A thorough evaluation of the Language Environment Analysis (LENA) system

In the previous decade, dozens of studies involving thousands of children across several research disciplines have made use of a combined daylong audio-recorder and automated algorithmic analysis called the LENA Ⓡ system, which aims to assess children’s language environment. While the system’s preva...

Full description

Saved in:
Bibliographic Details
Published inBehavior research methods Vol. 53; no. 2; pp. 467 - 486
Main Authors Cristia, Alejandrina, Lavechin, Marvin, Scaff, Camila, Soderstrom, Melanie, Rowland, Caroline, Räsänen, Okko, Bunce, John, Bergelson, Elika
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2021
Springer Nature B.V
Psychonomic Society, Inc
Subjects
Online AccessGet full text
ISSN1554-3528
1554-351X
1554-3528
DOI10.3758/s13428-020-01393-5

Cover

Abstract In the previous decade, dozens of studies involving thousands of children across several research disciplines have made use of a combined daylong audio-recorder and automated algorithmic analysis called the LENA Ⓡ system, which aims to assess children’s language environment. While the system’s prevalence in the language acquisition domain is steadily growing, there are only scattered validation efforts on only some of its key characteristics. Here, we assess the LENA Ⓡ system’s accuracy across all of its key measures: speaker classification, Child Vocalization Counts (CVC), Conversational Turn Counts (CTC), and Adult Word Counts (AWC). Our assessment is based on manual annotation of clips that have been randomly or periodically sampled out of daylong recordings, collected from (a) populations similar to the system’s original training data (North American English-learning children aged 3-36 months), (b) children learning another dialect of English (UK), and (c) slightly older children growing up in a different linguistic and socio-cultural setting (Tsimane’ learners in rural Bolivia). We find reasonably high accuracy in some measures (AWC, CVC), with more problematic levels of performance in others (CTC, precision of male adults and other children). Statistical analyses do not support the view that performance is worse for children who are dissimilar from the LENA Ⓡ original training set. Whether LENA Ⓡ results are accurate enough for a given research, educational, or clinical application depends largely on the specifics at hand. We therefore conclude with a set of recommendations to help researchers make this determination for their goals.
AbstractList In the previous decade, dozens of studies involving thousands of children across several research disciplines have made use of a combined daylong audio-recorder and automated algorithmic analysis called the LENAⓇ system, which aims to assess children’s language environment. While the system’s prevalence in the language acquisition domain is steadily growing, there are only scattered validation efforts on only some of its key characteristics. Here, we assess the LENAⓇ system’s accuracy across all of its key measures: speaker classification, Child Vocalization Counts (CVC), Conversational Turn Counts (CTC), and Adult Word Counts (AWC). Our assessment is based on manual annotation of clips that have been randomly or periodically sampled out of daylong recordings, collected from (a) populations similar to the system’s original training data (North American English-learning children aged 3-36 months), (b) children learning another dialect of English (UK), and (c) slightly older children growing up in a different linguistic and socio-cultural setting (Tsimane’ learners in rural Bolivia). We find reasonably high accuracy in some measures (AWC, CVC), with more problematic levels of performance in others (CTC, precision of male adults and other children). Statistical analyses do not support the view that performance is worse for children who are dissimilar from the LENAⓇ original training set. Whether LENAⓇ results are accurate enough for a given research, educational, or clinical application depends largely on the specifics at hand. We therefore conclude with a set of recommendations to help researchers make this determination for their goals.
In the previous decade, dozens of studies involving thousands of children across several research disciplines have made use of a combined daylong audio-recorder and automated algorithmic analysis called the LENA system, which aims to assess children's language environment. While the system's prevalence in the language acquisition domain is steadily growing, there are only scattered validation efforts on only some of its key characteristics. Here, we assess the LENA system's accuracy across all of its key measures: speaker classification, Child Vocalization Counts (CVC), Conversational Turn Counts (CTC), and Adult Word Counts (AWC). Our assessment is based on manual annotation of clips that have been randomly or periodically sampled out of daylong recordings, collected from (a) populations similar to the system's original training data (North American English-learning children aged 3-36 months), (b) children learning another dialect of English (UK), and (c) slightly older children growing up in a different linguistic and socio-cultural setting (Tsimane' learners in rural Bolivia). We find reasonably high accuracy in some measures (AWC, CVC), with more problematic levels of performance in others (CTC, precision of male adults and other children). Statistical analyses do not support the view that performance is worse for children who are dissimilar from the LENA original training set. Whether LENA results are accurate enough for a given research, educational, or clinical application depends largely on the specifics at hand. We therefore conclude with a set of recommendations to help researchers make this determination for their goals.
In the previous decade, dozens of studies involving thousands of children across several research disciplines have made use of a combined daylong audio-recorder and automated algorithmic analysis called the LENAⓇ system, which aims to assess children's language environment. While the system's prevalence in the language acquisition domain is steadily growing, there are only scattered validation efforts on only some of its key characteristics. Here, we assess the LENAⓇ system's accuracy across all of its key measures: speaker classification, Child Vocalization Counts (CVC), Conversational Turn Counts (CTC), and Adult Word Counts (AWC). Our assessment is based on manual annotation of clips that have been randomly or periodically sampled out of daylong recordings, collected from (a) populations similar to the system's original training data (North American English-learning children aged 3-36 months), (b) children learning another dialect of English (UK), and (c) slightly older children growing up in a different linguistic and socio-cultural setting (Tsimane' learners in rural Bolivia). We find reasonably high accuracy in some measures (AWC, CVC), with more problematic levels of performance in others (CTC, precision of male adults and other children). Statistical analyses do not support the view that performance is worse for children who are dissimilar from the LENAⓇ original training set. Whether LENAⓇ results are accurate enough for a given research, educational, or clinical application depends largely on the specifics at hand. We therefore conclude with a set of recommendations to help researchers make this determination for their goals.In the previous decade, dozens of studies involving thousands of children across several research disciplines have made use of a combined daylong audio-recorder and automated algorithmic analysis called the LENAⓇ system, which aims to assess children's language environment. While the system's prevalence in the language acquisition domain is steadily growing, there are only scattered validation efforts on only some of its key characteristics. Here, we assess the LENAⓇ system's accuracy across all of its key measures: speaker classification, Child Vocalization Counts (CVC), Conversational Turn Counts (CTC), and Adult Word Counts (AWC). Our assessment is based on manual annotation of clips that have been randomly or periodically sampled out of daylong recordings, collected from (a) populations similar to the system's original training data (North American English-learning children aged 3-36 months), (b) children learning another dialect of English (UK), and (c) slightly older children growing up in a different linguistic and socio-cultural setting (Tsimane' learners in rural Bolivia). We find reasonably high accuracy in some measures (AWC, CVC), with more problematic levels of performance in others (CTC, precision of male adults and other children). Statistical analyses do not support the view that performance is worse for children who are dissimilar from the LENAⓇ original training set. Whether LENAⓇ results are accurate enough for a given research, educational, or clinical application depends largely on the specifics at hand. We therefore conclude with a set of recommendations to help researchers make this determination for their goals.
In the previous decade, dozens of studies involving thousands of children across several research disciplines have made use of a combined daylong audio-recorder and automated algorithmic analysis called the LENA Ⓡ system, which aims to assess children’s language environment. While the system’s prevalence in the language acquisition domain is steadily growing, there are only scattered validation efforts on only some of its key characteristics. Here, we assess the LENA Ⓡ system’s accuracy across all of its key measures: speaker classification, Child Vocalization Counts (CVC), Conversational Turn Counts (CTC), and Adult Word Counts (AWC). Our assessment is based on manual annotation of clips that have been randomly or periodically sampled out of daylong recordings, collected from (a) populations similar to the system’s original training data (North American English-learning children aged 3-36 months), (b) children learning another dialect of English (UK), and (c) slightly older children growing up in a different linguistic and socio-cultural setting (Tsimane’ learners in rural Bolivia). We find reasonably high accuracy in some measures (AWC, CVC), with more problematic levels of performance in others (CTC, precision of male adults and other children). Statistical analyses do not support the view that performance is worse for children who are dissimilar from the LENA Ⓡ original training set. Whether LENA Ⓡ results are accurate enough for a given research, educational, or clinical application depends largely on the specifics at hand. We therefore conclude with a set of recommendations to help researchers make this determination for their goals.
In the previous decade, dozens of studies involving thousands of children across several research disciplines have made use of a combined daylong audio-recorder and automated algorithmic analysis called the LENA system, which aims to assess children's language environment. While the system's prevalence in the language acquisition domain is steadily growing, there are only scattered validation efforts on only some of its key characteristics. Here, we assess the LENA system's accuracy across all of its key measures: speaker classification, Child Vocalization Counts (CVC), Conversational Turn Counts (CTC), and Adult Word Counts (AWC). Our assessment is based on manual annotation of clips that have been randomly or periodically sampled out of daylong recordings, collected from (a) populations similar to the system's original training data (North American English-learning children aged 3-36 months), (b) children learning another dialect of English (UK), and (c) slightly older children growing up in a different linguistic and socio-cultural setting (Tsimane' learners in rural Bolivia). We find reasonably high accuracy in some measures (AWC, CVC), with more problematic levels of performance in others (CTC, precision of male adults and other children). Statistical analyses do not support the view that performance is worse for children who are dissimilar from the LENA original training set. Whether LENA results are accurate enough for a given research, educational, or clinical application depends largely on the specifics at hand. We therefore conclude with a set of recommendations to help researchers make this determination for their goals.
In the previous decade, dozens of studies involving thousands of children across several research disciplines have made use of a combined daylong audio-recorder and automated algorithmic analysis called the LENA® system, which aims to assess children’s language environment. While the system’s prevalence in the language acquisition domain is steadily growing, there are only scattered validation efforts on only some of its key characteristics. Here, we assess the LENA® system’s accuracy across all of its key measures: speaker classification, Child Vocalization Counts (CVC), Conversational Turn Counts (CTC), and Adult Word Counts (AWC). Our assessment is based on manual annotation of clips that have been randomly or periodically sampled out of daylong recordings, collected from (a) populations similar to the system’s original training data (North American English-learning children aged 3–36 months), (b) children learning another dialect of English (UK), and (c) slightly older children growing up in a different linguistic and socio-cultural setting (Tsimane’ learners in rural Bolivia). We find reasonably high accuracy in some measures (AWC, CVC), with more problematic levels of performance in others (CTC, precision of male adults and other children). Statistical analyses do not support the view that performance is worse for children who are dissimilar from the LENA® original training set. Whether LENA® results are accurate enough for a given research, educational, or clinical application depends largely on the specifics at hand. We therefore conclude with a set of recommendations to help researchers make this determination for their goals.
Author Cristia, Alejandrina
Bergelson, Elika
Lavechin, Marvin
Scaff, Camila
Räsänen, Okko
Soderstrom, Melanie
Rowland, Caroline
Bunce, John
AuthorAffiliation 7 Psychology & Neuroscience, Duke University, Durham, North Carolina, USA
6 Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland
2 Department of Psychology, University of Manitoba, Winnipeg, Canada
3 Donders Centre for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
1 Laboratoire de Sciences Cognitives et de Psycholinguistique, Département d’études cognitives, ENS, EHESS, CNRS, PSL University, 29, rue d’Ulm, 75005, Paris, France
4 Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
5 Unit of Computing Sciences, Tampere University, Tampere, Finland
AuthorAffiliation_xml – name: 6 Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland
– name: 7 Psychology & Neuroscience, Duke University, Durham, North Carolina, USA
– name: 4 Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
– name: 3 Donders Centre for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
– name: 2 Department of Psychology, University of Manitoba, Winnipeg, Canada
– name: 5 Unit of Computing Sciences, Tampere University, Tampere, Finland
– name: 1 Laboratoire de Sciences Cognitives et de Psycholinguistique, Département d’études cognitives, ENS, EHESS, CNRS, PSL University, 29, rue d’Ulm, 75005, Paris, France
Author_xml – sequence: 1
  givenname: Alejandrina
  surname: Cristia
  fullname: Cristia, Alejandrina
  email: alecristia@gmail.com
  organization: Laboratoire de Sciences Cognitives et de Psycholinguistique, Département d’études cognitives, ENS, EHESS, CNRSPSL University
– sequence: 2
  givenname: Marvin
  surname: Lavechin
  fullname: Lavechin, Marvin
  organization: Laboratoire de Sciences Cognitives et de Psycholinguistique, Département d’études cognitives, ENS, EHESS, CNRSPSL University
– sequence: 3
  givenname: Camila
  surname: Scaff
  fullname: Scaff, Camila
  organization: Laboratoire de Sciences Cognitives et de Psycholinguistique, Département d’études cognitives, ENS, EHESS, CNRSPSL University
– sequence: 4
  givenname: Melanie
  surname: Soderstrom
  fullname: Soderstrom, Melanie
  organization: Department of Psychology, University of Manitoba
– sequence: 5
  givenname: Caroline
  surname: Rowland
  fullname: Rowland, Caroline
  organization: Donders Centre for Brain, Cognition and Behaviour, Radboud University, Max Planck Institute for Psycholinguistics
– sequence: 6
  givenname: Okko
  surname: Räsänen
  fullname: Räsänen, Okko
  organization: Unit of Computing Sciences, Tampere University, Department of Signal Processing and Acoustics, Aalto University
– sequence: 7
  givenname: John
  surname: Bunce
  fullname: Bunce, John
  organization: Department of Psychology, University of Manitoba
– sequence: 8
  givenname: Elika
  surname: Bergelson
  fullname: Bergelson, Elika
  organization: Psychology & Neuroscience, Duke University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32728916$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03095997$$DView record in HAL
BookMark eNp9UU1P3DAUtBBV-Wj_AIcqEhc4pPgzcS5IEVrYSlF7oWfrrXGyRolN7WSl_fd4CaV0D1xs672ZN-M3J-jQeWcQOiP4OyuFvIqEcSpzTHGOCatYLg7QMRGC50xQefjufYROYnzEmElK-Gd0xGhJZUWKY7Sss3Htg5-6dWY20E8wWu8y36ayyRpw3QSdyRZuY4N3g3FjVjvot9HG7KJZ_Kwvs7iNoxm-oE8t9NF8fb1P0e_bxf3NMm9-3f24qZtcCyzHvKJkRUxLjBYaysIYRqUADatWaF4CB6xlQVn7UMgKRAIR86ALnqxjgYEwdoqu57lP02pIveQoQK-egh0gbJUHq_7vOLtWnd-oUgpBKU8DLucB6z3asm7UrpakKlFV5YYk7MWrWPB_JhNHNdioTd-DM36KinJa4QJzsoOe70Ef_RTSqhJKkPSbdO7cf3vv_k3_byAJQGeADj7GYNo3CMFql7qaU1cpdfWSuhKJJPdI2o4vQaYN2P5jKpupMem4zoR_tj9gPQMBFb-Y
CitedBy_id crossref_primary_10_3389_fnhum_2022_922552
crossref_primary_10_1016_j_ecresq_2023_03_005
crossref_primary_10_3758_s13428_023_02293_0
crossref_primary_10_1016_j_infbeh_2022_101787
crossref_primary_10_1016_j_ecresq_2023_10_005
crossref_primary_10_1038_s41598_024_51656_w
crossref_primary_10_3758_s13428_021_01681_8
crossref_primary_10_1044_2020_JSLHR_20_00489
crossref_primary_10_3390_jcm13092688
crossref_primary_10_1080_10447318_2022_2090610
crossref_primary_10_3389_fpsyg_2021_710636
crossref_primary_10_3389_fpubh_2024_1370282
crossref_primary_10_1111_cdev_13511
crossref_primary_10_1017_S0305000920000525
crossref_primary_10_1111_cdev_14125
crossref_primary_10_1097_AUD_0000000000001627
crossref_primary_10_1044_2024_LSHSS_24_00005
crossref_primary_10_1371_journal_pone_0294158
crossref_primary_10_3758_s13428_023_02236_9
crossref_primary_10_1007_s41252_022_00303_4
crossref_primary_10_1017_S0954579424000300
crossref_primary_10_1002_aur_2526
crossref_primary_10_1016_j_dr_2024_101135
crossref_primary_10_1111_desc_13177
crossref_primary_10_1111_cdep_12425
crossref_primary_10_3758_s13428_023_02127_z
crossref_primary_10_1044_2023_JSLHR_22_00180
crossref_primary_10_1111_desc_13090
crossref_primary_10_1044_2024_JSLHR_23_00571
crossref_primary_10_1044_2021_JSLHR_20_00727
crossref_primary_10_1017_S0305000923000326
crossref_primary_10_1145_3699775
crossref_primary_10_3758_s13428_022_01961_x
crossref_primary_10_1126_sciadv_adp4422
crossref_primary_10_1044_2024_JSLHR_24_00099
crossref_primary_10_1186_s12889_023_15245_2
crossref_primary_10_1002_icd_2405
crossref_primary_10_1121_10_0022571
crossref_primary_10_3758_s13428_022_01874_9
crossref_primary_10_1177_09637214211059536
crossref_primary_10_1016_j_jpeds_2022_12_042
crossref_primary_10_22363_2313_1683_2022_19_4_862_878
crossref_primary_10_3389_fdgth_2023_1261057
crossref_primary_10_3389_fnhum_2023_1124273
crossref_primary_10_1523_JNEUROSCI_1043_22_2023
crossref_primary_10_1111_desc_13391
crossref_primary_10_1016_j_ecresq_2022_02_003
crossref_primary_10_1080_15475441_2021_1890080
crossref_primary_10_3390_app12094785
crossref_primary_10_1097_AUD_0000000000001135
Cites_doi 10.1037/dev0000733
10.21437/Interspeech.2017-1418
10.1177/1525740117705094
10.1044/2015
10.1177/0956797613488145
10.1542/peds.2008-2267
10.3758/s13428-019-01265-7
10.1111/desc.12724
10.1044/2018_JSLHR-S-17-0287
10.3758/s13428-017-0960-0
10.3758/s13428-018-1167-8
10.5070/T581020118
10.21437/Interspeech.2017-411
10.1044/2016∖_AJSLP-15-0169
10.17605/OSF.IO/KAU5F
10.1177/1525740110367826
10.1044/2020_JSLHR-19-00017
10.1209/0295-5075/81/48002
10.1073/pnas.1003882107
10.1055/s-0036-1580745
10.3758/s13428-015-0634-8
10.31234/osf.io/x9wr8
10.1109/TASL.2010.2050513
ContentType Journal Article
Copyright The Psychonomic Society, Inc. 2020
The Psychonomic Society, Inc. 2020.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Psychonomic Society, Inc. 2020
– notice: The Psychonomic Society, Inc. 2020.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
4T-
7TK
K9.
7X8
1XC
VOOES
5PM
DOI 10.3758/s13428-020-01393-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Docstoc
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Docstoc
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1554-3528
EndPage 486
ExternalDocumentID PMC7855224
oai_HAL_hal_03095997v1
32728916
10_3758_s13428_020_01393_5
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH HHS
  grantid: DP5 OD019812
GroupedDBID ---
-55
-5G
-BR
-DZ
-EM
-ET
-~C
-~X
0-V
06D
0R~
0VY
199
1N0
203
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
30V
3V.
4.4
406
408
40E
53G
5GY
7X7
875
88E
8AO
8FI
8FJ
8G5
8TC
8UJ
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABIVO
ABJNI
ABJOX
ABJUD
ABKCH
ABMQK
ABNWP
ABPLI
ABPPZ
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHQT
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFFNX
AFKRA
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BAWUL
BENPR
BGNMA
BPHCQ
BVXVI
C1A
CAG
CCPQU
COF
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DWQXO
E3Z
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ3
GQ6
GQ7
GUQSH
H13
HF~
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
H~9
IAO
IHR
IKXTQ
INH
IPY
IRVIT
ITC
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M1P
M2M
M2O
M2R
M4Y
MVM
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OHT
OK1
P2P
P9L
PADUT
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
R9I
RIG
ROL
RPV
RSV
S16
S1Z
S27
S3B
SBS
SBU
SCLPG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TN5
TR2
TSG
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UPT
UTJUX
UZXMN
VFIZW
VXZ
W48
WH7
WK8
XJT
XOL
XSW
Z7R
Z7S
Z7W
Z81
Z83
Z88
Z8N
Z92
ZMTXR
ZOVNA
ZUP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PRQQA
4T-
7TK
K9.
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c508t-921b1ef1ec5ca76ee3285acabf5c47a4a0c8623fd689a5c5c1edc64003050a133
IEDL.DBID U2A
ISSN 1554-3528
1554-351X
IngestDate Thu Aug 21 14:12:58 EDT 2025
Tue Jun 17 06:51:51 EDT 2025
Fri Sep 05 09:51:57 EDT 2025
Tue Sep 09 14:51:23 EDT 2025
Mon Jul 21 05:49:25 EDT 2025
Tue Jul 01 01:05:56 EDT 2025
Thu Apr 24 23:12:26 EDT 2025
Fri Feb 21 02:48:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Speech technology
English
Agreement
Adult Word Count
Child Vocalization Count
Conversational Turn Count
Tsimane
Human transcription
Method comparison
Reliability
Measurement error
LENA
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-921b1ef1ec5ca76ee3285acabf5c47a4a0c8623fd689a5c5c1edc64003050a133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6005-9368
0000-0003-2742-4797
0000-0002-7546-9538
0000-0003-2979-4556
OpenAccessLink https://hal.science/hal-03095997
PMID 32728916
PQID 2516892513
PQPubID 976348
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7855224
hal_primary_oai_HAL_hal_03095997v1
proquest_miscellaneous_2429060411
proquest_journals_2516892513
pubmed_primary_32728916
crossref_primary_10_3758_s13428_020_01393_5
crossref_citationtrail_10_3758_s13428_020_01393_5
springer_journals_10_3758_s13428_020_01393_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Behavior research methods
PublicationTitleAbbrev Behav Res
PublicationTitleAlternate Behav Res Methods
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Psychonomic Society, Inc
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Psychonomic Society, Inc
References RTeam, et al. (2013). R: a language and environment for statistical computing. Vienna.
GilkersonJRichardsJAWarrenSFMontgomeryJKGreenwoodCRKimbrough OllerDPaulTDMapping the early language environment using all-day recordings and automated analysisAmerican Journal of Speech-Language Pathology201726224810.1044/2016∖_AJSLP-15-0169284184566195063
Scaff, C., Stieglitz, J., Casillas, M., & Cristia, A. (2019). Daylong audio recordings of young children in a forager-farmer society show low levels of verbal input with minimal age-related change. Manuscript in Progress.
GanekHVEriks-BrophyAA concise protocol for the validation of Language ENvironment Analysis (LENA) conversational turn counts in VietnameseCommunication Disorders Quarterly201839237138010.1177/1525740117705094
GilkersonJZhangYXuDRichardsJAXuXJiangFToppingsKEvaluating language environment analysis system performance for Chinese: A pilot study in ShanghaiJournal of Speech Language and Hearing Research201685244545210.1044/2015
Gilkerson, J., & Richards, J. A. (2008a). The LENA Natural Language Study. LENA Foundation.
BergelsonECasillasMSoderstromMSeidlAWarlaumontASAmatuniAWhat do North American babies hear? A large-scale cross-corpus analysisDevelopmental Science2019221e1272410.1111/desc.1272430369005
BulgarelliFBergelsonELook who’s talking: A comparison of automated and human-generated speaker tags in naturalistic day-long recordingsBehavior Research Methods20195264165310.3758/s13428-019-01265-7
Bredin, H. (2017). Pyannote.metrics: A toolkit for reproducible evaluation, diagnostic, and error analysis of speaker diarization systems In INTERSPEECH (pp. 3587–3591).
OllerDKNiyogiPGraySRichardsJAGilkersonJXuDCutlerEAAutomated vocal analysis of naturalistic recordings from children with autism, language delay, and typical developmentProceedings of the National Academy of Sciences201010730133541335910.1073/pnas.1003882107
Rowland, C. F., Bidgood, A., Durrant, S., Peter, M., & Pine, J. M. (2018). The Language 0-5 Project. University of Liverpool. https://doi.org/10.17605/OSF.IO/KAU5F.
BuschTSangenAVanpouckeFvan WieringenACorrelation and agreement between Language ENvironment Analysis (LENATM) and manual transcription for Dutch natural language recordingsBehavior Research Methods20185051921193210.3758/s13428-017-0960-028936690
ZimmermanFJGilkersonJRichardsJAChristakisDAXuDGraySYapanelUTeaching by listening: The importance of adult-child conversations to language developmentPediatrics2009124134234910.1542/peds.2008-2267https://doi.org/10.1542/peds.2008-2267
Orena, A.J. (2019). Growing up bilingual: Examining the language input and word segmentation abilities of bilingual infants. PsyArXiv, https://doi.org/10.31234/osf.io/x9wr8.
Xu, D., Yapanel, U., & Gray, S. (2009). Reliability of the LENATM Language Environment Analysis System in young children’s natural home environment. LENA Foundation.
Gilkerson, J., Coulter, K. K., & Richards, J. A. (2008b). Transcriptional analyses of the LENA natural language corpus. LENA Foundation.
Casillas, M., Bergelson, E., Warlaumont, A. S., Cristia, A., Soderstrom, M., VanDam, M., & Sloetjes, H. (2017). A new workflow for semi-automatized annotations: Tests with long-form naturalistic recordings of children’s language environments. In Interspeech (pp. 2098–2102).
Bergelson, E., Cristia, A., Soderstrom, M., Warlaumont, A., Rosemberg, C., Casillas, M., & Bunce, J. (2017). ACLEW project. Databrary.
MacWhinney, B. (2017). Tools for Analyzing Talk Part 1: The CHAT Transcription Format. Carnegie.
Lehet, M., Arjmandi, M. K., Dilley, L. C., Roy, S., & Houston, D. (2018). Fidelity of automatic speech processing for adult speech classifications using the Language ENvironment Analysis (LENA) system. Proceedings of Interspeech, 3–7.
RStudio Team (2019). RStudio: Integrated development environment for R. Boston, MA: RStudio, Inc. Retrieved from http://www.rstudio.com/.
Baumer, B., Cetinkaya-Rundel, M., Bray, A., Loi, L., & Horton, N. J. (2014). R Markdown: Integrating a reproducible analysis tool into introductory statistics. arXiv:1402.1894.
CanaultMLe NormandMTFoudilSLoundonNThai-VanHReliability of the Language ENvironment Analysis system (LENATM) in European FrenchBehavior Research Methods20164831109112410.3758/s13428-015-0634-826174716
d’ApiceKLathamRMvon StummSA naturalistic home observational approach to children’s language, cognition, and behaviorDevelopmental Psychology20195571414142710.1037/dev000073331033308
Lamere, P., Kwok, P., Gouvea, E., Raj, B., Singh, R., Walker, W., & Wolf, P. (2003). The CMU SPHINX-4 speech recognition system. In IEEE Intl. Conf. on Acoustics, Speech and Signal Processing. Hong Kong.
SeidlACristiaASoderstromMKoE-SAbelEAKellermanASchwichtenbergAInfant-mother acoustic-prosodic alignment and developmental riskJournal of Speech, Language, and Hearing Research20186161369138010.1044/2018_JSLHR-S-17-0287
Ryant, N., Church, K., Cieri, C., Cristia, A., Du, J., Ganapathy, S., & Liberman, M. (2019). Second DIHARD Challenge evaluation plan. Linguistic Data Consortium, Tech. Rep.
GreenwoodCRThiemann-BourqueKWalkerDBuzhardtJGilkersonJAssessing children’s home language environments using automatic speech recognition technologyCommunication Disorders Quarterly2011322839210.1177/1525740110367826
GohK-IBarabásiA-LBurstiness and memory in complex systemsEPL (Europhysics Letters)20088144800210.1209/0295-5075/81/48002
Warlaumont, A., Pretzer, G., Walle, E., Mendoza, S., & Lopez, L. (2016). Warlaumont HomeBank corpus.
Garcia-MoralAISolera-UrenaRPelaez-MorenoCDiaz-de-MariaFData balancing for efficient training of hybrid ANN/HMM automatic speech recognition systemsIEEE Transactions on Audio, Speech, and Language Processing201119346848110.1109/TASL.2010.2050513
WeislederAFernaldATalking to children mattersPsychological Science201324112143215210.1177/0956797613488145240226495510534
Soderstrom, M., Bergelson, E., Warlaumont, A., Rosemberg, C., Casillas, M., Rowland, C., & Bunce, J. (2019). The ACLEW Random Sampling corpus. Manuscript in Progress.
VanDam, M., & De Palma, P. (2018). A modular, extensible approach to massive ecologically valid behavioral data. Behavior Research Methods. https://doi.org/10.3758/s13428-018-1167-8.
Bergelson, E. (2016). Bergelson Seedlings Homebank corpus. https://doi.org/10.21415/T5PK6D.
McDivitt, K., & Soderstrom, M. (2016). McDivitt homebank corpus.
CristiaABulgarelliFBergelsonEAccuracy of the Language Environment Analysis System Segmentation and Metrics: A Systematic ReviewJournal of Speech, Language, and Hearing Research20206341093110510.1044/2020_JSLHR-19-00017
VanDam, M., Warlaumont, A. S., Bergelson, E., Cristia, A., Soderstrom, M., De Palma, P., & MacWhinney, B. (2016). HomeBank: An online repository of daylong child-centered audio recordings, (Vol. 50 pp. 1921–1932), DOI https://doi.org/10.1055/s-0036-1580745.
1393_CR29
1393_CR28
J Gilkerson (1393_CR15) 2017; 26
T Busch (1393_CR7) 2018; 50
1393_CR21
1393_CR20
1393_CR23
DK Oller (1393_CR24) 2010; 107
FJ Zimmerman (1393_CR38) 2009; 124
1393_CR22
AI Garcia-Moral (1393_CR13) 2011; 19
1393_CR25
1393_CR27
1393_CR26
E Bergelson (1393_CR3) 2019; 22
1393_CR9
1393_CR4
1393_CR5
HV Ganek (1393_CR12) 2018; 39
1393_CR2
A Seidl (1393_CR30) 2018; 61
F Bulgarelli (1393_CR6) 2019; 52
1393_CR17
K-I Goh (1393_CR18) 2008; 81
A Cristia (1393_CR10) 2020; 63
CR Greenwood (1393_CR19) 2011; 32
1393_CR32
1393_CR1
1393_CR31
1393_CR34
1393_CR33
1393_CR35
1393_CR16
J Gilkerson (1393_CR14) 2016; 85
1393_CR37
M Canault (1393_CR8) 2016; 48
K d’Apice (1393_CR11) 2019; 55
A Weisleder (1393_CR36) 2013; 24
References_xml – reference: Bredin, H. (2017). Pyannote.metrics: A toolkit for reproducible evaluation, diagnostic, and error analysis of speaker diarization systems In INTERSPEECH (pp. 3587–3591).
– reference: BuschTSangenAVanpouckeFvan WieringenACorrelation and agreement between Language ENvironment Analysis (LENATM) and manual transcription for Dutch natural language recordingsBehavior Research Methods20185051921193210.3758/s13428-017-0960-028936690
– reference: VanDam, M., Warlaumont, A. S., Bergelson, E., Cristia, A., Soderstrom, M., De Palma, P., & MacWhinney, B. (2016). HomeBank: An online repository of daylong child-centered audio recordings, (Vol. 50 pp. 1921–1932), DOI https://doi.org/10.1055/s-0036-1580745.
– reference: Lehet, M., Arjmandi, M. K., Dilley, L. C., Roy, S., & Houston, D. (2018). Fidelity of automatic speech processing for adult speech classifications using the Language ENvironment Analysis (LENA) system. Proceedings of Interspeech, 3–7.
– reference: BulgarelliFBergelsonELook who’s talking: A comparison of automated and human-generated speaker tags in naturalistic day-long recordingsBehavior Research Methods20195264165310.3758/s13428-019-01265-7
– reference: GohK-IBarabásiA-LBurstiness and memory in complex systemsEPL (Europhysics Letters)20088144800210.1209/0295-5075/81/48002
– reference: GilkersonJRichardsJAWarrenSFMontgomeryJKGreenwoodCRKimbrough OllerDPaulTDMapping the early language environment using all-day recordings and automated analysisAmerican Journal of Speech-Language Pathology201726224810.1044/2016∖_AJSLP-15-0169284184566195063
– reference: d’ApiceKLathamRMvon StummSA naturalistic home observational approach to children’s language, cognition, and behaviorDevelopmental Psychology20195571414142710.1037/dev000073331033308
– reference: Garcia-MoralAISolera-UrenaRPelaez-MorenoCDiaz-de-MariaFData balancing for efficient training of hybrid ANN/HMM automatic speech recognition systemsIEEE Transactions on Audio, Speech, and Language Processing201119346848110.1109/TASL.2010.2050513
– reference: BergelsonECasillasMSoderstromMSeidlAWarlaumontASAmatuniAWhat do North American babies hear? A large-scale cross-corpus analysisDevelopmental Science2019221e1272410.1111/desc.1272430369005
– reference: McDivitt, K., & Soderstrom, M. (2016). McDivitt homebank corpus.
– reference: Warlaumont, A., Pretzer, G., Walle, E., Mendoza, S., & Lopez, L. (2016). Warlaumont HomeBank corpus.
– reference: Casillas, M., Bergelson, E., Warlaumont, A. S., Cristia, A., Soderstrom, M., VanDam, M., & Sloetjes, H. (2017). A new workflow for semi-automatized annotations: Tests with long-form naturalistic recordings of children’s language environments. In Interspeech (pp. 2098–2102).
– reference: Rowland, C. F., Bidgood, A., Durrant, S., Peter, M., & Pine, J. M. (2018). The Language 0-5 Project. University of Liverpool. https://doi.org/10.17605/OSF.IO/KAU5F.
– reference: Bergelson, E. (2016). Bergelson Seedlings Homebank corpus. https://doi.org/10.21415/T5PK6D.
– reference: GilkersonJZhangYXuDRichardsJAXuXJiangFToppingsKEvaluating language environment analysis system performance for Chinese: A pilot study in ShanghaiJournal of Speech Language and Hearing Research201685244545210.1044/2015
– reference: WeislederAFernaldATalking to children mattersPsychological Science201324112143215210.1177/0956797613488145240226495510534
– reference: Gilkerson, J., & Richards, J. A. (2008a). The LENA Natural Language Study. LENA Foundation.
– reference: CristiaABulgarelliFBergelsonEAccuracy of the Language Environment Analysis System Segmentation and Metrics: A Systematic ReviewJournal of Speech, Language, and Hearing Research20206341093110510.1044/2020_JSLHR-19-00017
– reference: Scaff, C., Stieglitz, J., Casillas, M., & Cristia, A. (2019). Daylong audio recordings of young children in a forager-farmer society show low levels of verbal input with minimal age-related change. Manuscript in Progress.
– reference: Orena, A.J. (2019). Growing up bilingual: Examining the language input and word segmentation abilities of bilingual infants. PsyArXiv, https://doi.org/10.31234/osf.io/x9wr8.
– reference: GreenwoodCRThiemann-BourqueKWalkerDBuzhardtJGilkersonJAssessing children’s home language environments using automatic speech recognition technologyCommunication Disorders Quarterly2011322839210.1177/1525740110367826
– reference: RStudio Team (2019). RStudio: Integrated development environment for R. Boston, MA: RStudio, Inc. Retrieved from http://www.rstudio.com/.
– reference: RTeam, et al. (2013). R: a language and environment for statistical computing. Vienna.
– reference: Baumer, B., Cetinkaya-Rundel, M., Bray, A., Loi, L., & Horton, N. J. (2014). R Markdown: Integrating a reproducible analysis tool into introductory statistics. arXiv:1402.1894.
– reference: Gilkerson, J., Coulter, K. K., & Richards, J. A. (2008b). Transcriptional analyses of the LENA natural language corpus. LENA Foundation.
– reference: VanDam, M., & De Palma, P. (2018). A modular, extensible approach to massive ecologically valid behavioral data. Behavior Research Methods. https://doi.org/10.3758/s13428-018-1167-8.
– reference: Xu, D., Yapanel, U., & Gray, S. (2009). Reliability of the LENATM Language Environment Analysis System in young children’s natural home environment. LENA Foundation.
– reference: Lamere, P., Kwok, P., Gouvea, E., Raj, B., Singh, R., Walker, W., & Wolf, P. (2003). The CMU SPHINX-4 speech recognition system. In IEEE Intl. Conf. on Acoustics, Speech and Signal Processing. Hong Kong.
– reference: MacWhinney, B. (2017). Tools for Analyzing Talk Part 1: The CHAT Transcription Format. Carnegie.
– reference: Ryant, N., Church, K., Cieri, C., Cristia, A., Du, J., Ganapathy, S., & Liberman, M. (2019). Second DIHARD Challenge evaluation plan. Linguistic Data Consortium, Tech. Rep.
– reference: Bergelson, E., Cristia, A., Soderstrom, M., Warlaumont, A., Rosemberg, C., Casillas, M., & Bunce, J. (2017). ACLEW project. Databrary.
– reference: CanaultMLe NormandMTFoudilSLoundonNThai-VanHReliability of the Language ENvironment Analysis system (LENATM) in European FrenchBehavior Research Methods20164831109112410.3758/s13428-015-0634-826174716
– reference: SeidlACristiaASoderstromMKoE-SAbelEAKellermanASchwichtenbergAInfant-mother acoustic-prosodic alignment and developmental riskJournal of Speech, Language, and Hearing Research20186161369138010.1044/2018_JSLHR-S-17-0287
– reference: ZimmermanFJGilkersonJRichardsJAChristakisDAXuDGraySYapanelUTeaching by listening: The importance of adult-child conversations to language developmentPediatrics2009124134234910.1542/peds.2008-2267https://doi.org/10.1542/peds.2008-2267
– reference: OllerDKNiyogiPGraySRichardsJAGilkersonJXuDCutlerEAAutomated vocal analysis of naturalistic recordings from children with autism, language delay, and typical developmentProceedings of the National Academy of Sciences201010730133541335910.1073/pnas.1003882107
– reference: Soderstrom, M., Bergelson, E., Warlaumont, A., Rosemberg, C., Casillas, M., Rowland, C., & Bunce, J. (2019). The ACLEW Random Sampling corpus. Manuscript in Progress.
– reference: GanekHVEriks-BrophyAA concise protocol for the validation of Language ENvironment Analysis (LENA) conversational turn counts in VietnameseCommunication Disorders Quarterly201839237138010.1177/1525740117705094
– volume: 55
  start-page: 1414
  issue: 7
  year: 2019
  ident: 1393_CR11
  publication-title: Developmental Psychology
  doi: 10.1037/dev0000733
– ident: 1393_CR20
– ident: 1393_CR9
  doi: 10.21437/Interspeech.2017-1418
– ident: 1393_CR16
– ident: 1393_CR37
– volume: 39
  start-page: 371
  issue: 2
  year: 2018
  ident: 1393_CR12
  publication-title: Communication Disorders Quarterly
  doi: 10.1177/1525740117705094
– volume: 85
  start-page: 445
  issue: 2
  year: 2016
  ident: 1393_CR14
  publication-title: Journal of Speech Language and Hearing Research
  doi: 10.1044/2015
– ident: 1393_CR22
– volume: 24
  start-page: 2143
  issue: 11
  year: 2013
  ident: 1393_CR36
  publication-title: Psychological Science
  doi: 10.1177/0956797613488145
– volume: 124
  start-page: 342
  issue: 1
  year: 2009
  ident: 1393_CR38
  publication-title: Pediatrics
  doi: 10.1542/peds.2008-2267
– volume: 52
  start-page: 641
  year: 2019
  ident: 1393_CR6
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-019-01265-7
– ident: 1393_CR32
– ident: 1393_CR27
– ident: 1393_CR29
– volume: 22
  start-page: e12724
  issue: 1
  year: 2019
  ident: 1393_CR3
  publication-title: Developmental Science
  doi: 10.1111/desc.12724
– ident: 1393_CR4
– ident: 1393_CR17
– ident: 1393_CR21
– volume: 61
  start-page: 1369
  issue: 6
  year: 2018
  ident: 1393_CR30
  publication-title: Journal of Speech, Language, and Hearing Research
  doi: 10.1044/2018_JSLHR-S-17-0287
– volume: 50
  start-page: 1921
  issue: 5
  year: 2018
  ident: 1393_CR7
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-017-0960-0
– ident: 1393_CR34
  doi: 10.3758/s13428-018-1167-8
– ident: 1393_CR1
  doi: 10.5070/T581020118
– ident: 1393_CR5
  doi: 10.21437/Interspeech.2017-411
– ident: 1393_CR2
– volume: 26
  start-page: 248
  issue: 2
  year: 2017
  ident: 1393_CR15
  publication-title: American Journal of Speech-Language Pathology
  doi: 10.1044/2016∖_AJSLP-15-0169
– ident: 1393_CR23
– ident: 1393_CR26
  doi: 10.17605/OSF.IO/KAU5F
– volume: 32
  start-page: 83
  issue: 2
  year: 2011
  ident: 1393_CR19
  publication-title: Communication Disorders Quarterly
  doi: 10.1177/1525740110367826
– ident: 1393_CR31
– volume: 63
  start-page: 1093
  issue: 4
  year: 2020
  ident: 1393_CR10
  publication-title: Journal of Speech, Language, and Hearing Research
  doi: 10.1044/2020_JSLHR-19-00017
– volume: 81
  start-page: 48002
  issue: 4
  year: 2008
  ident: 1393_CR18
  publication-title: EPL (Europhysics Letters)
  doi: 10.1209/0295-5075/81/48002
– volume: 107
  start-page: 13354
  issue: 30
  year: 2010
  ident: 1393_CR24
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1003882107
– ident: 1393_CR35
– ident: 1393_CR28
– ident: 1393_CR33
  doi: 10.1055/s-0036-1580745
– volume: 48
  start-page: 1109
  issue: 3
  year: 2016
  ident: 1393_CR8
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-015-0634-8
– ident: 1393_CR25
  doi: 10.31234/osf.io/x9wr8
– volume: 19
  start-page: 468
  issue: 3
  year: 2011
  ident: 1393_CR13
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASL.2010.2050513
SSID ssj0038214
Score 2.5790653
Snippet In the previous decade, dozens of studies involving thousands of children across several research disciplines have made use of a combined daylong...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 467
SubjectTerms Behavioral Science and Psychology
Child
Child Language
Child, Preschool
Children
Cognitive Psychology
Cognitive science
Communication
Educational Status
Humans
Infant
Language
Language Development
Linguistics
Male
Psychology
Speech
Statistical analysis
Title A thorough evaluation of the Language Environment Analysis (LENA) system
URI https://link.springer.com/article/10.3758/s13428-020-01393-5
https://www.ncbi.nlm.nih.gov/pubmed/32728916
https://www.proquest.com/docview/2516892513
https://www.proquest.com/docview/2429060411
https://hal.science/hal-03095997
https://pubmed.ncbi.nlm.nih.gov/PMC7855224
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xuHBZ8Vh2w0sGcQDtRlvHdhwfI1SooOK0leBkOcZRkVCKaEHi3zN2HlVBIHHJwR4n9owfM5mZzwDHhePKGJPFNnUm5oktY6UcjZ1IZVFIdWddQPu8TgcjfnkjbpqksGkb7d66JMNO7e1KVGr_TSnjHk058YFUTLFYLMOqQNvdL8dRkrf7L8sSyuv0mE_aLRxBy2MfAPlRu_wYJPnOUxoOoPN1-NFojiSvRb0BS67ahLVuA3vdgkFOZuNJuHeHzFG8yaTEYkeGzZ9J0p_ntpEWk4ScDPvX-SmpgZ1_wui8__9sEDc3JcQWFaxZrBJaUFdSZ4U1MnWOJZkw1hSlsFwabnoWLRdW3qWZMgKJKI4r5cGA6Bk0U7dhpZpU7jcQVBlkljIe0hMKLowpGWelEChrNKRZBLRlnrYNjLi_zeJBoznhGa5rhmtkuA4M1yKCP12bxxpE40vqI5RJR-jxrwf5UPsy7w8SSskXGsFeKzLdrLqpRl0NB4hP7OVhV43rxTtBTOUmz0jDPcB9j1N8xa9awt2nWCLR_qRpBHJB9gt9Wayp7scBk1tmAjVZHsHfdpbMu_X5UHe-R74La36-14FDe7Aye3p2-6gTzYoDWM0vbq_6B2EpvAFnOwSU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VeoAL6gNoWtqaqgcQRF3Hdhwfo2pRWtI9sRI3yzGOFgllq-4uUv99x85jtUUgccnBGSf2TGx_kxl_BvhaOa6MMVlsU2dintg6VsrR2IlUVpVUN9YFts9JWkz5z2tx3W0KW_TZ7n1IMszU3q9EUPttQRn3bMqJT6RiisViC14iGMj8uQXTJO_nXyygvN0e80i9jSVoa-YTIB-iy4dJkv9FSsMCdPEK9jrkSPLW1K_hhWvewO4wgf19C0VOlrN5OHeHrFm8ybzGYkfK7s8kGa_3tpGek4SclONJfkpaYud9mF6Mr74XcXdSQmwRYC1jldCKupo6K6yRqXMsyYSxpqqF5dJwM7LoubD6Js2UEShEsV8pDw7EyKCbegDbzbxx74AgZJBZynjYnlBxYUzNOKuFQFujI80ioL3ytO1oxP1pFnca3QmvcN0qXKPCdVC4FhGcDXV-tyQaT0p_QZsMgp7_ushL7ct8PEgoJe9pBEe9yXQ36hYasRp2EK_YyuPhNo4XHwQxjZuvUIZ7gvsRp_iIw9bCw6tYItH_pGkEcsP2G23ZvNPczgInt8wEIlkewXn_layb9XhX3z9P_DPsFFe_Sl3-mFx-gN3Ep9eEJKIj2F7-WbmPiI-W1acwHP4BqY4F8w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xkCouqNDShtJiqh5a0Yh1bMfxMSq7Wuhq1UNX4mY5XkeLVGURBKT--46dx3ZBVOolB3uc2DN-zGRmPgN8KhxXxpgstqkzMU9sGSvlaOxEKotCqrl1Ae1zmo5n_PJKXP2VxR-i3TuXZJPT4FGaqvrsZl76Jc5QwT27o4x7ZOXEB1UxxWKxCdu4HVM_02dJ3u3FLEsob1Jlnmm3dhxtLnww5FNN82nA5COvaTiMRi9ht9UiSd6IfQ82XLUPO_1m9vsVjHNSL5bhDh6yQvQmyxKLHZm0fynJcJXnRjp8EvJ5MpzmX0gD8vwaZqPhz2_juL01IbaobNWxSmhBXUmdFdbI1DmWZMJYU5TCcmm4GVi0Ylg5TzNlBBJRHFfKgzExMGiyHsBWtazcWyCoPsgsZTykKhRcGFMyzkohUO5oVLMIaMc8bVtIcX-zxS-NpoVnuG4YrpHhOjBciwhO-zY3DaDGP6k_okx6Qo-FPc4n2pd535BQSj7QCI46kel2Bd5p1NtwgPjEXp701bh2vEPEVG55jzTcg90POMVXvGkk3H-KJRJtUZpGINdkv9aX9ZrqehHwuWUmUKvlEXztZsmqW88P9fD_yI_hxY_zkZ5cTL-_g53ER9qEeKIj2Kpv7917VJXq4kNYDX8AmWwKLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+thorough+evaluation+of+the+Language+Environment+Analysis+%28LENA%29+system&rft.jtitle=Behavior+research+methods&rft.au=Cristia%2C+Alejandrina&rft.au=Lavechin%2C+Marvin&rft.au=Scaff%2C+Camila&rft.au=Soderstrom%2C+Melanie&rft.date=2021-04-01&rft.issn=1554-3528&rft.eissn=1554-3528&rft.volume=53&rft.issue=2&rft.spage=467&rft.epage=486&rft_id=info:doi/10.3758%2Fs13428-020-01393-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_3758_s13428_020_01393_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-3528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-3528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-3528&client=summon