A comprehensive study of class incremental learning algorithms for visual tasks
The ability of artificial agents to increment their capabilities when confronted with new data is an open challenge in artificial intelligence. The main challenge faced in such cases is catastrophic forgetting, i.e., the tendency of neural networks to underfit past data when new ones are ingested. A...
Saved in:
Published in | Neural networks Vol. 135; pp. 38 - 54 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.03.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0893-6080 1879-2782 1879-2782 |
DOI | 10.1016/j.neunet.2020.12.003 |
Cover
Loading…
Abstract | The ability of artificial agents to increment their capabilities when confronted with new data is an open challenge in artificial intelligence. The main challenge faced in such cases is catastrophic forgetting, i.e., the tendency of neural networks to underfit past data when new ones are ingested. A first group of approaches tackles forgetting by increasing deep model capacity to accommodate new knowledge. A second type of approaches fix the deep model size and introduce a mechanism whose objective is to ensure a good compromise between stability and plasticity of the model. While the first type of algorithms were compared thoroughly, this is not the case for methods which exploit a fixed size model. Here, we focus on the latter, place them in a common conceptual and experimental framework and propose the following contributions: (1) define six desirable properties of incremental learning algorithms and analyze them according to these properties, (2) introduce a unified formalization of the class-incremental learning problem, (3) propose a common evaluation framework which is more thorough than existing ones in terms of number of datasets, size of datasets, size of bounded memory and number of incremental states, (4) investigate the usefulness of herding for past exemplars selection, (5) provide experimental evidence that it is possible to obtain competitive performance without the use of knowledge distillation to tackle catastrophic forgetting and (6) facilitate reproducibility by integrating all tested methods in a common open-source repository. The main experimental finding is that none of the existing algorithms achieves the best results in all evaluated settings. Important differences arise notably if a bounded memory of past classes is allowed or not.
•Incremental learning algorithms are improved by casting the problem as an imbalanced learning case.•Competitive performance can be achieved without the widely used knowledge distillation component.•Herding-based exemplar selection for past classes clearly outperforms random selection.•Fine-tuning based methods are better when a memory of the past is allowed.•Fixed-representation based methods are better without a memory of the past. |
---|---|
AbstractList | The ability of artificial agents to increment their capabilities when confronted with new data is an open challenge in artificial intelligence. The main challenge faced in such cases is catastrophic forgetting, i.e., the tendency of neural networks to underfit past data when new ones are ingested. A first group of approaches tackles forgetting by increasing deep model capacity to accommodate new knowledge. A second type of approaches fix the deep model size and introduce a mechanism whose objective is to ensure a good compromise between stability and plasticity of the model. While the first type of algorithms were compared thoroughly, this is not the case for methods which exploit a fixed size model. Here, we focus on the latter, place them in a common conceptual and experimental framework and propose the following contributions: (1) define six desirable properties of incremental learning algorithms and analyze them according to these properties, (2) introduce a unified formalization of the class-incremental learning problem, (3) propose a common evaluation framework which is more thorough than existing ones in terms of number of datasets, size of datasets, size of bounded memory and number of incremental states, (4) investigate the usefulness of herding for past exemplars selection, (5) provide experimental evidence that it is possible to obtain competitive performance without the use of knowledge distillation to tackle catastrophic forgetting and (6) facilitate reproducibility by integrating all tested methods in a common open-source repository. The main experimental finding is that none of the existing algorithms achieves the best results in all evaluated settings. Important differences arise notably if a bounded memory of past classes is allowed or not. The ability of artificial agents to increment their capabilities when confronted with new data is an open challenge in artificial intelligence. The main challenge faced in such cases is catastrophic forgetting, i.e., the tendency of neural networks to underfit past data when new ones are ingested. A first group of approaches tackles forgetting by increasing deep model capacity to accommodate new knowledge. A second type of approaches fix the deep model size and introduce a mechanism whose objective is to ensure a good compromise between stability and plasticity of the model. While the first type of algorithms were compared thoroughly, this is not the case for methods which exploit a fixed size model. Here, we focus on the latter, place them in a common conceptual and experimental framework and propose the following contributions: (1) define six desirable properties of incremental learning algorithms and analyze them according to these properties, (2) introduce a unified formalization of the class-incremental learning problem, (3) propose a common evaluation framework which is more thorough than existing ones in terms of number of datasets, size of datasets, size of bounded memory and number of incremental states, (4) investigate the usefulness of herding for past exemplars selection, (5) provide experimental evidence that it is possible to obtain competitive performance without the use of knowledge distillation to tackle catastrophic forgetting and (6) facilitate reproducibility by integrating all tested methods in a common open-source repository. The main experimental finding is that none of the existing algorithms achieves the best results in all evaluated settings. Important differences arise notably if a bounded memory of past classes is allowed or not.The ability of artificial agents to increment their capabilities when confronted with new data is an open challenge in artificial intelligence. The main challenge faced in such cases is catastrophic forgetting, i.e., the tendency of neural networks to underfit past data when new ones are ingested. A first group of approaches tackles forgetting by increasing deep model capacity to accommodate new knowledge. A second type of approaches fix the deep model size and introduce a mechanism whose objective is to ensure a good compromise between stability and plasticity of the model. While the first type of algorithms were compared thoroughly, this is not the case for methods which exploit a fixed size model. Here, we focus on the latter, place them in a common conceptual and experimental framework and propose the following contributions: (1) define six desirable properties of incremental learning algorithms and analyze them according to these properties, (2) introduce a unified formalization of the class-incremental learning problem, (3) propose a common evaluation framework which is more thorough than existing ones in terms of number of datasets, size of datasets, size of bounded memory and number of incremental states, (4) investigate the usefulness of herding for past exemplars selection, (5) provide experimental evidence that it is possible to obtain competitive performance without the use of knowledge distillation to tackle catastrophic forgetting and (6) facilitate reproducibility by integrating all tested methods in a common open-source repository. The main experimental finding is that none of the existing algorithms achieves the best results in all evaluated settings. Important differences arise notably if a bounded memory of past classes is allowed or not. The ability of artificial agents to increment their capabilities when confronted with new data is an open challenge in artificial intelligence. The main challenge faced in such cases is catastrophic forgetting, i.e., the tendency of neural networks to underfit past data when new ones are ingested. A first group of approaches tackles forgetting by increasing deep model capacity to accommodate new knowledge. A second type of approaches fix the deep model size and introduce a mechanism whose objective is to ensure a good compromise between stability and plasticity of the model. While the first type of algorithms were compared thoroughly, this is not the case for methods which exploit a fixed size model. Here, we focus on the latter, place them in a common conceptual and experimental framework and propose the following contributions: (1) define six desirable properties of incremental learning algorithms and analyze them according to these properties, (2) introduce a unified formalization of the class-incremental learning problem, (3) propose a common evaluation framework which is more thorough than existing ones in terms of number of datasets, size of datasets, size of bounded memory and number of incremental states, (4) investigate the usefulness of herding for past exemplars selection, (5) provide experimental evidence that it is possible to obtain competitive performance without the use of knowledge distillation to tackle catastrophic forgetting and (6) facilitate reproducibility by integrating all tested methods in a common open-source repository. The main experimental finding is that none of the existing algorithms achieves the best results in all evaluated settings. Important differences arise notably if a bounded memory of past classes is allowed or not. •Incremental learning algorithms are improved by casting the problem as an imbalanced learning case.•Competitive performance can be achieved without the widely used knowledge distillation component.•Herding-based exemplar selection for past classes clearly outperforms random selection.•Fine-tuning based methods are better when a memory of the past is allowed.•Fixed-representation based methods are better without a memory of the past. |
Author | Kanellos, Ioannis Belouadah, Eden Popescu, Adrian |
Author_xml | – sequence: 1 givenname: Eden orcidid: 0000-0002-3418-1546 surname: Belouadah fullname: Belouadah, Eden email: eden.belouadah@cea.fr organization: Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France – sequence: 2 givenname: Adrian orcidid: 0000-0002-8099-824X surname: Popescu fullname: Popescu, Adrian email: adrian.popescu@cea.fr organization: Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France – sequence: 3 givenname: Ioannis orcidid: 0000-0001-5323-1601 surname: Kanellos fullname: Kanellos, Ioannis email: ioannis.kanellos@imt-atlantique.fr organization: IMT Atlantique, Computer Science Department, CS 83818 F-29238, Cedex 3, Brest, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33341513$$D View this record in MEDLINE/PubMed https://hal.science/hal-03493944$$DView record in HAL |
BookMark | eNqFkU9vEzEQxS1URNPCN0DIRzhs8L_srjkgRRVQpEi99G55vePGwWsH2xup376OtvTAAU4jzfzek-a9K3QRYgCE3lOypoS2nw_rAHOAsmaE1RVbE8JfoRXtO9mwrmcXaEV6yZuW9OQSXeV8IIS0veBv0CXnXNAN5St0t8UmTscEewjZnQDnMo-POFpsvM4Zu2ASTBCK9tiDTsGFB6z9Q0yu7KeMbUz45PJcz0XnX_ktem21z_DueV6j--_f7m9um93dj583211jNqQvTT_yoRNCWj0wY6yWXatNZ6RllmszGso45cPG1N_qlXYjMM3bYZS6t11r-TX6tNjutVfH5CadHlXUTt1ud-q8I1xILoU40cp-XNhjir9nyEVNLhvwXgeIc1ZMdHTDW8lJRT88o_Mwwfji_CevCogFMCnmnMC-IJSocy3qoJZa1LkWRZmqtVTZl79kxhVdXAwlaef_J_66iKHmeXKQVDYOgoHRJTBFjdH92-AJnDyrsg |
CitedBy_id | crossref_primary_10_1016_j_artmed_2024_102870 crossref_primary_10_1109_TII_2022_3201977 crossref_primary_10_1016_j_eswa_2024_124588 crossref_primary_10_1109_TGRS_2023_3248601 crossref_primary_10_3390_s24123721 crossref_primary_10_1016_j_comcom_2023_12_030 crossref_primary_10_1109_ACCESS_2023_3301575 crossref_primary_10_3390_info13040186 crossref_primary_10_1007_s11424_024_3449_9 crossref_primary_10_1109_TPAMI_2023_3273574 crossref_primary_10_1145_3580859 crossref_primary_10_3390_s25072024 crossref_primary_10_1088_1361_6501_ad25e3 crossref_primary_10_1007_s00138_024_01635_y crossref_primary_10_1016_j_neunet_2023_10_039 crossref_primary_10_1007_s10489_023_04454_2 crossref_primary_10_1016_j_eswa_2023_121755 crossref_primary_10_1109_TCCN_2023_3331296 crossref_primary_10_1145_3705725 crossref_primary_10_1016_j_ymssp_2024_111175 crossref_primary_10_1016_j_neunet_2023_01_033 crossref_primary_10_1016_j_neunet_2024_106698 crossref_primary_10_1016_j_ipm_2024_103664 crossref_primary_10_1109_MC_2022_3150308 crossref_primary_10_1109_TIM_2022_3200695 crossref_primary_10_1016_j_ins_2024_121618 crossref_primary_10_4236_ijis_2023_132003 crossref_primary_10_1109_JIOT_2024_3376635 crossref_primary_10_3390_vehicles6020038 crossref_primary_10_1109_TPAMI_2024_3429383 crossref_primary_10_3390_electronics12245023 crossref_primary_10_1016_j_neunet_2024_106788 crossref_primary_10_1109_JPROC_2023_3309299 crossref_primary_10_1038_s42256_022_00568_3 crossref_primary_10_1109_TGRS_2024_3386579 crossref_primary_10_1016_j_knosys_2025_113009 crossref_primary_10_1007_s00521_023_08448_6 crossref_primary_10_1016_j_procir_2023_02_070 crossref_primary_10_1016_j_neunet_2023_01_041 crossref_primary_10_1109_TPAMI_2024_3446949 crossref_primary_10_1007_s10489_022_03509_0 crossref_primary_10_1049_cvi2_70013 crossref_primary_10_1016_j_imavis_2024_105187 crossref_primary_10_1109_ACCESS_2024_3377690 crossref_primary_10_1109_TKDE_2024_3447123 crossref_primary_10_1177_1748006X241252469 crossref_primary_10_1109_ACCESS_2022_3141654 crossref_primary_10_3389_fmed_2023_1227515 crossref_primary_10_1016_j_neunet_2023_01_017 crossref_primary_10_3390_s23125554 crossref_primary_10_1016_j_jik_2023_100313 crossref_primary_10_1016_j_neunet_2022_11_025 crossref_primary_10_1016_j_measurement_2023_113997 crossref_primary_10_1016_j_ymssp_2023_110309 crossref_primary_10_1016_j_seta_2024_103753 crossref_primary_10_1016_j_compmedimag_2023_102290 crossref_primary_10_1109_TPAMI_2022_3213473 crossref_primary_10_15803_ijnc_14_2_123 crossref_primary_10_3390_ani13121957 crossref_primary_10_3390_s23156893 crossref_primary_10_1016_j_engappai_2025_110042 crossref_primary_10_1145_3564786 crossref_primary_10_1016_j_engappai_2024_108212 crossref_primary_10_3389_fphy_2023_1174220 crossref_primary_10_1109_TAI_2024_3386498 crossref_primary_10_1109_LRA_2022_3167736 crossref_primary_10_1016_j_patcog_2023_109310 crossref_primary_10_1016_j_aei_2022_101815 crossref_primary_10_5753_jbcs_2024_3966 crossref_primary_10_1109_TPAMI_2025_3529038 crossref_primary_10_3390_math10040598 crossref_primary_10_1109_TCSVT_2022_3196092 crossref_primary_10_1155_2021_6627740 crossref_primary_10_3390_jmse11091781 crossref_primary_10_1109_TAI_2023_3250207 crossref_primary_10_1109_TPAMI_2024_3396809 crossref_primary_10_1016_j_neunet_2023_06_043 crossref_primary_10_1016_j_aej_2024_10_037 crossref_primary_10_1016_j_neunet_2023_05_006 crossref_primary_10_1109_LGRS_2024_3361500 crossref_primary_10_1007_s10489_024_05493_z crossref_primary_10_1007_s10994_024_06524_z crossref_primary_10_1016_j_patcog_2024_110283 crossref_primary_10_1109_TCSVT_2024_3450490 crossref_primary_10_3390_app132111980 crossref_primary_10_1109_TNSM_2023_3287430 |
Cites_doi | 10.1109/ACCESS.2019.2963461 10.1109/TPAMI.2010.57 10.1007/s11263-015-0816-y 10.1016/j.neunet.2018.07.011 10.1109/TSMCB.2005.847744 10.1109/CVPR42600.2020.01220 10.1145/1553374.1553517 10.1109/LSP.2016.2603342 10.1016/j.neunet.2019.09.010 10.1016/0010-0285(76)90013-X 10.1016/j.neucom.2020.03.025 10.1016/j.patcog.2007.07.019 10.1145/584091.584093 10.1109/TPAMI.2013.83 10.1109/ICCV.2019.00067 10.1109/72.238311 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. Attribution - NonCommercial |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. – notice: Attribution - NonCommercial |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES |
DOI | 10.1016/j.neunet.2020.12.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
EndPage | 54 |
ExternalDocumentID | oai_HAL_hal_03493944v1 33341513 10_1016_j_neunet_2020_12_003 S0893608020304202 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM PKN 7X8 EFKBS 1XC VOOES |
ID | FETCH-LOGICAL-c508t-8d3b7449fab2ccfa976ac7c9f2f3acdc12313b5c202cfa17de2a36bd9a8f76f3 |
IEDL.DBID | .~1 |
ISSN | 0893-6080 1879-2782 |
IngestDate | Fri May 09 12:23:12 EDT 2025 Fri Sep 05 04:04:17 EDT 2025 Wed Feb 19 02:28:17 EST 2025 Thu Apr 24 22:56:07 EDT 2025 Tue Jul 01 01:24:37 EDT 2025 Fri Feb 23 02:48:26 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Catastrophic forgetting Incremental learning Imbalanced learning Convolutional neural networks Image classification |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-8d3b7449fab2ccfa976ac7c9f2f3acdc12313b5c202cfa17de2a36bd9a8f76f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8099-824X 0000-0002-3418-1546 0000-0001-5323-1601 |
OpenAccessLink | https://hal.science/hal-03493944 |
PMID | 33341513 |
PQID | 2471536930 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | hal_primary_oai_HAL_hal_03493944v1 proquest_miscellaneous_2471536930 pubmed_primary_33341513 crossref_primary_10_1016_j_neunet_2020_12_003 crossref_citationtrail_10_1016_j_neunet_2020_12_003 elsevier_sciencedirect_doi_10_1016_j_neunet_2020_12_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Furlanello, Lipton, Tschannen, Itti, Anandkumar (b20) 2018; vol. 80 Hou, Pan, Loy, Wang, Lin (b28) 2019 Mensink, Verbeek, Perronnin, Csurka (b45) 2013; 35 Parisi, Kemker, Part, Kanan, Wermter (b48) 2018 Kim, Bae, Jo, Choi (b32) 2019 Rebuffi, Bilen, Vedaldi (b55) 2018 Li, Hoiem (b36) 2016 Phuong, M., & Lampert, C. (2019). Towards understanding knowledge distillation. In Rosenfeld, Tsotsos (b58) 2017 Belfort, de F. Bassani, Araújo (b5) 2017 Martinetz (b42) 1993 Wu, Chen, Wang, Ye, Liu, Guo (b75) 2018 Zhang, Zhang, Ghosh, Li, Tasci, Heck (b82) 2020 Settles (b64) 2010 Cong, Zhao, Li, Wang, Carin (b15) 2020 Jégou, Douze, Schmid (b30) 2011; 33 Shannon (b65) 2001; 5 (pp. 12183–12192). Fritzke (b19) 1994 Gepperth, Karaoguz (b21) 2017 Javed, Shafait (b29) 2018 Paszke, Gross, Chintala, Chanan, Yang, DeVito (b50) 2017 Venkatesan, Venkateswara, Panchanathan, Li (b72) 2017 (pp. 583–592). Mccloskey, Cohen (b44) 1989; 24 Fritzke (b18) 1994; 7 Castro, Marín-Jiménez, Guil, Schmid, Alahari (b14) 2018 Lange, Aljundi, Masana, Parisot, Jia, Leonardis (b35) 2019 Hayes, Kanan (b24) 2019 Roy, Panda, Roy (b59) 2020; 121 (pp. 5142–5151). Belouadah, Popescu (b6) 2018 Liu, Su, Liu, Schiele, Sun (b37) 2020 Zhang, Zhang, Li, Qiao (b83) 2016; 23 Zhou, Mai, Zhang, Xu, Wu, Davis (b85) 2019 Dhar, Singh, Peng, Wu, Chellappa (b16) 2018 Aljundi, Kelchtermans, Tuytelaars (b4) 2019 Belouadah, Popescu (b8) 2020 Zhao, Xiao, Gan, Zhang, Xia (b84) 2020 Kemker, Kanan (b31) 2018 Yim, Joo, Bae, Kim (b79) 2017 Martinetz, Berkovich, Schulten (b43) 1993; 4 (pp. 1121–1128). Liu, Su, Liu, Schiele, Sun (b38) 2020 Seff, Beatson, Suo, Liu (b62) 2017 Douillard, Cord, Ollion, Robert, Valle (b17) 2020; vol. 12365 Razavian, Azizpour, Sullivan, Carlsson (b53) 2014 Wang, Ramanan, Hebert (b73) 2017 Tao, X., Hong, X., Chang, X., Dong, S., Wei, X., & Gong, Y. (2020). Few-shot class-incremental learning. In Buda, Maki, Mazurowski (b12) 2018; 106 Pang, Ozawa, Kasabov (b47) 2005; 35 Zalán Bodó (b81) 2011 Russakovsky, Deng, Su, Krause, Satheesh, Ma (b60) 2015; 115 Hayes, Kafle, Shrestha, Acharya, Kanan (b23) 2019 Noh, Araujo, Sim, Weyand, Han (b46) 2017 Boser, Guyon, Vapnik (b11) 1992 Hinton, Vinyals, Dean (b27) 2015 Mallya, Lazebnik (b41) 2018 Park, Kim, Lu, Cho (b49) 2019 Belouadah, E., & Popescu, A. (2019). Il2m: Class incremental learning with dual memory. In Mallya, Davis, Lazebnik (b40) 2018; vol. 11208 Cao, Shen, Xie, Parkhi, Zisserman (b13) 2018 Yu, Twardowski, Liu, Herranz, Wang, Cheng (b80) 2020 Ghosh, Kulharia, Namboodiri, Torr, Dokania (b22) 2018 Rebuffi, Kolesnikov, Sperl, Lampert (b56) 2017 Aljundi, Chakravarty, Tuytelaars (b3) 2017 Kornblith, Shlens, Le (b33) 2018 Shen, Zhang, Zhang, Liu (b66) 2020; 399 Lughofer (b39) 2008; 41 Rebuffi, Bilen, Vedaldi (b54) 2017 He, Wang, Shan, Chen (b25) 2018 He, Zhang, Ren, Sun (b26) 2016 Beyer, Cimiano (b10) 2013 Aljundi, Babiloni, Elhoseiny, Rohrbach, Tuytelaars (b2) 2018; vol. 11207 Belouadah, Popescu, Kanellos (b9) 2020 Tamaazousti, Borgne, Hudelot, Seddik, Tamaazousti (b69) 2017 Krizhevsky (b34) 2009 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b51) 2012 Shin, Lee, Kim, Kim (b67) 2017 Xu, Furao, Hasegawa, Zhao (b78) 2009; 5476 Welling, M. (2009). Herding dynamical weights to learn. In Aleo, Arena, Patané (b1) 2010 Xiang, Miao, Chen, Xuan (b77) 2020; 8 Sener, Savarese (b63) 2018 Rusu, Rabinowitz, Desjardins, Soyer, Kirkpatrick, Kavukcuoglu (b61) 2016 Singh, Verma, Mazumder, Carin, Rai (b68) 2020; 33 Tao, Chang, Hong, Wei, Gong (b70) 2020; vol. 12364 Rosch, Mervis, Gray, Johnson, Boyes-Braem (b57) 1976; 8 Wu, Chen, Wang, Ye, Liu, Guo (b76) 2019 Mallya (10.1016/j.neunet.2020.12.003_b40) 2018; vol. 11208 10.1016/j.neunet.2020.12.003_b7 Rebuffi (10.1016/j.neunet.2020.12.003_b54) 2017 Li (10.1016/j.neunet.2020.12.003_b36) 2016 Martinetz (10.1016/j.neunet.2020.12.003_b42) 1993 Wu (10.1016/j.neunet.2020.12.003_b76) 2019 Mccloskey (10.1016/j.neunet.2020.12.003_b44) 1989; 24 Xu (10.1016/j.neunet.2020.12.003_b78) 2009; 5476 Kim (10.1016/j.neunet.2020.12.003_b32) 2019 10.1016/j.neunet.2020.12.003_b52 Liu (10.1016/j.neunet.2020.12.003_b37) 2020 Kornblith (10.1016/j.neunet.2020.12.003_b33) 2018 Krizhevsky (10.1016/j.neunet.2020.12.003_b34) 2009 Yim (10.1016/j.neunet.2020.12.003_b79) 2017 Cong (10.1016/j.neunet.2020.12.003_b15) 2020 Dhar (10.1016/j.neunet.2020.12.003_b16) 2018 Zhang (10.1016/j.neunet.2020.12.003_b83) 2016; 23 Belouadah (10.1016/j.neunet.2020.12.003_b8) 2020 Wang (10.1016/j.neunet.2020.12.003_b73) 2017 Xiang (10.1016/j.neunet.2020.12.003_b77) 2020; 8 Cao (10.1016/j.neunet.2020.12.003_b13) 2018 Martinetz (10.1016/j.neunet.2020.12.003_b43) 1993; 4 Gepperth (10.1016/j.neunet.2020.12.003_b21) 2017 Rebuffi (10.1016/j.neunet.2020.12.003_b55) 2018 Paszke (10.1016/j.neunet.2020.12.003_b50) 2017 Kemker (10.1016/j.neunet.2020.12.003_b31) 2018 Zhang (10.1016/j.neunet.2020.12.003_b82) 2020 Hou (10.1016/j.neunet.2020.12.003_b28) 2019 Hayes (10.1016/j.neunet.2020.12.003_b24) 2019 Noh (10.1016/j.neunet.2020.12.003_b46) 2017 Rusu (10.1016/j.neunet.2020.12.003_b61) 2016 Javed (10.1016/j.neunet.2020.12.003_b29) 2018 Aleo (10.1016/j.neunet.2020.12.003_b1) 2010 Aljundi (10.1016/j.neunet.2020.12.003_b3) 2017 Lange (10.1016/j.neunet.2020.12.003_b35) 2019 Pedregosa (10.1016/j.neunet.2020.12.003_b51) 2012 Shannon (10.1016/j.neunet.2020.12.003_b65) 2001; 5 10.1016/j.neunet.2020.12.003_b71 Furlanello (10.1016/j.neunet.2020.12.003_b20) 2018; vol. 80 Aljundi (10.1016/j.neunet.2020.12.003_b2) 2018; vol. 11207 Castro (10.1016/j.neunet.2020.12.003_b14) 2018 Rosch (10.1016/j.neunet.2020.12.003_b57) 1976; 8 Russakovsky (10.1016/j.neunet.2020.12.003_b60) 2015; 115 Shin (10.1016/j.neunet.2020.12.003_b67) 2017 Beyer (10.1016/j.neunet.2020.12.003_b10) 2013 Sener (10.1016/j.neunet.2020.12.003_b63) 2018 Tao (10.1016/j.neunet.2020.12.003_b70) 2020; vol. 12364 Pang (10.1016/j.neunet.2020.12.003_b47) 2005; 35 Hayes (10.1016/j.neunet.2020.12.003_b23) 2019 10.1016/j.neunet.2020.12.003_b74 Mensink (10.1016/j.neunet.2020.12.003_b45) 2013; 35 Seff (10.1016/j.neunet.2020.12.003_b62) 2017 Venkatesan (10.1016/j.neunet.2020.12.003_b72) 2017 Zhou (10.1016/j.neunet.2020.12.003_b85) 2019 Hinton (10.1016/j.neunet.2020.12.003_b27) 2015 He (10.1016/j.neunet.2020.12.003_b25) 2018 Belfort (10.1016/j.neunet.2020.12.003_b5) 2017 Tamaazousti (10.1016/j.neunet.2020.12.003_b69) 2017 Jégou (10.1016/j.neunet.2020.12.003_b30) 2011; 33 Mallya (10.1016/j.neunet.2020.12.003_b41) 2018 Shen (10.1016/j.neunet.2020.12.003_b66) 2020; 399 Rosenfeld (10.1016/j.neunet.2020.12.003_b58) 2017 Ghosh (10.1016/j.neunet.2020.12.003_b22) 2018 Aljundi (10.1016/j.neunet.2020.12.003_b4) 2019 Razavian (10.1016/j.neunet.2020.12.003_b53) 2014 Zalán Bodó (10.1016/j.neunet.2020.12.003_b81) 2011 Fritzke (10.1016/j.neunet.2020.12.003_b19) 1994 Park (10.1016/j.neunet.2020.12.003_b49) 2019 Wu (10.1016/j.neunet.2020.12.003_b75) 2018 Parisi (10.1016/j.neunet.2020.12.003_b48) 2018 Belouadah (10.1016/j.neunet.2020.12.003_b6) 2018 Douillard (10.1016/j.neunet.2020.12.003_b17) 2020; vol. 12365 Rebuffi (10.1016/j.neunet.2020.12.003_b56) 2017 Settles (10.1016/j.neunet.2020.12.003_b64) 2010 Singh (10.1016/j.neunet.2020.12.003_b68) 2020; 33 Yu (10.1016/j.neunet.2020.12.003_b80) 2020 Fritzke (10.1016/j.neunet.2020.12.003_b18) 1994; 7 Belouadah (10.1016/j.neunet.2020.12.003_b9) 2020 Lughofer (10.1016/j.neunet.2020.12.003_b39) 2008; 41 Buda (10.1016/j.neunet.2020.12.003_b12) 2018; 106 Liu (10.1016/j.neunet.2020.12.003_b38) 2020 Boser (10.1016/j.neunet.2020.12.003_b11) 1992 He (10.1016/j.neunet.2020.12.003_b26) 2016 Roy (10.1016/j.neunet.2020.12.003_b59) 2020; 121 Zhao (10.1016/j.neunet.2020.12.003_b84) 2020 |
References_xml | – reference: (pp. 5142–5151). – volume: 33 year: 2020 ident: b68 article-title: Calibrating cnns for lifelong learning publication-title: Advances in Neural Information Processing Systems – year: 2017 ident: b73 article-title: Growing a brain: Fine-tuning by increasing model capacity publication-title: Conference on computer vision and pattern recognition – start-page: 7765 year: 2018 end-page: 7773 ident: b41 article-title: Packnet: Adding multiple tasks to a single network by iterative pruning publication-title: 2018 IEEE conference on computer vision and pattern recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018 – start-page: 13205 year: 2020 end-page: 13214 ident: b84 article-title: Maintaining discrimination and fairness in class incremental learning publication-title: 2020 IEEE/CVF conference on computer vision and pattern recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020 – year: 2017 ident: b56 article-title: Icarl: Incremental classifier and representation learning publication-title: Conference on computer vision and pattern recognition – reference: Phuong, M., & Lampert, C. (2019). Towards understanding knowledge distillation. In – volume: 33 start-page: 117 year: 2011 end-page: 128 ident: b30 article-title: Product quantization for nearest neighbor search publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 121 start-page: 148 year: 2020 end-page: 160 ident: b59 article-title: Tree-cnn: A hierarchical deep convolutional neural network for incremental learning publication-title: Neural Networks – year: 2018 ident: b63 article-title: Active learning for convolutional neural networks: A core-set approach publication-title: 6th international conference on learning representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, conference track proceedings – start-page: 625 year: 1994 end-page: 632 ident: b19 article-title: A growing neural gas network learns topologies publication-title: Advances in neural information processing systems 7, [NIPS conference, Denver, Colorado, USA, 1994] – year: 2016 ident: b26 article-title: Deep residual learning for image recognition publication-title: Conference on computer vision and pattern recognition – start-page: 3967 year: 2019 end-page: 3976 ident: b49 article-title: Relational knowledge distillation publication-title: IEEE conference on computer vision and pattern recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019 – volume: 41 start-page: 995 year: 2008 end-page: 1011 ident: b39 article-title: Extensions of vector quantization for incremental clustering publication-title: Pattern Recognition – start-page: 427 year: 1993 end-page: 434 ident: b42 article-title: Competitive hebbian learning rule forms perfectly topology preserving maps publication-title: International conference on artificial neural networks – reference: (pp. 12183–12192). – start-page: 11254 year: 2019 end-page: 11263 ident: b4 article-title: Task-free continual learning publication-title: IEEE conference on computer vision and pattern recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019 – start-page: 67 year: 2018 end-page: 74 ident: b13 article-title: Vggface2: A dataset for recognising faces across pose and age publication-title: 13th IEEE international conference on automatic face & gesture recognition, FG 2018, Xi’an, China, May 15-19, 2018 – start-page: 144 year: 1992 end-page: 152 ident: b11 article-title: A training algorithm for optimal margin classifiers publication-title: Proceedings of the fifth annual ACM conference on computational learning theory, COLT 1992, Pittsburgh, PA, USA, July 27-29, 1992 – volume: vol. 12364 start-page: 254 year: 2020 end-page: 270 ident: b70 article-title: Topology-preserving class-incremental learning publication-title: Computer vision - ECCV 2020 - 16th European conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XIX – start-page: 2994 year: 2017 end-page: 3003 ident: b67 article-title: Continual learning with deep generative replay publication-title: NIPS – year: 2016 ident: b36 article-title: Learning without forgetting publication-title: European conference on computer vision – start-page: 3476 year: 2017 end-page: 3485 ident: b46 article-title: Large-scale image retrieval with attentive deep local features publication-title: ICCV – volume: vol. 11207 start-page: 144 year: 2018 end-page: 161 ident: b2 article-title: Memory aware synapses: Learning what (not) to forget publication-title: Computer vision - ECCV 2018 - 15th European conference, Munich, Germany, September 8-14, 2018, Proceedings, Part III – year: 2019 ident: b23 article-title: REMIND your neural network to prevent catastrophic forgetting – year: 2019 ident: b32 article-title: Incremental learning with maximum entropy regularization: Rethinking forgetting and intransigence – start-page: 7130 year: 2017 end-page: 7138 ident: b79 article-title: A gift from knowledge distillation: Fast optimization, network minimization and transfer learning publication-title: 2017 IEEE conference on computer vision and pattern recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017 – year: 2020 ident: b9 article-title: Initial classifier weights replay for memoryless class incremental learning publication-title: British machine vision conference (BMVC) – volume: 5 start-page: 3 year: 2001 end-page: 55 ident: b65 article-title: A mathematical theory of communication publication-title: ACM SIGMOBILE Mobile Computing and Communications Review – year: 2011 ident: b81 article-title: Active learning with clustering publication-title: Workshop on active learning and experimental design – year: 2020 ident: b8 article-title: Scail: Classifier weights scaling for class incremental learning publication-title: The IEEE winter conference on applications of computer vision (WACV) – start-page: 1034 year: 2017 end-page: 1040 ident: b5 article-title: Online incremental supervised growing neural gas publication-title: 2017 international joint conference on neural networks, IJCNN 2017, Anchorage, AK, USA, May 14-19, 2017 – volume: 35 start-page: 905 year: 2005 end-page: 914 ident: b47 article-title: Incremental linear discriminant analysis for classification of data streams publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) – year: 2017 ident: b72 article-title: A strategy for an uncompromising incremental learner – volume: 106 start-page: 249 year: 2018 end-page: 259 ident: b12 article-title: A systematic study of the class imbalance problem in convolutional neural networks publication-title: Neural Networks – year: 2018 ident: b29 article-title: Revisiting distillation and incremental classifier learning – volume: 7 start-page: 625 year: 1994 end-page: 632 ident: b18 article-title: A growing neural gas network learns topologies publication-title: Advances in Neural Information Processing Systems – year: 2019 ident: b85 article-title: M2kd: multi-model and multi-level knowledge distillation for incremental learning – start-page: 8119 year: 2018 end-page: 8127 ident: b55 article-title: Efficient parametrization of multi-domain deep neural networks publication-title: 2018 IEEE conference on computer vision and pattern recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018 – year: 2017 ident: b69 article-title: Learning more universal representations for transfer-learning – year: 2018 ident: b33 article-title: Do better imagenet models transfer better? – year: 2020 ident: b37 article-title: Mnemonics training: Multi-class incremental learning without forgetting publication-title: The IEEE conference on computer vision and pattern recognition (CVPR) – volume: 24 start-page: 104 year: 1989 end-page: 169 ident: b44 article-title: Catastrophic interference in connectionist networks: The sequential learning problem publication-title: The Psychology of Learning and Motivation – volume: vol. 12365 start-page: 86 year: 2020 end-page: 102 ident: b17 article-title: Podnet: Pooled outputs distillation for small-tasks incremental learning publication-title: Computer vision - ECCV 2020 - 16th European conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XX – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: b60 article-title: Imagenet large scale visual recognition challenge publication-title: International Journal of Computer Vision – year: 2019 ident: b35 article-title: Continual learning: A comparative study on how to defy forgetting in classification tasks – reference: Welling, M. (2009). Herding dynamical weights to learn. In – reference: Belouadah, E., & Popescu, A. (2019). Il2m: Class incremental learning with dual memory. In – year: 2017 ident: b58 article-title: Incremental learning through deep adaptation – year: 2018 ident: b6 article-title: Deesil: Deep-shallow incremental learning publication-title: TaskCV workshop @ ECCV 2018 – year: 2018 ident: b75 article-title: Incremental classifier learning with generative adversarial networks – year: 2017 ident: b50 article-title: Automatic differentiation in pytorch publication-title: Advances in neural information processing systems workshops – volume: 35 start-page: 2624 year: 2013 end-page: 2637 ident: b45 article-title: Distance-based image classification: Generalizing to new classes at near-zero cost publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2009 ident: b34 article-title: Learning multiple layers of features from tiny images – volume: vol. 80 start-page: 1602 year: 2018 end-page: 1611 ident: b20 article-title: Born-again neural networks publication-title: Proceedings of the 35th international conference on machine learning, ICML 2018 – volume: 4 start-page: 558 year: 1993 end-page: 569 ident: b43 article-title: ’neural-gas’ network for vector quantization and its application to time-series prediction publication-title: IEEE Transactions on Neural Networks – reference: (pp. 1121–1128). – start-page: 241 year: 2018 end-page: 257 ident: b14 article-title: End-to-end incremental learning publication-title: Computer vision - ECCV 2018 - 15th European conference, munich, Germany, September 8-14, 2018, proceedings, part XII – year: 2017 ident: b62 article-title: Continual learning in generative adversarial nets – year: 2018 ident: b16 article-title: Learning without memorizing – year: 2013 ident: b10 article-title: DYNG: dynamic online growing neural gas for stream data classification publication-title: 21st European symposium on artificial neural networks, ESANN 2013, Bruges, Belgium, April 24-26, 2013 – start-page: 98 year: 2018 ident: b25 article-title: Exemplar-supported generative reproduction for class incremental learning publication-title: British machine vision conference 2018, BMVC 2018, Northumbria University, Newcastle, UK, September 3-6, 2018 – year: 2017 ident: b3 article-title: Expert gate: Lifelong learning with a network of experts publication-title: Conference on computer vision and pattern recognition – start-page: 12242 year: 2020 end-page: 12251 ident: b38 article-title: Mnemonics training: Multi-class incremental learning without forgetting publication-title: 2020 IEEE/CVF conference on computer vision and pattern recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020 – volume: 23 start-page: 1499 year: 2016 end-page: 1503 ident: b83 article-title: Joint face detection and alignment using multitask cascaded convolutional networks publication-title: IEEE Signal Processing Letters – volume: 8 start-page: 382 year: 1976 end-page: 439 ident: b57 article-title: Basic objects in natural categories publication-title: Cognitive Psychology – year: 2018 ident: b48 article-title: Continual lifelong learning with neural networks: A review – year: 2015 ident: b27 article-title: Distilling the knowledge in a neural network – start-page: 506 year: 2017 end-page: 516 ident: b54 article-title: Learning multiple visual domains with residual adapters publication-title: Advances in neural information processing systems 30: Annual conference on neural information processing systems 2017, 4-9 December 2017, Long Beach, CA, USA – year: 2014 ident: b53 article-title: CNN features off-the-shelf: An astounding baseline for recognition publication-title: Conference on computer vision and pattern recognition workshop – start-page: 6980 year: 2020 end-page: 6989 ident: b80 article-title: Semantic drift compensation for class-incremental learning publication-title: 2020 IEEE/CVF conference on computer vision and pattern recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020 – year: 2018 ident: b31 article-title: Fearnet: Brain-inspired model for incremental learning publication-title: 6th international conference on learning representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings – year: 2012 ident: b51 article-title: Scikit-learn: Machine learning in python – start-page: 374 year: 2019 end-page: 382 ident: b76 article-title: Large scale incremental learning publication-title: IEEE conference on computer vision and pattern recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019 – reference: Tao, X., Hong, X., Chang, X., Dong, S., Wei, X., & Gong, Y. (2020). Few-shot class-incremental learning. In – volume: 5476 start-page: 1046 year: 2009 end-page: 1053 ident: b78 article-title: An online incremental learning vector quantization publication-title: Advances in knowledge discovery and data mining, 13th pacific-asia conference, PAKDD 2009, Bangkok, Thailand, April 27-30, 2009, Proceedings – volume: 399 start-page: 467 year: 2020 end-page: 478 ident: b66 article-title: Online semi-supervised learning with learning vector quantization publication-title: Neurocomputing – start-page: 1120 year: 2020 end-page: 1129 ident: b82 article-title: Class-incremental learning via deep model consolidation publication-title: IEEE winter conference on applications of computer vision, WACV 2020 – start-page: 1 year: 2010 end-page: 6 ident: b1 article-title: Incremental learning for visual classification using neural gas publication-title: International joint conference on neural networks, IJCNN 2010, Barcelona, Spain, 18-23 July, 2010 – year: 2019 ident: b24 article-title: Lifelong machine learning with deep streaming linear discriminant analysis – year: 2016 ident: b61 article-title: Progressive neural networks – year: 2010 ident: b64 article-title: Active learning literature survey – volume: 8 start-page: 23090 year: 2020 end-page: 23099 ident: b77 article-title: Efficient incremental learning using dynamic correction vector publication-title: IEEE Access – start-page: 153 year: 2017 end-page: 160 ident: b21 article-title: Incremental learning with self-organizing maps publication-title: 12th international workshop on self-organizing maps and learning vector quantization, clustering and data visualization, WSOM 2017, Nancy, France, June 28-30, 2017 – reference: (pp. 583–592). – start-page: 831 year: 2019 end-page: 839 ident: b28 article-title: Learning a unified classifier incrementally via rebalancing publication-title: IEEE conference on computer vision and pattern recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019 – volume: vol. 11208 start-page: 72 year: 2018 end-page: 88 ident: b40 article-title: Piggyback: Adapting a single network to multiple tasks by learning to mask weights publication-title: ECCV (4) – year: 2020 ident: b15 article-title: GAN memory with no forgetting – year: 2018 ident: b22 article-title: Multi-agent diverse generative adversarial networks publication-title: The IEEE conference on computer vision and pattern recognition (CVPR) – year: 2020 ident: 10.1016/j.neunet.2020.12.003_b9 article-title: Initial classifier weights replay for memoryless class incremental learning – start-page: 98 year: 2018 ident: 10.1016/j.neunet.2020.12.003_b25 article-title: Exemplar-supported generative reproduction for class incremental learning – start-page: 831 year: 2019 ident: 10.1016/j.neunet.2020.12.003_b28 article-title: Learning a unified classifier incrementally via rebalancing – volume: 24 start-page: 104 year: 1989 ident: 10.1016/j.neunet.2020.12.003_b44 article-title: Catastrophic interference in connectionist networks: The sequential learning problem publication-title: The Psychology of Learning and Motivation – start-page: 153 year: 2017 ident: 10.1016/j.neunet.2020.12.003_b21 article-title: Incremental learning with self-organizing maps – year: 2017 ident: 10.1016/j.neunet.2020.12.003_b62 – volume: 8 start-page: 23090 year: 2020 ident: 10.1016/j.neunet.2020.12.003_b77 article-title: Efficient incremental learning using dynamic correction vector publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2963461 – year: 2020 ident: 10.1016/j.neunet.2020.12.003_b15 – year: 2013 ident: 10.1016/j.neunet.2020.12.003_b10 article-title: DYNG: dynamic online growing neural gas for stream data classification – year: 2020 ident: 10.1016/j.neunet.2020.12.003_b8 article-title: Scail: Classifier weights scaling for class incremental learning – start-page: 1 year: 2010 ident: 10.1016/j.neunet.2020.12.003_b1 article-title: Incremental learning for visual classification using neural gas – year: 2018 ident: 10.1016/j.neunet.2020.12.003_b16 – volume: 33 start-page: 117 issue: 1 year: 2011 ident: 10.1016/j.neunet.2020.12.003_b30 article-title: Product quantization for nearest neighbor search publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2010.57 – volume: 5476 start-page: 1046 year: 2009 ident: 10.1016/j.neunet.2020.12.003_b78 article-title: An online incremental learning vector quantization – start-page: 12242 year: 2020 ident: 10.1016/j.neunet.2020.12.003_b38 article-title: Mnemonics training: Multi-class incremental learning without forgetting – year: 2019 ident: 10.1016/j.neunet.2020.12.003_b85 – start-page: 374 year: 2019 ident: 10.1016/j.neunet.2020.12.003_b76 article-title: Large scale incremental learning – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.1016/j.neunet.2020.12.003_b60 article-title: Imagenet large scale visual recognition challenge publication-title: International Journal of Computer Vision doi: 10.1007/s11263-015-0816-y – volume: 106 start-page: 249 year: 2018 ident: 10.1016/j.neunet.2020.12.003_b12 article-title: A systematic study of the class imbalance problem in convolutional neural networks publication-title: Neural Networks doi: 10.1016/j.neunet.2018.07.011 – volume: vol. 80 start-page: 1602 year: 2018 ident: 10.1016/j.neunet.2020.12.003_b20 article-title: Born-again neural networks – volume: 35 start-page: 905 issue: 5 year: 2005 ident: 10.1016/j.neunet.2020.12.003_b47 article-title: Incremental linear discriminant analysis for classification of data streams publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2005.847744 – year: 2017 ident: 10.1016/j.neunet.2020.12.003_b73 article-title: Growing a brain: Fine-tuning by increasing model capacity – start-page: 1120 year: 2020 ident: 10.1016/j.neunet.2020.12.003_b82 article-title: Class-incremental learning via deep model consolidation – year: 2009 ident: 10.1016/j.neunet.2020.12.003_b34 – year: 2017 ident: 10.1016/j.neunet.2020.12.003_b58 – year: 2019 ident: 10.1016/j.neunet.2020.12.003_b24 – start-page: 625 year: 1994 ident: 10.1016/j.neunet.2020.12.003_b19 article-title: A growing neural gas network learns topologies – year: 2017 ident: 10.1016/j.neunet.2020.12.003_b3 article-title: Expert gate: Lifelong learning with a network of experts – volume: vol. 12365 start-page: 86 year: 2020 ident: 10.1016/j.neunet.2020.12.003_b17 article-title: Podnet: Pooled outputs distillation for small-tasks incremental learning – year: 2014 ident: 10.1016/j.neunet.2020.12.003_b53 article-title: CNN features off-the-shelf: An astounding baseline for recognition – year: 2018 ident: 10.1016/j.neunet.2020.12.003_b48 – year: 2017 ident: 10.1016/j.neunet.2020.12.003_b50 article-title: Automatic differentiation in pytorch – ident: 10.1016/j.neunet.2020.12.003_b71 doi: 10.1109/CVPR42600.2020.01220 – year: 2018 ident: 10.1016/j.neunet.2020.12.003_b6 article-title: Deesil: Deep-shallow incremental learning – ident: 10.1016/j.neunet.2020.12.003_b74 doi: 10.1145/1553374.1553517 – year: 2011 ident: 10.1016/j.neunet.2020.12.003_b81 article-title: Active learning with clustering – volume: 23 start-page: 1499 issue: 10 year: 2016 ident: 10.1016/j.neunet.2020.12.003_b83 article-title: Joint face detection and alignment using multitask cascaded convolutional networks publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2016.2603342 – year: 2017 ident: 10.1016/j.neunet.2020.12.003_b72 – start-page: 11254 year: 2019 ident: 10.1016/j.neunet.2020.12.003_b4 article-title: Task-free continual learning – year: 2018 ident: 10.1016/j.neunet.2020.12.003_b75 – start-page: 2994 year: 2017 ident: 10.1016/j.neunet.2020.12.003_b67 article-title: Continual learning with deep generative replay – year: 2015 ident: 10.1016/j.neunet.2020.12.003_b27 – start-page: 7130 year: 2017 ident: 10.1016/j.neunet.2020.12.003_b79 article-title: A gift from knowledge distillation: Fast optimization, network minimization and transfer learning – year: 2017 ident: 10.1016/j.neunet.2020.12.003_b69 – volume: 33 year: 2020 ident: 10.1016/j.neunet.2020.12.003_b68 article-title: Calibrating cnns for lifelong learning publication-title: Advances in Neural Information Processing Systems – year: 2018 ident: 10.1016/j.neunet.2020.12.003_b63 article-title: Active learning for convolutional neural networks: A core-set approach – start-page: 13205 year: 2020 ident: 10.1016/j.neunet.2020.12.003_b84 article-title: Maintaining discrimination and fairness in class incremental learning – year: 2018 ident: 10.1016/j.neunet.2020.12.003_b29 – volume: 121 start-page: 148 year: 2020 ident: 10.1016/j.neunet.2020.12.003_b59 article-title: Tree-cnn: A hierarchical deep convolutional neural network for incremental learning publication-title: Neural Networks doi: 10.1016/j.neunet.2019.09.010 – year: 2016 ident: 10.1016/j.neunet.2020.12.003_b26 article-title: Deep residual learning for image recognition – start-page: 3967 year: 2019 ident: 10.1016/j.neunet.2020.12.003_b49 article-title: Relational knowledge distillation – volume: 8 start-page: 382 issue: 3 year: 1976 ident: 10.1016/j.neunet.2020.12.003_b57 article-title: Basic objects in natural categories publication-title: Cognitive Psychology doi: 10.1016/0010-0285(76)90013-X – year: 2019 ident: 10.1016/j.neunet.2020.12.003_b35 – volume: 399 start-page: 467 year: 2020 ident: 10.1016/j.neunet.2020.12.003_b66 article-title: Online semi-supervised learning with learning vector quantization publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.03.025 – year: 2010 ident: 10.1016/j.neunet.2020.12.003_b64 – volume: vol. 11208 start-page: 72 year: 2018 ident: 10.1016/j.neunet.2020.12.003_b40 article-title: Piggyback: Adapting a single network to multiple tasks by learning to mask weights – volume: vol. 11207 start-page: 144 year: 2018 ident: 10.1016/j.neunet.2020.12.003_b2 article-title: Memory aware synapses: Learning what (not) to forget – start-page: 67 year: 2018 ident: 10.1016/j.neunet.2020.12.003_b13 article-title: Vggface2: A dataset for recognising faces across pose and age – year: 2018 ident: 10.1016/j.neunet.2020.12.003_b31 article-title: Fearnet: Brain-inspired model for incremental learning – year: 2020 ident: 10.1016/j.neunet.2020.12.003_b37 article-title: Mnemonics training: Multi-class incremental learning without forgetting – start-page: 144 year: 1992 ident: 10.1016/j.neunet.2020.12.003_b11 article-title: A training algorithm for optimal margin classifiers – year: 2016 ident: 10.1016/j.neunet.2020.12.003_b61 – start-page: 241 year: 2018 ident: 10.1016/j.neunet.2020.12.003_b14 article-title: End-to-end incremental learning – year: 2019 ident: 10.1016/j.neunet.2020.12.003_b32 – ident: 10.1016/j.neunet.2020.12.003_b52 – year: 2012 ident: 10.1016/j.neunet.2020.12.003_b51 – start-page: 6980 year: 2020 ident: 10.1016/j.neunet.2020.12.003_b80 article-title: Semantic drift compensation for class-incremental learning – year: 2019 ident: 10.1016/j.neunet.2020.12.003_b23 – volume: 41 start-page: 995 issue: 3 year: 2008 ident: 10.1016/j.neunet.2020.12.003_b39 article-title: Extensions of vector quantization for incremental clustering publication-title: Pattern Recognition doi: 10.1016/j.patcog.2007.07.019 – start-page: 8119 year: 2018 ident: 10.1016/j.neunet.2020.12.003_b55 article-title: Efficient parametrization of multi-domain deep neural networks – volume: 7 start-page: 625 year: 1994 ident: 10.1016/j.neunet.2020.12.003_b18 article-title: A growing neural gas network learns topologies publication-title: Advances in Neural Information Processing Systems – year: 2018 ident: 10.1016/j.neunet.2020.12.003_b33 – start-page: 506 year: 2017 ident: 10.1016/j.neunet.2020.12.003_b54 article-title: Learning multiple visual domains with residual adapters – year: 2016 ident: 10.1016/j.neunet.2020.12.003_b36 article-title: Learning without forgetting – start-page: 7765 year: 2018 ident: 10.1016/j.neunet.2020.12.003_b41 article-title: Packnet: Adding multiple tasks to a single network by iterative pruning – start-page: 427 year: 1993 ident: 10.1016/j.neunet.2020.12.003_b42 article-title: Competitive hebbian learning rule forms perfectly topology preserving maps – start-page: 3476 year: 2017 ident: 10.1016/j.neunet.2020.12.003_b46 article-title: Large-scale image retrieval with attentive deep local features – start-page: 1034 year: 2017 ident: 10.1016/j.neunet.2020.12.003_b5 article-title: Online incremental supervised growing neural gas – year: 2018 ident: 10.1016/j.neunet.2020.12.003_b22 article-title: Multi-agent diverse generative adversarial networks – volume: 5 start-page: 3 issue: 1 year: 2001 ident: 10.1016/j.neunet.2020.12.003_b65 article-title: A mathematical theory of communication publication-title: ACM SIGMOBILE Mobile Computing and Communications Review doi: 10.1145/584091.584093 – year: 2017 ident: 10.1016/j.neunet.2020.12.003_b56 article-title: Icarl: Incremental classifier and representation learning – volume: 35 start-page: 2624 issue: 11 year: 2013 ident: 10.1016/j.neunet.2020.12.003_b45 article-title: Distance-based image classification: Generalizing to new classes at near-zero cost publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2013.83 – ident: 10.1016/j.neunet.2020.12.003_b7 doi: 10.1109/ICCV.2019.00067 – volume: 4 start-page: 558 issue: 4 year: 1993 ident: 10.1016/j.neunet.2020.12.003_b43 article-title: ’neural-gas’ network for vector quantization and its application to time-series prediction publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.238311 – volume: vol. 12364 start-page: 254 year: 2020 ident: 10.1016/j.neunet.2020.12.003_b70 article-title: Topology-preserving class-incremental learning |
SSID | ssj0006843 |
Score | 2.670026 |
SecondaryResourceType | review_article |
Snippet | The ability of artificial agents to increment their capabilities when confronted with new data is an open challenge in artificial intelligence. The main... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 38 |
SubjectTerms | Algorithms Artificial Intelligence - trends Catastrophic forgetting Computer Science Convolutional neural networks Humans Image classification Imbalanced learning Incremental learning Memory - physiology Neural Networks, Computer Psychomotor Performance - physiology Reproducibility of Results Visual Perception - physiology |
Title | A comprehensive study of class incremental learning algorithms for visual tasks |
URI | https://dx.doi.org/10.1016/j.neunet.2020.12.003 https://www.ncbi.nlm.nih.gov/pubmed/33341513 https://www.proquest.com/docview/2471536930 https://hal.science/hal-03493944 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ReuHSFwW2pcituIaN4zyPKwTavugBKnGz7FmbTQtZtMly5Lczk8dWqKqQevUr0fgxn-xvvgE4ZE2szFobJJ5FtWVRBKZADAyGKK0MvUKOd_5-lk5_xl8uk8sNOB5iYZhW2Z_93ZnentZ9ybi35vi2LMfnIbnalENF-XUvagUl4zhj_fyj-z80jzTvmHPUOODWQ_hcy_Gq3KpyzKiMwvZScEid9bd7ejZnnuS_QGjrjE5fwYseRYpJ96OvYcNVb-DlkKFB9Bt2G35MBHPGl27e8dRFqyYrFl4go2ZRVtjdD9Jgff6IK2GurxbLspnf1IIQrbgr6xVVN6b-Xb-Fi9OTi-Np0KdQCJCQVxPkM2WzOC68sRGiNwQ-DGZY-MgrgzMkvyWVTZAsQLUym7nIqNTOCpP7LPVqBzarReX2QBSsS29zm6QOYxOG1pgUfS5TH3sqSEagBsNp7OXFOcvFtR54ZL90Z27N5tYyYlnSEQTrXredvMYT7bNhTvSjZaLJAzzR8xNN4fojrKo9nXzTXMYSPRwffCdH8HGYYU3bjN9OTOUWq1pH5MQTxXkjR7DbTf16LKUICiRSvfvvn3sPWxFzZVpu2z5sNsuV-0Bgp7EH7Wo-gOeTz1-nZw9V6f-S |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VcoAL5VlCeRjEdcl6vc9jVLUKkJYDQerNsid2s1A2VXbTY397Z_YRhCpUiatfuxo_5pP9zTcAH1kTK7PWBolnUW1ZFIEpEAODIUorQ6-Q451PTtPpj_jLWXK2A4dDLAzTKvuzvzvT29O6Lxn31hxfluX4e0iuNuVQUX7di1hQ8n6cqIyX9qfrPzyPNO-oc9Q64OZD_FxL8qrcpnJMqYzC9lZwyJ112z_dWzJR8l8otPVGx4_hUQ8jxaT70yew46qnsDekaBD9jn0G3yaCSeNrt-yI6qKVkxUrL5Bhsygr7C4IabA-gcS5MBfnq3XZLH_XgiCtuCrrDVU3pv5VP4f58dH8cBr0ORQCJOjVBPlC2SyOC29shOgNoQ-DGRY-8srgAslxSWUTJAtQrcwWLjIqtYvC5D5LvXoBu9Wqci9BFCxMb3ObpA5jE4bWmBR9LlMfeypIRqAGw2ns9cU5zcWFHohkP3Vnbs3m1jJiXdIRBNtel52-xh3ts2FO9F_rRJMLuKPnB5rC7UdYVns6mWkuY40eDhC-kiN4P8ywpn3GjyemcqtNrSPy4onixJEj2O-mfjuWUoQFEqle_ffPvYMH0_nJTM8-n349gIcRE2daottr2G3WG_eGkE9j37Yr-wY1aAE3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+study+of+class+incremental+learning+algorithms+for+visual+tasks&rft.jtitle=Neural+networks&rft.au=Belouadah%2C+Eden&rft.au=Popescu%2C+Adrian&rft.au=Kanellos%2C+Ioannis&rft.date=2021-03-01&rft.pub=Elsevier&rft.issn=0893-6080&rft.volume=135&rft.spage=38&rft.epage=54&rft_id=info:doi/10.1016%2Fj.neunet.2020.12.003&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03493944v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |