Combined effects of ozone and drought stress on the emission of biogenic volatile organic compounds from Quercus robur L
Drought events are expected to become more frequent with climate change. To predict the effect of plant emissions on air quality and potential feedback effects on climate, the study of biogenic volatile organic compound emissions under stress is of great importance. Trees can often be subject to a c...
Saved in:
Published in | Biogeosciences Vol. 18; no. 2; pp. 535 - 556 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
22.01.2021
European Geosciences Union Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Drought events are expected to become more frequent with
climate change. To predict the effect of plant emissions on air quality and
potential feedback effects on climate, the study of biogenic volatile
organic compound emissions under stress is of great importance. Trees can
often be subject to a combination of abiotic stresses, for example due to
drought or ozone. Even though there is a large body of knowledge on
individual stress factors, the effects of combined stressors are not much
explored. This study aimed to investigate changes of biogenic volatile
organic compound emissions and physiological parameters in Quercus robur L. during moderate
to severe drought in combination with ozone stress. Results show that
isoprene emissions decreased while monoterpene and sesquiterpene emissions
increased during the progression of drought. We exposed plants with daily
ozone concentrations of 100 ppb for 1 h for 7 d, which resulted
in faster stomatal closure (e.g., a mean value of −31.3 % at an average stem
water potential of −1 MPa), partially mitigating drought stress effects.
Evidence of this was found in enhanced green leaf volatiles in trees without
ozone fumigation, indicating cellular damage. In addition we observed an
enhancement in (C8H8O3)H+ emissions likely corresponding
to methyl-salicylate in trees with ozone treatment. Individual plant stress
factors are not necessarily additive, and atmospheric models should implement
stress feedback loops to study regional-scale effects. |
---|---|
AbstractList | Drought events are expected to become more frequent with climate change. To predict the effect of plant emissions on air quality and potential feedback effects on climate, the study of biogenic volatile organic compound emissions under stress is of great importance. Trees can often be subject to a combination of abiotic stresses, for example due to drought or ozone. Even though there is a large body of knowledge on individual stress factors, the effects of combined stressors are not much explored. This study aimed to investigate changes of biogenic volatile organic compound emissions and physiological parameters in Quercus robur L. during moderate to severe drought in combination with ozone stress. Results show that isoprene emissions decreased while monoterpene and sesquiterpene emissions increased during the progression of drought. We exposed plants with daily ozone concentrations of 100 ppb for 1 h for 7 d, which resulted in faster stomatal closure (e.g., a mean value of -31.3 % at an average stem water potential of -1 MPa), partially mitigating drought stress effects. Evidence of this was found in enhanced green leaf volatiles in trees without ozone fumigation, indicating cellular damage. In addition we observed an enhancement in (C8H8O3)H+ emissions likely corresponding to methyl-salicylate in trees with ozone treatment. Individual plant stress factors are not necessarily additive, and atmospheric models should implement stress feedback loops to study regional-scale effects. Drought events are expected to become more frequent with climate change. To predict the effect of plant emissions on air quality and potential feedback effects on climate, the study of biogenic volatile organic compound emissions under stress is of great importance. Trees can often be subject to a combination of abiotic stresses, for example due to drought or ozone. Even though there is a large body of knowledge on individual stress factors, the effects of combined stressors are not much explored. This study aimed to investigate changes of biogenic volatile organic compound emissions and physiological parameters in Quercus robur L. during moderate to severe drought in combination with ozone stress. Results show that isoprene emissions decreased while monoterpene and sesquiterpene emissions increased during the progression of drought. We exposed plants with daily ozone concentrations of 100 ppb for 1 h for 7 d, which resulted in faster stomatal closure (e.g., a mean value of -31.3 % at an average stem water potential of -1 MPa), partially mitigating drought stress effects. Evidence of this was found in enhanced green leaf volatiles in trees without ozone fumigation, indicating cellular damage. In addition we observed an enhancement in (C.sub.8 H.sub.8 O.sub.3 )H.sup.+ emissions likely corresponding to methyl-salicylate in trees with ozone treatment. Individual plant stress factors are not necessarily additive, and atmospheric models should implement stress feedback loops to study regional-scale effects. Drought events are expected to become more frequent with climate change. To predict the effect of plant emissions on air quality and potential feedback effects on climate, the study of biogenic volatile organic compound emissions under stress is of great importance. Trees can often be subject to a combination of abiotic stresses, for example due to drought or ozone. Even though there is a large body of knowledge on individual stress factors, the effects of combined stressors are not much explored. This study aimed to investigate changes of biogenic volatile organic compound emissions and physiological parameters in Quercus robur L. during moderate to severe drought in combination with ozone stress. Results show that isoprene emissions decreased while monoterpene and sesquiterpene emissions increased during the progression of drought. We exposed plants with daily ozone concentrations of 100 ppb for 1 h for 7 d, which resulted in faster stomatal closure (e.g., a mean value of − 31.3 % at an average stem water potential of − 1 MPa), partially mitigating drought stress effects. Evidence of this was found in enhanced green leaf volatiles in trees without ozone fumigation, indicating cellular damage. In addition we observed an enhancement in (C 8 H 8 O 3 )H + emissions likely corresponding to methyl-salicylate in trees with ozone treatment. Individual plant stress factors are not necessarily additive, and atmospheric models should implement stress feedback loops to study regional-scale effects. Drought events are expected to become more frequent with climate change. To predict the effect of plant emissions on air quality and potential feedback effects on climate, the study of biogenic volatile organic compound emissions under stress is of great importance. Trees can often be subject to a combination of abiotic stresses, for example due to drought or ozone. Even though there is a large body of knowledge on individual stress factors, the effects of combined stressors are not much explored. This study aimed to investigate changes of biogenic volatile organic compound emissions and physiological parameters in Quercus robur L. during moderate to severe drought in combination with ozone stress. Results show that isoprene emissions decreased while monoterpene and sesquiterpene emissions increased during the progression of drought. We exposed plants with daily ozone concentrations of 100 ppb for 1 h for 7 d, which resulted in faster stomatal closure (e.g., a mean value of −31.3 % at an average stem water potential of −1 MPa), partially mitigating drought stress effects. Evidence of this was found in enhanced green leaf volatiles in trees without ozone fumigation, indicating cellular damage. In addition we observed an enhancement in (C8H8O3)H+ emissions likely corresponding to methyl-salicylate in trees with ozone treatment. Individual plant stress factors are not necessarily additive, and atmospheric models should implement stress feedback loops to study regional-scale effects. Drought events are expected to become more frequent with climate change. To predict the effect of plant emissions on air quality and potential feedback effects on climate, the study of biogenic volatile organic compound emissions under stress is of great importance. Trees can often be subject to a combination of abiotic stresses, for example due to drought or ozone. Even though there is a large body of knowledge on individual stress factors, the effects of combined stressors are not much explored. This study aimed to investigate changes of biogenic volatile organic compound emissions and physiological parameters in Quercus robur L. during moderate to severe drought in combination with ozone stress. Results show that isoprene emissions decreased while monoterpene and sesquiterpene emissions increased during the progression of drought. We exposed plants with daily ozone concentrations of 100 ppb for 1 h for 7 d, which resulted in faster stomatal closure (e.g., a mean value of −31.3 % at an average stem water potential of −1 MPa), partially mitigating drought stress effects. Evidence of this was found in enhanced green leaf volatiles in trees without ozone fumigation, indicating cellular damage. In addition we observed an enhancement in (C8H8O3)H+ emissions likely corresponding to methyl-salicylate in trees with ozone treatment. Individual plant stress factors are not necessarily additive, and atmospheric models should implement stress feedback loops to study regional-scale effects. |
Audience | Academic |
Author | Halbwirth, Heidi Fitzky, Anne Charlott Kaser, Lisa Graus, Martin Peron, Arianna Sandén, Hans Greiner, Jürgen Wohlfahrt, Georg Karl, Thomas Rewald, Boris |
Author_xml | – sequence: 1 givenname: Arianna surname: Peron fullname: Peron, Arianna – sequence: 2 givenname: Lisa surname: Kaser fullname: Kaser, Lisa – sequence: 3 givenname: Anne Charlott surname: Fitzky fullname: Fitzky, Anne Charlott – sequence: 4 givenname: Martin orcidid: 0000-0002-2025-9242 surname: Graus fullname: Graus, Martin – sequence: 5 givenname: Heidi surname: Halbwirth fullname: Halbwirth, Heidi – sequence: 6 givenname: Jürgen surname: Greiner fullname: Greiner, Jürgen – sequence: 7 givenname: Georg orcidid: 0000-0003-3080-6702 surname: Wohlfahrt fullname: Wohlfahrt, Georg – sequence: 8 givenname: Boris orcidid: 0000-0001-8098-0616 surname: Rewald fullname: Rewald, Boris – sequence: 9 givenname: Hans surname: Sandén fullname: Sandén, Hans – sequence: 10 givenname: Thomas orcidid: 0000-0003-2869-9426 surname: Karl fullname: Karl, Thomas |
BackLink | https://hal.science/hal-03653589$$DView record in HAL |
BookMark | eNp1Uk2P0zAQjdAisVu4crbEaQ9Z7NhJ7GNVAVupEuLrbPkzdZXGxXZWsL-G38IvY0oR2qJFPtgev_c8M2-uqospTq6qXhJ80xLBXuuhJrxuaVs3uCFPqkvSN13NCBcXD87PqqucdxhTjnl7Wd2v4l6HyVnkvHemZBQ9ivegjNRkkU1xHrYF5ZJchrcJla1Dbh9yDnABrA5xcFMw6C6OqoTRoZgGdQyYuD_EebIZ-RT36MPskpkzSlHPCf38sXlePfVqzO7Fn31RfXn75vPqtt68f7deLTe1aTEvtRBMMNLjvqde0K4nQluCGVGNcpa01HLKDVGca84cE4YIQVpjce8623Jv6aJan3RtVDt5SGGv0ncZVZC_A5CuVKkEMzrZatIrRXtLaMe0M6KxzGuNPfOGt9C0RXV90tqq8UzqdrmRxximHTjAxR0B7KsT9pDi19nlIndxThOUKhvWi67rqHiAGhQkECYfS1IGGmzksmOC0o5wCqibR1CwLHhhwC0PnT8nXJ8RAFPctzKoOWe5_vTxUXGTYs7J-b-VESyPoyX1IAmXUJg8jhYQ2D8EEwqYD38kFcb_0X4BOvTSLw |
CitedBy_id | crossref_primary_10_5194_acp_24_6555_2024 crossref_primary_10_3390_horticulturae8121120 crossref_primary_10_1016_j_envpol_2024_124895 crossref_primary_10_30890_2709_1783_2023_26_01_006 crossref_primary_10_3389_fpls_2022_879039 crossref_primary_10_5194_acp_24_7063_2024 crossref_primary_10_3389_fevo_2022_864728 crossref_primary_10_3389_fpls_2021_708711 crossref_primary_10_3390_molecules26113114 crossref_primary_10_1039_D2EA00038E crossref_primary_10_1016_j_plantsci_2024_112157 crossref_primary_10_5194_acp_23_1043_2023 crossref_primary_10_3390_app11199282 crossref_primary_10_5194_acp_24_13199_2024 crossref_primary_10_1016_j_eja_2023_127052 crossref_primary_10_1525_elementa_2021_00096 crossref_primary_10_1016_j_atmosenv_2023_119768 |
Cites_doi | 10.1104/pp.95.2.529 10.1021/es203985t 10.1051/forest:19970102 10.1111/j.1365-3040.2005.01383.x 10.3109/10409239009090615 10.5194/acp-14-9317-2014 10.1055/s-2002-34128 10.1093/treephys/16.4.441 10.1007/BF02167631 10.1016/j.atmosenv.2013.02.025 10.3390/f8050148 10.1093/treephys/24.4.361 10.1111/j.1744-7909.2007.00395.x 10.1016/S0014-5793(97)01002-8 10.1105/tpc.7.7.1085 10.1029/94JD02950 10.1046/j.1365-3040.1999.00425.x 10.1007/s00425-002-0825-2 10.1016/j.sajb.2010.03.003 10.1111/j.1365-3040.2012.02536.x 10.1093/jxb/erq340 10.1093/treephys/tpp009 10.1126/science.1172910 10.1016/j.envpol.2004.09.011 10.1007/s10342-008-0216-8 10.1104/pp.120.4.1015 10.1023/A:1013797129428 10.4161/psb.7.1.18521 10.1111/j.1365-3040.1995.tb00598.x 10.1016/j.foodres.2010.10.033 10.1016/j.phytochem.2004.08.019 10.1016/j.foreco.2009.09.001 10.1007/s00425-010-1169-y 10.1111/gcb.12980 10.3389/ffgc.2019.00050 10.1007/s10886-016-0794-8 10.1016/S0014-5793(96)01404-4 10.1093/biolinnean/blx154 10.1104/pp.101.1.13 10.1029/1999JD900144 10.1016/j.tplants.2009.11.008 10.1111/j.1469-8137.2007.02094.x 10.1016/j.tplants.2005.02.005 10.1016/j.jasms.2010.02.006 10.5194/acp-4-557-2004 10.1016/j.chemosphere.2006.10.029 10.5194/acp-13-3149-2013 10.1111/j.1365-3040.2005.01326.x 10.5194/acp-9-5155-2009 10.1016/j.pbi.2006.03.002 10.1038/srep03434 10.1371/journal.pone.0047880 10.1016/j.tree.2004.06.002 10.1093/treephys/tpt127 10.1016/S1352-2310(97)00176-3 10.5194/bg-5-1287-2008 10.5194/bg-9-4337-2012 10.1071/FP02076 10.1016/0269-7491(93)90160-P 10.1371/journal.pone.0127296 10.1111/j.1365-3040.1991.tb01509.x 10.1890/1051-0761(1999)009[1160:EOVOCF]2.0.CO;2 10.1371/journal.pone.0020419 10.1104/pp.010909 10.1016/j.atmosenv.2008.09.072 10.1007/s13595-016-0580-3 10.1016/S0021-9258(19)44948-X 10.1016/j.envexpbot.2013.12.016 10.1098/rsta.1995.0034 10.1029/2000JD000112 10.1007/s10265-016-0880-6 10.1016/j.talanta.2016.01.050 10.1111/j.1365-3040.2004.01177.x 10.5194/bg-6-1059-2009 10.1016/S1352-2310(97)00078-2 10.1016/S0269-7491(01)00155-5 10.5194/acp-8-1329-2008 10.1111/pce.12798 10.1029/2005JD005777 10.1038/332240a0 10.1126/science.1118446 10.1016/j.atmosenv.2004.07.028 10.1016/j.scitotenv.2018.07.413 10.1104/pp.116.3.1111 10.1111/j.1469-8137.2008.02436.x 10.1104/pp.90.1.267 10.1146/annurev.arplant.50.1.47 10.1016/j.atmosenv.2004.06.001 10.1139/b98-141 10.1111/pce.12638 10.1111/j.1365-3040.2007.01717.x 10.1146/annurev.arplant.50.1.473 10.1093/mp/ssp106 10.5194/acp-13-10243-2013 10.1103/PhysRev.27.779 10.21273/JASHS.127.3.448 10.1023/A:1024069605420 10.1023/A:1024650006740 10.1016/j.chemolab.2013.06.011 10.1104/pp.103.037374 10.1016/j.envpol.2008.03.010 10.1093/jexbot/52.354.133 10.1104/pp.102.012294 10.1016/S1360-1385(02)02303-8 10.1016/j.tplants.2004.02.006 10.1029/93JD00527 10.1016/S1360-1385(03)00008-6 10.1038/nature01312 10.1126/science.291.5511.2141 10.5194/gmd-5-1471-2012 10.1029/2000JD900005 10.1016/j.envexpbot.2017.10.012 10.1007/BF00320984 10.1007/BF00010693 10.1104/pp.010497 10.1007/s11270-007-9560-4 10.1029/94JD00246 10.1093/treephys/25.12.1523 10.1016/S0269-7491(98)00214-0 10.3390/s120404091 10.1038/nclimate1633 10.1007/s00468-006-0069-z 10.1104/pp.112.1.171 10.1016/j.tree.2009.01.012 10.1016/S1352-2310(03)00391-1 10.1016/0031-9422(91)80003-J 10.1021/es204205m 10.1104/pp.103.031765 10.1034/j.1399-3054.1995.930418.x 10.1111/j.1469-8137.2009.02859.x 10.1029/1998JD100049 10.3390/f11050528 10.1111/j.1399-3054.2006.00750.x 10.1007/BF00380829 10.1046/j.1469-8137.2002.00516.x 10.1016/j.atmosenv.2006.06.057 10.1104/pp.97.4.1588 10.1111/j.1365-3040.1994.tb00173.x 10.1016/j.tplants.2009.12.006 10.1104/pp.115.4.1413 10.5194/bg-9-271-2012 10.1016/j.envexpbot.2005.01.006 10.1038/srep12064 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Copernicus GmbH 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: COPYRIGHT 2021 Copernicus GmbH – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION ISR 7QO 7SN 7TG 7TN 7UA 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H95 H96 HCIFZ KL. L.G L6V LK8 M7N M7P M7S P64 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY 1XC VOOES DOA |
DOI | 10.5194/bg-18-535-2021 |
DatabaseName | CrossRef Gale In Context: Science Biotechnology Research Abstracts Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection (ProQuest) Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) Environmental Science Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database Biological Science Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest Engineering Collection Biotechnology Research Abstracts Oceanic Abstracts ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1726-4189 |
EndPage | 556 |
ExternalDocumentID | oai_doaj_org_article_5b17aa37d1364bec92d4fbb0f4fc8500 oai_HAL_hal_03653589v1 A649336183 10_5194_bg_18_535_2021 |
GeographicLocations | United Kingdom--UK Europe |
GeographicLocations_xml | – name: United Kingdom--UK – name: Europe |
GroupedDBID | 23N 2WC 2XV 4P2 5GY 5VS 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ADBBV AENEX AEUYN AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION E3Z EBD EBS EDH EJD GROUPED_DOAJ H13 HCIFZ HH5 IAO IEA ISR ITC KQ8 L6V L8X LK5 LK8 M7P M7R M7S MM- M~E OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS PYCSY Q2X RKB RNS TR2 XSB ~02 BBORY PMFND 7QO 7SN 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H95 H96 KL. L.G M7N P64 PKEHL PQEST PQGLB PQUKI PRINS 1XC C1A IPNFZ RIG VOOES PUEGO |
ID | FETCH-LOGICAL-c508t-99494170773f936719bd1041a2aed153d838c1a88b84e49c19915cd07e6d58fd3 |
IEDL.DBID | DOA |
ISSN | 1726-4189 1726-4170 |
IngestDate | Wed Aug 27 01:25:38 EDT 2025 Wed Jun 04 07:12:31 EDT 2025 Sun Jul 13 03:26:36 EDT 2025 Tue Jun 17 21:32:41 EDT 2025 Tue Jun 10 20:39:03 EDT 2025 Fri Jun 27 05:11:32 EDT 2025 Tue Jul 01 03:01:49 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-99494170773f936719bd1041a2aed153d838c1a88b84e49c19915cd07e6d58fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2025-9242 0000-0001-8098-0616 0000-0003-2869-9426 0000-0003-3080-6702 0000-0002-2496-6307 |
OpenAccessLink | https://doaj.org/article/5b17aa37d1364bec92d4fbb0f4fc8500 |
PQID | 2479666391 |
PQPubID | 105740 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5b17aa37d1364bec92d4fbb0f4fc8500 hal_primary_oai_HAL_hal_03653589v1 proquest_journals_2479666391 gale_infotracmisc_A649336183 gale_infotracacademiconefile_A649336183 gale_incontextgauss_ISR_A649336183 crossref_primary_10_5194_bg_18_535_2021 crossref_citationtrail_10_5194_bg_18_535_2021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-22 |
PublicationDateYYYYMMDD | 2021-01-22 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Biogeosciences |
PublicationYear | 2021 |
Publisher | Copernicus GmbH European Geosciences Union Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: European Geosciences Union – name: Copernicus Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref148 ref30 ref149 ref33 ref146 ref32 ref147 ref39 ref38 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref24 ref23 ref26 ref25 ref20 ref22 ref157 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 ref87 ref136 ref82 ref144 ref81 ref145 ref84 ref142 ref83 ref143 ref140 ref141 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref62 – ident: ref40 doi: 10.1104/pp.95.2.529 – ident: ref25 doi: 10.1021/es203985t – ident: ref142 doi: 10.1051/forest:19970102 – ident: ref11 doi: 10.1111/j.1365-3040.2005.01383.x – ident: ref15 doi: 10.3109/10409239009090615 – ident: ref130 doi: 10.5194/acp-14-9317-2014 – ident: ref23 doi: 10.1055/s-2002-34128 – ident: ref39 doi: 10.1093/treephys/16.4.441 – ident: ref119 doi: 10.1007/BF02167631 – ident: ref5 doi: 10.1016/j.atmosenv.2013.02.025 – ident: ref30 doi: 10.3390/f8050148 – ident: ref85 doi: 10.1093/treephys/24.4.361 – ident: ref27 doi: 10.1111/j.1744-7909.2007.00395.x – ident: ref124 doi: 10.1016/S0014-5793(97)01002-8 – ident: ref33 doi: 10.1105/tpc.7.7.1085 – ident: ref76 – ident: ref50 doi: 10.1029/94JD02950 – ident: ref79 doi: 10.1046/j.1365-3040.1999.00425.x – ident: ref67 doi: 10.1007/s00425-002-0825-2 – ident: ref88 doi: 10.1016/j.sajb.2010.03.003 – ident: ref12 doi: 10.1111/j.1365-3040.2012.02536.x – ident: ref114 doi: 10.1093/jxb/erq340 – ident: ref13 doi: 10.1093/treephys/tpp009 – ident: ref36 – ident: ref106 doi: 10.1126/science.1172910 – ident: ref105 doi: 10.1016/j.envpol.2004.09.011 – ident: ref17 doi: 10.1007/s10342-008-0216-8 – ident: ref93 doi: 10.1104/pp.120.4.1015 – ident: ref109 doi: 10.1023/A:1013797129428 – ident: ref144 doi: 10.4161/psb.7.1.18521 – ident: ref137 doi: 10.1111/j.1365-3040.1995.tb00598.x – ident: ref154 doi: 10.1016/j.foodres.2010.10.033 – ident: ref139 doi: 10.1016/j.phytochem.2004.08.019 – ident: ref148 – ident: ref3 doi: 10.1016/j.foreco.2009.09.001 – ident: ref138 doi: 10.1007/s00425-010-1169-y – ident: ref125 doi: 10.1111/gcb.12980 – ident: ref43 doi: 10.3389/ffgc.2019.00050 – ident: ref46 doi: 10.1007/s10886-016-0794-8 – ident: ref81 doi: 10.1016/S0014-5793(96)01404-4 – ident: ref141 doi: 10.1093/biolinnean/blx154 – ident: ref31 doi: 10.1104/pp.101.1.13 – ident: ref38 doi: 10.1029/1999JD900144 – ident: ref60 – ident: ref98 doi: 10.1016/j.tplants.2009.11.008 – ident: ref20 doi: 10.1111/j.1469-8137.2007.02094.x – ident: ref128 – ident: ref112 doi: 10.1016/j.tplants.2005.02.005 – ident: ref47 doi: 10.1016/j.jasms.2010.02.006 – ident: ref74 doi: 10.5194/acp-4-557-2004 – ident: ref101 doi: 10.1016/j.chemosphere.2006.10.029 – ident: ref16 doi: 10.5194/acp-13-3149-2013 – ident: ref7 doi: 10.1111/j.1365-3040.2005.01326.x – ident: ref52 doi: 10.5194/acp-9-5155-2009 – ident: ref91 doi: 10.1016/j.pbi.2006.03.002 – ident: ref42 doi: 10.1038/srep03434 – ident: ref132 doi: 10.1371/journal.pone.0047880 – ident: ref111 doi: 10.1016/j.tree.2004.06.002 – ident: ref90 doi: 10.1093/treephys/tpt127 – ident: ref14 doi: 10.1016/S1352-2310(97)00176-3 – ident: ref69 doi: 10.5194/bg-5-1287-2008 – ident: ref18 doi: 10.5194/bg-9-4337-2012 – ident: ref26 doi: 10.1071/FP02076 – ident: ref72 doi: 10.1016/0269-7491(93)90160-P – ident: ref153 – ident: ref103 doi: 10.1371/journal.pone.0127296 – ident: ref127 doi: 10.1111/j.1365-3040.1991.tb01509.x – ident: ref55 doi: 10.1890/1051-0761(1999)009[1160:EOVOCF]2.0.CO;2 – ident: ref10 – ident: ref35 – ident: ref21 doi: 10.1371/journal.pone.0020419 – ident: ref1 doi: 10.1104/pp.010909 – ident: ref133 doi: 10.1016/j.atmosenv.2008.09.072 – ident: ref37 – ident: ref61 doi: 10.1007/s13595-016-0580-3 – ident: ref120 doi: 10.1016/S0021-9258(19)44948-X – ident: ref115 doi: 10.1016/j.envexpbot.2013.12.016 – ident: ref135 – ident: ref8 doi: 10.1098/rsta.1995.0034 – ident: ref66 doi: 10.1029/2000JD000112 – ident: ref116 doi: 10.1007/s10265-016-0880-6 – ident: ref155 doi: 10.1016/j.talanta.2016.01.050 – ident: ref44 doi: 10.1111/j.1365-3040.2004.01177.x – ident: ref65 doi: 10.5194/bg-6-1059-2009 – ident: ref102 doi: 10.1016/S1352-2310(97)00078-2 – ident: ref104 doi: 10.1016/S0269-7491(01)00155-5 – ident: ref96 doi: 10.5194/acp-8-1329-2008 – ident: ref157 doi: 10.1111/pce.12798 – ident: ref68 doi: 10.1029/2005JD005777 – ident: ref147 doi: 10.1038/332240a0 – ident: ref9 doi: 10.1126/science.1118446 – ident: ref107 doi: 10.1016/j.atmosenv.2004.07.028 – ident: ref108 doi: 10.1016/j.scitotenv.2018.07.413 – ident: ref150 doi: 10.1104/pp.116.3.1111 – ident: ref92 doi: 10.1111/j.1469-8137.2008.02436.x – ident: ref95 doi: 10.1104/pp.90.1.267 – ident: ref80 doi: 10.1146/annurev.arplant.50.1.47 – ident: ref29 doi: 10.1016/j.atmosenv.2004.06.001 – ident: ref82 doi: 10.1139/b98-141 – ident: ref22 doi: 10.1111/pce.12638 – ident: ref152 doi: 10.1111/j.1365-3040.2007.01717.x – ident: ref57 doi: 10.1146/annurev.arplant.50.1.473 – ident: ref146 doi: 10.1093/mp/ssp106 – ident: ref140 doi: 10.5194/acp-13-10243-2013 – ident: ref19 doi: 10.1103/PhysRev.27.779 – ident: ref151 doi: 10.21273/JASHS.127.3.448 – ident: ref56 doi: 10.1023/A:1024069605420 – ident: ref87 doi: 10.1023/A:1024650006740 – ident: ref97 doi: 10.1016/j.chemolab.2013.06.011 – ident: ref122 doi: 10.1104/pp.103.037374 – ident: ref118 – ident: ref54 doi: 10.1016/j.envpol.2008.03.010 – ident: ref123 doi: 10.1093/jexbot/52.354.133 – ident: ref2 doi: 10.1104/pp.102.012294 – ident: ref89 doi: 10.1016/S1360-1385(02)02303-8 – ident: ref99 doi: 10.1016/j.tplants.2004.02.006 – ident: ref49 doi: 10.1029/93JD00527 – ident: ref110 doi: 10.1016/S1360-1385(03)00008-6 – ident: ref117 doi: 10.1038/nature01312 – ident: ref70 doi: 10.1126/science.291.5511.2141 – ident: ref51 doi: 10.5194/gmd-5-1471-2012 – ident: ref100 doi: 10.1029/2000JD900005 – ident: ref63 doi: 10.1016/j.envexpbot.2017.10.012 – ident: ref126 doi: 10.1007/BF00320984 – ident: ref71 doi: 10.1007/BF00010693 – ident: ref84 doi: 10.1104/pp.010497 – ident: ref145 doi: 10.1007/s11270-007-9560-4 – ident: ref45 doi: 10.1029/94JD00246 – ident: ref143 doi: 10.1093/treephys/25.12.1523 – ident: ref113 doi: 10.1016/S0269-7491(98)00214-0 – ident: ref134 doi: 10.3390/s120404091 – ident: ref32 doi: 10.1038/nclimate1633 – ident: ref86 doi: 10.1007/s00468-006-0069-z – ident: ref149 doi: 10.1104/pp.112.1.171 – ident: ref156 doi: 10.1016/j.tree.2009.01.012 – ident: ref6 doi: 10.1016/S1352-2310(03)00391-1 – ident: ref53 doi: 10.1016/0031-9422(91)80003-J – ident: ref4 doi: 10.1021/es204205m – ident: ref24 doi: 10.1104/pp.103.031765 – ident: ref34 doi: 10.1034/j.1399-3054.1995.930418.x – ident: ref77 doi: 10.1111/j.1469-8137.2009.02859.x – ident: ref121 – ident: ref48 doi: 10.1029/1998JD100049 – ident: ref75 doi: 10.3390/f11050528 – ident: ref28 – ident: ref41 doi: 10.1111/j.1399-3054.2006.00750.x – ident: ref136 doi: 10.1007/BF00380829 – ident: ref73 doi: 10.1046/j.1469-8137.2002.00516.x – ident: ref78 doi: 10.1016/j.atmosenv.2006.06.057 – ident: ref129 doi: 10.1104/pp.97.4.1588 – ident: ref64 doi: 10.1111/j.1365-3040.1994.tb00173.x – ident: ref83 doi: 10.1016/j.tplants.2009.12.006 – ident: ref131 doi: 10.1104/pp.115.4.1413 – ident: ref58 doi: 10.5194/bg-9-271-2012 – ident: ref59 doi: 10.1016/j.envexpbot.2005.01.006 – ident: ref94 doi: 10.1038/srep12064 |
SSID | ssj0038085 |
Score | 2.4020803 |
Snippet | Drought events are expected to become more frequent with
climate change. To predict the effect of plant emissions on air quality and
potential feedback effects... Drought events are expected to become more frequent with climate change. To predict the effect of plant emissions on air quality and potential feedback effects... |
SourceID | doaj hal proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 535 |
SubjectTerms | Additives Agricultural sciences Air pollution Air quality Allelochemicals Animal communication Atmospheric models Bioclimatology Carbon Climate change Climate effects Climate prediction Drought Droughts Ecology, environment Emissions Feedback Feedback loops Fumigation Global temperature changes Isoprene Isoprene emissions Life Sciences Metabolism Organic compounds Ozonation Ozone Physiological aspects Plant stress Quercus robur Salicylic acid Silviculture, forestry Stomata Trees VOCs Volatile compounds Volatile organic compound emissions Volatile organic compounds Volatiles Water potential |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA72iuCL-BNPTwlF8Cl0d5PdJE9ylZZTatFqoW9h8-taKLv19k7Uv96Z3dzJCvq6OwfZ-SZfJrnJfIS87luo1CqyKriSiSgds9YG5rPKBi3LaBXed_54Vi0uxIfL8jIduHWprHLLiT1R-9bhGflhISRk5rCe5m9vvzFUjcJ_V5OExh7ZBwpWakL2j47PPp1vuZirrBflhFW6YiKX2dC2EbIWcWiXLFes5CUESpGPlqW-e_-Oo_eusETyL6bul5-TB-R-yhvpfAD6IbkTmkfk7qAk-fMx-QHzGva4wdNUoEHbSNtfbRNo3XjqezGeNR1uhtC2oZD3UZR6w8MytLXXLYTStaNAVwDWTaCD3pOjWHSO2ksdxaso9PMmrNymo6sW4KCnT8jFyfHXdwuWRBWYg1xszbQWGj0hJY-aVzLX1sOWLK-LOnigP6-4cnmtlFUiCO2wNKp0PpOh8qWKnj8lkwZG_4zQKC33tiw8_Eh47TWkA7zOuNSeV1GWU8K2PjUudRxH4YsbAzsPxMDYpcmVAQwMYjAlb3b2t0OvjX9aHiFEOyvskd0_ANeYNOVMaXNZ11z6nFcCQlUXXkRrsyiiU2WWTckBAmywC0aDZTbLetN15v2XczOvhOa8ArqDMSWj2MLYXZ1uLYAHsHHWyHI2sgQI3ej1AcTRaMSL-anBZ5BEwIcp_R2-a7YNM5O4pDN_Iv_5_1-_IPfQOXhAVBQzMlmvNuElpExr-yrNi98D8hMF priority: 102 providerName: ProQuest |
Title | Combined effects of ozone and drought stress on the emission of biogenic volatile organic compounds from Quercus robur L |
URI | https://www.proquest.com/docview/2479666391 https://hal.science/hal-03653589 https://doaj.org/article/5b17aa37d1364bec92d4fbb0f4fc8500 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF9sRfBF_MSz57EUwaelSXY3u_t4lZ6n1KLVQt-W7NdZKIncR6H-Nf4t_mXOJLnDCOKLr8mEzM7MzscyOz9CXrUjVCqdWBm9ZCIpz5xzkYWsdNEomZzG-84fzsr5hXh_KS9_g_rCnrBuPHAnuCPpclVVXIWclwJ-aIogknNZEslrmbXVOsS8bTHV-WCusxaME6JzyUSusm5cI2Qr4sgtWK6Z5BIMpMgH4aid2r_zzXtfsTXyDw_dhp3ZQ_KgzxfptOPzEbkT68fkXocgefuE3MJ-hto2Bto3ZtAm0eZ7U0da1YGGFoRnTbsbIbSpKeR7FCHe8JAMad1VAyZ05Sm4KVDSdaQdzpOn2GyOmEsrildQ6KdNXPrNii4bUMPPH6dPycXs5MubOevRFJiHJGzNjBEGRaEUT4aXKjcuQC2WV0UVA_i9oLn2eaW10yIK47EnSvqQqVgGqVPgz8h-Dew_JzQpx4OTRYCPRDDBQB7Aq4wrE3iZlBwRthWq9f2ocUS8uLZQcqASrFvYXFtQgkUljMjrHf23bsjGXymPUUc7KhyO3T4A2djeZOy_TGZEDlHDFsdf1Nhfs6g2q5V99_ncTkthOC_BzwFPPVFqgHdf9dcVQAI4MWtAOR5Qgg794PUhGNKA4_n01OIzyB5gYdrcwLrGWzuzvRNZ2UIoKEYhhcxf_I9lH5D7KEI8PyqKMdlfLzfxJWRUazche3r2dkLuHp-cfTyftFtpgjFO_gKqIx9u |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF61RQguiKcIBFhVIE6r2t61d_eAUHiEhKaVgFbqbfE-HCpVdokToPwofiMzfgQFCW692hN7Pe_dzMxHyNNmhEquCpYFlzJRSMestYH5KLNBy7SwCvudDw6zybF4f5KebJFffS8MllX2PrFx1L5yeEa-lwgJmTnE0_jl-VeGqFH472oPodGqxX64-A5btvrF9A3I91mSjN8evZ6wDlWAOUhGlkxroUUsIyl5oXkmY2097EniPMmDB_v3iisX50pZJYLQDmuDUucjGTKfqsJzeO42uSI4RHLsTB-_6z0_V1EDAQo5QcbwFe2QSMiRxJ6ds1ixlKeglkm8EQQbrIB1RNj-ggWZf8WFJtiNb5IbXZZKR61a3SJbobxNrra4lRd3yA_wIrCjDp525SC0Kmj1syoDzUtPfQP9s6RtHwqtSgpZJkVgOTyaQ1p7WoHinjoKzhFU4yzQFl3KUSxxR6SnmmLjC_2wCgu3qumiAuHT2V1yfCnMvkd2Slj9fUILabm3aeLhR8JrryH54HnEpfY8K2Q6IKznqXHdfHOE2TgzsM9BGRg7N7EyIAODMhiQ52v683ayxz8pX6GI1lQ4kbu5AKwxnYGb1MYyz7n0Mc8EGIZOvCisjQpROJVG0YDsooANztwosahnnq_q2kw_fTSjTGjOM3CusKaOqKhg7S7veiSAAzima4NyuEEJInQbt3dBjzZWPBnNDF6DlAU-TOlv8F3DXs1M57lq88fOHvz_9hNybXJ0MDOz6eH-Q3IdGYVHU0kyJDvLxSo8gmRtaR83FkLJ58s2yd9hxUyp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF61qUBcEE8RCLCqQJys2N61d_eAUEobJTREpVCpt8X7CpUquzQJUH4av44Z2wkKEtx6tSf2et6zmZ2PkBf1CJVChij3Not4EDYyxvjIxbnxSmTBSDzv_H6aj074u9PsdIv8Wp2FwbbKlU-sHbWrLO6R91MuIDOHeJr0Q9sWcbQ_fHPxNUIEKfyndQWn0ajIob_6DuXb_PV4H2T9Mk2HB5_ejqIWYSCykJgsIqW44omIhWBBsVwkyjioT5IiLbwDX-AkkzYppDSSe64s9gll1sXC5y6TwTF47jbZEVgVdcjO3sH06HgVB5iMa0BQyBDyCF_SjIyEjIn3zSxKZJSxDJQ0TTZCYo0csI4P21-wPfOvKFGHvuEdcrvNWemgUbK7ZMuX98iNBsXy6j75AT4F6mvvaNscQqtAq59V6WlROupqIKAFbU6l0KqkkHNShJnDjTqkNWcVqPGZpeAqQVHOPW2wpizFhnfEfZpTPAZDPyz9pV3O6WUFqkAnD8jJtbD7IemUsPpHhAZhmDNZ6uBH3CmnIBVhRcyEciwPIuuSaMVTbdtp5wi6ca6h6kEZaDPTidQgA40y6JJXa_qLZs7HPyn3UERrKpzPXV8A1ujW3HVmElEUTLiE5RzMRKWOB2PiwIOVWRx3yS4KWOMEjhJ1eVYs53M9_nisBzlXjOXgamFNLVGoYO22aE9MAAdwaNcGZW-DEkRoN27vgh5trHg0mGi8BgkMfJhU3-C7eis1060fm-s_Vvf4_7efk5tgjnoynh4-IbeQT7hPlaY90llcLv1TyNwW5llrIpR8vm6r_A29pFI7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+effects+of+ozone+and+drought+stress+on+the+emission+of+biogenic+volatile+organic+compounds+from+Quercus+robur+L&rft.jtitle=Biogeosciences&rft.au=Peron%2C+Arianna&rft.au=Kaser%2C+Lisa&rft.au=Fitzky%2C+Anne+Charlott&rft.au=Graus%2C+Martin&rft.date=2021-01-22&rft.pub=Copernicus+GmbH&rft.issn=1726-4170&rft.volume=18&rft.issue=2&rft.spage=535&rft_id=info:doi/10.5194%2Fbg-18-535-2021&rft.externalDBID=ISR&rft.externalDocID=A649336183 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1726-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1726-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1726-4189&client=summon |