybrid no-reference quality metric for singly and multiply distorted images
  publication-title: IEEE Trans. Broadcast.
  doi: 10.1109/TBC.2014.2344471
– volume: 20
  start-page: 2378
  year: 2011
  ident: ref_63
  article-title: FSIM: A feature similarity index for image quality assessment
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2109730
– ident: ref_35
  doi: 10.1145/3394171.3413804
– volume: 21
  start-page: 1500
  year: 2011
  ident: ref_60
  article-title: Image quality assessment based on gradient similarity
  publication-title: IEEE Trans. Image Process.
– ident: ref_42
  doi: 10.1109/ICIP.2013.6738079
– ident: ref_39
  doi: 10.1109/TMM.2022.3152942
– ident: ref_69
– volume: 61
  start-page: 33
  year: 2018
  ident: ref_65
  article-title: A Haar wavelet-based perceptual similarity index for image quality assessment
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2017.11.001
– ident: ref_41
– ident: ref_4
  doi: 10.3390/s22062209
– ident: ref_26
  doi: 10.1109/TBC.2022.3221689
– volume: 19
  start-page: 011006
  year: 2010
  ident: ref_53
  article-title: Most apparent distortion: Full-reference image quality assessment and the role of strategy
  publication-title: J. Electron. Imaging.
  doi: 10.1117/1.3267105
– ident: ref_2
  doi: 10.3390/s21010282
– volume: 63
  start-page: 1
  year: 2020
  ident: ref_9
  article-title: Perceptual image quality assessment: A survey
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-019-2757-1
– volume: 31
  start-page: 3352
  year: 2020
  ident: ref_18
  article-title: Data-Driven Transform-Based Compressed Image Quality Assessment
  publication-title: IEEE Trans. Circuits Syst. Video Technology.
  doi: 10.1109/TCSVT.2020.3041639
– ident: ref_72
– volume: 27
  start-page: 040901
  year: 2018
  ident: ref_80
  article-title: JPEG-1 standard 25 years: Past, present, and future reasons for a success
  publication-title: J. Electron. Imaging.
  doi: 10.1117/1.JEI.27.4.040901
– volume: 26
  start-page: 39
  year: 2014
  ident: ref_10
  article-title: The survey of subjective and objective methods for quality assessment of 2D and 3D images
  publication-title: Theor. Appl. Inform.
– ident: ref_59
– volume: 32
  start-page: 1048
  year: 2021
  ident: ref_33
  article-title: Generalizable no-reference image quality assessment via deep meta-learning
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3073410
– volume: 9
  start-page: 636
  year: 2000
  ident: ref_51
  article-title: Image quality assessment based on a degradation model
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.841940
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_47
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 11353
  start-page: 164
  year: 2020
  ident: ref_74
  article-title: Learning-based image coding: Early solutions reviewing and subjective quality evaluation
  publication-title: Optics, Photonics and Digital Technologies for Imaging Applications
– ident: ref_36
  doi: 10.1109/CVPR42600.2020.00363
– ident: ref_19
  doi: 10.1109/QoMEX51781.2021.9465445
– volume: 4
  start-page: 5579
  year: 2016
  ident: ref_66
  article-title: Mean deviation similarity index: Efficient and reliable full-reference image quality evaluator
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2604042
– ident: ref_16
  doi: 10.3390/s22020499
– ident: ref_82
– ident: ref_17
  doi: 10.3390/s22062199
– volume: 15
  start-page: 3440
  year: 2006
  ident: ref_20
  article-title: A statistical evaluation of recent full reference image quality assessment algorithms
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.881959
– ident: ref_55
  doi: 10.1109/CVPR.2018.00068
– ident: ref_14
– ident: ref_44
– volume: 5
  start-page: 7371
  year: 2017
  ident: ref_83
  article-title: A method for fast multi-exposure image fusion
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2694038
– ident: ref_62
  doi: 10.1109/ICASSP.2017.7952357
– ident: ref_21
– volume: 384
  start-page: 335
  year: 2020
  ident: ref_6
  article-title: Reduction of JPEG compression artifacts based on DCT coefficients prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.015
– volume: 21
  start-page: 4695
  year: 2012
  ident: ref_30
  article-title: No-reference image quality assessment in the spatial domain
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2214050
– ident: ref_32
  doi: 10.1109/CVPR42600.2020.00372
– ident: ref_28
  doi: 10.1371/journal.pone.0266021
– ident: ref_27
  doi: 10.1109/WACV51458.2022.00404
– volume: 80
  start-page: 37
  year: 2018
  ident: ref_34
  article-title: Blind image quality assessment in multiple bandpass and redundancy domains
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2018.05.010
– ident: ref_75
– volume: 20
  start-page: 209
  year: 2012
  ident: ref_31
  article-title: Making a “completely blind” image quality analyzer
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2012.2227726
– ident: ref_81
– ident: ref_54
– volume: 10752
  start-page: 512
  year: 2018
  ident: ref_77
  article-title: Overview of the JPEG XS core coding system subjective evaluations
  publication-title: Applications of Digital Image Processing XLI
– ident: ref_8
  doi: 10.3390/s22010197
– ident: ref_56
  doi: 10.1109/CVPR.2018.00194
– ident: ref_46
– ident: ref_12
– volume: 2
  start-page: 1
  year: 2006
  ident: ref_48
  article-title: Modern image quality assessment
  publication-title: Synth. Lect. Image Video Multimed. Process.
  doi: 10.1007/978-3-031-02238-8
– ident: ref_7
  doi: 10.3390/s20051308
– volume: 11842
  start-page: 302
  year: 2021
  ident: ref_13
  article-title: Review of subjective quality assessment methodologies and standards for compressed images evaluation
  publication-title: Applications of Digital Image Processing XLIV
– ident: ref_37
  doi: 10.1109/TMM.2022.3190700
– ident: ref_22
  doi: 10.3390/s22186775
– volume: 30
  start-page: 57
  year: 2015
  ident: ref_49
  article-title: Image database TID2013: Peculiarities, results and perspectives
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2014.10.009
– ident: ref_70
– ident: ref_15
  doi: 10.3390/s21165322
– ident: ref_57
– volume: 2
  start-page: 303
  year: 2013
  ident: ref_45
  article-title: A survey on full reference image quality assessment algorithms
  publication-title: Int. J. Res. Eng. Technol.
  doi: 10.15623/ijret.2013.0212052
SSID ssj0023338
Score 2.4177146
Snippet The usage of media such as images and videos has been extensively increased in recent years. It has become impractical to store images and videos acquired by...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1297
SubjectTerms Algorithms
Human subjects
image compression
image quality assessment
JPEG 1
Mathematical models
Performance evaluation
Quality standards
Sensors
Software
subjective and objective evaluation
visually lossless
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT_SAKLQQKMggpHKJuoljZ3NcUKuCKEhVi3qz_CkWLVnEbg_9930TZ6ONisSFazxx7PGM503ivGHsXVGGGAEV8lraKkeE9nljqiYPpW_sJFbIAeiF_vlXdXZVfb6W11ulvuhMWKIHToo7DlQIQhmnPH0xstLWobF4AjIbYZzsoBFi3iaZ6lMtgcwr8QgJJPXHKwBtgchWj6JPR9J_fyveikXjc5Jbgef0MXvUI0Y-SyPdYw9C-4TtbvEIPmVzuP_PtHPx2UC1yZeRfxuuf_qFnYMnyoxbfk6FtNyKX9C_BZzshDQc0Bv_Pl9BaHHLv2AGC_TFac9Ix2XbfXZ1enL58SzvayjkDtBrDcUHH4x1NsroXUS2FU1ZS69ctFRjI5SmrIjj3hfRSC8KYwB5okRLiFWQ4oDttMs2PGfceQXsAfmOk0dObZwW6NU5Pyl8UNOMvd_oVrueYJzqXCw0Eg1aBj0sQ8beDqK_E6vG34Q-0AINAkSE3V2AeejePPS_zCNjR7S8mtwVg3Gm_-sAUyLiKz0DghIKYXqSscONBejej1e6BDoGQm4URvNmaIYH0mcV04blTScDEKkQ5DP2LBnMMGahkL0IgbvrkSmNJjVuaec_OpZvAPcp0ssX_0MLL9nDEk5Br45Kcch21n9uwiuAqbV93fnNHeBmIB0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMoyCAkuETdxLGzOaEFURVEQUIU7c3yExYtSWm2h_57vkmy6UYgrvHE8mM8840f3zD2IstDjIAKaSltkcJD-7QyRZWG3Fd2FgvEALShf_xJHZ0UH5ZyOWy4tcO1yq1N7Ay1bxztkR_kwCnAKpUqX5_-TilrFJ2uDik0rrJrRF1GV7rK5WXAJRB_9WxCAqH9QQu4LeDfyokP6qj6_zbIOx5peltyx_0c3mI3B9zIF_1E32ZXQn2H3dhhE7zLVjACP3v7xRcj4SZvIv88fn__C_aD98QZF_yY0mm5ln-hFwactIXGOaA2_m3VQmh9wT-iB2vUxcly9Jdm63vs5PDd17dH6ZBJIXUAYBsMf_DBWGejjN5FxFzR5KX0ykVLmTZCbvKCmO59Fo30IjMGwCdKlIRYBCnus726qcNDxp1XQCCQ75h55NzGeYZanfOzzAc1T9ir7dhqN9CMU7aLtUa4QdOgx2lI2PNR9LTn1viX0BuaoFGA6LC7D83Zdz2sLh0oW4gyTnk6VrTSlqGyUEOEv8I4aRL2kqZX06JFY5wZ3h6gS0R_pRfAUULBWc8Str_VAD2s5lZf6l7Cno3FWId0uGLq0Jx3MoCSCq4-YQ96hRnbLBRiGCHwdzlRpUmnpiX16kfH9Q34PkeQ-ej_zXrMrudQd9oaysU-29ucnYcnAEsb-7RbEX8AhXAXsg
  priority: 102
  providerName: ProQuest
Title Subjective Assessment of Objective Image Quality Metrics Range Guaranteeing Visually Lossless Compression
URI https://www.ncbi.nlm.nih.gov/pubmed/36772337
https://www.proquest.com/docview/2774977967
https://www.proquest.com/docview/2775626718
https://pubmed.ncbi.nlm.nih.gov/PMC9918960
https://doaj.org/article/e83446ac6d6842b5b7e9b12e8253ac5a
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2cYED4k1gqQxCgkugieMkPSDURVsWRBe0oqi3yE_oqptC25Xov-ebJI0asQcuOcQTy_aMPd_Y8TeMvYhi5z2gQphJnYTw0DYcqGQQutgOdN8niAFoQ398lp5Okk9TOd1j2xybzQCurg3tKJ_UZDl__ef35h0m_FuKOBGyv1kBRgv4rWyfHcIhZTQ_x0l7mBALUSW0pjtdIfxhvyYY6n7acUsVe_-_a_SOk-r-QLnjkUa32a0GSvJhrfs7bM-Vd9nNHYLBe2yGdeGiXtL4sOXg5AvPv7TvP15iSeE1l8aGjynDllnxc7p0wMmAaOgdauPfZysIzTf8M3owR12cFpP6P9ryPpuMTr69Pw2b5AqhASZbQyPOOqWN9tJb4xGGeRVn0qbGa0q-4WIVJ0R-byOvpBWRUsBCXqLE-cRJ8YAdlIvSPWLc2BSgBPIVWY_Mtc8j1GqM7UfWpXnAXm3HtjAN8zglwJgXiEBIDUWrhoA9b0V_1XQb1wkdk4JaAWLIrl4slj-KZsIVjhKIpMqklk4atdSZG2hYJiJioYxUAXtJ6i3IstAYo5rrCOgSMWIVQ0ArkcJ_9wN2tLWAYmufRQzYDOg8SNGaZ20xpiadt6jSLa4qGaDLFN4_YA9rg2nbLFKENULg66xjSp1OdUvK2c-K_huIPkfc-fi_O_CE3YgxC2jjKBZH7GC9vHJPAaXWusf2s2mGZz760GOHxydnX8971bZEr5pCfwE3GSMw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V5QAcEG8MBRYEgotV2-tHfEAoPKqEJkVCLcrNrPdBUwW71KlQ_hS_kW_8aiIQt16949XaMzvzzT6-YeyFHxhrARXcJMpDFxFau6kMU9cEOs09GyIHoAX96UE8Ogo_zaLZFvvd3YWhY5WdT6wdtS4VrZHvBsApwCppnLw9_elS1SjaXe1KaDRmsW9Wv5CyVW_GH6Dfl0Gw9_Hw_chtqwq4CmBkiaEYbWSuchtZrSzyDyuDJNKxsjlVnTCBDEJifde-lZEWvpQAATZCi7GhoSoRcPlXEHg9mlHJ7CLBE8j3GvYiIVJvtwK8F4inyUbMq0sD_B0A1iLg5unMtXC3d5PdaHEqHzaGdYttmeI2u77GXniHzeF0Thp_yYc9wScvLf_cPx__gL_iDVHHik-pfJeq-Be60cDJOkmvBr3xr_MKQosVn-ALFuiLk6dqDukWd9nRpfzje2y7KAvzgHGlYyAeyNdMQNEgtwMfvSqlPV-beOCw192_zVRLa07VNRYZ0htSQ9arwWHPe9HThsvjX0LvSEG9ANFv1w_Ks-9ZO5szQ9VJYqliTduYeZQnJs1h9ki3hVSRdNgrUm9GTgKDUbK964BPIrqtbAjcJmKAA89hO50FZK33qLILW3fYs74Z8542c2RhyvNaBtA1BrRw2P3GYPoxixg5kxB4O9kwpY2P2mwp5sc1tzjShQGS2of_H9ZTdnV0OJ1kk_HB_iN2LYDp07JUIHbY9vLs3DwGUFvmT-rZwdm3y56OfwAi81c9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5VRUJwQOy4FBgQCC5WYo-X-IBQoEQNXUCIotzc8SyQKtilToXy1_h1fM9bY4G49ep5Hs3M2743y3uMPfd8Yy2gghuHWeDCQ2s3kUHiGl8n2dAGiAFoQ__gMNo9Cj7MwtkG-92-haFrla1NrAy1LhTtkQ984BRglSSKB7a5FvFpZ_Lm9KdLFaTopLUtp1GLyJ5Z_UL4Vr6e7oDXL3x_8v7Lu123qTDgKgCTJYZltJGZymxotbKIRaz041BHymZUgcL40g8oA7z2rAy18KQEILAhWowNDFWMgPm_EovQIx2LZxfBnkDsV2cyEiIZDkpAfQHfGvf8X1Um4G9nsOYN-zc111zf5Ca70WBWPq6F7BbbMPltdn0tk-EdNocBOqltJx93yT55YfnH7vv0B2wXr5N2rPgBlfJSJf9Mrxs4SSrx2KA3_nVegmix4vuYwQJ9cbJa9YXd_C47upQ1vsc28yI3DxhXOgL6AX2VFSgcZXbkoVel9NDTJho57FW7tqlqUpxTpY1FilCH2JB2bHDYs470tM7r8S-it8SgjoBScVcfirNvaaPZqaFKJZFUkaYjzSzMYpNkUAGE3kKqUDrsJbE3JYOBwSjZvHvAlCj1VjoGhhMRgMLQYdutBKSNJSnTC7l32NOuGTaADnZkborzigYwNgLMcNj9WmC6MYsI8ZMQ-DvuiVJvUv2WfP69yjOO0GGEAHfr_8N6wq5CEdP96eHeQ3bNh-TTDpUvttnm8uzcPAJmW2aPK-Xg7PiytfEPvKVbcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subjective+Assessment+of+Objective+Image+Quality+Metrics+Range+Guaranteeing+Visually+Lossless+Compression&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Afnan&rft.au=Ullah%2C+Faiz&rft.au=Yaseen&rft.au=Lee%2C+Jinhee&rft.date=2023-01-23&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=3&rft_id=info:doi/10.3390%2Fs23031297&rft.externalDocID=A743368010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon