Subjective Assessment of Objective Image Quality Metrics Range Guaranteeing Visually Lossless Compression
The usage of media such as images and videos has been extensively increased in recent years. It has become impractical to store images and videos acquired by camera sensors in their raw form due to their huge storage size. Generally, image data is compressed with a compression algorithm and then sto...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 3; p. 1297 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The usage of media such as images and videos has been extensively increased in recent years. It has become impractical to store images and videos acquired by camera sensors in their raw form due to their huge storage size. Generally, image data is compressed with a compression algorithm and then stored or transmitted to another platform. Thus, image compression helps to reduce the storage size and transmission cost of the images and videos. However, image compression might cause visual artifacts, depending on the compression level. In this regard, performance evaluation of the compression algorithms is an essential task needed to reconstruct images with visually or near-visually lossless quality in case of lossy compression. The performance of the compression algorithms is assessed by both subjective and objective image quality assessment (IQA) methodologies. In this paper, subjective and objective IQA methods are integrated to evaluate the range of the image quality metrics (IQMs) values that guarantee the visually or near-visually lossless compression performed by the JPEG 1 standard (ISO/IEC 10918). A novel “Flicker Test Software” is developed for conducting the proposed subjective and objective evaluation study. In the flicker test, the selected test images are subjectively analyzed by subjects at different compression levels. The IQMs are calculated at the previous compression level, when the images were visually lossless for each subject. The results analysis shows that the objective IQMs with more closely packed values having the least standard deviation that guaranteed the visually lossless compression of the images with JPEG 1 are the feature similarity index measure (FSIM), the multiscale structural similarity index measure (MS-SSIM), and the information content weighted SSIM (IW-SSIM), with average values of 0.9997, 0.9970, and 0.9970 respectively. |
---|---|
AbstractList | The usage of media such as images and videos has been extensively increased in recent years. It has become impractical to store images and videos acquired by camera sensors in their raw form due to their huge storage size. Generally, image data is compressed with a compression algorithm and then stored or transmitted to another platform. Thus, image compression helps to reduce the storage size and transmission cost of the images and videos. However, image compression might cause visual artifacts, depending on the compression level. In this regard, performance evaluation of the compression algorithms is an essential task needed to reconstruct images with visually or near-visually lossless quality in case of lossy compression. The performance of the compression algorithms is assessed by both subjective and objective image quality assessment (IQA) methodologies. In this paper, subjective and objective IQA methods are integrated to evaluate the range of the image quality metrics (IQMs) values that guarantee the visually or near-visually lossless compression performed by the JPEG 1 standard (ISO/IEC 10918). A novel “Flicker Test Software” is developed for conducting the proposed subjective and objective evaluation study. In the flicker test, the selected test images are subjectively analyzed by subjects at different compression levels. The IQMs are calculated at the previous compression level, when the images were visually lossless for each subject. The results analysis shows that the objective IQMs with more closely packed values having the least standard deviation that guaranteed the visually lossless compression of the images with JPEG 1 are the feature similarity index measure (FSIM), the multiscale structural similarity index measure (MS-SSIM), and the information content weighted SSIM (IW-SSIM), with average values of 0.9997, 0.9970, and 0.9970 respectively. The usage of media such as images and videos has been extensively increased in recent years. It has become impractical to store images and videos acquired by camera sensors in their raw form due to their huge storage size. Generally, image data is compressed with a compression algorithm and then stored or transmitted to another platform. Thus, image compression helps to reduce the storage size and transmission cost of the images and videos. However, image compression might cause visual artifacts, depending on the compression level. In this regard, performance evaluation of the compression algorithms is an essential task needed to reconstruct images with visually or near-visually lossless quality in case of lossy compression. The performance of the compression algorithms is assessed by both subjective and objective image quality assessment (IQA) methodologies. In this paper, subjective and objective IQA methods are integrated to evaluate the range of the image quality metrics (IQMs) values that guarantee the visually or near-visually lossless compression performed by the JPEG 1 standard (ISO/IEC 10918). A novel "Flicker Test Software" is developed for conducting the proposed subjective and objective evaluation study. In the flicker test, the selected test images are subjectively analyzed by subjects at different compression levels. The IQMs are calculated at the previous compression level, when the images were visually lossless for each subject. The results analysis shows that the objective IQMs with more closely packed values having the least standard deviation that guaranteed the visually lossless compression of the images with JPEG 1 are the feature similarity index measure (FSIM), the multiscale structural similarity index measure (MS-SSIM), and the information content weighted SSIM (IW-SSIM), with average values of 0.9997, 0.9970, and 0.9970 respectively.The usage of media such as images and videos has been extensively increased in recent years. It has become impractical to store images and videos acquired by camera sensors in their raw form due to their huge storage size. Generally, image data is compressed with a compression algorithm and then stored or transmitted to another platform. Thus, image compression helps to reduce the storage size and transmission cost of the images and videos. However, image compression might cause visual artifacts, depending on the compression level. In this regard, performance evaluation of the compression algorithms is an essential task needed to reconstruct images with visually or near-visually lossless quality in case of lossy compression. The performance of the compression algorithms is assessed by both subjective and objective image quality assessment (IQA) methodologies. In this paper, subjective and objective IQA methods are integrated to evaluate the range of the image quality metrics (IQMs) values that guarantee the visually or near-visually lossless compression performed by the JPEG 1 standard (ISO/IEC 10918). A novel "Flicker Test Software" is developed for conducting the proposed subjective and objective evaluation study. In the flicker test, the selected test images are subjectively analyzed by subjects at different compression levels. The IQMs are calculated at the previous compression level, when the images were visually lossless for each subject. The results analysis shows that the objective IQMs with more closely packed values having the least standard deviation that guaranteed the visually lossless compression of the images with JPEG 1 are the feature similarity index measure (FSIM), the multiscale structural similarity index measure (MS-SSIM), and the information content weighted SSIM (IW-SSIM), with average values of 0.9997, 0.9970, and 0.9970 respectively. |
Audience | Academic |
Author | Ullah, Faiz Kwon, Oh-Jin Lee, Jinhee Yaseen, Yaseen Jamil, Sonain Afnan, Afnan |
AuthorAffiliation | Department of Electronics Engineering, Sejong University, Seoul 05006, Republic of Korea |
AuthorAffiliation_xml | – name: Department of Electronics Engineering, Sejong University, Seoul 05006, Republic of Korea |
Author_xml | – sequence: 1 givenname: Afnan orcidid: 0000-0002-9201-5028 surname: Afnan fullname: Afnan, Afnan – sequence: 2 givenname: Faiz orcidid: 0000-0002-6175-889X surname: Ullah fullname: Ullah, Faiz – sequence: 3 givenname: Yaseen orcidid: 0000-0001-9684-423X surname: Yaseen fullname: Yaseen, Yaseen – sequence: 4 givenname: Jinhee surname: Lee fullname: Lee, Jinhee – sequence: 5 givenname: Sonain orcidid: 0000-0002-7139-7389 surname: Jamil fullname: Jamil, Sonain – sequence: 6 givenname: Oh-Jin orcidid: 0000-0002-9877-8982 surname: Kwon fullname: Kwon, Oh-Jin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36772337$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktr3DAQx01JaR7toV-gGHppD5voYVn2pbAsbbqwJfR5FWN5tNViWxvJDuy372w3XZJQdNAw89Nf8zrPToYwYJa95uxSyppdJSGZ5KLWz7IzXohiVgnBTh7Yp9l5ShvGhJSyepGdylJrsvVZ5r9PzQbt6O8wn6eEKfU4jHlw-c3Rv-xhjfnXCTo_7vIvOEZvU_4NBvJeTxBhGBH9sM5_-URQt8tXIaWOtPJF6LeRDB-Gl9lzB13CV_f3Rfbz08cfi8-z1c31cjFfzaxi1TirAVuExjZOuda6WhQOhFZtaV2jK1mgAFEozVjLHahWcgAulFMUQVegkhfZ8qDbBtiYbfQ9xJ0J4M1fR4hrA3H0tkODpFeUYMu2rArRqEZj3XCBlVASrALS-nDQ2k5Nj62l1kToHok-jgz-t1mHO1PXvKpLRgLv7gViuJ0wjab3yWLXwYBhSkZorUpRal4R-vYJuglTHKhVe6qota5LTdTlgVoDFeAHF-hfS6fF3ltaC-fJP9eFlGXF-D6DNw9LOOb-bwUIeH8AbKSpRXRHhDOzXy9zXC9ir56w1o8w0nQpC9_958UfudzS3g |
CitedBy_id | crossref_primary_10_3389_aot_2024_1306142 crossref_primary_10_3390_electronics12071615 crossref_primary_10_1155_2023_8831371 |
Cites_doi | 10.1503/cmaj.190434 10.1109/TCSVT.2022.3163860 10.1016/j.ijleo.2015.02.093 10.1109/TIP.2014.2346028 10.1002/jsid.297 10.2307/1419876 10.3390/jimaging8060160 10.1016/j.image.2011.08.002 10.1109/QoMEX.2016.7498930 10.1016/j.ins.2016.02.043 10.1109/TIP.2013.2293423 10.1109/ICIP.2019.8803824 10.1080/02564602.2016.1151385 10.1109/ACCESS.2022.3195891 10.1109/TIP.2010.2092435 10.1145/1631272.1631339 10.1109/TBC.2014.2344471 10.1109/TIP.2011.2109730 10.1145/3394171.3413804 10.1109/ICIP.2013.6738079 10.1109/TMM.2022.3152942 10.1016/j.image.2017.11.001 10.3390/s22062209 10.1109/TBC.2022.3221689 10.1117/1.3267105 10.3390/s21010282 10.1007/s11432-019-2757-1 10.1109/TCSVT.2020.3041639 10.1117/1.JEI.27.4.040901 10.1109/TCSVT.2021.3073410 10.1109/83.841940 10.1109/TIP.2003.819861 10.1109/CVPR42600.2020.00363 10.1109/QoMEX51781.2021.9465445 10.1109/ACCESS.2016.2604042 10.3390/s22020499 10.3390/s22062199 10.1109/TIP.2006.881959 10.1109/CVPR.2018.00068 10.1109/ACCESS.2017.2694038 10.1109/ICASSP.2017.7952357 10.1016/j.neucom.2019.12.015 10.1109/TIP.2012.2214050 10.1109/CVPR42600.2020.00372 10.1371/journal.pone.0266021 10.1109/WACV51458.2022.00404 10.1016/j.dsp.2018.05.010 10.1109/LSP.2012.2227726 10.3390/s22010197 10.1109/CVPR.2018.00194 10.1007/978-3-031-02238-8 10.3390/s20051308 10.1109/TMM.2022.3190700 10.3390/s22186775 10.1016/j.image.2014.10.009 10.3390/s21165322 10.15623/ijret.2013.0212052 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s23031297 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_e83446ac6d6842b5b7e9b12e8253ac5a PMC9918960 A743368010 36772337 10_3390_s23031297 |
Genre | Journal Article |
GeographicLocations | Switzerland Massachusetts |
GeographicLocations_xml | – name: Switzerland – name: Massachusetts |
GrantInformation_xml | – fundername: This research was supported by the Institute for Information and Communications Technology Promotion (IITP) funded by the Korean Government, development of JPEG systems standard for snack culture content. grantid: 2020-0-00347 – fundername: the Institute for Information and Communications Technology Promotion (IITP) funded by the Korean Government grantid: 2020-0-00347 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c508t-9aedeabcbf5fdcf924fa275d6cfb7834e2a245700d1fa5d31aa125f534eef4e53 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:41 EDT 2025 Thu Aug 21 18:38:39 EDT 2025 Tue Aug 05 10:21:23 EDT 2025 Fri Jul 25 20:52:45 EDT 2025 Tue Jul 01 05:44:25 EDT 2025 Mon Jul 21 05:58:46 EDT 2025 Tue Jul 01 01:19:46 EDT 2025 Thu Apr 24 22:57:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | image quality assessment subjective and objective evaluation visually lossless image compression JPEG 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-9aedeabcbf5fdcf924fa275d6cfb7834e2a245700d1fa5d31aa125f534eef4e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9684-423X 0000-0002-9201-5028 0000-0002-6175-889X 0000-0002-9877-8982 0000-0002-7139-7389 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23031297 |
PMID | 36772337 |
PQID | 2774977967 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e83446ac6d6842b5b7e9b12e8253ac5a pubmedcentral_primary_oai_pubmedcentral_nih_gov_9918960 proquest_miscellaneous_2775626718 proquest_journals_2774977967 gale_infotracacademiconefile_A743368010 pubmed_primary_36772337 crossref_primary_10_3390_s23031297 crossref_citationtrail_10_3390_s23031297 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230123 |
PublicationDateYYYYMMDD | 2023-01-23 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230123 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhang (ref_38) 2022; Early Access Wang (ref_47) 2004; 13 Wang (ref_48) 2006; 2 ref_14 ref_58 ref_57 ref_12 Zhu (ref_33) 2021; 32 ref_56 ref_55 ref_54 Nafchi (ref_66) 2016; 4 Testolina (ref_13) 2021; 11842 ref_19 Gu (ref_50) 2014; 60 Cornsweet (ref_79) 1962; 75 ref_17 Ascenso (ref_74) 2020; 11353 ref_16 ref_15 ref_59 Xu (ref_24) 2017; 34 Xue (ref_61) 2013; 23 Ma (ref_34) 2018; 80 Ding (ref_67) 2020; 44 Wang (ref_52) 2010; 20 ref_69 ref_68 ref_23 ref_22 ref_21 Kite (ref_51) 2000; 9 ref_62 Liu (ref_60) 2011; 21 Zhang (ref_63) 2011; 20 Hudson (ref_80) 2018; 27 Opozda (ref_10) 2014; 26 Lee (ref_29) 2012; 27 ref_28 ref_27 ref_26 Sheikh (ref_20) 2006; 15 Mittal (ref_31) 2012; 20 ref_72 ref_71 ref_70 Lin (ref_11) 2022; 32 ref_36 ref_35 ref_32 ref_76 George (ref_45) 2013; 2 ref_75 ref_73 Ponomarenko (ref_49) 2015; 30 ref_39 ref_37 Zhai (ref_9) 2020; 63 Kamble (ref_25) 2015; 126 Mittal (ref_30) 2012; 21 Sun (ref_6) 2020; 384 Hoffman (ref_78) 2014; 22 Lungisani (ref_3) 2022; 10 ref_82 Reisenhofer (ref_65) 2018; 61 ref_81 Mahmoudpour (ref_77) 2018; 10752 Zhang (ref_64) 2014; 23 ref_46 ref_44 Choi (ref_83) 2017; 5 ref_42 ref_41 ref_40 ref_84 ref_2 Larson (ref_53) 2010; 19 Naylor (ref_1) 2020; 192 Zhang (ref_18) 2020; 31 ref_8 ref_5 ref_4 ref_7 Wu (ref_43) 2016; 351 |
References_xml | – volume: 44 start-page: 2567 year: 2020 ident: ref_67 article-title: Image quality assessment: Unifying structure and texture similarity publication-title: IEEE Trans. Pattern Anal.Mach. Intell.. – volume: 192 start-page: E136 year: 2020 ident: ref_1 article-title: Smartphones, social media use and youth mental health publication-title: Can. Med. Assoc. J. doi: 10.1503/cmaj.190434 – volume: Early Access start-page: 1 year: 2022 ident: ref_38 article-title: Continual learning for blind image quality assessment publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 32 start-page: 5859 year: 2022 ident: ref_11 article-title: Large-scale crowdsourced subjective assessment of picture wise just noticeable difference publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2022.3163860 – volume: 126 start-page: 1090 year: 2015 ident: ref_25 article-title: No-reference image quality assessment algorithms: A survey publication-title: Optik doi: 10.1016/j.ijleo.2015.02.093 – ident: ref_5 – volume: 23 start-page: 4270 year: 2014 ident: ref_64 article-title: VSI: A visual saliency-induced index for perceptual image quality assessment publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2346028 – volume: 22 start-page: 631 year: 2014 ident: ref_78 article-title: A new standard method of subjective assessment of barely visible image artifacts and a new public database publication-title: J. Soc. Inf. Disp.. doi: 10.1002/jsid.297 – volume: 75 start-page: 485 year: 1962 ident: ref_79 article-title: The staircase-method in psychophysics publication-title: Am. J. Psychol. doi: 10.2307/1419876 – ident: ref_23 doi: 10.3390/jimaging8060160 – volume: 27 start-page: 31 year: 2012 ident: ref_29 article-title: A new image quality assessment method to detect and measure strength of blocking artifacts publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2011.08.002 – ident: ref_40 doi: 10.1109/QoMEX.2016.7498930 – ident: ref_68 – ident: ref_84 – volume: 351 start-page: 18 year: 2016 ident: ref_43 article-title: Orientation selectivity based visual pattern for reduced-reference image quality assessment publication-title: Inf. Sci.. doi: 10.1016/j.ins.2016.02.043 – volume: 23 start-page: 684 year: 2013 ident: ref_61 article-title: Gradient magnitude similarity deviation: A highly efficient perceptual image quality index publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2293423 – ident: ref_73 doi: 10.1109/ICIP.2019.8803824 – volume: 34 start-page: 223 year: 2017 ident: ref_24 article-title: No-reference/blind image quality assessment: A survey publication-title: IETE Tech. Rev. doi: 10.1080/02564602.2016.1151385 – ident: ref_71 – volume: 10 start-page: 82511 year: 2022 ident: ref_3 article-title: Image compression techniques in wireless sensor networks: A survey and comparison publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3195891 – volume: 20 start-page: 1185 year: 2010 ident: ref_52 article-title: Information content weighting for perceptual image quality assessment publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2092435 – ident: ref_58 – ident: ref_76 doi: 10.1145/1631272.1631339 – volume: 60 start-page: 555 year: 2014 ident: ref_50 article-title: Hybrid no-reference quality metric for singly and multiply distorted images publication-title: IEEE Trans. Broadcast. doi: 10.1109/TBC.2014.2344471 – volume: 20 start-page: 2378 year: 2011 ident: ref_63 article-title: FSIM: A feature similarity index for image quality assessment publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2109730 – ident: ref_35 doi: 10.1145/3394171.3413804 – volume: 21 start-page: 1500 year: 2011 ident: ref_60 article-title: Image quality assessment based on gradient similarity publication-title: IEEE Trans. Image Process. – ident: ref_42 doi: 10.1109/ICIP.2013.6738079 – ident: ref_39 doi: 10.1109/TMM.2022.3152942 – ident: ref_69 – volume: 61 start-page: 33 year: 2018 ident: ref_65 article-title: A Haar wavelet-based perceptual similarity index for image quality assessment publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2017.11.001 – ident: ref_41 – ident: ref_4 doi: 10.3390/s22062209 – ident: ref_26 doi: 10.1109/TBC.2022.3221689 – volume: 19 start-page: 011006 year: 2010 ident: ref_53 article-title: Most apparent distortion: Full-reference image quality assessment and the role of strategy publication-title: J. Electron. Imaging. doi: 10.1117/1.3267105 – ident: ref_2 doi: 10.3390/s21010282 – volume: 63 start-page: 1 year: 2020 ident: ref_9 article-title: Perceptual image quality assessment: A survey publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-019-2757-1 – volume: 31 start-page: 3352 year: 2020 ident: ref_18 article-title: Data-Driven Transform-Based Compressed Image Quality Assessment publication-title: IEEE Trans. Circuits Syst. Video Technology. doi: 10.1109/TCSVT.2020.3041639 – ident: ref_72 – volume: 27 start-page: 040901 year: 2018 ident: ref_80 article-title: JPEG-1 standard 25 years: Past, present, and future reasons for a success publication-title: J. Electron. Imaging. doi: 10.1117/1.JEI.27.4.040901 – volume: 26 start-page: 39 year: 2014 ident: ref_10 article-title: The survey of subjective and objective methods for quality assessment of 2D and 3D images publication-title: Theor. Appl. Inform. – ident: ref_59 – volume: 32 start-page: 1048 year: 2021 ident: ref_33 article-title: Generalizable no-reference image quality assessment via deep meta-learning publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2021.3073410 – volume: 9 start-page: 636 year: 2000 ident: ref_51 article-title: Image quality assessment based on a degradation model publication-title: IEEE Trans. Image Process. doi: 10.1109/83.841940 – volume: 13 start-page: 600 year: 2004 ident: ref_47 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 11353 start-page: 164 year: 2020 ident: ref_74 article-title: Learning-based image coding: Early solutions reviewing and subjective quality evaluation publication-title: Optics, Photonics and Digital Technologies for Imaging Applications – ident: ref_36 doi: 10.1109/CVPR42600.2020.00363 – ident: ref_19 doi: 10.1109/QoMEX51781.2021.9465445 – volume: 4 start-page: 5579 year: 2016 ident: ref_66 article-title: Mean deviation similarity index: Efficient and reliable full-reference image quality evaluator publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2604042 – ident: ref_16 doi: 10.3390/s22020499 – ident: ref_82 – ident: ref_17 doi: 10.3390/s22062199 – volume: 15 start-page: 3440 year: 2006 ident: ref_20 article-title: A statistical evaluation of recent full reference image quality assessment algorithms publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.881959 – ident: ref_55 doi: 10.1109/CVPR.2018.00068 – ident: ref_14 – ident: ref_44 – volume: 5 start-page: 7371 year: 2017 ident: ref_83 article-title: A method for fast multi-exposure image fusion publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2694038 – ident: ref_62 doi: 10.1109/ICASSP.2017.7952357 – ident: ref_21 – volume: 384 start-page: 335 year: 2020 ident: ref_6 article-title: Reduction of JPEG compression artifacts based on DCT coefficients prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.015 – volume: 21 start-page: 4695 year: 2012 ident: ref_30 article-title: No-reference image quality assessment in the spatial domain publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2214050 – ident: ref_32 doi: 10.1109/CVPR42600.2020.00372 – ident: ref_28 doi: 10.1371/journal.pone.0266021 – ident: ref_27 doi: 10.1109/WACV51458.2022.00404 – volume: 80 start-page: 37 year: 2018 ident: ref_34 article-title: Blind image quality assessment in multiple bandpass and redundancy domains publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2018.05.010 – ident: ref_75 – volume: 20 start-page: 209 year: 2012 ident: ref_31 article-title: Making a “completely blind” image quality analyzer publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2012.2227726 – ident: ref_81 – ident: ref_54 – volume: 10752 start-page: 512 year: 2018 ident: ref_77 article-title: Overview of the JPEG XS core coding system subjective evaluations publication-title: Applications of Digital Image Processing XLI – ident: ref_8 doi: 10.3390/s22010197 – ident: ref_56 doi: 10.1109/CVPR.2018.00194 – ident: ref_46 – ident: ref_12 – volume: 2 start-page: 1 year: 2006 ident: ref_48 article-title: Modern image quality assessment publication-title: Synth. Lect. Image Video Multimed. Process. doi: 10.1007/978-3-031-02238-8 – ident: ref_7 doi: 10.3390/s20051308 – volume: 11842 start-page: 302 year: 2021 ident: ref_13 article-title: Review of subjective quality assessment methodologies and standards for compressed images evaluation publication-title: Applications of Digital Image Processing XLIV – ident: ref_37 doi: 10.1109/TMM.2022.3190700 – ident: ref_22 doi: 10.3390/s22186775 – volume: 30 start-page: 57 year: 2015 ident: ref_49 article-title: Image database TID2013: Peculiarities, results and perspectives publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2014.10.009 – ident: ref_70 – ident: ref_15 doi: 10.3390/s21165322 – ident: ref_57 – volume: 2 start-page: 303 year: 2013 ident: ref_45 article-title: A survey on full reference image quality assessment algorithms publication-title: Int. J. Res. Eng. Technol. doi: 10.15623/ijret.2013.0212052 |
SSID | ssj0023338 |
Score | 2.4177146 |
Snippet | The usage of media such as images and videos has been extensively increased in recent years. It has become impractical to store images and videos acquired by... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1297 |
SubjectTerms | Algorithms Human subjects image compression image quality assessment JPEG 1 Mathematical models Performance evaluation Quality standards Sensors Software subjective and objective evaluation visually lossless |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT_SAKLQQKMggpHKJuoljZ3NcUKuCKEhVi3qz_CkWLVnEbg_9930TZ6ONisSFazxx7PGM503ivGHsXVGGGAEV8lraKkeE9nljqiYPpW_sJFbIAeiF_vlXdXZVfb6W11ulvuhMWKIHToo7DlQIQhmnPH0xstLWobF4AjIbYZzsoBFi3iaZ6lMtgcwr8QgJJPXHKwBtgchWj6JPR9J_fyveikXjc5Jbgef0MXvUI0Y-SyPdYw9C-4TtbvEIPmVzuP_PtHPx2UC1yZeRfxuuf_qFnYMnyoxbfk6FtNyKX9C_BZzshDQc0Bv_Pl9BaHHLv2AGC_TFac9Ix2XbfXZ1enL58SzvayjkDtBrDcUHH4x1NsroXUS2FU1ZS69ctFRjI5SmrIjj3hfRSC8KYwB5okRLiFWQ4oDttMs2PGfceQXsAfmOk0dObZwW6NU5Pyl8UNOMvd_oVrueYJzqXCw0Eg1aBj0sQ8beDqK_E6vG34Q-0AINAkSE3V2AeejePPS_zCNjR7S8mtwVg3Gm_-sAUyLiKz0DghIKYXqSscONBejej1e6BDoGQm4URvNmaIYH0mcV04blTScDEKkQ5DP2LBnMMGahkL0IgbvrkSmNJjVuaec_OpZvAPcp0ssX_0MLL9nDEk5Br45Kcch21n9uwiuAqbV93fnNHeBmIB0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMoyCAkuETdxLGzOaEFURVEQUIU7c3yExYtSWm2h_57vkmy6UYgrvHE8mM8840f3zD2IstDjIAKaSltkcJD-7QyRZWG3Fd2FgvEALShf_xJHZ0UH5ZyOWy4tcO1yq1N7Ay1bxztkR_kwCnAKpUqX5_-TilrFJ2uDik0rrJrRF1GV7rK5WXAJRB_9WxCAqH9QQu4LeDfyokP6qj6_zbIOx5peltyx_0c3mI3B9zIF_1E32ZXQn2H3dhhE7zLVjACP3v7xRcj4SZvIv88fn__C_aD98QZF_yY0mm5ln-hFwactIXGOaA2_m3VQmh9wT-iB2vUxcly9Jdm63vs5PDd17dH6ZBJIXUAYBsMf_DBWGejjN5FxFzR5KX0ykVLmTZCbvKCmO59Fo30IjMGwCdKlIRYBCnus726qcNDxp1XQCCQ75h55NzGeYZanfOzzAc1T9ir7dhqN9CMU7aLtUa4QdOgx2lI2PNR9LTn1viX0BuaoFGA6LC7D83Zdz2sLh0oW4gyTnk6VrTSlqGyUEOEv8I4aRL2kqZX06JFY5wZ3h6gS0R_pRfAUULBWc8Str_VAD2s5lZf6l7Cno3FWId0uGLq0Jx3MoCSCq4-YQ96hRnbLBRiGCHwdzlRpUmnpiX16kfH9Q34PkeQ-ej_zXrMrudQd9oaysU-29ucnYcnAEsb-7RbEX8AhXAXsg priority: 102 providerName: ProQuest |
Title | Subjective Assessment of Objective Image Quality Metrics Range Guaranteeing Visually Lossless Compression |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36772337 https://www.proquest.com/docview/2774977967 https://www.proquest.com/docview/2775626718 https://pubmed.ncbi.nlm.nih.gov/PMC9918960 https://doaj.org/article/e83446ac6d6842b5b7e9b12e8253ac5a |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2cYED4k1gqQxCgkugieMkPSDURVsWRBe0oqi3yE_oqptC25Xov-ebJI0asQcuOcQTy_aMPd_Y8TeMvYhi5z2gQphJnYTw0DYcqGQQutgOdN8niAFoQ398lp5Okk9TOd1j2xybzQCurg3tKJ_UZDl__ef35h0m_FuKOBGyv1kBRgv4rWyfHcIhZTQ_x0l7mBALUSW0pjtdIfxhvyYY6n7acUsVe_-_a_SOk-r-QLnjkUa32a0GSvJhrfs7bM-Vd9nNHYLBe2yGdeGiXtL4sOXg5AvPv7TvP15iSeE1l8aGjynDllnxc7p0wMmAaOgdauPfZysIzTf8M3owR12cFpP6P9ryPpuMTr69Pw2b5AqhASZbQyPOOqWN9tJb4xGGeRVn0qbGa0q-4WIVJ0R-byOvpBWRUsBCXqLE-cRJ8YAdlIvSPWLc2BSgBPIVWY_Mtc8j1GqM7UfWpXnAXm3HtjAN8zglwJgXiEBIDUWrhoA9b0V_1XQb1wkdk4JaAWLIrl4slj-KZsIVjhKIpMqklk4atdSZG2hYJiJioYxUAXtJ6i3IstAYo5rrCOgSMWIVQ0ArkcJ_9wN2tLWAYmufRQzYDOg8SNGaZ20xpiadt6jSLa4qGaDLFN4_YA9rg2nbLFKENULg66xjSp1OdUvK2c-K_huIPkfc-fi_O_CE3YgxC2jjKBZH7GC9vHJPAaXWusf2s2mGZz760GOHxydnX8971bZEr5pCfwE3GSMw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V5QAcEG8MBRYEgotV2-tHfEAoPKqEJkVCLcrNrPdBUwW71KlQ_hS_kW_8aiIQt16949XaMzvzzT6-YeyFHxhrARXcJMpDFxFau6kMU9cEOs09GyIHoAX96UE8Ogo_zaLZFvvd3YWhY5WdT6wdtS4VrZHvBsApwCppnLw9_elS1SjaXe1KaDRmsW9Wv5CyVW_GH6Dfl0Gw9_Hw_chtqwq4CmBkiaEYbWSuchtZrSzyDyuDJNKxsjlVnTCBDEJifde-lZEWvpQAATZCi7GhoSoRcPlXEHg9mlHJ7CLBE8j3GvYiIVJvtwK8F4inyUbMq0sD_B0A1iLg5unMtXC3d5PdaHEqHzaGdYttmeI2u77GXniHzeF0Thp_yYc9wScvLf_cPx__gL_iDVHHik-pfJeq-Be60cDJOkmvBr3xr_MKQosVn-ALFuiLk6dqDukWd9nRpfzje2y7KAvzgHGlYyAeyNdMQNEgtwMfvSqlPV-beOCw192_zVRLa07VNRYZ0htSQ9arwWHPe9HThsvjX0LvSEG9ANFv1w_Ks-9ZO5szQ9VJYqliTduYeZQnJs1h9ki3hVSRdNgrUm9GTgKDUbK964BPIrqtbAjcJmKAA89hO50FZK33qLILW3fYs74Z8542c2RhyvNaBtA1BrRw2P3GYPoxixg5kxB4O9kwpY2P2mwp5sc1tzjShQGS2of_H9ZTdnV0OJ1kk_HB_iN2LYDp07JUIHbY9vLs3DwGUFvmT-rZwdm3y56OfwAi81c9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5VRUJwQOy4FBgQCC5WYo-X-IBQoEQNXUCIotzc8SyQKtilToXy1_h1fM9bY4G49ep5Hs3M2743y3uMPfd8Yy2gghuHWeDCQ2s3kUHiGl8n2dAGiAFoQ__gMNo9Cj7MwtkG-92-haFrla1NrAy1LhTtkQ984BRglSSKB7a5FvFpZ_Lm9KdLFaTopLUtp1GLyJ5Z_UL4Vr6e7oDXL3x_8v7Lu123qTDgKgCTJYZltJGZymxotbKIRaz041BHymZUgcL40g8oA7z2rAy18KQEILAhWowNDFWMgPm_EovQIx2LZxfBnkDsV2cyEiIZDkpAfQHfGvf8X1Um4G9nsOYN-zc111zf5Ca70WBWPq6F7BbbMPltdn0tk-EdNocBOqltJx93yT55YfnH7vv0B2wXr5N2rPgBlfJSJf9Mrxs4SSrx2KA3_nVegmix4vuYwQJ9cbJa9YXd_C47upQ1vsc28yI3DxhXOgL6AX2VFSgcZXbkoVel9NDTJho57FW7tqlqUpxTpY1FilCH2JB2bHDYs470tM7r8S-it8SgjoBScVcfirNvaaPZqaFKJZFUkaYjzSzMYpNkUAGE3kKqUDrsJbE3JYOBwSjZvHvAlCj1VjoGhhMRgMLQYdutBKSNJSnTC7l32NOuGTaADnZkborzigYwNgLMcNj9WmC6MYsI8ZMQ-DvuiVJvUv2WfP69yjOO0GGEAHfr_8N6wq5CEdP96eHeQ3bNh-TTDpUvttnm8uzcPAJmW2aPK-Xg7PiytfEPvKVbcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subjective+Assessment+of+Objective+Image+Quality+Metrics+Range+Guaranteeing+Visually+Lossless+Compression&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Afnan&rft.au=Ullah%2C+Faiz&rft.au=Yaseen&rft.au=Lee%2C+Jinhee&rft.date=2023-01-23&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=3&rft_id=info:doi/10.3390%2Fs23031297&rft.externalDocID=A743368010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |