Recent Advances in the Understanding of Stress Resistance Mechanisms in Probiotics: Relevance for the Design of Functional Food Systems

In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through t...

Full description

Saved in:
Bibliographic Details
Published inProbiotics and antimicrobial proteins Vol. 17; no. 1; pp. 138 - 158
Main Authors Bustos, Ana Yanina, Taranto, María Pía, Gerez, Carla Luciana, Agriopoulou, Sofia, Smaoui, Slim, Varzakas, Theodoros, Enshasy, Hesham Ali El
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1867-1306
1867-1314
1867-1314
DOI10.1007/s12602-024-10273-9

Cover

Abstract In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 10 7 colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions.
AbstractList In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 107 colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions.In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 107 colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions.
In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 10 7 colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions.
In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 10⁷ colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions.
In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 107 colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions.
In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 10 colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions.
Author Agriopoulou, Sofia
Enshasy, Hesham Ali El
Taranto, María Pía
Bustos, Ana Yanina
Smaoui, Slim
Gerez, Carla Luciana
Varzakas, Theodoros
Author_xml – sequence: 1
  givenname: Ana Yanina
  surname: Bustos
  fullname: Bustos, Ana Yanina
  organization: Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL/UNSE-CONICET), Facultad de Agronomía y Agroindustrias (FAyA), Universidad Nacional de Santiago del Estero, Facultad de Humanidades, Ciencias Sociales y de La Salud (FHU), Universidad Nacional de Santiago del Estero
– sequence: 2
  givenname: María Pía
  surname: Taranto
  fullname: Taranto, María Pía
  organization: Centro de Referencia Para Lactobacilos (CONICET-CERELA)
– sequence: 3
  givenname: Carla Luciana
  surname: Gerez
  fullname: Gerez, Carla Luciana
  organization: Centro de Referencia Para Lactobacilos (CONICET-CERELA)
– sequence: 4
  givenname: Sofia
  surname: Agriopoulou
  fullname: Agriopoulou, Sofia
  organization: Department of Food Science and Technology, University of the Peloponnese
– sequence: 5
  givenname: Slim
  surname: Smaoui
  fullname: Smaoui, Slim
  organization: Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax
– sequence: 6
  givenname: Theodoros
  surname: Varzakas
  fullname: Varzakas, Theodoros
  email: t.varzakas@uop.gr
  organization: Department of Food Science and Technology, University of the Peloponnese
– sequence: 7
  givenname: Hesham Ali El
  surname: Enshasy
  fullname: Enshasy, Hesham Ali El
  organization: Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), City of Scientific Research and Technology Applications (SRTA)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38829565$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vFSEUhiemxn7oH3BhSNy4GeVjYBg3pqm9alKjae2acOFwL80MtDDTpL-gf1vm3rZqF3UFged9cjic_WonxABV9Zrg9wTj9kMmVGBaY9rUBNOW1d2zao9I0daEkWbnYY_FbrWf8wXGQjCKX1S7TEraccH3qttTMBBGdGivdTCQkQ9oXAM6DxZSHnWwPqxQdOhsTJAzOoXs52MD6DuYtQ4-D5vQzxSXPo7e5I8F6mGjQy6mje5zia3C7FlMwYw-Bt2jRYwWnd3kEYb8snrudJ_h1d16UJ0vjn8dfa1Pfnz5dnR4UhuO5VhLp1vBuaaWm6XGmlhuje6o64xpzdI4KxtBW-IkExhE10hHjdWgpQTqmGMH1aet93JaDmDntyfdq8vkB51uVNRe_XsT_Fqt4rUiRDLKJS-Gd3eGFK8myKMafDbQ9zpAnLIqHcaMs5bK_6NYNKShmImCvn2EXsQplS4ViohWEtqJWfjm7-ofyr7_zwLILWBSzDmBU8aPeu53eYzvFcFqHh21HR1VRkdtRkd1JUofRe_tT4bYNpQLHFaQ_pT9ROo35AbYVA
CitedBy_id crossref_primary_10_1016_j_fbio_2024_105338
crossref_primary_10_3390_antiox13111386
crossref_primary_10_1016_j_fbp_2024_10_004
crossref_primary_10_1016_j_microb_2024_100138
crossref_primary_10_1016_j_fbio_2024_105145
crossref_primary_10_3390_foods13223562
crossref_primary_10_3390_biotech13030029
crossref_primary_10_1080_10408398_2024_2447304
crossref_primary_10_3390_foods13223570
crossref_primary_10_1016_j_foodres_2025_115806
crossref_primary_10_3390_ani14131981
Cites_doi 10.1016/j.heliyon.2022.e10733
10.1146/annurev-food-032818-121140
10.3389/fmicb.2021.731410
10.33263/BRIAC133.267
10.1016/j.lwt.2023.115460
10.1016/j.carbpol.2021.117843
10.1016/j.jbiosc.2008.12.015
10.3389/fmicb.2021.818468
10.1016/j.foodres.2018.07.044
10.1007/s12602-023-10042-0
10.3389/fmicb.2017.01067
10.1007/978-981-13-7832-4_11
10.1111/1471-0307.12735
10.1111/j.1365-2621.2001.tb15186.x
10.1002/pmic.200300497
10.1016/j.cryobiol.2022.01.003
10.1590/1981-6723.02423
10.3168/jds.2019-17685
10.1128/MMBR.00076-15
10.1080/10408398.2022.2047883
10.1016/j.ijfoodmicro.2007.06.016
10.3390/foods12010165
10.3389/fmicb.2018.01944
10.1007/s10295-019-02226-x
10.3390/ijms22041780
10.1007/s12602-021-09775-7
10.1111/jam.12577
10.3389/fmicb.2013.00396
10.1038/s41598-020-58069-5
10.3390/ijms17060867
10.1007/s10529-011-0696-3
10.1007/978-3-319-24780-9_22
10.1016/j.foodres.2015.10.001
10.1016/j.idairyj.2004.02.001
10.1016/j.jprot.2019.103600
10.1016/j.fm.2017.03.020
10.1080/10408398.2023.2260467
10.1016/j.jfoodeng.2016.05.023
10.1007/s00284-021-02648-w
10.1016/j.resmic.2006.04.002
10.3390/pharmaceutics15030884
10.1016/j.mimet.2006.02.017
10.1111/febs.14434
10.1186/1471-2180-11-63
10.1016/j.arabjc.2020.09.030
10.1016/j.jff.2014.04.030
10.1128/JB.188.5.1979-1986.2006
10.1016/j.jfoodeng.2011.10.017
10.1371/journal.ppat.1008058
10.3390/microorganisms11071823
10.1038/s41579-022-00805-x
10.1007/s12602-023-10045-x
10.1002/mnfr.201600240
10.3389/fmicb.2023.1152389
10.1016/j.foodres.2018.06.035
10.1186/s12934-020-01426-w
10.1073/pnas.1401941111
10.1128/AEM.00886-07
10.1016/j.biopha.2018.12.104
10.1128/JB.01618-09
10.1080/19476337.2020.1859619
10.3390/foods11152330
10.1016/j.cofs.2019.12.003
10.1080/10408398.2022.2056727
10.1371/journal.pone.0179242
10.1016/j.crfs.2021.04.004
10.3390/molecules23040741
10.1016/j.foodhyd.2020.106496
10.1016/j.fm.2015.10.003
10.1128/AEM.06060-11
10.1007/978-94-017-2029-8_12
10.3390/antibiotics12040635
10.1016/j.idairyj.2004.08.004
10.1016/j.tim.2019.12.008
10.1007/s00253-020-10976-3
10.1111/jam.13399
10.1046/j.1365-2672.2003.01962.x
10.1080/10408398.2023.2202256
10.1093/lambio/ovad062
10.1128/AEM.69.1.1-9.2003
10.1039/D2FO03215E
10.1021/bp060268f
10.1016/B978-0-12-817190-5.00006-9
10.4014/jmb.1912.12053
10.3390/app132011541
10.1111/jam.13465
10.1080/07373930802566002
10.1016/j.molliq.2022.121175
10.3390/nu11071613
10.1007/s10295-012-1104-2
10.1016/j.tifs.2012.05.006
10.30721/fsab2023.v6.i2.269
10.1080/07373937.2012.684226
10.1007/s12602-023-10117-y
10.1016/bs.afnr.2020.06.004
10.3168/jds.2021-21546
10.3389/fcimb.2021.609722
10.1080/07373937.2022.2155971
10.1007/s10529-019-02729-8
10.1016/j.foodres.2013.09.043
10.1128/AEM.66.6.2605-2612.2000
10.3389/fimmu.2016.00633
10.3390/microorganisms11122896
10.1093/femsle/fny217
10.1159/000485089
10.1128/AEM.69.7.4285-4290.2003
10.1128/AEM.02626-05
10.1038/s41598-020-76171-6
10.1111/1541-4337.12554
10.1111/j.1365-2672.2008.03744.x
10.1016/j.lwt.2017.12.063
10.1128/AEM.72.3.2170-2177.2006
10.1007/s10529-015-2018-7
10.3390/molecules28031413
10.1007/s11274-023-03625-0
10.1007/s12602-023-10189-w
10.1080/10942912.2023.2254521
10.1016/j.femsre.2004.09.003
10.1016/j.jprot.2011.11.009
10.3390/proteomes9010010
10.1016/j.cgh.2018.01.018
10.1111/1751-7915.13265
10.1371/journal.pone.0157778
10.1128/AEM.65.5.2078-2083.1999
10.1371/journal.pone.0117702
10.1016/j.foodres.2013.01.028
10.1016/j.idairyj.2005.09.008
10.1016/j.ijfoodmicro.2008.02.024
10.1016/j.lwt.2016.11.057
10.1155/2023/5597647
10.1007/s13197-021-05259-2
10.1002/jsfa.12168
10.3389/fmicb.2016.01944
10.1016/j.ijpharm.2023.123100
10.1007/s11947-021-02753-5
10.1016/j.foodres.2011.03.053
10.1007/s12602-018-9492-x
10.1007/s12602-022-09981-x
10.1016/j.nfs.2023.04.003
10.1073/pnas.0804437105
10.1016/j.idairyj.2020.104865
10.3390/fermentation6040121
10.1016/j.tifs.2011.01.009
10.1111/1541-4337.12613
10.1111/1751-7915.12132
10.1002/fsn3.762
10.1016/j.fm.2018.02.017
10.1021/pr0704940
10.1007/s12602-023-10104-3
10.1016/j.idairyj.2008.10.008
10.2174/97816810883891210101
10.1111/jam.15251
10.3389/fvets.2020.602280
10.1128/AEM.66.6.2330-2335.2000
10.3390/microorganisms11040996
10.1007/s00253-019-10226-1
10.1021/bp049559j
10.1080/10408398.2019.1580673
10.1371/journal.pone.0099189
10.1016/j.lwt.2019.05.128
10.1111/j.1574-6976.2002.tb00598.x
10.1046/j.1365-2672.2002.01747.x
10.1016/j.focha.2023.100428
10.3390/ijms23074008
10.1016/j.jbiotec.2008.07.1788
10.1128/AEM.02259-07
10.1111/lam.12418
10.1006/cryo.2001.2343
10.1007/s12602-022-09983-9
10.1186/s12934-019-1206-x
10.1128/AEM.00748-16
10.1016/j.foodres.2023.113785
10.1146/annurev-food-022811-101255
10.1186/s12866-020-01920-6
10.1080/10826068.2020.1861009
10.1080/87559129.2023.2202405
10.1007/s10529-012-0932-5
10.1016/j.ijfoodmicro.2014.09.017
10.1002/slct.202103198
10.1016/j.ejbt.2015.06.005
10.1016/j.fm.2014.12.005
10.1111/1462-2920.14445
10.3390/su151310154
10.1128/mSphere.00140-18
10.3390/pr7030127
10.3920/BM2022.0074
10.1080/07373931003613726
10.1099/mic.0.052209-0
10.1007/s00284-020-02053-9
10.1186/1477-5956-8-37
10.5772/intechopen.99382
10.3390/molecules26185695
10.1016/j.ijbiomac.2022.11.003
10.3389/fmicb.2019.00841
10.1016/j.ijpharm.2016.04.002
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Springer Nature B.V. Feb 2025
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Springer Nature B.V. Feb 2025
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1007/s12602-024-10273-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
AGRICOLA



MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1867-1314
EndPage 158
ExternalDocumentID PMC11832585
38829565
10_1007_s12602_024_10273_9
Genre Journal Article
Review
GrantInformation_xml – fundername: University of Peloponnese
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
203
29O
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40E
53G
67N
6NX
875
96X
AAAVM
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BBNVY
BENPR
BGNMA
BHPHI
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
M7P
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
PT4
QOR
QOS
R89
RIG
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7U
Z7V
Z7W
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
7X8
PUEGO
7S9
L.6
5PM
ID FETCH-LOGICAL-c508t-8fa7655a2d5cba0a1d5dca92f9cc7cbcfd846271f8360e6948f2cdaea88e2f3f3
IEDL.DBID AGYKE
ISSN 1867-1306
1867-1314
IngestDate Thu Aug 21 18:28:34 EDT 2025
Fri Jul 11 18:39:54 EDT 2025
Fri Sep 05 14:02:14 EDT 2025
Fri Jul 25 10:47:27 EDT 2025
Mon Jul 21 05:57:11 EDT 2025
Thu Apr 24 22:56:02 EDT 2025
Tue Jul 01 02:44:55 EDT 2025
Fri Feb 21 02:47:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Probiotics
Stress conditions
Gastrointestinal passage
Functional foods
Postbiotics
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-8fa7655a2d5cba0a1d5dca92f9cc7cbcfd846271f8360e6948f2cdaea88e2f3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s12602-024-10273-9
PMID 38829565
PQID 3167812968
PQPubID 2044189
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11832585
proquest_miscellaneous_3200353728
proquest_miscellaneous_3064142036
proquest_journals_3167812968
pubmed_primary_38829565
crossref_citationtrail_10_1007_s12602_024_10273_9
crossref_primary_10_1007_s12602_024_10273_9
springer_journals_10_1007_s12602_024_10273_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Probiotics and antimicrobial proteins
PublicationTitleAbbrev Probiotics & Antimicro. Prot
PublicationTitleAlternate Probiotics Antimicrob Proteins
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References A Gómez Zavaglia (10273_CR112) 2002; 93
BH Nataraj (10273_CR197) 2020; 19
F Gaucher (10273_CR139) 2019; 10
M Moradi (10273_CR206) 2020; 19
T Chen (10273_CR93) 2020; 20
L Di (10273_CR175) 2023; 41
K Whitehead (10273_CR129) 2008; 74
E Hamon (10273_CR143) 2011; 11
GE Gardiner (10273_CR183) 2000; 66
T Zotta (10273_CR165) 2018; 76
JJ Ahire (10273_CR91) 2021; 13
Z Zhu (10273_CR167) 2019; 46
LN Chai (10273_CR98) 2023; 11
V Elisashvili (10273_CR14) 2019; 11
Y Tsunetsugu-Yokota (10273_CR82) 2016; 7
HY Sun (10273_CR173) 2021; 260
AM Hernández-Alcántara (10273_CR73) 2018; 91
MK Tripathi (10273_CR80) 2014; 9
P Meena (10273_CR51) 2023; 372
AMNL Abesinghe (10273_CR57) 2020; 6
O Jiménez-González (10273_CR63) 2022; 8
HE Verón (10273_CR40) 2023; 31
RM Wang (10273_CR110) 2018; 365
LA Bøhle (10273_CR144) 2010; 8
AA Sesín (10273_CR92) 2023; 26
FF Khan (10273_CR38) 2023; 15
J Perdana (10273_CR178) 2013; 54
MP Taranto (10273_CR137) 2003; 95
NS Rao (10273_CR12) 2023; 14
C Leylak (10273_CR180) 2021; 112
AY Bustos (10273_CR115) 2015; 77
H Hosseini (10273_CR200) 2023
FL Pena (10273_CR56) 2021; 74
K Ninomiya (10273_CR21) 2009; 107
BB Bagon (10273_CR118) 2021; 26
CA Morgan (10273_CR154) 2006; 66
S Derzelle (10273_CR169) 2003; 69
H Velly (10273_CR147) 2014; 117
R Wang (10273_CR9) 2023; 189
BM Corcoran (10273_CR158) 2006; 72
CP Barros (10273_CR198) 2020; 32
K Lee (10273_CR145) 2008; 137
J Ma (10273_CR26) 2021; 19
C Santivarangkna (10273_CR179) 2007; 23
D Fiocco (10273_CR8) 2020; 60
M Mangiagalli (10273_CR83) 2018; 285
AGD Cruz (10273_CR66) 2013; 51
NZ Guan (10273_CR85) 2020; 104
MŽ Grujović (10273_CR68) 2019; 41
AR Ortiz Camargo (10273_CR17) 2023; 14
F Gomand (10273_CR49) 2019; 10
S Song (10273_CR170) 2014; 191
S Han (10273_CR88) 2021; 11
R Jena (10273_CR53) 2023
K Molan (10273_CR75) 2022; 23
W Chen (10273_CR76) 2019
NV Kanimozhi (10273_CR174) 2023; 3
AS Carvalho (10273_CR171) 2004; 14
X Gao (10273_CR190) 2022; 132
A Abbasi (10273_CR205) 2021
HA Perez (10273_CR86) 2018; 23
MA Baig (10273_CR123) 2021; 12
S Jung (10273_CR124) 2020; 10
J Kiepś (10273_CR22) 2023; 13
A O’Callaghan (10273_CR2) 2016; 7
AY Bustos (10273_CR109) 2022; 7
RD Sleator (10273_CR160) 1999; 65
PJ Yeboah (10273_CR45) 2023; 6
H Aryaee (10273_CR36) 2023; 2023
P Cichońska (10273_CR77) 2023; 11
S Sabahi (10273_CR201) 2023; 63
CM Cremers (10273_CR108) 2014; 111
RD Hills (10273_CR4) 2019; 11
M Kim (10273_CR23) 2018; 6
M Begley (10273_CR140) 2005; 29
G Broeckx (10273_CR34) 2016; 505
MJ Chen (10273_CR72) 2017; 66
Y Wei (10273_CR120) 2019; 18
H Wang (10273_CR62) 2022; 105
L He (10273_CR133) 2017; 44
MA Correa Deza (10273_CR155) 2021; 78
H Zelaya (10273_CR187) 2016; 7
MC Di Gregorio (10273_CR101) 2021; 22
DJ Dailin (10273_CR20) 2020; 13
W Lapsiri (10273_CR192) 2012; 30
K Vorländer (10273_CR61) 2023; 15
E Ananta (10273_CR184) 2005; 15
C Barria (10273_CR81) 2013; 159
M Ahi (10273_CR194) 2010; 28
AC Ouwehand (10273_CR97) 2001; 66
N Haddaji (10273_CR70) 2015; 7
AY Bustos (10273_CR106) 2011; 33
Z Ai (10273_CR150) 2017; 77
B Liang (10273_CR1) 2023; 15
MA Correa Deza (10273_CR149) 2023; 39
T Hellebois (10273_CR47) 2020; 94
J Koponen (10273_CR125) 2012; 75
MA Correa Deza (10273_CR189) 2017; 12
H-T Nguyen (10273_CR24) 2016; 17
C Wu (10273_CR111) 2012; 39
S Obruca (10273_CR35) 2016; 11
S Misra (10273_CR65) 2022; 15
AY Bustos (10273_CR107) 2012; 34
AP Dysin (10273_CR42) 2023; 28
B Bagon (10273_CR119) 2021; 9
AÁ Conde-Islas (10273_CR191) 2019; 7
M De Angelis (10273_CR25) 2004; 4
RF Stefanello (10273_CR172) 2019; 115
T Zotta (10273_CR162) 2014; 9
C Sohlenkamp (10273_CR134) 2017
B Min (10273_CR27) 2020; 30
HM Chang (10273_CR58) 2021; 7
M Succi (10273_CR30) 2017; 8
EPR Pereira (10273_CR55) 2023; 176
C Boontun (10273_CR46) 2020
10273_CR64
S Louesdon (10273_CR78) 2015; 8
S Sharifi (10273_CR181) 2021; 113
I Sensoy (10273_CR96) 2021; 4
J Kiepś (10273_CR13) 2022; 11
L Ruiz (10273_CR130) 2013; 4
N Fu (10273_CR182) 2011; 44
U Wendel (10273_CR29) 2022; 12
10273_CR59
T Vila (10273_CR87) 2019; 15
S Kato (10273_CR113) 1864; 3
V Ferrando (10273_CR69) 2015; 48
K Shimizu (10273_CR114) 2023; 76
G Bisson (10273_CR18) 2023; 14
NN Alves (10273_CR37) 2016; 189
AIM Schutyser (10273_CR193) 2012; 27
S Kaveh (10273_CR41) 2023; 15
A Ejaz (10273_CR44) 2023; 26
AY Bustos (10273_CR94) 2018; 112
RD Sleator (10273_CR157) 2002; 26
H Kaur (10273_CR39) 2023; 14
V Ferrando (10273_CR71) 2016; 54
D Chand (10273_CR136) 1861; 1
S Huang (10273_CR148) 2016; 82
CI Vénica (10273_CR48) 2023; 103
M Mbye (10273_CR95) 2020; 19
JR Broadbent (10273_CR126) 2010; 192
GQ Wang (10273_CR117) 2020; 103
K Papadimitriou (10273_CR90) 2016; 80
J Bi (10273_CR103) 2016; 38
T Hagi (10273_CR128) 2020; 104
BV Jones (10273_CR141) 2008; 105
DJ Dailin (10273_CR19) 2023; 20
J Yuan (10273_CR132) 2007; 7
N Dinkçi (10273_CR60) 2019
JDD Lindner (10273_CR156) 2007; 120
P Kurdi (10273_CR105) 2006; 188
H Pourjafar (10273_CR79) 2023; 63
C Alcántara (10273_CR153) 2018; 9
C In Seong (10273_CR168) 2019; 112
C De Simone (10273_CR5) 2018; 17
S Peighambardoust (10273_CR152) 2011; 22
K Vorländer (10273_CR10) 2023; 642
EO Sunny-Roberts (10273_CR185) 2009; 19
JZ Goldenberg (10273_CR7) 2017; 2
D Kothari (10273_CR196) 2019; 111
MB Pedersen (10273_CR166) 2012; 3
Z Cheng (10273_CR50) 2022; 105
B Hu (10273_CR138) 2015; 61
SL Collins (10273_CR100) 2023; 21
J Jin (10273_CR122) 2015; 10
B Sanchez (10273_CR6) 2017; 61
MP Taranto (10273_CR102) 2006; 157
L Noriega (10273_CR131) 2006; 16
B Riveros (10273_CR186) 2009; 27
B Sánchez (10273_CR121) 2007; 73
A Abbasi (10273_CR204) 2022; 223
JA Imlay (10273_CR163) 2019; 21
S O’Flaherty (10273_CR142) 2018; 3
D Rishabh (10273_CR32) 2023; 60
L Bircher (10273_CR31) 2018; 11
DY Ying (10273_CR195) 2012; 109
GD Tirta (10273_CR3) 2023; 12
JM Benarroch (10273_CR104) 2020; 28
VM Sheehan (10273_CR161) 2006; 72
Y Sun (10273_CR89) 2016
CU Kumar (10273_CR52) 2022; 87
PP Gao (10273_CR54) 2023
10273_CR176
R Prete (10273_CR99) 2020; 10
F Fonseca (10273_CR146) 2001; 43
T Zotta (10273_CR164) 2017; 122
I Jonathan (10273_CR28) 2023; 1255
T Zotta (10273_CR151) 2008; 124
A Abbasi (10273_CR202) 2024; 40
C Santivarangkna (10273_CR177) 2008; 105
MR Kathiriya (10273_CR74) 2023; 15
S Agriopoulou (10273_CR33) 2023; 11
L Polo (10273_CR84) 2017; 122
H Oldenhof (10273_CR188) 2005; 21
MA Ozma (10273_CR203) 2022; 13
10273_CR43
K Kaźmierczak Siedlecka (10273_CR15) 2020; 77
SW Park (10273_CR199) 2024; 16
A Ballini (10273_CR67) 2023; 12
C Castro-López (10273_CR11) 2023; 15
RD Sleator (10273_CR159) 2003; 69
E Sanhueza (10273_CR16) 2015; 18
SA Ali (10273_CR116) 2020; 213
L Ruiz (10273_CR127) 2012; 78
H Siegumfeldt (10273_CR135) 2000; 66
References_xml – volume: 8
  start-page: e10733
  issue: 9
  year: 2022
  ident: 10273_CR63
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e10733
– volume: 10
  start-page: 285
  year: 2019
  ident: 10273_CR49
  publication-title: Annu Rev Food Sci Technol
  doi: 10.1146/annurev-food-032818-121140
– volume: 12
  start-page: 731410
  year: 2021
  ident: 10273_CR123
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2021.731410
– volume: 13
  start-page: 267
  issue: 3
  year: 2022
  ident: 10273_CR203
  publication-title: Biointerface Res Appl Chem
  doi: 10.33263/BRIAC133.267
– volume: 189
  start-page: 115460
  year: 2023
  ident: 10273_CR9
  publication-title: LWT
  doi: 10.1016/j.lwt.2023.115460
– volume: 260
  start-page: 10
  year: 2021
  ident: 10273_CR173
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2021.117843
– volume: 107
  start-page: 535
  year: 2009
  ident: 10273_CR21
  publication-title: J Biosci Bioeng
  doi: 10.1016/j.jbiosc.2008.12.015
– volume: 12
  start-page: 818468
  year: 2022
  ident: 10273_CR29
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2021.818468
– volume: 115
  start-page: 90
  year: 2019
  ident: 10273_CR172
  publication-title: Food Res Int
  doi: 10.1016/j.foodres.2018.07.044
– volume: 16
  start-page: 1
  year: 2024
  ident: 10273_CR199
  publication-title: Probiotics Antimicrob Proteins
  doi: 10.1007/s12602-023-10042-0
– volume: 8
  start-page: 1067
  year: 2017
  ident: 10273_CR30
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.01067
– start-page: 371
  volume-title: Lactic acid bacteria, omics and functional evaluation
  year: 2019
  ident: 10273_CR76
  doi: 10.1007/978-981-13-7832-4_11
– volume: 74
  start-page: 170
  issue: 1
  year: 2021
  ident: 10273_CR56
  publication-title: Int J Dairy Technol
  doi: 10.1111/1471-0307.12735
– volume: 66
  start-page: 856
  issue: 6
  year: 2001
  ident: 10273_CR97
  publication-title: J Food Sci
  doi: 10.1111/j.1365-2621.2001.tb15186.x
– volume: 4
  start-page: 106
  year: 2004
  ident: 10273_CR25
  publication-title: A review Proteomics
  doi: 10.1002/pmic.200300497
– volume: 105
  start-page: 1
  year: 2022
  ident: 10273_CR50
  publication-title: Cryobiology
  doi: 10.1016/j.cryobiol.2022.01.003
– volume: 26
  start-page: e2023024
  year: 2023
  ident: 10273_CR92
  publication-title: Braz J Food Technol
  doi: 10.1590/1981-6723.02423
– volume: 103
  start-page: 3066
  issue: 4
  year: 2020
  ident: 10273_CR117
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2019-17685
– volume: 80
  start-page: 837
  issue: 3
  year: 2016
  ident: 10273_CR90
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00076-15
– volume: 63
  start-page: 8194
  issue: 26
  year: 2023
  ident: 10273_CR79
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398.2022.2047883
– volume: 120
  start-page: 13
  issue: 1–2
  year: 2007
  ident: 10273_CR156
  publication-title: Int J Food Microbiol
  doi: 10.1016/j.ijfoodmicro.2007.06.016
– volume: 1
  start-page: 2981
  issue: 1 Pt A
  year: 1861
  ident: 10273_CR136
  publication-title: Biochim Biophys Acta
– volume: 12
  start-page: 165
  year: 2023
  ident: 10273_CR3
  publication-title: Foods
  doi: 10.3390/foods12010165
– volume: 9
  start-page: 1944
  year: 2018
  ident: 10273_CR153
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.01944
– volume: 46
  start-page: 1621
  year: 2019
  ident: 10273_CR167
  publication-title: J Ind Microbiol Biotechnol
  doi: 10.1007/s10295-019-02226-x
– volume: 22
  start-page: 1780
  year: 2021
  ident: 10273_CR101
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22041780
– volume: 13
  start-page: 1413
  issue: 5
  year: 2021
  ident: 10273_CR91
  publication-title: Probiotics Antimicrob Proteins
  doi: 10.1007/s12602-021-09775-7
– volume: 117
  start-page: 729
  issue: 3
  year: 2014
  ident: 10273_CR147
  publication-title: J Appl Microbiol
  doi: 10.1111/jam.12577
– volume: 4
  start-page: 396
  year: 2013
  ident: 10273_CR130
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2013.00396
– volume: 10
  start-page: 1165
  issue: 1
  year: 2020
  ident: 10273_CR99
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-58069-5
– volume: 17
  start-page: 867
  year: 2016
  ident: 10273_CR24
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms17060867
– volume: 33
  start-page: 2265
  year: 2011
  ident: 10273_CR106
  publication-title: Biotechnol Lett
  doi: 10.1007/s10529-011-0696-3
– start-page: 459
  volume-title: Regulation of Ca2+-ATPases, V-ATPases and F-ATPases
  year: 2016
  ident: 10273_CR89
  doi: 10.1007/978-3-319-24780-9_22
– volume: 77
  start-page: 599
  year: 2015
  ident: 10273_CR115
  publication-title: Food Res Int
  doi: 10.1016/j.foodres.2015.10.001
– volume: 14
  start-page: 835
  year: 2004
  ident: 10273_CR171
  publication-title: Int Dairy J
  doi: 10.1016/j.idairyj.2004.02.001
– volume: 213
  start-page: 103600
  year: 2020
  ident: 10273_CR116
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2019.103600
– volume: 66
  start-page: 20
  year: 2017
  ident: 10273_CR72
  publication-title: Food Microbiol
  doi: 10.1016/j.fm.2017.03.020
– year: 2023
  ident: 10273_CR54
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398.2023.2260467
– volume: 189
  start-page: 45
  year: 2016
  ident: 10273_CR37
  publication-title: J Food Eng
  doi: 10.1016/j.jfoodeng.2016.05.023
– volume: 78
  start-page: 3863
  year: 2021
  ident: 10273_CR155
  publication-title: Curr Microbiol
  doi: 10.1007/s00284-021-02648-w
– volume: 157
  start-page: 720
  issue: 8
  year: 2006
  ident: 10273_CR102
  publication-title: Res Microbiol
  doi: 10.1016/j.resmic.2006.04.002
– volume: 15
  start-page: 884
  issue: 3
  year: 2023
  ident: 10273_CR61
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics15030884
– volume: 66
  start-page: 183
  issue: 2
  year: 2006
  ident: 10273_CR154
  publication-title: J Microbiol Methods
  doi: 10.1016/j.mimet.2006.02.017
– volume: 285
  start-page: 1653
  issue: 9
  year: 2018
  ident: 10273_CR83
  publication-title: FEBS J
  doi: 10.1111/febs.14434
– volume: 11
  start-page: 63
  issue: 1
  year: 2011
  ident: 10273_CR143
  publication-title: BMC Microbiol
  doi: 10.1186/1471-2180-11-63
– volume: 13
  start-page: 8513
  year: 2020
  ident: 10273_CR20
  publication-title: Arab J Chem
  doi: 10.1016/j.arabjc.2020.09.030
– volume: 9
  start-page: 225
  year: 2014
  ident: 10273_CR80
  publication-title: J Funct Foods
  doi: 10.1016/j.jff.2014.04.030
– volume: 188
  start-page: 1979
  year: 2006
  ident: 10273_CR105
  publication-title: J Bacteriol
  doi: 10.1128/JB.188.5.1979-1986.2006
– volume: 109
  start-page: 597
  year: 2012
  ident: 10273_CR195
  publication-title: J Food Eng
  doi: 10.1016/j.jfoodeng.2011.10.017
– volume: 15
  start-page: e1008058
  issue: 11
  year: 2019
  ident: 10273_CR87
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1008058
– volume: 11
  start-page: 1823
  issue: 7
  year: 2023
  ident: 10273_CR98
  publication-title: Microorganisms
  doi: 10.3390/microorganisms11071823
– volume: 21
  start-page: 236
  issue: 4
  year: 2023
  ident: 10273_CR100
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-022-00805-x
– volume: 15
  start-page: 1626
  year: 2023
  ident: 10273_CR1
  publication-title: Probiotics Antimicrob Proteins
  doi: 10.1007/s12602-023-10045-x
– volume: 61
  start-page: 1600240
  year: 2017
  ident: 10273_CR6
  publication-title: Mol Nutr Food Res
  doi: 10.1002/mnfr.201600240
– volume: 14
  start-page: 1152389
  year: 2023
  ident: 10273_CR12
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2023.1152389
– volume: 87
  start-page: 131
  issue: 2
  year: 2022
  ident: 10273_CR52
  publication-title: Biochemistry
– volume: 112
  start-page: 250
  year: 2018
  ident: 10273_CR94
  publication-title: Food Res Int
  doi: 10.1016/j.foodres.2018.06.035
– volume: 19
  start-page: 168
  year: 2020
  ident: 10273_CR197
  publication-title: Microb Cell Fact
  doi: 10.1186/s12934-020-01426-w
– start-page: 1
  volume-title: In Biogenesis of fatty acids, lipids and membranes
  year: 2017
  ident: 10273_CR134
– volume: 111
  start-page: E1610
  issue: 16
  year: 2014
  ident: 10273_CR108
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1401941111
– volume: 73
  start-page: 6450
  issue: 20
  year: 2007
  ident: 10273_CR121
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00886-07
– volume: 2
  start-page: CD006095
  year: 2017
  ident: 10273_CR7
  publication-title: Cochrane Database Syst Rev
– volume: 111
  start-page: 537
  year: 2019
  ident: 10273_CR196
  publication-title: Biomed Pharmacother
  doi: 10.1016/j.biopha.2018.12.104
– volume: 192
  start-page: 2445
  year: 2010
  ident: 10273_CR126
  publication-title: J Bacteriol
  doi: 10.1128/JB.01618-09
– volume: 19
  start-page: 72
  year: 2021
  ident: 10273_CR26
  publication-title: CYTA J Food
  doi: 10.1080/19476337.2020.1859619
– volume: 11
  start-page: 2330
  issue: 15
  year: 2022
  ident: 10273_CR13
  publication-title: Foods
  doi: 10.3390/foods11152330
– volume: 32
  start-page: 1
  year: 2020
  ident: 10273_CR198
  publication-title: Curr Opin Food Sci
  doi: 10.1016/j.cofs.2019.12.003
– volume: 63
  start-page: 8875
  issue: 26
  year: 2023
  ident: 10273_CR201
  publication-title: Crit Rev Food Sci Nut
  doi: 10.1080/10408398.2022.2056727
– volume: 12
  start-page: e0179242
  issue: 6
  year: 2017
  ident: 10273_CR189
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0179242
– volume: 4
  start-page: 308
  year: 2021
  ident: 10273_CR96
  publication-title: Curr Res Food Sci
  doi: 10.1016/j.crfs.2021.04.004
– volume: 23
  start-page: 741
  issue: 4
  year: 2018
  ident: 10273_CR86
  publication-title: Molecules
  doi: 10.3390/molecules23040741
– volume: 113
  start-page: 106496
  year: 2021
  ident: 10273_CR181
  publication-title: Food Hydrocoll
  doi: 10.1016/j.foodhyd.2020.106496
– volume: 54
  start-page: 154
  year: 2016
  ident: 10273_CR71
  publication-title: Food Microbiol
  doi: 10.1016/j.fm.2015.10.003
– volume: 78
  start-page: 1123
  year: 2012
  ident: 10273_CR127
  publication-title: App Environ Microbiol
  doi: 10.1128/AEM.06060-11
– ident: 10273_CR176
  doi: 10.1007/978-94-017-2029-8_12
– volume: 1255
  start-page: 012068
  issue: 1
  year: 2023
  ident: 10273_CR28
  publication-title: In IOP Conference Series: Earth and Environmental Science
– volume: 12
  start-page: 635
  issue: 4
  year: 2023
  ident: 10273_CR67
  publication-title: Antibiotics
  doi: 10.3390/antibiotics12040635
– volume: 15
  start-page: 399
  year: 2005
  ident: 10273_CR184
  publication-title: Int Dairy J
  doi: 10.1016/j.idairyj.2004.08.004
– volume: 28
  start-page: 304
  year: 2020
  ident: 10273_CR104
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2019.12.008
– volume: 104
  start-page: 10641
  year: 2020
  ident: 10273_CR128
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-020-10976-3
– volume: 122
  start-page: 857
  year: 2017
  ident: 10273_CR164
  publication-title: J Appl Microbiol
  doi: 10.1111/jam.13399
– volume: 95
  start-page: 86
  year: 2003
  ident: 10273_CR137
  publication-title: J Appl Microbiol
  doi: 10.1046/j.1365-2672.2003.01962.x
– ident: 10273_CR64
  doi: 10.1080/10408398.2023.2202256
– volume: 76
  start-page: ovad062
  issue: 6
  year: 2023
  ident: 10273_CR114
  publication-title: Lett Appl Microbiol
  doi: 10.1093/lambio/ovad062
– volume: 69
  start-page: 1
  issue: 1
  year: 2003
  ident: 10273_CR159
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.1.1-9.2003
– volume: 14
  start-page: 2128
  year: 2023
  ident: 10273_CR18
  publication-title: Food Funct
  doi: 10.1039/D2FO03215E
– volume: 23
  start-page: 302
  issue: 2
  year: 2007
  ident: 10273_CR179
  publication-title: Biotechnol Prog
  doi: 10.1021/bp060268f
– start-page: 201
  volume-title: Food quality and shelf life
  year: 2019
  ident: 10273_CR60
  doi: 10.1016/B978-0-12-817190-5.00006-9
– volume: 30
  start-page: 739
  year: 2020
  ident: 10273_CR27
  publication-title: J Microbiol Biotechnol
  doi: 10.4014/jmb.1912.12053
– volume: 13
  start-page: 11541
  issue: 20
  year: 2023
  ident: 10273_CR22
  publication-title: Appl Sci
  doi: 10.3390/app132011541
– volume: 14
  start-page: 100704
  year: 2023
  ident: 10273_CR39
  publication-title: J Agric Food Res
– volume: 20
  start-page: 208
  issue: 1
  year: 2023
  ident: 10273_CR19
  publication-title: Biosci Res
– volume: 122
  start-page: 1603
  issue: 6
  year: 2017
  ident: 10273_CR84
  publication-title: J Appl Microbiol
  doi: 10.1111/jam.13465
– volume: 7
  start-page: 925
  year: 2016
  ident: 10273_CR2
  publication-title: Front Microbiol
– volume: 27
  start-page: 123
  issue: 1
  year: 2009
  ident: 10273_CR186
  publication-title: Dry Technol
  doi: 10.1080/07373930802566002
– volume: 372
  start-page: 121175
  year: 2023
  ident: 10273_CR51
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2022.121175
– volume: 11
  start-page: 1613
  issue: 7
  year: 2019
  ident: 10273_CR4
  publication-title: Nutrients
  doi: 10.3390/nu11071613
– volume: 39
  start-page: 1031
  issue: 7
  year: 2012
  ident: 10273_CR111
  publication-title: J Ind Microbiol Biotechnol
  doi: 10.1007/s10295-012-1104-2
– volume: 27
  start-page: 73
  issue: 2
  year: 2012
  ident: 10273_CR193
  publication-title: Trends Food Sci Technol
  doi: 10.1016/j.tifs.2012.05.006
– volume: 6
  start-page: 215
  issue: 2
  year: 2023
  ident: 10273_CR45
  publication-title: Food Sci Appl Biotechnol
  doi: 10.30721/fsab2023.v6.i2.269
– volume: 30
  start-page: 1407
  year: 2012
  ident: 10273_CR192
  publication-title: Dry Technol
  doi: 10.1080/07373937.2012.684226
– year: 2023
  ident: 10273_CR200
  publication-title: Probiotics and Antimicrobial Proteins
  doi: 10.1007/s12602-023-10117-y
– volume: 94
  start-page: 161
  year: 2020
  ident: 10273_CR47
  publication-title: Adv Food Nutr Res
  doi: 10.1016/bs.afnr.2020.06.004
– volume: 105
  start-page: 7308
  issue: 9
  year: 2022
  ident: 10273_CR62
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2021-21546
– volume: 11
  start-page: 609722
  year: 2021
  ident: 10273_CR88
  publication-title: Front Cell Infect
  doi: 10.3389/fcimb.2021.609722
– volume: 41
  start-page: 1444
  issue: 9
  year: 2023
  ident: 10273_CR175
  publication-title: Dry Technol
  doi: 10.1080/07373937.2022.2155971
– volume: 41
  start-page: 1319
  year: 2019
  ident: 10273_CR68
  publication-title: Biotechnol Lett
  doi: 10.1007/s10529-019-02729-8
– volume: 54
  start-page: 1351
  issue: 2
  year: 2013
  ident: 10273_CR178
  publication-title: Food Res Int
  doi: 10.1016/j.foodres.2013.09.043
– volume: 66
  start-page: 2605
  year: 2000
  ident: 10273_CR183
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.66.6.2605-2612.2000
– volume: 7
  start-page: 633
  year: 2016
  ident: 10273_CR187
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2016.00633
– volume: 11
  start-page: 2896
  issue: 12
  year: 2023
  ident: 10273_CR33
  publication-title: Microorganisms
  doi: 10.3390/microorganisms11122896
– volume: 365
  start-page: fny217
  issue: 19
  year: 2018
  ident: 10273_CR110
  publication-title: FEMS Microbiol Lett
  doi: 10.1093/femsle/fny217
– volume: 44
  start-page: 532
  issue: 2
  year: 2017
  ident: 10273_CR133
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000485089
– volume: 69
  start-page: 4285
  year: 2003
  ident: 10273_CR169
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.7.4285-4290.2003
– volume: 72
  start-page: 5104
  issue: 7
  year: 2006
  ident: 10273_CR158
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02626-05
– volume: 10
  start-page: 19203
  issue: 1
  year: 2020
  ident: 10273_CR124
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-76171-6
– volume: 19
  start-page: 1110
  issue: 3
  year: 2020
  ident: 10273_CR95
  publication-title: Compr Rev Food Sci Food Saf
  doi: 10.1111/1541-4337.12554
– volume: 7
  start-page: 29
  issue: 3
  year: 2015
  ident: 10273_CR70
  publication-title: J Bacteriol Res
– volume: 105
  start-page: 1
  issue: 1
  year: 2008
  ident: 10273_CR177
  publication-title: J Appl Microbiol
  doi: 10.1111/j.1365-2672.2008.03744.x
– volume: 91
  start-page: 249
  year: 2018
  ident: 10273_CR73
  publication-title: LWT
  doi: 10.1016/j.lwt.2017.12.063
– volume: 72
  start-page: 2170
  issue: 3
  year: 2006
  ident: 10273_CR161
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.72.3.2170-2177.2006
– volume: 38
  start-page: 659
  year: 2016
  ident: 10273_CR103
  publication-title: Biotechnol Lett
  doi: 10.1007/s10529-015-2018-7
– volume: 28
  start-page: 1413
  issue: 3
  year: 2023
  ident: 10273_CR42
  publication-title: Molecules
  doi: 10.3390/molecules28031413
– volume: 39
  start-page: 182
  issue: 7
  year: 2023
  ident: 10273_CR149
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-023-03625-0
– year: 2023
  ident: 10273_CR53
  publication-title: Probiotics Antimicrob Proteins
  doi: 10.1007/s12602-023-10189-w
– volume: 26
  start-page: 2838
  issue: 2
  year: 2023
  ident: 10273_CR44
  publication-title: Int J Food Prop
  doi: 10.1080/10942912.2023.2254521
– volume: 29
  start-page: 625
  issue: 4
  year: 2005
  ident: 10273_CR140
  publication-title: FEMS Microbiol Rev
  doi: 10.1016/j.femsre.2004.09.003
– volume: 75
  start-page: 1357
  year: 2012
  ident: 10273_CR125
  publication-title: J Proteom
  doi: 10.1016/j.jprot.2011.11.009
– volume: 9
  start-page: 10
  year: 2021
  ident: 10273_CR119
  publication-title: Proteomes
  doi: 10.3390/proteomes9010010
– volume: 17
  start-page: 809
  year: 2018
  ident: 10273_CR5
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/j.cgh.2018.01.018
– volume: 11
  start-page: 721
  issue: 4
  year: 2018
  ident: 10273_CR31
  publication-title: Microb Biotechnol
  doi: 10.1111/1751-7915.13265
– volume: 11
  start-page: e0157778
  year: 2016
  ident: 10273_CR35
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0157778
– volume: 65
  start-page: 2078
  issue: 5
  year: 1999
  ident: 10273_CR160
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.65.5.2078-2083.1999
– volume: 10
  start-page: e0117702
  issue: 2
  year: 2015
  ident: 10273_CR122
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0117702
– volume: 51
  start-page: 723
  issue: 2
  year: 2013
  ident: 10273_CR66
  publication-title: Food Res Int
  doi: 10.1016/j.foodres.2013.01.028
– volume: 16
  start-page: 850
  issue: 8
  year: 2006
  ident: 10273_CR131
  publication-title: Int Dairy J
  doi: 10.1016/j.idairyj.2005.09.008
– volume: 124
  start-page: 34
  year: 2008
  ident: 10273_CR151
  publication-title: Int J Food Microbiol
  doi: 10.1016/j.ijfoodmicro.2008.02.024
– volume: 77
  start-page: 269
  year: 2017
  ident: 10273_CR150
  publication-title: Bulgaricus LWT
  doi: 10.1016/j.lwt.2016.11.057
– volume: 2023
  start-page: 1
  year: 2023
  ident: 10273_CR36
  publication-title: J Food Process Preserv
  doi: 10.1155/2023/5597647
– volume: 60
  start-page: 916
  issue: 3
  year: 2023
  ident: 10273_CR32
  publication-title: J Food Sci Technol
  doi: 10.1007/s13197-021-05259-2
– volume: 103
  start-page: 569
  issue: 2
  year: 2023
  ident: 10273_CR48
  publication-title: J Sci Food Agric
  doi: 10.1002/jsfa.12168
– volume: 7
  start-page: 1944
  year: 2016
  ident: 10273_CR82
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2016.01944
– volume: 642
  start-page: 123100
  year: 2023
  ident: 10273_CR10
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2023.123100
– volume: 15
  start-page: 998
  issue: 5
  year: 2022
  ident: 10273_CR65
  publication-title: Food Bioprocess Technol
  doi: 10.1007/s11947-021-02753-5
– volume: 44
  start-page: 1127
  year: 2011
  ident: 10273_CR182
  publication-title: Food Res Int
  doi: 10.1016/j.foodres.2011.03.053
– volume: 11
  start-page: 731
  year: 2019
  ident: 10273_CR14
  publication-title: Probiotics Antimicrob Proteins
  doi: 10.1007/s12602-018-9492-x
– volume: 15
  start-page: 1250
  issue: 5
  year: 2023
  ident: 10273_CR11
  publication-title: Probiotics Antimicrob Proteins
  doi: 10.1007/s12602-022-09981-x
– volume: 31
  start-page: 110
  year: 2023
  ident: 10273_CR40
  publication-title: NFS Journal
  doi: 10.1016/j.nfs.2023.04.003
– volume: 105
  start-page: 13580
  issue: 36
  year: 2008
  ident: 10273_CR141
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0804437105
– volume: 112
  start-page: 104865
  year: 2021
  ident: 10273_CR180
  publication-title: Int Dairy J
  doi: 10.1016/j.idairyj.2020.104865
– volume: 6
  start-page: 121
  issue: 4
  year: 2020
  ident: 10273_CR57
  publication-title: Fermentation
  doi: 10.3390/fermentation6040121
– volume: 22
  start-page: 215
  issue: 5
  year: 2011
  ident: 10273_CR152
  publication-title: Trends Food Sci Technol
  doi: 10.1016/j.tifs.2011.01.009
– volume: 19
  start-page: 3390
  issue: 6
  year: 2020
  ident: 10273_CR206
  publication-title: Compr Rev Food Sci Food Saf
  doi: 10.1111/1541-4337.12613
– volume: 8
  start-page: 311
  issue: 2
  year: 2015
  ident: 10273_CR78
  publication-title: Microb Biotechnol
  doi: 10.1111/1751-7915.12132
– volume: 6
  start-page: 1904
  year: 2018
  ident: 10273_CR23
  publication-title: Food Sci Nutr
  doi: 10.1002/fsn3.762
– volume: 76
  start-page: 117
  year: 2018
  ident: 10273_CR165
  publication-title: Food Microbiol
  doi: 10.1016/j.fm.2018.02.017
– volume: 7
  start-page: 375
  issue: 01
  year: 2007
  ident: 10273_CR132
  publication-title: J Proteome Res
  doi: 10.1021/pr0704940
– volume: 15
  start-page: 1032
  issue: 4
  year: 2023
  ident: 10273_CR74
  publication-title: Probiotics Antimicrob Proteins
  doi: 10.1007/s12602-023-10104-3
– volume: 19
  start-page: 209
  year: 2009
  ident: 10273_CR185
  publication-title: Int Dairy J
  doi: 10.1016/j.idairyj.2008.10.008
– volume-title: Postbiotics: science, technology and applications
  year: 2021
  ident: 10273_CR205
  doi: 10.2174/97816810883891210101
– volume: 132
  start-page: 802
  issue: 2
  year: 2022
  ident: 10273_CR190
  publication-title: J Appl Microbiol
  doi: 10.1111/jam.15251
– volume: 7
  start-page: 602280
  year: 2021
  ident: 10273_CR58
  publication-title: Front Vet Sci
  doi: 10.3389/fvets.2020.602280
– volume: 66
  start-page: 2330
  issue: 6
  year: 2000
  ident: 10273_CR135
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.66.6.2330-2335.2000
– volume: 11
  start-page: 996
  issue: 4
  year: 2023
  ident: 10273_CR77
  publication-title: Microorganisms
  doi: 10.3390/microorganisms11040996
– ident: 10273_CR59
– volume: 104
  start-page: 51
  year: 2020
  ident: 10273_CR85
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-019-10226-1
– volume: 21
  start-page: 885
  issue: 3
  year: 2005
  ident: 10273_CR188
  publication-title: Biotechnol Prog
  doi: 10.1021/bp049559j
– volume: 60
  start-page: 1552
  issue: 9
  year: 2020
  ident: 10273_CR8
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398.2019.1580673
– volume: 9
  start-page: e99189
  year: 2014
  ident: 10273_CR162
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0099189
– volume: 112
  start-page: 108230
  year: 2019
  ident: 10273_CR168
  publication-title: LWT - Food Sci Technol
  doi: 10.1016/j.lwt.2019.05.128
– volume: 26
  start-page: 49
  issue: 1
  year: 2002
  ident: 10273_CR157
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2002.tb00598.x
– volume: 93
  start-page: 794
  issue: 5
  year: 2002
  ident: 10273_CR112
  publication-title: J Appl Microbiol
  doi: 10.1046/j.1365-2672.2002.01747.x
– volume: 3
  start-page: 100428
  year: 2023
  ident: 10273_CR174
  publication-title: Food Chem Adv
  doi: 10.1016/j.focha.2023.100428
– volume: 23
  start-page: 4008
  issue: 7
  year: 2022
  ident: 10273_CR75
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms23074008
– volume: 3
  start-page: 403
  year: 1864
  ident: 10273_CR113
  publication-title: Biochim Biophys Acta Mol Cell Biol Lipids
– volume: 137
  start-page: 14
  issue: 1–4
  year: 2008
  ident: 10273_CR145
  publication-title: J Biotech
  doi: 10.1016/j.jbiotec.2008.07.1788
– volume: 74
  start-page: 1812
  issue: 6
  year: 2008
  ident: 10273_CR129
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02259-07
– volume: 61
  start-page: 13
  issue: 1
  year: 2015
  ident: 10273_CR138
  publication-title: Lett Appl Microbiol
  doi: 10.1111/lam.12418
– volume: 43
  start-page: 189
  issue: 3
  year: 2001
  ident: 10273_CR146
  publication-title: Cryobiology
  doi: 10.1006/cryo.2001.2343
– volume: 15
  start-page: 239
  issue: 2
  year: 2023
  ident: 10273_CR38
  publication-title: Probiotics Antimicrob Proteins
  doi: 10.1007/s12602-022-09983-9
– volume: 18
  start-page: 1
  year: 2019
  ident: 10273_CR120
  publication-title: Microb Cell Factories
  doi: 10.1186/s12934-019-1206-x
– volume: 82
  start-page: 4641
  issue: 15
  year: 2016
  ident: 10273_CR148
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00748-16
– volume: 176
  start-page: 113785
  year: 2023
  ident: 10273_CR55
  publication-title: Food Res Int
  doi: 10.1016/j.foodres.2023.113785
– volume: 3
  start-page: 37
  year: 2012
  ident: 10273_CR166
  publication-title: Annu Rev Food Sci Technol
  doi: 10.1146/annurev-food-022811-101255
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  ident: 10273_CR93
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-020-01920-6
– year: 2020
  ident: 10273_CR46
  publication-title: Prep Biochem Biotechnol
  doi: 10.1080/10826068.2020.1861009
– volume: 40
  start-page: 883
  issue: 3
  year: 2024
  ident: 10273_CR202
  publication-title: Food Rev Intern
  doi: 10.1080/87559129.2023.2202405
– volume: 34
  start-page: 1511
  year: 2012
  ident: 10273_CR107
  publication-title: Biotechnol Lett
  doi: 10.1007/s10529-012-0932-5
– volume: 191
  start-page: 135
  year: 2014
  ident: 10273_CR170
  publication-title: Int J Food Microbiol
  doi: 10.1016/j.ijfoodmicro.2014.09.017
– volume: 7
  start-page: e202103198
  issue: 14
  year: 2022
  ident: 10273_CR109
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202103198
– volume: 18
  start-page: 343
  year: 2015
  ident: 10273_CR16
  publication-title: Electron J Biotechnol
  doi: 10.1016/j.ejbt.2015.06.005
– volume: 48
  start-page: 63
  year: 2015
  ident: 10273_CR69
  publication-title: Food Microbiol
  doi: 10.1016/j.fm.2014.12.005
– volume: 21
  start-page: 521
  year: 2019
  ident: 10273_CR163
  publication-title: Env Microbiol
  doi: 10.1111/1462-2920.14445
– volume: 15
  start-page: 10154
  issue: 13
  year: 2023
  ident: 10273_CR41
  publication-title: Sustainability
  doi: 10.3390/su151310154
– volume: 3
  start-page: 10
  issue: 3
  year: 2018
  ident: 10273_CR142
  publication-title: Msphere
  doi: 10.1128/mSphere.00140-18
– volume: 7
  start-page: 127
  issue: 3
  year: 2019
  ident: 10273_CR191
  publication-title: Processes
  doi: 10.3390/pr7030127
– volume: 14
  start-page: 85
  year: 2023
  ident: 10273_CR17
  publication-title: Benef Microbes
  doi: 10.3920/BM2022.0074
– volume: 28
  start-page: 490
  issue: 4
  year: 2010
  ident: 10273_CR194
  publication-title: Dry Technol
  doi: 10.1080/07373931003613726
– volume: 159
  start-page: 2437
  issue: Pt_12
  year: 2013
  ident: 10273_CR81
  publication-title: Microbiology
  doi: 10.1099/mic.0.052209-0
– volume: 77
  start-page: 1987
  year: 2020
  ident: 10273_CR15
  publication-title: Curr Microbiol
  doi: 10.1007/s00284-020-02053-9
– volume: 8
  start-page: 1
  issue: 1
  year: 2010
  ident: 10273_CR144
  publication-title: Proteome Sci
  doi: 10.1186/1477-5956-8-37
– ident: 10273_CR43
  doi: 10.5772/intechopen.99382
– volume: 26
  start-page: 5695
  issue: 18
  year: 2021
  ident: 10273_CR118
  publication-title: Molecules
  doi: 10.3390/molecules26185695
– volume: 223
  start-page: 346
  issue: Pt A
  year: 2022
  ident: 10273_CR204
  publication-title: Intern J Biol Macromol
  doi: 10.1016/j.ijbiomac.2022.11.003
– volume: 10
  start-page: 841
  year: 2019
  ident: 10273_CR139
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.00841
– volume: 505
  start-page: 303
  year: 2016
  ident: 10273_CR34
  publication-title: Int J Pharmaceut
  doi: 10.1016/j.ijpharm.2016.04.002
SSID ssj0066320
Score 2.4739
SecondaryResourceType review_article
Snippet In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 138
SubjectTerms Applied Microbiology
Bacteria
bile
bile acids
Biomedical and Life Sciences
Bioreactors
Cell walls
Chemistry/Food Science
diet
Fermentation
Fermented food
Food
Food consumption
Food industry
Food intake
food matrix
Food processing
Functional Food - analysis
Functional Food - microbiology
functional foods
Functional foods & nutraceuticals
Gastrointestinal Tract - microbiology
gastrointestinal transit
human health
Humans
intestines
lactic acid
Lactic acid bacteria
Life Sciences
Lysates
metabolites
Microbiology
Microorganisms
Nutrition
Probiotics
Probiotics - metabolism
Protein Science
Review
stomach
stress tolerance
Stress, Physiological
viability
Title Recent Advances in the Understanding of Stress Resistance Mechanisms in Probiotics: Relevance for the Design of Functional Food Systems
URI https://link.springer.com/article/10.1007/s12602-024-10273-9
https://www.ncbi.nlm.nih.gov/pubmed/38829565
https://www.proquest.com/docview/3167812968
https://www.proquest.com/docview/3064142036
https://www.proquest.com/docview/3200353728
https://pubmed.ncbi.nlm.nih.gov/PMC11832585
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7YUL70egVEZCvbCuEmedxNxWS5cKVLSCRiqnyPFDrCgJIruH8gf424ydZMO2UKmXvWQyazuTmc-Zmc8Ar7jL5kXSUGZ0QieuvlHoUFLJUlZqUZpYuQ_6Jx-T43zy_oyfdU1hTV_t3qckvacemt0QejOKMQVdBwZdKnZgl0eZyEawO3335cNR74ExiHo6RsfVRtFHJ12zzL-1bAekKyjzarHkpYypD0Tzu5D3U2jrT74drlflofp1id3xpnO8B3c6ZEqmrSndh1umegAHi5ba-mJMTodOrWZMDshiIL2-eAi_EX_i0Mm0rSloyLIiiC1J_nfzDKkt-eybU8gn0zjkiqLkxLju42Xz3d-08MRQ7k_eoNC58eoIQmuv7q0vOHF65hiQ2--YZF7XmnTU648gnx-dzo5pd8gDVYgNVzSzMk04l0xzVcpQRpprJQWzQqlUlcpqREgsjazrNjGJmGSWKS2NzDLDbGzjxzCq6so8BcJUyDzbokUL1CgZcq5ZalPOVahFGkDUP-lCdQzo7iCO82LgbnbrX-D6F379CxHA6809P1r-j2ul93oDKjpf0BSOawBhlEiyAF5uLuNb7FIzsjL1GmUQGUYTlxS-RsaT18YpQz1PWpvcDCnGjRLudHkA2Za1bgQci_j2lWr51bOJR86p46YxgHFvk8PY_z_VZzcTfw63mTs52de778Fo9XNtXiCcW5X73du7DzuzZIa_OZv-ATaqQ5k
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOcClojwDBYyEemEjJc46ibmtKKsFutUKdqXeIscPsVKbILI99Bfwt5lxkg1LoRLnjCeJxp757Jn5DPBGUDYvVjbk1qThmOobpYlUqHjGSyNLm2g60J-fprPV-NOZOOuawpq-2r1PSXpPPTS7IfTmIcYUdB0YdEN5G-4gGMjp3oIVn_T-F0OoJ2MkprYQPXTatcr8XcduOLqGMa-XSv6RL_VhaHof9jv8yCatwQ_glq0ewNGiJaC-GrHl0E_VjNgRWwzU1FcP4SeiRHwFm7SZ_4atK4YIkK1-b3FhtWNffQsJ-2IbwpcoyuaWeoTXzYUftPD0TfSSdyh0br06hgDYqzv2ZSGkZ4phsz1tZNO6NqwjSH8Eq-mH5ftZ2F3FEGpEcJswdypLhVDcCF2qSMVGGK0kd1LrTJfaGcQxPIsd9YTYVI5zx7VRVuW55S5xyWPYq-rKPgXGdcQ9J6LDeWJQMhLC8MxlQujIyCyAuLdIoTuecrou47wYGJbJigVasfBWLGQAb7djvrcsHTdKH_aGLroV2xTECIBgR6Z5AK-3j3GtUQJFVba-RBnEb_GYUrc3yHiK2STjqOdJO3e2n5Tgdgb3oyKAfGdWbQWI63v3SbX-5jm_Y3K9uLULYNRPwOHb__2rz_5P_BXcnS3nJ8XJx9PPz-Eep7uOfYX6IextflzaFwjANuVLv95-AdM8J8E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZaKlW9VPRJgFJXqrh0LRInTuLeEBDRB2jVshK3yPFDXYkmqFkO_AL-dmecZMOWFqnnTCaJxvZ8zsz3mZD3Aqt5kbKMW5OyBPsbpQkVUzzjlZGVjTX-0D85TY9nyedzcX6Lxe-73YeSZMdpQJWmerF3adzeSHwDGM4Z5BdYRiABM_mQPEow9WG5Nj0Y1mJIp16YEVXbGKzWaU-b-buP1dR0B2_ebZv8o3bqU1KxTp72WJLud8F_Rh7Y-jnZnXZi1NcTejZyq9oJ3aXTUab6-gW5AcQIj6D7XRdAS-c1BTRIZ7fpLrRx9Lunk9BvtkWsCab0xCJfeN7-9DdNvZQTPuQjGF1Y744CGPbuDn2LCPopIIV2fx5p0TSG9mLpL8msODo7OGb9sQxMA5pbsNypLBVCcSN0pUIVGWG0ktxJrTNdaWcA0_AscsgPsalMcse1UVblueUudvErslY3td0glOuQe31EB2PGgGUohOGZy4TQoZFZQKIhIqXuNcvx6IyLclRbxiiWEMXSR7GUAfmwvOeyU-y413p7CHTZz962RHUAAD4yzQPybnkZ5h0WU1RtmyuwASwXJVjGvcfGy83GGQc_r7uxs3ylGLY2sDcVAclXRtXSAHW_V6_U8x9e_zvCZRi2eQGZDANwfPd_f-rm_5m_JY-nh0X59dPply3yhOOxx75ZfZusLX5d2TeAxRbVjp9uvwEwDSvn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+the+Understanding+of+Stress+Resistance+Mechanisms+in+Probiotics%3A+Relevance+for+the+Design+of+Functional+Food+Systems&rft.jtitle=Probiotics+and+antimicrobial+proteins&rft.au=Bustos%2C+Ana+Yanina&rft.au=Taranto%2C+Mar%C3%ADa+P%C3%ADa&rft.au=Gerez%2C+Carla+Luciana&rft.au=Agriopoulou%2C+Sofia&rft.date=2025-02-01&rft.issn=1867-1314&rft.eissn=1867-1314&rft_id=info:doi/10.1007%2Fs12602-024-10273-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-1306&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-1306&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-1306&client=summon