Recent Advances in the Understanding of Stress Resistance Mechanisms in Probiotics: Relevance for the Design of Functional Food Systems
In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through t...
Saved in:
Published in | Probiotics and antimicrobial proteins Vol. 17; no. 1; pp. 138 - 158 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1867-1306 1867-1314 1867-1314 |
DOI | 10.1007/s12602-024-10273-9 |
Cover
Abstract | In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 10
7
colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions. |
---|---|
AbstractList | In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 107 colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions.In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 107 colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions. In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 10 7 colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions. In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 10⁷ colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions. In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 107 colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions. In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which is a big challenge. The consumption of probiotics in the context of a balanced diet through the consumption of functional foods or through the intake of pharmaceutical preparations has proven to contribute to the improvement of human health, even contributing to the prevention of diseases. In order for probiotics to be considered suitable for consumption, they must contain a minimum concentration of viable cells, namely, at least 10 colony forming units of beneficial microbes per gram. Ensuring the viability of bacterial cells until the moment of consumption is the overriding priority of functional probiotic food manufacturers. Probiotic bacteria are subject to stress conditions not only during food manufacturing but also during gastrointestinal passage, which limit or even compromise their functionality. This paper first examines all the stressful conditions faced by probiotic cells in their production stages and related to the conditions present in the bioreactor fermentation and drying processes as well as factors related to the food matrix and storage. The stress situations faced by probiotic microorganisms during the gastrointestinal transit especially during stomach and intestinal residence are also analyzed. In order to understand the adaptation mechanisms of probiotic bacteria to gastrointestinal stress, intrinsic and adaptive mechanisms identified in probiotic strains in response to acid stress and to bile and bile acid stress are analyzed. In addition, improvement strategies for multiple stress tolerance of lactic acid bacteria through directions dealing with stress, accumulation of metabolites, use of protectants, and regulation of technological parameters are examined. Finally, the definition of postbiotics, inanimate microorganisms and/or their components conferring health benefits, is also introduced. Postbiotics include cell lysates, enzymes, and cell wall fragments derived from probiotic bacteria and may represent an alternative to the use of probiotics, when they do not tolerate stressful conditions. |
Author | Agriopoulou, Sofia Enshasy, Hesham Ali El Taranto, María Pía Bustos, Ana Yanina Smaoui, Slim Gerez, Carla Luciana Varzakas, Theodoros |
Author_xml | – sequence: 1 givenname: Ana Yanina surname: Bustos fullname: Bustos, Ana Yanina organization: Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL/UNSE-CONICET), Facultad de Agronomía y Agroindustrias (FAyA), Universidad Nacional de Santiago del Estero, Facultad de Humanidades, Ciencias Sociales y de La Salud (FHU), Universidad Nacional de Santiago del Estero – sequence: 2 givenname: María Pía surname: Taranto fullname: Taranto, María Pía organization: Centro de Referencia Para Lactobacilos (CONICET-CERELA) – sequence: 3 givenname: Carla Luciana surname: Gerez fullname: Gerez, Carla Luciana organization: Centro de Referencia Para Lactobacilos (CONICET-CERELA) – sequence: 4 givenname: Sofia surname: Agriopoulou fullname: Agriopoulou, Sofia organization: Department of Food Science and Technology, University of the Peloponnese – sequence: 5 givenname: Slim surname: Smaoui fullname: Smaoui, Slim organization: Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax – sequence: 6 givenname: Theodoros surname: Varzakas fullname: Varzakas, Theodoros email: t.varzakas@uop.gr organization: Department of Food Science and Technology, University of the Peloponnese – sequence: 7 givenname: Hesham Ali El surname: Enshasy fullname: Enshasy, Hesham Ali El organization: Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), City of Scientific Research and Technology Applications (SRTA) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38829565$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vFSEUhiemxn7oH3BhSNy4GeVjYBg3pqm9alKjae2acOFwL80MtDDTpL-gf1vm3rZqF3UFged9cjic_WonxABV9Zrg9wTj9kMmVGBaY9rUBNOW1d2zao9I0daEkWbnYY_FbrWf8wXGQjCKX1S7TEraccH3qttTMBBGdGivdTCQkQ9oXAM6DxZSHnWwPqxQdOhsTJAzOoXs52MD6DuYtQ4-D5vQzxSXPo7e5I8F6mGjQy6mje5zia3C7FlMwYw-Bt2jRYwWnd3kEYb8snrudJ_h1d16UJ0vjn8dfa1Pfnz5dnR4UhuO5VhLp1vBuaaWm6XGmlhuje6o64xpzdI4KxtBW-IkExhE10hHjdWgpQTqmGMH1aet93JaDmDntyfdq8vkB51uVNRe_XsT_Fqt4rUiRDLKJS-Gd3eGFK8myKMafDbQ9zpAnLIqHcaMs5bK_6NYNKShmImCvn2EXsQplS4ViohWEtqJWfjm7-ofyr7_zwLILWBSzDmBU8aPeu53eYzvFcFqHh21HR1VRkdtRkd1JUofRe_tT4bYNpQLHFaQ_pT9ROo35AbYVA |
CitedBy_id | crossref_primary_10_1016_j_fbio_2024_105338 crossref_primary_10_3390_antiox13111386 crossref_primary_10_1016_j_fbp_2024_10_004 crossref_primary_10_1016_j_microb_2024_100138 crossref_primary_10_1016_j_fbio_2024_105145 crossref_primary_10_3390_foods13223562 crossref_primary_10_3390_biotech13030029 crossref_primary_10_1080_10408398_2024_2447304 crossref_primary_10_3390_foods13223570 crossref_primary_10_1016_j_foodres_2025_115806 crossref_primary_10_3390_ani14131981 |
Cites_doi | 10.1016/j.heliyon.2022.e10733 10.1146/annurev-food-032818-121140 10.3389/fmicb.2021.731410 10.33263/BRIAC133.267 10.1016/j.lwt.2023.115460 10.1016/j.carbpol.2021.117843 10.1016/j.jbiosc.2008.12.015 10.3389/fmicb.2021.818468 10.1016/j.foodres.2018.07.044 10.1007/s12602-023-10042-0 10.3389/fmicb.2017.01067 10.1007/978-981-13-7832-4_11 10.1111/1471-0307.12735 10.1111/j.1365-2621.2001.tb15186.x 10.1002/pmic.200300497 10.1016/j.cryobiol.2022.01.003 10.1590/1981-6723.02423 10.3168/jds.2019-17685 10.1128/MMBR.00076-15 10.1080/10408398.2022.2047883 10.1016/j.ijfoodmicro.2007.06.016 10.3390/foods12010165 10.3389/fmicb.2018.01944 10.1007/s10295-019-02226-x 10.3390/ijms22041780 10.1007/s12602-021-09775-7 10.1111/jam.12577 10.3389/fmicb.2013.00396 10.1038/s41598-020-58069-5 10.3390/ijms17060867 10.1007/s10529-011-0696-3 10.1007/978-3-319-24780-9_22 10.1016/j.foodres.2015.10.001 10.1016/j.idairyj.2004.02.001 10.1016/j.jprot.2019.103600 10.1016/j.fm.2017.03.020 10.1080/10408398.2023.2260467 10.1016/j.jfoodeng.2016.05.023 10.1007/s00284-021-02648-w 10.1016/j.resmic.2006.04.002 10.3390/pharmaceutics15030884 10.1016/j.mimet.2006.02.017 10.1111/febs.14434 10.1186/1471-2180-11-63 10.1016/j.arabjc.2020.09.030 10.1016/j.jff.2014.04.030 10.1128/JB.188.5.1979-1986.2006 10.1016/j.jfoodeng.2011.10.017 10.1371/journal.ppat.1008058 10.3390/microorganisms11071823 10.1038/s41579-022-00805-x 10.1007/s12602-023-10045-x 10.1002/mnfr.201600240 10.3389/fmicb.2023.1152389 10.1016/j.foodres.2018.06.035 10.1186/s12934-020-01426-w 10.1073/pnas.1401941111 10.1128/AEM.00886-07 10.1016/j.biopha.2018.12.104 10.1128/JB.01618-09 10.1080/19476337.2020.1859619 10.3390/foods11152330 10.1016/j.cofs.2019.12.003 10.1080/10408398.2022.2056727 10.1371/journal.pone.0179242 10.1016/j.crfs.2021.04.004 10.3390/molecules23040741 10.1016/j.foodhyd.2020.106496 10.1016/j.fm.2015.10.003 10.1128/AEM.06060-11 10.1007/978-94-017-2029-8_12 10.3390/antibiotics12040635 10.1016/j.idairyj.2004.08.004 10.1016/j.tim.2019.12.008 10.1007/s00253-020-10976-3 10.1111/jam.13399 10.1046/j.1365-2672.2003.01962.x 10.1080/10408398.2023.2202256 10.1093/lambio/ovad062 10.1128/AEM.69.1.1-9.2003 10.1039/D2FO03215E 10.1021/bp060268f 10.1016/B978-0-12-817190-5.00006-9 10.4014/jmb.1912.12053 10.3390/app132011541 10.1111/jam.13465 10.1080/07373930802566002 10.1016/j.molliq.2022.121175 10.3390/nu11071613 10.1007/s10295-012-1104-2 10.1016/j.tifs.2012.05.006 10.30721/fsab2023.v6.i2.269 10.1080/07373937.2012.684226 10.1007/s12602-023-10117-y 10.1016/bs.afnr.2020.06.004 10.3168/jds.2021-21546 10.3389/fcimb.2021.609722 10.1080/07373937.2022.2155971 10.1007/s10529-019-02729-8 10.1016/j.foodres.2013.09.043 10.1128/AEM.66.6.2605-2612.2000 10.3389/fimmu.2016.00633 10.3390/microorganisms11122896 10.1093/femsle/fny217 10.1159/000485089 10.1128/AEM.69.7.4285-4290.2003 10.1128/AEM.02626-05 10.1038/s41598-020-76171-6 10.1111/1541-4337.12554 10.1111/j.1365-2672.2008.03744.x 10.1016/j.lwt.2017.12.063 10.1128/AEM.72.3.2170-2177.2006 10.1007/s10529-015-2018-7 10.3390/molecules28031413 10.1007/s11274-023-03625-0 10.1007/s12602-023-10189-w 10.1080/10942912.2023.2254521 10.1016/j.femsre.2004.09.003 10.1016/j.jprot.2011.11.009 10.3390/proteomes9010010 10.1016/j.cgh.2018.01.018 10.1111/1751-7915.13265 10.1371/journal.pone.0157778 10.1128/AEM.65.5.2078-2083.1999 10.1371/journal.pone.0117702 10.1016/j.foodres.2013.01.028 10.1016/j.idairyj.2005.09.008 10.1016/j.ijfoodmicro.2008.02.024 10.1016/j.lwt.2016.11.057 10.1155/2023/5597647 10.1007/s13197-021-05259-2 10.1002/jsfa.12168 10.3389/fmicb.2016.01944 10.1016/j.ijpharm.2023.123100 10.1007/s11947-021-02753-5 10.1016/j.foodres.2011.03.053 10.1007/s12602-018-9492-x 10.1007/s12602-022-09981-x 10.1016/j.nfs.2023.04.003 10.1073/pnas.0804437105 10.1016/j.idairyj.2020.104865 10.3390/fermentation6040121 10.1016/j.tifs.2011.01.009 10.1111/1541-4337.12613 10.1111/1751-7915.12132 10.1002/fsn3.762 10.1016/j.fm.2018.02.017 10.1021/pr0704940 10.1007/s12602-023-10104-3 10.1016/j.idairyj.2008.10.008 10.2174/97816810883891210101 10.1111/jam.15251 10.3389/fvets.2020.602280 10.1128/AEM.66.6.2330-2335.2000 10.3390/microorganisms11040996 10.1007/s00253-019-10226-1 10.1021/bp049559j 10.1080/10408398.2019.1580673 10.1371/journal.pone.0099189 10.1016/j.lwt.2019.05.128 10.1111/j.1574-6976.2002.tb00598.x 10.1046/j.1365-2672.2002.01747.x 10.1016/j.focha.2023.100428 10.3390/ijms23074008 10.1016/j.jbiotec.2008.07.1788 10.1128/AEM.02259-07 10.1111/lam.12418 10.1006/cryo.2001.2343 10.1007/s12602-022-09983-9 10.1186/s12934-019-1206-x 10.1128/AEM.00748-16 10.1016/j.foodres.2023.113785 10.1146/annurev-food-022811-101255 10.1186/s12866-020-01920-6 10.1080/10826068.2020.1861009 10.1080/87559129.2023.2202405 10.1007/s10529-012-0932-5 10.1016/j.ijfoodmicro.2014.09.017 10.1002/slct.202103198 10.1016/j.ejbt.2015.06.005 10.1016/j.fm.2014.12.005 10.1111/1462-2920.14445 10.3390/su151310154 10.1128/mSphere.00140-18 10.3390/pr7030127 10.3920/BM2022.0074 10.1080/07373931003613726 10.1099/mic.0.052209-0 10.1007/s00284-020-02053-9 10.1186/1477-5956-8-37 10.5772/intechopen.99382 10.3390/molecules26185695 10.1016/j.ijbiomac.2022.11.003 10.3389/fmicb.2019.00841 10.1016/j.ijpharm.2016.04.002 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). Copyright Springer Nature B.V. Feb 2025 The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Springer Nature B.V. Feb 2025 – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1007/s12602-024-10273-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1867-1314 |
EndPage | 158 |
ExternalDocumentID | PMC11832585 38829565 10_1007_s12602_024_10273_9 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: University of Peloponnese |
GroupedDBID | --- -56 -5G -BR -EM -~C 06C 06D 0R~ 0VY 203 29O 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40E 53G 67N 6NX 875 96X AAAVM AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AUKKA AVWKF AXYYD AYJHY AZFZN BA0 BBNVY BENPR BGNMA BHPHI C6C CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD EN4 ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y M7P NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM PT4 QOR QOS R89 RIG RLLFE ROL RSV S1Z S27 S3A S3B SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7U Z7V Z7W ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PQGLB 7X8 PUEGO 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c508t-8fa7655a2d5cba0a1d5dca92f9cc7cbcfd846271f8360e6948f2cdaea88e2f3f3 |
IEDL.DBID | AGYKE |
ISSN | 1867-1306 1867-1314 |
IngestDate | Thu Aug 21 18:28:34 EDT 2025 Fri Jul 11 18:39:54 EDT 2025 Fri Sep 05 14:02:14 EDT 2025 Fri Jul 25 10:47:27 EDT 2025 Mon Jul 21 05:57:11 EDT 2025 Thu Apr 24 22:56:02 EDT 2025 Tue Jul 01 02:44:55 EDT 2025 Fri Feb 21 02:47:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Probiotics Stress conditions Gastrointestinal passage Functional foods Postbiotics |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-8fa7655a2d5cba0a1d5dca92f9cc7cbcfd846271f8360e6948f2cdaea88e2f3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s12602-024-10273-9 |
PMID | 38829565 |
PQID | 3167812968 |
PQPubID | 2044189 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11832585 proquest_miscellaneous_3200353728 proquest_miscellaneous_3064142036 proquest_journals_3167812968 pubmed_primary_38829565 crossref_citationtrail_10_1007_s12602_024_10273_9 crossref_primary_10_1007_s12602_024_10273_9 springer_journals_10_1007_s12602_024_10273_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Probiotics and antimicrobial proteins |
PublicationTitleAbbrev | Probiotics & Antimicro. Prot |
PublicationTitleAlternate | Probiotics Antimicrob Proteins |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | A Gómez Zavaglia (10273_CR112) 2002; 93 BH Nataraj (10273_CR197) 2020; 19 F Gaucher (10273_CR139) 2019; 10 M Moradi (10273_CR206) 2020; 19 T Chen (10273_CR93) 2020; 20 L Di (10273_CR175) 2023; 41 K Whitehead (10273_CR129) 2008; 74 E Hamon (10273_CR143) 2011; 11 GE Gardiner (10273_CR183) 2000; 66 T Zotta (10273_CR165) 2018; 76 JJ Ahire (10273_CR91) 2021; 13 Z Zhu (10273_CR167) 2019; 46 LN Chai (10273_CR98) 2023; 11 V Elisashvili (10273_CR14) 2019; 11 Y Tsunetsugu-Yokota (10273_CR82) 2016; 7 HY Sun (10273_CR173) 2021; 260 AM Hernández-Alcántara (10273_CR73) 2018; 91 MK Tripathi (10273_CR80) 2014; 9 P Meena (10273_CR51) 2023; 372 AMNL Abesinghe (10273_CR57) 2020; 6 O Jiménez-González (10273_CR63) 2022; 8 HE Verón (10273_CR40) 2023; 31 RM Wang (10273_CR110) 2018; 365 LA Bøhle (10273_CR144) 2010; 8 AA Sesín (10273_CR92) 2023; 26 FF Khan (10273_CR38) 2023; 15 J Perdana (10273_CR178) 2013; 54 MP Taranto (10273_CR137) 2003; 95 NS Rao (10273_CR12) 2023; 14 C Leylak (10273_CR180) 2021; 112 AY Bustos (10273_CR115) 2015; 77 H Hosseini (10273_CR200) 2023 FL Pena (10273_CR56) 2021; 74 K Ninomiya (10273_CR21) 2009; 107 BB Bagon (10273_CR118) 2021; 26 CA Morgan (10273_CR154) 2006; 66 S Derzelle (10273_CR169) 2003; 69 H Velly (10273_CR147) 2014; 117 R Wang (10273_CR9) 2023; 189 BM Corcoran (10273_CR158) 2006; 72 CP Barros (10273_CR198) 2020; 32 K Lee (10273_CR145) 2008; 137 J Ma (10273_CR26) 2021; 19 C Santivarangkna (10273_CR179) 2007; 23 D Fiocco (10273_CR8) 2020; 60 M Mangiagalli (10273_CR83) 2018; 285 AGD Cruz (10273_CR66) 2013; 51 NZ Guan (10273_CR85) 2020; 104 MŽ Grujović (10273_CR68) 2019; 41 AR Ortiz Camargo (10273_CR17) 2023; 14 F Gomand (10273_CR49) 2019; 10 S Song (10273_CR170) 2014; 191 S Han (10273_CR88) 2021; 11 R Jena (10273_CR53) 2023 K Molan (10273_CR75) 2022; 23 W Chen (10273_CR76) 2019 NV Kanimozhi (10273_CR174) 2023; 3 AS Carvalho (10273_CR171) 2004; 14 X Gao (10273_CR190) 2022; 132 A Abbasi (10273_CR205) 2021 HA Perez (10273_CR86) 2018; 23 MA Baig (10273_CR123) 2021; 12 S Jung (10273_CR124) 2020; 10 J Kiepś (10273_CR22) 2023; 13 A O’Callaghan (10273_CR2) 2016; 7 AY Bustos (10273_CR109) 2022; 7 RD Sleator (10273_CR160) 1999; 65 PJ Yeboah (10273_CR45) 2023; 6 H Aryaee (10273_CR36) 2023; 2023 P Cichońska (10273_CR77) 2023; 11 S Sabahi (10273_CR201) 2023; 63 CM Cremers (10273_CR108) 2014; 111 RD Hills (10273_CR4) 2019; 11 M Kim (10273_CR23) 2018; 6 M Begley (10273_CR140) 2005; 29 G Broeckx (10273_CR34) 2016; 505 MJ Chen (10273_CR72) 2017; 66 Y Wei (10273_CR120) 2019; 18 H Wang (10273_CR62) 2022; 105 L He (10273_CR133) 2017; 44 MA Correa Deza (10273_CR155) 2021; 78 H Zelaya (10273_CR187) 2016; 7 MC Di Gregorio (10273_CR101) 2021; 22 DJ Dailin (10273_CR20) 2020; 13 W Lapsiri (10273_CR192) 2012; 30 K Vorländer (10273_CR61) 2023; 15 E Ananta (10273_CR184) 2005; 15 C Barria (10273_CR81) 2013; 159 M Ahi (10273_CR194) 2010; 28 AC Ouwehand (10273_CR97) 2001; 66 N Haddaji (10273_CR70) 2015; 7 AY Bustos (10273_CR106) 2011; 33 Z Ai (10273_CR150) 2017; 77 B Liang (10273_CR1) 2023; 15 MA Correa Deza (10273_CR149) 2023; 39 T Hellebois (10273_CR47) 2020; 94 J Koponen (10273_CR125) 2012; 75 MA Correa Deza (10273_CR189) 2017; 12 H-T Nguyen (10273_CR24) 2016; 17 C Wu (10273_CR111) 2012; 39 S Obruca (10273_CR35) 2016; 11 S Misra (10273_CR65) 2022; 15 AY Bustos (10273_CR107) 2012; 34 AP Dysin (10273_CR42) 2023; 28 B Bagon (10273_CR119) 2021; 9 AÁ Conde-Islas (10273_CR191) 2019; 7 M De Angelis (10273_CR25) 2004; 4 RF Stefanello (10273_CR172) 2019; 115 T Zotta (10273_CR162) 2014; 9 C Sohlenkamp (10273_CR134) 2017 B Min (10273_CR27) 2020; 30 HM Chang (10273_CR58) 2021; 7 M Succi (10273_CR30) 2017; 8 EPR Pereira (10273_CR55) 2023; 176 C Boontun (10273_CR46) 2020 10273_CR64 S Louesdon (10273_CR78) 2015; 8 S Sharifi (10273_CR181) 2021; 113 I Sensoy (10273_CR96) 2021; 4 J Kiepś (10273_CR13) 2022; 11 L Ruiz (10273_CR130) 2013; 4 N Fu (10273_CR182) 2011; 44 U Wendel (10273_CR29) 2022; 12 10273_CR59 T Vila (10273_CR87) 2019; 15 S Kato (10273_CR113) 1864; 3 V Ferrando (10273_CR69) 2015; 48 K Shimizu (10273_CR114) 2023; 76 G Bisson (10273_CR18) 2023; 14 NN Alves (10273_CR37) 2016; 189 AIM Schutyser (10273_CR193) 2012; 27 S Kaveh (10273_CR41) 2023; 15 A Ejaz (10273_CR44) 2023; 26 AY Bustos (10273_CR94) 2018; 112 RD Sleator (10273_CR157) 2002; 26 H Kaur (10273_CR39) 2023; 14 V Ferrando (10273_CR71) 2016; 54 D Chand (10273_CR136) 1861; 1 S Huang (10273_CR148) 2016; 82 CI Vénica (10273_CR48) 2023; 103 M Mbye (10273_CR95) 2020; 19 JR Broadbent (10273_CR126) 2010; 192 GQ Wang (10273_CR117) 2020; 103 K Papadimitriou (10273_CR90) 2016; 80 J Bi (10273_CR103) 2016; 38 T Hagi (10273_CR128) 2020; 104 BV Jones (10273_CR141) 2008; 105 DJ Dailin (10273_CR19) 2023; 20 J Yuan (10273_CR132) 2007; 7 N Dinkçi (10273_CR60) 2019 JDD Lindner (10273_CR156) 2007; 120 P Kurdi (10273_CR105) 2006; 188 H Pourjafar (10273_CR79) 2023; 63 C Alcántara (10273_CR153) 2018; 9 C In Seong (10273_CR168) 2019; 112 C De Simone (10273_CR5) 2018; 17 S Peighambardoust (10273_CR152) 2011; 22 K Vorländer (10273_CR10) 2023; 642 EO Sunny-Roberts (10273_CR185) 2009; 19 JZ Goldenberg (10273_CR7) 2017; 2 D Kothari (10273_CR196) 2019; 111 MB Pedersen (10273_CR166) 2012; 3 Z Cheng (10273_CR50) 2022; 105 B Hu (10273_CR138) 2015; 61 SL Collins (10273_CR100) 2023; 21 J Jin (10273_CR122) 2015; 10 B Sanchez (10273_CR6) 2017; 61 MP Taranto (10273_CR102) 2006; 157 L Noriega (10273_CR131) 2006; 16 B Riveros (10273_CR186) 2009; 27 B Sánchez (10273_CR121) 2007; 73 A Abbasi (10273_CR204) 2022; 223 JA Imlay (10273_CR163) 2019; 21 S O’Flaherty (10273_CR142) 2018; 3 D Rishabh (10273_CR32) 2023; 60 L Bircher (10273_CR31) 2018; 11 DY Ying (10273_CR195) 2012; 109 GD Tirta (10273_CR3) 2023; 12 JM Benarroch (10273_CR104) 2020; 28 VM Sheehan (10273_CR161) 2006; 72 Y Sun (10273_CR89) 2016 CU Kumar (10273_CR52) 2022; 87 PP Gao (10273_CR54) 2023 10273_CR176 R Prete (10273_CR99) 2020; 10 F Fonseca (10273_CR146) 2001; 43 T Zotta (10273_CR164) 2017; 122 I Jonathan (10273_CR28) 2023; 1255 T Zotta (10273_CR151) 2008; 124 A Abbasi (10273_CR202) 2024; 40 C Santivarangkna (10273_CR177) 2008; 105 MR Kathiriya (10273_CR74) 2023; 15 S Agriopoulou (10273_CR33) 2023; 11 L Polo (10273_CR84) 2017; 122 H Oldenhof (10273_CR188) 2005; 21 MA Ozma (10273_CR203) 2022; 13 10273_CR43 K Kaźmierczak Siedlecka (10273_CR15) 2020; 77 SW Park (10273_CR199) 2024; 16 A Ballini (10273_CR67) 2023; 12 C Castro-López (10273_CR11) 2023; 15 RD Sleator (10273_CR159) 2003; 69 E Sanhueza (10273_CR16) 2015; 18 SA Ali (10273_CR116) 2020; 213 L Ruiz (10273_CR127) 2012; 78 H Siegumfeldt (10273_CR135) 2000; 66 |
References_xml | – volume: 8 start-page: e10733 issue: 9 year: 2022 ident: 10273_CR63 publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e10733 – volume: 10 start-page: 285 year: 2019 ident: 10273_CR49 publication-title: Annu Rev Food Sci Technol doi: 10.1146/annurev-food-032818-121140 – volume: 12 start-page: 731410 year: 2021 ident: 10273_CR123 publication-title: Front Microbiol doi: 10.3389/fmicb.2021.731410 – volume: 13 start-page: 267 issue: 3 year: 2022 ident: 10273_CR203 publication-title: Biointerface Res Appl Chem doi: 10.33263/BRIAC133.267 – volume: 189 start-page: 115460 year: 2023 ident: 10273_CR9 publication-title: LWT doi: 10.1016/j.lwt.2023.115460 – volume: 260 start-page: 10 year: 2021 ident: 10273_CR173 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2021.117843 – volume: 107 start-page: 535 year: 2009 ident: 10273_CR21 publication-title: J Biosci Bioeng doi: 10.1016/j.jbiosc.2008.12.015 – volume: 12 start-page: 818468 year: 2022 ident: 10273_CR29 publication-title: Front Microbiol doi: 10.3389/fmicb.2021.818468 – volume: 115 start-page: 90 year: 2019 ident: 10273_CR172 publication-title: Food Res Int doi: 10.1016/j.foodres.2018.07.044 – volume: 16 start-page: 1 year: 2024 ident: 10273_CR199 publication-title: Probiotics Antimicrob Proteins doi: 10.1007/s12602-023-10042-0 – volume: 8 start-page: 1067 year: 2017 ident: 10273_CR30 publication-title: Front Microbiol doi: 10.3389/fmicb.2017.01067 – start-page: 371 volume-title: Lactic acid bacteria, omics and functional evaluation year: 2019 ident: 10273_CR76 doi: 10.1007/978-981-13-7832-4_11 – volume: 74 start-page: 170 issue: 1 year: 2021 ident: 10273_CR56 publication-title: Int J Dairy Technol doi: 10.1111/1471-0307.12735 – volume: 66 start-page: 856 issue: 6 year: 2001 ident: 10273_CR97 publication-title: J Food Sci doi: 10.1111/j.1365-2621.2001.tb15186.x – volume: 4 start-page: 106 year: 2004 ident: 10273_CR25 publication-title: A review Proteomics doi: 10.1002/pmic.200300497 – volume: 105 start-page: 1 year: 2022 ident: 10273_CR50 publication-title: Cryobiology doi: 10.1016/j.cryobiol.2022.01.003 – volume: 26 start-page: e2023024 year: 2023 ident: 10273_CR92 publication-title: Braz J Food Technol doi: 10.1590/1981-6723.02423 – volume: 103 start-page: 3066 issue: 4 year: 2020 ident: 10273_CR117 publication-title: J Dairy Sci doi: 10.3168/jds.2019-17685 – volume: 80 start-page: 837 issue: 3 year: 2016 ident: 10273_CR90 publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00076-15 – volume: 63 start-page: 8194 issue: 26 year: 2023 ident: 10273_CR79 publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2022.2047883 – volume: 120 start-page: 13 issue: 1–2 year: 2007 ident: 10273_CR156 publication-title: Int J Food Microbiol doi: 10.1016/j.ijfoodmicro.2007.06.016 – volume: 1 start-page: 2981 issue: 1 Pt A year: 1861 ident: 10273_CR136 publication-title: Biochim Biophys Acta – volume: 12 start-page: 165 year: 2023 ident: 10273_CR3 publication-title: Foods doi: 10.3390/foods12010165 – volume: 9 start-page: 1944 year: 2018 ident: 10273_CR153 publication-title: Front Microbiol doi: 10.3389/fmicb.2018.01944 – volume: 46 start-page: 1621 year: 2019 ident: 10273_CR167 publication-title: J Ind Microbiol Biotechnol doi: 10.1007/s10295-019-02226-x – volume: 22 start-page: 1780 year: 2021 ident: 10273_CR101 publication-title: Int J Mol Sci doi: 10.3390/ijms22041780 – volume: 13 start-page: 1413 issue: 5 year: 2021 ident: 10273_CR91 publication-title: Probiotics Antimicrob Proteins doi: 10.1007/s12602-021-09775-7 – volume: 117 start-page: 729 issue: 3 year: 2014 ident: 10273_CR147 publication-title: J Appl Microbiol doi: 10.1111/jam.12577 – volume: 4 start-page: 396 year: 2013 ident: 10273_CR130 publication-title: Front Microbiol doi: 10.3389/fmicb.2013.00396 – volume: 10 start-page: 1165 issue: 1 year: 2020 ident: 10273_CR99 publication-title: Sci Rep doi: 10.1038/s41598-020-58069-5 – volume: 17 start-page: 867 year: 2016 ident: 10273_CR24 publication-title: Int J Mol Sci doi: 10.3390/ijms17060867 – volume: 33 start-page: 2265 year: 2011 ident: 10273_CR106 publication-title: Biotechnol Lett doi: 10.1007/s10529-011-0696-3 – start-page: 459 volume-title: Regulation of Ca2+-ATPases, V-ATPases and F-ATPases year: 2016 ident: 10273_CR89 doi: 10.1007/978-3-319-24780-9_22 – volume: 77 start-page: 599 year: 2015 ident: 10273_CR115 publication-title: Food Res Int doi: 10.1016/j.foodres.2015.10.001 – volume: 14 start-page: 835 year: 2004 ident: 10273_CR171 publication-title: Int Dairy J doi: 10.1016/j.idairyj.2004.02.001 – volume: 213 start-page: 103600 year: 2020 ident: 10273_CR116 publication-title: J Proteomics doi: 10.1016/j.jprot.2019.103600 – volume: 66 start-page: 20 year: 2017 ident: 10273_CR72 publication-title: Food Microbiol doi: 10.1016/j.fm.2017.03.020 – year: 2023 ident: 10273_CR54 publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2023.2260467 – volume: 189 start-page: 45 year: 2016 ident: 10273_CR37 publication-title: J Food Eng doi: 10.1016/j.jfoodeng.2016.05.023 – volume: 78 start-page: 3863 year: 2021 ident: 10273_CR155 publication-title: Curr Microbiol doi: 10.1007/s00284-021-02648-w – volume: 157 start-page: 720 issue: 8 year: 2006 ident: 10273_CR102 publication-title: Res Microbiol doi: 10.1016/j.resmic.2006.04.002 – volume: 15 start-page: 884 issue: 3 year: 2023 ident: 10273_CR61 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics15030884 – volume: 66 start-page: 183 issue: 2 year: 2006 ident: 10273_CR154 publication-title: J Microbiol Methods doi: 10.1016/j.mimet.2006.02.017 – volume: 285 start-page: 1653 issue: 9 year: 2018 ident: 10273_CR83 publication-title: FEBS J doi: 10.1111/febs.14434 – volume: 11 start-page: 63 issue: 1 year: 2011 ident: 10273_CR143 publication-title: BMC Microbiol doi: 10.1186/1471-2180-11-63 – volume: 13 start-page: 8513 year: 2020 ident: 10273_CR20 publication-title: Arab J Chem doi: 10.1016/j.arabjc.2020.09.030 – volume: 9 start-page: 225 year: 2014 ident: 10273_CR80 publication-title: J Funct Foods doi: 10.1016/j.jff.2014.04.030 – volume: 188 start-page: 1979 year: 2006 ident: 10273_CR105 publication-title: J Bacteriol doi: 10.1128/JB.188.5.1979-1986.2006 – volume: 109 start-page: 597 year: 2012 ident: 10273_CR195 publication-title: J Food Eng doi: 10.1016/j.jfoodeng.2011.10.017 – volume: 15 start-page: e1008058 issue: 11 year: 2019 ident: 10273_CR87 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1008058 – volume: 11 start-page: 1823 issue: 7 year: 2023 ident: 10273_CR98 publication-title: Microorganisms doi: 10.3390/microorganisms11071823 – volume: 21 start-page: 236 issue: 4 year: 2023 ident: 10273_CR100 publication-title: Nat Rev Microbiol doi: 10.1038/s41579-022-00805-x – volume: 15 start-page: 1626 year: 2023 ident: 10273_CR1 publication-title: Probiotics Antimicrob Proteins doi: 10.1007/s12602-023-10045-x – volume: 61 start-page: 1600240 year: 2017 ident: 10273_CR6 publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.201600240 – volume: 14 start-page: 1152389 year: 2023 ident: 10273_CR12 publication-title: Front Microbiol doi: 10.3389/fmicb.2023.1152389 – volume: 87 start-page: 131 issue: 2 year: 2022 ident: 10273_CR52 publication-title: Biochemistry – volume: 112 start-page: 250 year: 2018 ident: 10273_CR94 publication-title: Food Res Int doi: 10.1016/j.foodres.2018.06.035 – volume: 19 start-page: 168 year: 2020 ident: 10273_CR197 publication-title: Microb Cell Fact doi: 10.1186/s12934-020-01426-w – start-page: 1 volume-title: In Biogenesis of fatty acids, lipids and membranes year: 2017 ident: 10273_CR134 – volume: 111 start-page: E1610 issue: 16 year: 2014 ident: 10273_CR108 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1401941111 – volume: 73 start-page: 6450 issue: 20 year: 2007 ident: 10273_CR121 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00886-07 – volume: 2 start-page: CD006095 year: 2017 ident: 10273_CR7 publication-title: Cochrane Database Syst Rev – volume: 111 start-page: 537 year: 2019 ident: 10273_CR196 publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2018.12.104 – volume: 192 start-page: 2445 year: 2010 ident: 10273_CR126 publication-title: J Bacteriol doi: 10.1128/JB.01618-09 – volume: 19 start-page: 72 year: 2021 ident: 10273_CR26 publication-title: CYTA J Food doi: 10.1080/19476337.2020.1859619 – volume: 11 start-page: 2330 issue: 15 year: 2022 ident: 10273_CR13 publication-title: Foods doi: 10.3390/foods11152330 – volume: 32 start-page: 1 year: 2020 ident: 10273_CR198 publication-title: Curr Opin Food Sci doi: 10.1016/j.cofs.2019.12.003 – volume: 63 start-page: 8875 issue: 26 year: 2023 ident: 10273_CR201 publication-title: Crit Rev Food Sci Nut doi: 10.1080/10408398.2022.2056727 – volume: 12 start-page: e0179242 issue: 6 year: 2017 ident: 10273_CR189 publication-title: PLoS ONE doi: 10.1371/journal.pone.0179242 – volume: 4 start-page: 308 year: 2021 ident: 10273_CR96 publication-title: Curr Res Food Sci doi: 10.1016/j.crfs.2021.04.004 – volume: 23 start-page: 741 issue: 4 year: 2018 ident: 10273_CR86 publication-title: Molecules doi: 10.3390/molecules23040741 – volume: 113 start-page: 106496 year: 2021 ident: 10273_CR181 publication-title: Food Hydrocoll doi: 10.1016/j.foodhyd.2020.106496 – volume: 54 start-page: 154 year: 2016 ident: 10273_CR71 publication-title: Food Microbiol doi: 10.1016/j.fm.2015.10.003 – volume: 78 start-page: 1123 year: 2012 ident: 10273_CR127 publication-title: App Environ Microbiol doi: 10.1128/AEM.06060-11 – ident: 10273_CR176 doi: 10.1007/978-94-017-2029-8_12 – volume: 1255 start-page: 012068 issue: 1 year: 2023 ident: 10273_CR28 publication-title: In IOP Conference Series: Earth and Environmental Science – volume: 12 start-page: 635 issue: 4 year: 2023 ident: 10273_CR67 publication-title: Antibiotics doi: 10.3390/antibiotics12040635 – volume: 15 start-page: 399 year: 2005 ident: 10273_CR184 publication-title: Int Dairy J doi: 10.1016/j.idairyj.2004.08.004 – volume: 28 start-page: 304 year: 2020 ident: 10273_CR104 publication-title: Trends Microbiol doi: 10.1016/j.tim.2019.12.008 – volume: 104 start-page: 10641 year: 2020 ident: 10273_CR128 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-020-10976-3 – volume: 122 start-page: 857 year: 2017 ident: 10273_CR164 publication-title: J Appl Microbiol doi: 10.1111/jam.13399 – volume: 95 start-page: 86 year: 2003 ident: 10273_CR137 publication-title: J Appl Microbiol doi: 10.1046/j.1365-2672.2003.01962.x – ident: 10273_CR64 doi: 10.1080/10408398.2023.2202256 – volume: 76 start-page: ovad062 issue: 6 year: 2023 ident: 10273_CR114 publication-title: Lett Appl Microbiol doi: 10.1093/lambio/ovad062 – volume: 69 start-page: 1 issue: 1 year: 2003 ident: 10273_CR159 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.1.1-9.2003 – volume: 14 start-page: 2128 year: 2023 ident: 10273_CR18 publication-title: Food Funct doi: 10.1039/D2FO03215E – volume: 23 start-page: 302 issue: 2 year: 2007 ident: 10273_CR179 publication-title: Biotechnol Prog doi: 10.1021/bp060268f – start-page: 201 volume-title: Food quality and shelf life year: 2019 ident: 10273_CR60 doi: 10.1016/B978-0-12-817190-5.00006-9 – volume: 30 start-page: 739 year: 2020 ident: 10273_CR27 publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.1912.12053 – volume: 13 start-page: 11541 issue: 20 year: 2023 ident: 10273_CR22 publication-title: Appl Sci doi: 10.3390/app132011541 – volume: 14 start-page: 100704 year: 2023 ident: 10273_CR39 publication-title: J Agric Food Res – volume: 20 start-page: 208 issue: 1 year: 2023 ident: 10273_CR19 publication-title: Biosci Res – volume: 122 start-page: 1603 issue: 6 year: 2017 ident: 10273_CR84 publication-title: J Appl Microbiol doi: 10.1111/jam.13465 – volume: 7 start-page: 925 year: 2016 ident: 10273_CR2 publication-title: Front Microbiol – volume: 27 start-page: 123 issue: 1 year: 2009 ident: 10273_CR186 publication-title: Dry Technol doi: 10.1080/07373930802566002 – volume: 372 start-page: 121175 year: 2023 ident: 10273_CR51 publication-title: J Mol Liq doi: 10.1016/j.molliq.2022.121175 – volume: 11 start-page: 1613 issue: 7 year: 2019 ident: 10273_CR4 publication-title: Nutrients doi: 10.3390/nu11071613 – volume: 39 start-page: 1031 issue: 7 year: 2012 ident: 10273_CR111 publication-title: J Ind Microbiol Biotechnol doi: 10.1007/s10295-012-1104-2 – volume: 27 start-page: 73 issue: 2 year: 2012 ident: 10273_CR193 publication-title: Trends Food Sci Technol doi: 10.1016/j.tifs.2012.05.006 – volume: 6 start-page: 215 issue: 2 year: 2023 ident: 10273_CR45 publication-title: Food Sci Appl Biotechnol doi: 10.30721/fsab2023.v6.i2.269 – volume: 30 start-page: 1407 year: 2012 ident: 10273_CR192 publication-title: Dry Technol doi: 10.1080/07373937.2012.684226 – year: 2023 ident: 10273_CR200 publication-title: Probiotics and Antimicrobial Proteins doi: 10.1007/s12602-023-10117-y – volume: 94 start-page: 161 year: 2020 ident: 10273_CR47 publication-title: Adv Food Nutr Res doi: 10.1016/bs.afnr.2020.06.004 – volume: 105 start-page: 7308 issue: 9 year: 2022 ident: 10273_CR62 publication-title: J Dairy Sci doi: 10.3168/jds.2021-21546 – volume: 11 start-page: 609722 year: 2021 ident: 10273_CR88 publication-title: Front Cell Infect doi: 10.3389/fcimb.2021.609722 – volume: 41 start-page: 1444 issue: 9 year: 2023 ident: 10273_CR175 publication-title: Dry Technol doi: 10.1080/07373937.2022.2155971 – volume: 41 start-page: 1319 year: 2019 ident: 10273_CR68 publication-title: Biotechnol Lett doi: 10.1007/s10529-019-02729-8 – volume: 54 start-page: 1351 issue: 2 year: 2013 ident: 10273_CR178 publication-title: Food Res Int doi: 10.1016/j.foodres.2013.09.043 – volume: 66 start-page: 2605 year: 2000 ident: 10273_CR183 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.66.6.2605-2612.2000 – volume: 7 start-page: 633 year: 2016 ident: 10273_CR187 publication-title: Front Immunol doi: 10.3389/fimmu.2016.00633 – volume: 11 start-page: 2896 issue: 12 year: 2023 ident: 10273_CR33 publication-title: Microorganisms doi: 10.3390/microorganisms11122896 – volume: 365 start-page: fny217 issue: 19 year: 2018 ident: 10273_CR110 publication-title: FEMS Microbiol Lett doi: 10.1093/femsle/fny217 – volume: 44 start-page: 532 issue: 2 year: 2017 ident: 10273_CR133 publication-title: Cell Physiol Biochem doi: 10.1159/000485089 – volume: 69 start-page: 4285 year: 2003 ident: 10273_CR169 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.7.4285-4290.2003 – volume: 72 start-page: 5104 issue: 7 year: 2006 ident: 10273_CR158 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02626-05 – volume: 10 start-page: 19203 issue: 1 year: 2020 ident: 10273_CR124 publication-title: Sci Rep doi: 10.1038/s41598-020-76171-6 – volume: 19 start-page: 1110 issue: 3 year: 2020 ident: 10273_CR95 publication-title: Compr Rev Food Sci Food Saf doi: 10.1111/1541-4337.12554 – volume: 7 start-page: 29 issue: 3 year: 2015 ident: 10273_CR70 publication-title: J Bacteriol Res – volume: 105 start-page: 1 issue: 1 year: 2008 ident: 10273_CR177 publication-title: J Appl Microbiol doi: 10.1111/j.1365-2672.2008.03744.x – volume: 91 start-page: 249 year: 2018 ident: 10273_CR73 publication-title: LWT doi: 10.1016/j.lwt.2017.12.063 – volume: 72 start-page: 2170 issue: 3 year: 2006 ident: 10273_CR161 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.72.3.2170-2177.2006 – volume: 38 start-page: 659 year: 2016 ident: 10273_CR103 publication-title: Biotechnol Lett doi: 10.1007/s10529-015-2018-7 – volume: 28 start-page: 1413 issue: 3 year: 2023 ident: 10273_CR42 publication-title: Molecules doi: 10.3390/molecules28031413 – volume: 39 start-page: 182 issue: 7 year: 2023 ident: 10273_CR149 publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-023-03625-0 – year: 2023 ident: 10273_CR53 publication-title: Probiotics Antimicrob Proteins doi: 10.1007/s12602-023-10189-w – volume: 26 start-page: 2838 issue: 2 year: 2023 ident: 10273_CR44 publication-title: Int J Food Prop doi: 10.1080/10942912.2023.2254521 – volume: 29 start-page: 625 issue: 4 year: 2005 ident: 10273_CR140 publication-title: FEMS Microbiol Rev doi: 10.1016/j.femsre.2004.09.003 – volume: 75 start-page: 1357 year: 2012 ident: 10273_CR125 publication-title: J Proteom doi: 10.1016/j.jprot.2011.11.009 – volume: 9 start-page: 10 year: 2021 ident: 10273_CR119 publication-title: Proteomes doi: 10.3390/proteomes9010010 – volume: 17 start-page: 809 year: 2018 ident: 10273_CR5 publication-title: Clin Gastroenterol Hepatol doi: 10.1016/j.cgh.2018.01.018 – volume: 11 start-page: 721 issue: 4 year: 2018 ident: 10273_CR31 publication-title: Microb Biotechnol doi: 10.1111/1751-7915.13265 – volume: 11 start-page: e0157778 year: 2016 ident: 10273_CR35 publication-title: PLoS ONE doi: 10.1371/journal.pone.0157778 – volume: 65 start-page: 2078 issue: 5 year: 1999 ident: 10273_CR160 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.65.5.2078-2083.1999 – volume: 10 start-page: e0117702 issue: 2 year: 2015 ident: 10273_CR122 publication-title: PLoS ONE doi: 10.1371/journal.pone.0117702 – volume: 51 start-page: 723 issue: 2 year: 2013 ident: 10273_CR66 publication-title: Food Res Int doi: 10.1016/j.foodres.2013.01.028 – volume: 16 start-page: 850 issue: 8 year: 2006 ident: 10273_CR131 publication-title: Int Dairy J doi: 10.1016/j.idairyj.2005.09.008 – volume: 124 start-page: 34 year: 2008 ident: 10273_CR151 publication-title: Int J Food Microbiol doi: 10.1016/j.ijfoodmicro.2008.02.024 – volume: 77 start-page: 269 year: 2017 ident: 10273_CR150 publication-title: Bulgaricus LWT doi: 10.1016/j.lwt.2016.11.057 – volume: 2023 start-page: 1 year: 2023 ident: 10273_CR36 publication-title: J Food Process Preserv doi: 10.1155/2023/5597647 – volume: 60 start-page: 916 issue: 3 year: 2023 ident: 10273_CR32 publication-title: J Food Sci Technol doi: 10.1007/s13197-021-05259-2 – volume: 103 start-page: 569 issue: 2 year: 2023 ident: 10273_CR48 publication-title: J Sci Food Agric doi: 10.1002/jsfa.12168 – volume: 7 start-page: 1944 year: 2016 ident: 10273_CR82 publication-title: Front Microbiol doi: 10.3389/fmicb.2016.01944 – volume: 642 start-page: 123100 year: 2023 ident: 10273_CR10 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2023.123100 – volume: 15 start-page: 998 issue: 5 year: 2022 ident: 10273_CR65 publication-title: Food Bioprocess Technol doi: 10.1007/s11947-021-02753-5 – volume: 44 start-page: 1127 year: 2011 ident: 10273_CR182 publication-title: Food Res Int doi: 10.1016/j.foodres.2011.03.053 – volume: 11 start-page: 731 year: 2019 ident: 10273_CR14 publication-title: Probiotics Antimicrob Proteins doi: 10.1007/s12602-018-9492-x – volume: 15 start-page: 1250 issue: 5 year: 2023 ident: 10273_CR11 publication-title: Probiotics Antimicrob Proteins doi: 10.1007/s12602-022-09981-x – volume: 31 start-page: 110 year: 2023 ident: 10273_CR40 publication-title: NFS Journal doi: 10.1016/j.nfs.2023.04.003 – volume: 105 start-page: 13580 issue: 36 year: 2008 ident: 10273_CR141 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0804437105 – volume: 112 start-page: 104865 year: 2021 ident: 10273_CR180 publication-title: Int Dairy J doi: 10.1016/j.idairyj.2020.104865 – volume: 6 start-page: 121 issue: 4 year: 2020 ident: 10273_CR57 publication-title: Fermentation doi: 10.3390/fermentation6040121 – volume: 22 start-page: 215 issue: 5 year: 2011 ident: 10273_CR152 publication-title: Trends Food Sci Technol doi: 10.1016/j.tifs.2011.01.009 – volume: 19 start-page: 3390 issue: 6 year: 2020 ident: 10273_CR206 publication-title: Compr Rev Food Sci Food Saf doi: 10.1111/1541-4337.12613 – volume: 8 start-page: 311 issue: 2 year: 2015 ident: 10273_CR78 publication-title: Microb Biotechnol doi: 10.1111/1751-7915.12132 – volume: 6 start-page: 1904 year: 2018 ident: 10273_CR23 publication-title: Food Sci Nutr doi: 10.1002/fsn3.762 – volume: 76 start-page: 117 year: 2018 ident: 10273_CR165 publication-title: Food Microbiol doi: 10.1016/j.fm.2018.02.017 – volume: 7 start-page: 375 issue: 01 year: 2007 ident: 10273_CR132 publication-title: J Proteome Res doi: 10.1021/pr0704940 – volume: 15 start-page: 1032 issue: 4 year: 2023 ident: 10273_CR74 publication-title: Probiotics Antimicrob Proteins doi: 10.1007/s12602-023-10104-3 – volume: 19 start-page: 209 year: 2009 ident: 10273_CR185 publication-title: Int Dairy J doi: 10.1016/j.idairyj.2008.10.008 – volume-title: Postbiotics: science, technology and applications year: 2021 ident: 10273_CR205 doi: 10.2174/97816810883891210101 – volume: 132 start-page: 802 issue: 2 year: 2022 ident: 10273_CR190 publication-title: J Appl Microbiol doi: 10.1111/jam.15251 – volume: 7 start-page: 602280 year: 2021 ident: 10273_CR58 publication-title: Front Vet Sci doi: 10.3389/fvets.2020.602280 – volume: 66 start-page: 2330 issue: 6 year: 2000 ident: 10273_CR135 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.66.6.2330-2335.2000 – volume: 11 start-page: 996 issue: 4 year: 2023 ident: 10273_CR77 publication-title: Microorganisms doi: 10.3390/microorganisms11040996 – ident: 10273_CR59 – volume: 104 start-page: 51 year: 2020 ident: 10273_CR85 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-019-10226-1 – volume: 21 start-page: 885 issue: 3 year: 2005 ident: 10273_CR188 publication-title: Biotechnol Prog doi: 10.1021/bp049559j – volume: 60 start-page: 1552 issue: 9 year: 2020 ident: 10273_CR8 publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2019.1580673 – volume: 9 start-page: e99189 year: 2014 ident: 10273_CR162 publication-title: PLoS ONE doi: 10.1371/journal.pone.0099189 – volume: 112 start-page: 108230 year: 2019 ident: 10273_CR168 publication-title: LWT - Food Sci Technol doi: 10.1016/j.lwt.2019.05.128 – volume: 26 start-page: 49 issue: 1 year: 2002 ident: 10273_CR157 publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2002.tb00598.x – volume: 93 start-page: 794 issue: 5 year: 2002 ident: 10273_CR112 publication-title: J Appl Microbiol doi: 10.1046/j.1365-2672.2002.01747.x – volume: 3 start-page: 100428 year: 2023 ident: 10273_CR174 publication-title: Food Chem Adv doi: 10.1016/j.focha.2023.100428 – volume: 23 start-page: 4008 issue: 7 year: 2022 ident: 10273_CR75 publication-title: Int J Mol Sci doi: 10.3390/ijms23074008 – volume: 3 start-page: 403 year: 1864 ident: 10273_CR113 publication-title: Biochim Biophys Acta Mol Cell Biol Lipids – volume: 137 start-page: 14 issue: 1–4 year: 2008 ident: 10273_CR145 publication-title: J Biotech doi: 10.1016/j.jbiotec.2008.07.1788 – volume: 74 start-page: 1812 issue: 6 year: 2008 ident: 10273_CR129 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02259-07 – volume: 61 start-page: 13 issue: 1 year: 2015 ident: 10273_CR138 publication-title: Lett Appl Microbiol doi: 10.1111/lam.12418 – volume: 43 start-page: 189 issue: 3 year: 2001 ident: 10273_CR146 publication-title: Cryobiology doi: 10.1006/cryo.2001.2343 – volume: 15 start-page: 239 issue: 2 year: 2023 ident: 10273_CR38 publication-title: Probiotics Antimicrob Proteins doi: 10.1007/s12602-022-09983-9 – volume: 18 start-page: 1 year: 2019 ident: 10273_CR120 publication-title: Microb Cell Factories doi: 10.1186/s12934-019-1206-x – volume: 82 start-page: 4641 issue: 15 year: 2016 ident: 10273_CR148 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00748-16 – volume: 176 start-page: 113785 year: 2023 ident: 10273_CR55 publication-title: Food Res Int doi: 10.1016/j.foodres.2023.113785 – volume: 3 start-page: 37 year: 2012 ident: 10273_CR166 publication-title: Annu Rev Food Sci Technol doi: 10.1146/annurev-food-022811-101255 – volume: 20 start-page: 1 issue: 1 year: 2020 ident: 10273_CR93 publication-title: BMC Microbiol doi: 10.1186/s12866-020-01920-6 – year: 2020 ident: 10273_CR46 publication-title: Prep Biochem Biotechnol doi: 10.1080/10826068.2020.1861009 – volume: 40 start-page: 883 issue: 3 year: 2024 ident: 10273_CR202 publication-title: Food Rev Intern doi: 10.1080/87559129.2023.2202405 – volume: 34 start-page: 1511 year: 2012 ident: 10273_CR107 publication-title: Biotechnol Lett doi: 10.1007/s10529-012-0932-5 – volume: 191 start-page: 135 year: 2014 ident: 10273_CR170 publication-title: Int J Food Microbiol doi: 10.1016/j.ijfoodmicro.2014.09.017 – volume: 7 start-page: e202103198 issue: 14 year: 2022 ident: 10273_CR109 publication-title: ChemistrySelect doi: 10.1002/slct.202103198 – volume: 18 start-page: 343 year: 2015 ident: 10273_CR16 publication-title: Electron J Biotechnol doi: 10.1016/j.ejbt.2015.06.005 – volume: 48 start-page: 63 year: 2015 ident: 10273_CR69 publication-title: Food Microbiol doi: 10.1016/j.fm.2014.12.005 – volume: 21 start-page: 521 year: 2019 ident: 10273_CR163 publication-title: Env Microbiol doi: 10.1111/1462-2920.14445 – volume: 15 start-page: 10154 issue: 13 year: 2023 ident: 10273_CR41 publication-title: Sustainability doi: 10.3390/su151310154 – volume: 3 start-page: 10 issue: 3 year: 2018 ident: 10273_CR142 publication-title: Msphere doi: 10.1128/mSphere.00140-18 – volume: 7 start-page: 127 issue: 3 year: 2019 ident: 10273_CR191 publication-title: Processes doi: 10.3390/pr7030127 – volume: 14 start-page: 85 year: 2023 ident: 10273_CR17 publication-title: Benef Microbes doi: 10.3920/BM2022.0074 – volume: 28 start-page: 490 issue: 4 year: 2010 ident: 10273_CR194 publication-title: Dry Technol doi: 10.1080/07373931003613726 – volume: 159 start-page: 2437 issue: Pt_12 year: 2013 ident: 10273_CR81 publication-title: Microbiology doi: 10.1099/mic.0.052209-0 – volume: 77 start-page: 1987 year: 2020 ident: 10273_CR15 publication-title: Curr Microbiol doi: 10.1007/s00284-020-02053-9 – volume: 8 start-page: 1 issue: 1 year: 2010 ident: 10273_CR144 publication-title: Proteome Sci doi: 10.1186/1477-5956-8-37 – ident: 10273_CR43 doi: 10.5772/intechopen.99382 – volume: 26 start-page: 5695 issue: 18 year: 2021 ident: 10273_CR118 publication-title: Molecules doi: 10.3390/molecules26185695 – volume: 223 start-page: 346 issue: Pt A year: 2022 ident: 10273_CR204 publication-title: Intern J Biol Macromol doi: 10.1016/j.ijbiomac.2022.11.003 – volume: 10 start-page: 841 year: 2019 ident: 10273_CR139 publication-title: Front Microbiol doi: 10.3389/fmicb.2019.00841 – volume: 505 start-page: 303 year: 2016 ident: 10273_CR34 publication-title: Int J Pharmaceut doi: 10.1016/j.ijpharm.2016.04.002 |
SSID | ssj0066320 |
Score | 2.4739 |
SecondaryResourceType | review_article |
Snippet | In recent years, more and more scientific community, food producers, and food industry show increased interest in functional foods containing probiotics, which... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 138 |
SubjectTerms | Applied Microbiology Bacteria bile bile acids Biomedical and Life Sciences Bioreactors Cell walls Chemistry/Food Science diet Fermentation Fermented food Food Food consumption Food industry Food intake food matrix Food processing Functional Food - analysis Functional Food - microbiology functional foods Functional foods & nutraceuticals Gastrointestinal Tract - microbiology gastrointestinal transit human health Humans intestines lactic acid Lactic acid bacteria Life Sciences Lysates metabolites Microbiology Microorganisms Nutrition Probiotics Probiotics - metabolism Protein Science Review stomach stress tolerance Stress, Physiological viability |
Title | Recent Advances in the Understanding of Stress Resistance Mechanisms in Probiotics: Relevance for the Design of Functional Food Systems |
URI | https://link.springer.com/article/10.1007/s12602-024-10273-9 https://www.ncbi.nlm.nih.gov/pubmed/38829565 https://www.proquest.com/docview/3167812968 https://www.proquest.com/docview/3064142036 https://www.proquest.com/docview/3200353728 https://pubmed.ncbi.nlm.nih.gov/PMC11832585 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7YUL70egVEZCvbCuEmedxNxWS5cKVLSCRiqnyPFDrCgJIruH8gf424ydZMO2UKmXvWQyazuTmc-Zmc8Ar7jL5kXSUGZ0QieuvlHoUFLJUlZqUZpYuQ_6Jx-T43zy_oyfdU1hTV_t3qckvacemt0QejOKMQVdBwZdKnZgl0eZyEawO3335cNR74ExiHo6RsfVRtFHJ12zzL-1bAekKyjzarHkpYypD0Tzu5D3U2jrT74drlflofp1id3xpnO8B3c6ZEqmrSndh1umegAHi5ba-mJMTodOrWZMDshiIL2-eAi_EX_i0Mm0rSloyLIiiC1J_nfzDKkt-eybU8gn0zjkiqLkxLju42Xz3d-08MRQ7k_eoNC58eoIQmuv7q0vOHF65hiQ2--YZF7XmnTU648gnx-dzo5pd8gDVYgNVzSzMk04l0xzVcpQRpprJQWzQqlUlcpqREgsjazrNjGJmGSWKS2NzDLDbGzjxzCq6so8BcJUyDzbokUL1CgZcq5ZalPOVahFGkDUP-lCdQzo7iCO82LgbnbrX-D6F379CxHA6809P1r-j2ul93oDKjpf0BSOawBhlEiyAF5uLuNb7FIzsjL1GmUQGUYTlxS-RsaT18YpQz1PWpvcDCnGjRLudHkA2Za1bgQci_j2lWr51bOJR86p46YxgHFvk8PY_z_VZzcTfw63mTs52de778Fo9XNtXiCcW5X73du7DzuzZIa_OZv-ATaqQ5k |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOcClojwDBYyEemEjJc46ibmtKKsFutUKdqXeIscPsVKbILI99Bfwt5lxkg1LoRLnjCeJxp757Jn5DPBGUDYvVjbk1qThmOobpYlUqHjGSyNLm2g60J-fprPV-NOZOOuawpq-2r1PSXpPPTS7IfTmIcYUdB0YdEN5G-4gGMjp3oIVn_T-F0OoJ2MkprYQPXTatcr8XcduOLqGMa-XSv6RL_VhaHof9jv8yCatwQ_glq0ewNGiJaC-GrHl0E_VjNgRWwzU1FcP4SeiRHwFm7SZ_4atK4YIkK1-b3FhtWNffQsJ-2IbwpcoyuaWeoTXzYUftPD0TfSSdyh0br06hgDYqzv2ZSGkZ4phsz1tZNO6NqwjSH8Eq-mH5ftZ2F3FEGpEcJswdypLhVDcCF2qSMVGGK0kd1LrTJfaGcQxPIsd9YTYVI5zx7VRVuW55S5xyWPYq-rKPgXGdcQ9J6LDeWJQMhLC8MxlQujIyCyAuLdIoTuecrou47wYGJbJigVasfBWLGQAb7djvrcsHTdKH_aGLroV2xTECIBgR6Z5AK-3j3GtUQJFVba-RBnEb_GYUrc3yHiK2STjqOdJO3e2n5Tgdgb3oyKAfGdWbQWI63v3SbX-5jm_Y3K9uLULYNRPwOHb__2rz_5P_BXcnS3nJ8XJx9PPz-Eep7uOfYX6IextflzaFwjANuVLv95-AdM8J8E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZaKlW9VPRJgFJXqrh0LRInTuLeEBDRB2jVshK3yPFDXYkmqFkO_AL-dmecZMOWFqnnTCaJxvZ8zsz3mZD3Aqt5kbKMW5OyBPsbpQkVUzzjlZGVjTX-0D85TY9nyedzcX6Lxe-73YeSZMdpQJWmerF3adzeSHwDGM4Z5BdYRiABM_mQPEow9WG5Nj0Y1mJIp16YEVXbGKzWaU-b-buP1dR0B2_ebZv8o3bqU1KxTp72WJLud8F_Rh7Y-jnZnXZi1NcTejZyq9oJ3aXTUab6-gW5AcQIj6D7XRdAS-c1BTRIZ7fpLrRx9Lunk9BvtkWsCab0xCJfeN7-9DdNvZQTPuQjGF1Y744CGPbuDn2LCPopIIV2fx5p0TSG9mLpL8msODo7OGb9sQxMA5pbsNypLBVCcSN0pUIVGWG0ktxJrTNdaWcA0_AscsgPsalMcse1UVblueUudvErslY3td0glOuQe31EB2PGgGUohOGZy4TQoZFZQKIhIqXuNcvx6IyLclRbxiiWEMXSR7GUAfmwvOeyU-y413p7CHTZz962RHUAAD4yzQPybnkZ5h0WU1RtmyuwASwXJVjGvcfGy83GGQc_r7uxs3ylGLY2sDcVAclXRtXSAHW_V6_U8x9e_zvCZRi2eQGZDANwfPd_f-rm_5m_JY-nh0X59dPply3yhOOxx75ZfZusLX5d2TeAxRbVjp9uvwEwDSvn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+the+Understanding+of+Stress+Resistance+Mechanisms+in+Probiotics%3A+Relevance+for+the+Design+of+Functional+Food+Systems&rft.jtitle=Probiotics+and+antimicrobial+proteins&rft.au=Bustos%2C+Ana+Yanina&rft.au=Taranto%2C+Mar%C3%ADa+P%C3%ADa&rft.au=Gerez%2C+Carla+Luciana&rft.au=Agriopoulou%2C+Sofia&rft.date=2025-02-01&rft.issn=1867-1314&rft.eissn=1867-1314&rft_id=info:doi/10.1007%2Fs12602-024-10273-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-1306&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-1306&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-1306&client=summon |