SOCRATES: Introducing Depth in Visual Wildlife Monitoring Using Stereo Vision

The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of ecosystems, species communities and populations, and in order to understand important drivers of change. For estimating wildlife abundance,...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 23; p. 9082
Main Authors Haucke, Timm, Kühl, Hjalmar S., Steinhage, Volker
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.11.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of ecosystems, species communities and populations, and in order to understand important drivers of change. For estimating wildlife abundance, camera trapping in combination with three-dimensional (3D) measurements of habitats is highly valuable. Additionally, 3D information improves the accuracy of wildlife detection using camera trapping. This study presents a novel approach to 3D camera trapping featuring highly optimized hardware and software. This approach employs stereo vision to infer the 3D information of natural habitats and is designated as StereO CameRA Trap for monitoring of biodivErSity (SOCRATES). A comprehensive evaluation of SOCRATES shows not only a 3.23% improvement in animal detection (bounding box mAP75), but also its superior applicability for estimating animal abundance using camera trap distance sampling. The software and documentation of SOCRATES is openly provided.
AbstractList The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of ecosystems, species communities and populations, and in order to understand important drivers of change. For estimating wildlife abundance, camera trapping in combination with three-dimensional (3D) measurements of habitats is highly valuable. Additionally, 3D information improves the accuracy of wildlife detection using camera trapping. This study presents a novel approach to 3D camera trapping featuring highly optimized hardware and software. This approach employs stereo vision to infer the 3D information of natural habitats and is designated as StereO CameRA Trap for monitoring of biodivErSity (SOCRATES). A comprehensive evaluation of SOCRATES shows not only a 3.23% improvement in animal detection (bounding box mAP75), but also its superior applicability for estimating animal abundance using camera trap distance sampling. The software and documentation of SOCRATES is openly provided.The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of ecosystems, species communities and populations, and in order to understand important drivers of change. For estimating wildlife abundance, camera trapping in combination with three-dimensional (3D) measurements of habitats is highly valuable. Additionally, 3D information improves the accuracy of wildlife detection using camera trapping. This study presents a novel approach to 3D camera trapping featuring highly optimized hardware and software. This approach employs stereo vision to infer the 3D information of natural habitats and is designated as StereO CameRA Trap for monitoring of biodivErSity (SOCRATES). A comprehensive evaluation of SOCRATES shows not only a 3.23% improvement in animal detection (bounding box mAP75), but also its superior applicability for estimating animal abundance using camera trap distance sampling. The software and documentation of SOCRATES is openly provided.
The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of ecosystems, species communities and populations, and in order to understand important drivers of change. For estimating wildlife abundance, camera trapping in combination with three-dimensional (3D) measurements of habitats is highly valuable. Additionally, 3D information improves the accuracy of wildlife detection using camera trapping. This study presents a novel approach to 3D camera trapping featuring highly optimized hardware and software. This approach employs stereo vision to infer the 3D information of natural habitats and is designated as StereO CameRA Trap for monitoring of biodivErSity (SOCRATES). A comprehensive evaluation of SOCRATES shows not only a 3.23% improvement in animal detection (bounding box mAP[sub.75]), but also its superior applicability for estimating animal abundance using camera trap distance sampling. The software and documentation of SOCRATES is openly provided.
The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of ecosystems, species communities and populations, and in order to understand important drivers of change. For estimating wildlife abundance, camera trapping in combination with three-dimensional (3D) measurements of habitats is highly valuable. Additionally, 3D information improves the accuracy of wildlife detection using camera trapping. This study presents a novel approach to 3D camera trapping featuring highly optimized hardware and software. This approach employs stereo vision to infer the 3D information of natural habitats and is designated as StereO CameRA Trap for monitoring of biodivErSity (SOCRATES). A comprehensive evaluation of SOCRATES shows not only a 3.23 % improvement in animal detection (bounding box mAP 75 ), but also its superior applicability for estimating animal abundance using camera trap distance sampling. The software and documentation of SOCRATES is openly provided.
The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of ecosystems, species communities and populations, and in order to understand important drivers of change. For estimating wildlife abundance, camera trapping in combination with three-dimensional (3D) measurements of habitats is highly valuable. Additionally, 3D information improves the accuracy of wildlife detection using camera trapping. This study presents a novel approach to 3D camera trapping featuring highly optimized hardware and software. This approach employs stereo vision to infer the 3D information of natural habitats and is designated as StereO CameRA Trap for monitoring of biodivErSity (SOCRATES). A comprehensive evaluation of SOCRATES shows not only a 3.23% improvement in animal detection (bounding box mAP75 ), but also its superior applicability for estimating animal abundance using camera trap distance sampling. The software and documentation of SOCRATES is openly provided.
Audience Academic
Author Haucke, Timm
Steinhage, Volker
Kühl, Hjalmar S.
AuthorAffiliation 1 Institute of Computer Science IV, University of Bonn, Friedrich-Hirzebruch-Allee 8, 53115 Bonn, Germany
2 Senckenberg Museum for Natural History Görlitz, Senckenberg—Member of the Leibniz Association, Am Museum 1, 02826 Görlitz, Germany
4 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
3 International Institute Zittau, Technische Universität Dresden, Markt 23, 02763 Zittau, Germany
AuthorAffiliation_xml – name: 3 International Institute Zittau, Technische Universität Dresden, Markt 23, 02763 Zittau, Germany
– name: 2 Senckenberg Museum for Natural History Görlitz, Senckenberg—Member of the Leibniz Association, Am Museum 1, 02826 Görlitz, Germany
– name: 1 Institute of Computer Science IV, University of Bonn, Friedrich-Hirzebruch-Allee 8, 53115 Bonn, Germany
– name: 4 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
Author_xml – sequence: 1
  givenname: Timm
  orcidid: 0000-0003-1696-6937
  surname: Haucke
  fullname: Haucke, Timm
– sequence: 2
  givenname: Hjalmar S.
  surname: Kühl
  fullname: Kühl, Hjalmar S.
– sequence: 3
  givenname: Volker
  orcidid: 0000-0002-3172-3645
  surname: Steinhage
  fullname: Steinhage, Volker
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36501782$$D View this record in MEDLINE/PubMed
BookMark eNplkltrHCEUgCWk5LLtQ_9AGehL-7CJt1GnD4Vlm7YLCYFuLo_i6pmNy6xudabQf183m4QkRVDR73x6PB6j_RADIPSe4BPGGnyaKaVlVHQPHRFO-VhRivefzQ_Rcc4rjCljTB2gQyZqTKSiR-hifjn9Nbk6m3-pZqFP0Q3Wh2X1DTb9XeVDdePzYLrq1neu8y1UFzH4PqYtc523_byHBHHL-Rjeojet6TK8exhH6Pr72dX05_j88sdsOjkf2xqrfqyUwRJqAOEaIh3FLSlNmKYx0DYEHONKCWWskAtDJAfKHLbWcmM4xxizEZrtvC6ald4kvzbpr47G6_uFmJbapN7bDrRccNoyw2HBJSesLtLaCaxaSluHpSyurzvXZliswVkoz2C6F9KXO8Hf6WX8oxvJlJCiCD49CFL8PUDu9dpnC11nAsQhayprxkjdCFXQj6_QVRxSKE9VKK5qQci98GRHLU1JwIc2lnNtaQ7W3pbSt76sTyQXNeO4JDVCH56n8HT3xzIX4HQH2BRzTtBq63vTl4oVs-80wXr7kfTTRyoRn19FPEr_Z_8BXLfFcg
CitedBy_id crossref_primary_10_1155_2024_3599911
crossref_primary_10_1063_5_0246825
Cites_doi 10.1109/CVPR.2019.00027
10.1016/j.ecoinf.2022.101734
10.1016/j.baae.2022.01.003
10.1109/ICIP46576.2022.9897365
10.1109/CVPR.2018.00644
10.1016/j.ecoinf.2021.101536
10.1109/ICCV.2017.322
10.1109/IC3D.2014.7032599
10.1109/CVPR.2016.350
10.1007/s13280-015-0713-1
10.1038/293133a0
10.1109/IVS.2013.6629513
10.1007/978-3-030-01424-7_27
10.1111/j.1365-2664.2008.01473.x
10.1016/j.ecoinf.2021.101535
10.1109/CVPR.2009.5206848
10.1111/j.1365-2664.2009.01737.x
10.1007/978-3-319-10602-1_48
10.1109/CVPR52688.2022.00135
10.1109/CVPR52688.2022.01563
10.1109/CVPR.2018.00567
10.1109/TCSVT.2012.2221191
10.1109/ICRA.2011.5979561
10.1109/ICCV48922.2021.00986
10.1109/ICCV48922.2021.01196
10.1364/AO.389835
10.1109/MIC.2012.29
10.1109/TPAMI.2020.3019967
10.1002/ecs2.2331
10.1109/CVPR42600.2020.00203
10.1007/978-1-4615-0913-4_11
10.1109/CVPR52688.2022.01578
10.1109/ICCV.2019.00393
10.1109/CVPR.2016.90
10.1007/978-3-319-10590-1_53
10.1111/1365-2664.13059
10.1111/2041-210X.12790
10.1016/j.ecoinf.2022.101790
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22239082
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Proquest Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_7b42f3a4eb474135ac65d608f22fd077
PMC9738676
A746534041
36501782
10_3390_s22239082
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: Federal Ministry of Education and Research
  grantid: FKZ 01LC1903B
– fundername: German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung), Bonn, Germany
  grantid: FKZ 01LC1903B
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c508t-88a07e5ee6d917d20f1f1f6a99aef91ed348868ac67ba174e23d0ccc4aa440003
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:29:23 EDT 2025
Thu Aug 21 18:39:00 EDT 2025
Tue Aug 05 10:10:02 EDT 2025
Fri Jul 25 10:07:04 EDT 2025
Tue Jul 01 05:43:26 EDT 2025
Wed Feb 19 02:26:20 EST 2025
Tue Jul 01 01:19:33 EDT 2025
Thu Apr 24 22:54:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords animal abundance
instance segmentation
camera trapping
animal density
stereo vision
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-88a07e5ee6d917d20f1f1f6a99aef91ed348868ac67ba174e23d0ccc4aa440003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1696-6937
0000-0002-3172-3645
OpenAccessLink https://doaj.org/article/7b42f3a4eb474135ac65d608f22fd077
PMID 36501782
PQID 2748561176
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_7b42f3a4eb474135ac65d608f22fd077
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9738676
proquest_miscellaneous_2753315968
proquest_journals_2748561176
gale_infotracacademiconefile_A746534041
pubmed_primary_36501782
crossref_citationtrail_10_3390_s22239082
crossref_primary_10_3390_s22239082
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221123
PublicationDateYYYYMMDD 2022-11-23
PublicationDate_xml – month: 11
  year: 2022
  text: 20221123
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
ref_58
ref_57
Dai (ref_9) 2019; Volume 11187
ref_12
ref_11
ref_55
Haucke (ref_25) 2022; 68
ref_51
ref_19
Klasen (ref_53) 2022; 68
ref_18
ref_17
ref_16
Sullivan (ref_38) 2012; 22
ref_15
ref_59
Moeller (ref_23) 2018; 9
Xu (ref_10) 2020; 59
Klasen (ref_54) 2022; 71
ref_60
Johanns (ref_26) 2022; 70
Newey (ref_50) 2015; 44
Srivastava (ref_61) 2014; 15
Bodesheim (ref_1) 2022; 59
ref_20
ref_63
Ranftl (ref_56) 2022; 44
ref_29
ref_28
(ref_3) 1981; 293
ref_27
Howe (ref_24) 2017; 8
ref_36
ref_35
ref_34
ref_33
ref_32
ref_31
ref_30
Zbontar (ref_4) 2016; 17
ref_39
Ren (ref_13) 2015; 28
ref_37
Thomas (ref_49) 2010; 47
Nakashima (ref_22) 2018; 55
ref_47
ref_46
Rowcliffe (ref_21) 2008; 45
ref_45
ref_44
ref_43
ref_42
ref_41
ref_40
Bormann (ref_62) 2012; 16
ref_2
ref_48
Shrader (ref_52) 2006; 36
ref_8
ref_5
ref_7
ref_6
References_xml – ident: ref_6
  doi: 10.1109/CVPR.2019.00027
– volume: 36
  start-page: 1
  year: 2006
  ident: ref_52
  article-title: Digital photogrammetry and laser rangefinder techniques to measure African elephants
  publication-title: S. Afr. J. Wildl. Res.
– volume: 70
  start-page: 101734
  year: 2022
  ident: ref_26
  article-title: Automated distance estimation for wildlife camera trapping
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2022.101734
– ident: ref_32
– ident: ref_51
– volume: 59
  start-page: 105
  year: 2022
  ident: ref_1
  article-title: Towards a multisensor station for automated biodiversity monitoring
  publication-title: Basic Appl. Ecol.
  doi: 10.1016/j.baae.2022.01.003
– ident: ref_29
  doi: 10.1109/ICIP46576.2022.9897365
– ident: ref_42
  doi: 10.1109/CVPR.2018.00644
– volume: 68
  start-page: 101536
  year: 2022
  ident: ref_25
  article-title: Overcoming the distance estimation bottleneck in estimating animal abundance with camera traps
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2021.101536
– ident: ref_35
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_61
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref_14
  doi: 10.1109/ICCV.2017.322
– ident: ref_58
  doi: 10.1109/IC3D.2014.7032599
– volume: 28
  start-page: 91
  year: 2015
  ident: ref_13
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_45
  doi: 10.1109/CVPR.2016.350
– volume: 44
  start-page: 624
  year: 2015
  ident: ref_50
  article-title: Limitations of recreational camera traps for wildlife management and conservation research: A practitioner’s perspective
  publication-title: Ambio
  doi: 10.1007/s13280-015-0713-1
– volume: 293
  start-page: 133
  year: 1981
  ident: ref_3
  article-title: A computer algorithm for reconstructing a scene from two projections
  publication-title: Nature
  doi: 10.1038/293133a0
– ident: ref_39
  doi: 10.1109/IVS.2013.6629513
– ident: ref_16
  doi: 10.1007/978-3-030-01424-7_27
– volume: 45
  start-page: 1228
  year: 2008
  ident: ref_21
  article-title: Estimating animal density using camera traps without the need for individual recognition
  publication-title: J. Appl. Ecol.
  doi: 10.1111/j.1365-2664.2008.01473.x
– ident: ref_31
– ident: ref_27
– volume: 68
  start-page: 101535
  year: 2022
  ident: ref_53
  article-title: Improving wildlife tracking using 3D information
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2021.101535
– ident: ref_48
– ident: ref_17
  doi: 10.1109/CVPR.2009.5206848
– volume: 47
  start-page: 5
  year: 2010
  ident: ref_49
  article-title: Distance software: Design and analysis of distance sampling surveys for estimating population size
  publication-title: J. Appl. Ecol.
  doi: 10.1111/j.1365-2664.2009.01737.x
– ident: ref_41
– ident: ref_60
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref_15
  doi: 10.1109/CVPR52688.2022.00135
– ident: ref_19
  doi: 10.1109/CVPR52688.2022.01563
– ident: ref_5
  doi: 10.1109/CVPR.2018.00567
– volume: 22
  start-page: 1649
  year: 2012
  ident: ref_38
  article-title: Overview of the High Efficiency Video Coding (HEVC) Standard
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2012.2221191
– ident: ref_59
– volume: Volume 11187
  start-page: 111871C
  year: 2019
  ident: ref_9
  article-title: Binocular camera trap for wildlife detection
  publication-title: Proceedings of the Optoelectronic Imaging and Multimedia Technology VI
– ident: ref_30
– ident: ref_34
– ident: ref_47
– ident: ref_11
– ident: ref_40
  doi: 10.1109/ICRA.2011.5979561
– ident: ref_20
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref_57
  doi: 10.1109/ICCV48922.2021.01196
– volume: 59
  start-page: 3262
  year: 2020
  ident: ref_10
  article-title: Stereo camera trap for wildlife in situ observations and measurements
  publication-title: Appl. Opt.
  doi: 10.1364/AO.389835
– volume: 16
  start-page: 62
  year: 2012
  ident: ref_62
  article-title: CoAP: An Application Protocol for Billions of Tiny Internet Nodes
  publication-title: IEEE Internet Comput.
  doi: 10.1109/MIC.2012.29
– volume: 44
  start-page: 1623
  year: 2022
  ident: ref_56
  article-title: Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-Shot Cross-Dataset Transfer
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3019967
– volume: 9
  start-page: e02331
  year: 2018
  ident: ref_23
  article-title: Three novel methods to estimate abundance of unmarked animals using remote cameras
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2331
– ident: ref_7
  doi: 10.1109/CVPR42600.2020.00203
– ident: ref_37
– ident: ref_44
– ident: ref_28
  doi: 10.1007/978-1-4615-0913-4_11
– ident: ref_8
  doi: 10.1109/CVPR52688.2022.01578
– ident: ref_33
– ident: ref_55
  doi: 10.1109/ICCV.2019.00393
– ident: ref_2
– ident: ref_63
  doi: 10.1109/CVPR.2016.90
– ident: ref_46
– ident: ref_12
– ident: ref_18
  doi: 10.1007/978-3-319-10590-1_53
– volume: 55
  start-page: 735
  year: 2018
  ident: ref_22
  article-title: Estimating animal density without individual recognition using information derivable exclusively from camera traps
  publication-title: J. Appl. Ecol.
  doi: 10.1111/1365-2664.13059
– ident: ref_36
– ident: ref_43
– volume: 8
  start-page: 1558
  year: 2017
  ident: ref_24
  article-title: Distance sampling with camera traps
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12790
– volume: 71
  start-page: 101790
  year: 2022
  ident: ref_54
  article-title: Wildlife 3D multi-object tracking
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2022.101790
– volume: 17
  start-page: 65:1
  year: 2016
  ident: ref_4
  article-title: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches
  publication-title: J. Mach. Learn. Res.
SSID ssj0023338
Score 2.413153
Snippet The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9082
SubjectTerms animal abundance
animal density
Animal populations
Animals
Animals, Wild
Automation
Biodiversity
Biological monitoring
Calibration
camera trapping
Cameras
Datasets
Deep learning
Ecosystem
instance segmentation
Sensors
Software
stereo vision
Technology application
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8W6gVAYhwSVqHDt2wgUtpVVBKkhsi_ZmOX60K1XJ0t39_8wk3nSjIpRbMonseXhm7Mk3hLy3DJSgEKC8weSpsFymtTe4B18o0B-uQlc8fvZDnl6I77NiFjfclrGscrMmdgu1ay3ukR9C9lSCr2dKfl78SbFrFJ6uxhYa98kDhC7Dki41u024OORfPZoQh9T-cIm-EFt8j3xQB9V_d0He8kjjaskt93PymOzGuJFOekE_Ifd885Q82kITfEbOpj-Pfk3Oj6ef6DesP3drC_fpV79YXdF5Q3_Pl2v4BKwD7noePO3NGd-lXeEAnQKPfYt0IKzn5OLk-PzoNI3dElILQdYqLUuTKV94Lx2kYC7PAoNLmqoyPlTMOw62KktjpaoN5CE-5y6z1gpjhMDU6AXZadrG7xHKjPLS1BDLSSMgBqiCB1ZmNZOVMiL4hHzc8E_bCCWOHS2uNaQUyGo9sDoh7wbSRY-f8S-iLyiEgQAhr7sb7c2ljhakVS3ywI3wtYAoiBcwkcLJrAx5HlymVEI-oAg1GiYMxpr4fwFMCSGu9EQhlJzIBEvI_kbKOlrsUt_qV0LeDo_B1vAAxTS-XSMNBMcQ_8kyIS97pRjGzCHUZQrnokbqMprU-Ekzv-rwvCtsvKrkq_8P6zV5mOOvF4ylOd8nO6ubtX8DAdGqPui0_i_7xQmY
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6VcoED4o1pQQtCgovB-_CujYRQKK0KUkAiDerNWq93aaTIafOQ4N8zYztWLHpEudmTyDsPz_fF628AXjmOSZAqTN5gRayc1HHpLf0HnxrMH2lCs3l8_E2fTtXX8_R8D7YzNjsHrq6ldjRParqcv_199ecjFvwHYpxI2d-tqMfR6O4bcBMbkqH6HKv-YYKQSMNaUaGh-aAVNYr9_96XdxrTcNPkThc6uQt3OvjIRm2878Ger-_D7R1RwQcwnnw_-jE6O568Z19oG3q1cXicffaX6ws2q9nP2WqDP4G3g2o-C561VU3fZc3-ATZBV_sF2WHMHsL05Pjs6DTuhibEDrHWOs4ymxifeq8rZGKVSALHj7Z5bn3Iua8klqzOrNOmtEhHvJBV4pxT1ipFDOkR7NeL2j8Bxq3x2pYI6bRVCAXy4NGVScl1bqwKPoI3W_8VrlMUp8EW8wKZBbm66F0dwcve9LKV0bjO6BMFoTcg5evmwGL5q-gKqTClEkFa5UuFYEimuJC00kkWhAhVYkwErymEBWUMXoyz3WsGuCRSuipGhhTlVKJ4BIfbKBfbvCuQpGcIKbnREbzoT2PJ0XMUW_vFhmwQIyMM1FkEj9uk6K9ZIuLlhtZiBukyWNTwTD27aGS9c5q_avTT_-GFA7gl6D0NzmMhD2F_vdz4Z4ie1uXzpjb-Au9DF84
  priority: 102
  providerName: Scholars Portal
Title SOCRATES: Introducing Depth in Visual Wildlife Monitoring Using Stereo Vision
URI https://www.ncbi.nlm.nih.gov/pubmed/36501782
https://www.proquest.com/docview/2748561176
https://www.proquest.com/docview/2753315968
https://pubmed.ncbi.nlm.nih.gov/PMC9738676
https://doaj.org/article/7b42f3a4eb474135ac65d608f22fd077
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BeIEHxG_CRmUQErxEi2PHTnjrRstA6kDrhvpmOY6tVZrSibb__-6SNGoEEi-oUh6SS2Wf73L3JefvAD44jkaQSTTeYNNYOqHi0lt6B59ptB-hQ1M8PjtXZ1fy-yJb7LX6opqwlh64VdyxLmUahJW-lBj8RGadyiqV5CFNQ5XoZh85xrwdmOqglkDk1fIICQT1x2uKgtTcexB9GpL-Px_Fe7FoWCe5F3imT-BxlzGycTvSp3DP18_g0R6P4HOYzX-cXowvJ_PP7BtVnldbh-fZF3-7uWbLmv1arrf4F_gEqG6WwbPWkele1pQMsDlq169IDpfpBVxNJ5enZ3HXJyF2mF5t4jy3ifaZ96pC8FWlSeD4U7YorA8F95VAL1U5ak6XFhGIT0WVOOektVISKHoJB_Wq9q-Bcau9siVmccpKjP5F8KjKpOSq0FYGH8Gnnf6M60jEqZfFjUEwQao2vaojeN-L3rbMGX8TOqFF6AWI7Lo5gSZgOhMw_zKBCD7SEhpySRyMs93OApwSkVuZsSYSOZlIHsHRbpVN56trg7g8xyySaxXBu_4yehl9OrG1X21JBtNizPxUHsGr1ij6MQtMcrmmueiBuQwmNbxSL68bJu-CWq5q9eZ_aOEQHqa0NYPzOBVHcLD5vfVvMWHalCO4rxcaj_n06wgenEzOf16MGn_B40zmd1e1Ff4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDcuBQwCwcWq7V3v2kgIhT6U0KZIJK1yM-v1bhupskOTCPGn-I3M-NVEIG5VbvbE2p355mXPzgC80QGCIOIIXqtCj2smvMwoegcfScQPk7YqHh8ei_4J_zKJJhvwuz0LQ2WVrU2sDHVeanpHvoPZU4y-PpDi0-yHR1Oj6OtqO0KjhsWh-fUTU7b5x8EeyvdtGB7sj3f7XjNVwNMYjCy8OFa-NJExIsdUJQ99G-BPqCRRxiaByRliWsRKC5kpjNdNyHJfa82V4pxSCHzuDbiJjtcnjZKTqwSPYb5Xdy9iLPF35uR7aaT4ms-rRgP87QBWPOB6deaKuzu4B3ebONXt1cC6DxumeAB3VroXPoTh6Ovut954f_TBHVC9e77UeN3dM7PFuTst3NPpfImPQLuTX0ytcWvzQf91q0IFd4QyNSXRITgewcm18PExbBZlYZ6CGyhphMowdhSKY8yRWIOs9LNAJFJxaxx43_Iv1U3rcpqgcZFiCkOsTjtWO_C6I53V_Tr-RfSZhNARUIvt6kJ5eZY2GpvKjIeWKW4yjlEXi3AjUS782IahzX0pHXhHIkzJEOBitGrOM-CWqKVW2pPUuo77PHBgu5Vy2liIeXqFZwdedbdRt-mDjSpMuSQaDMYx3hSxA09qUHRrZhhaB5L2Itfgsrap9TvF9LzqH57QoFcptv6_rJdwqz8eHqVHg-PDZ3A7pGMfQeCFbBs2F5dL8xyDsUX2otIAF75ft8r9AWG7RvU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISH2gPheYEBAIHiJGseOnSAhVNZVK2MD0W3qW3Acm1WakrK2Qvxr_HXcJWnXCsTb1LfkGtn3-bvkfAfw0jBUglig8jodBcJwGeRW0zv4WKH-cOXq4vHDI7l_Ij6O4tEG_F6chaGyyoVPrB11URl6R97B7CnBWM-U7Li2LOJLr_9-8iOgCVL0pXUxTqNRkQP76yemb9N3gx7K-lUU9feOd_eDdsJAYBCYzIIk0aGysbWywLSliELH8Cd1mmrrUmYLjvotE22kyjVidxvxIjTGCK2FoHQCn3sNriseM7IxNbpM9jjmfk0nI87TsDOlOEzjxdfiXz0m4O9gsBIN1ys1V0Jf_zbcajGr322U7A5s2PIubK10MrwHh8PPu1-7x3vDt_6Aat-LucHrfs9OZmf-uPRPx9M5PgJ9UHE-dtZvXAn916-LFvwhytdWRIeKch9OroSPD2CzrEq7DT7TykqdI46UWiD-SJ1FVoY5k6nSwlkP3iz4l5m2jTlN0zjPMJ0hVmdLVnvwYkk6aXp3_IvoAwlhSUDttusL1cX3rLXeTOUiclwLmwtEYDzGjcSFDBMXRa4IlfLgNYkwI6eAizG6PduAW6L2WllXURs7EQrmwc5CylnrLabZpW578Hx5G-2cPt7o0lZzokFgjthTJh48bJRiuWaOMJsp2otaU5e1Ta3fKcdndS_xlIa-Kvno_8t6BjfQ2LJPg6ODx3AzohMgjAUR34HN2cXcPkFcNsuf1gbgw7ertrg_hQZLKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SOCRATES%3A+Introducing+Depth+in+Visual+Wildlife+Monitoring+Using+Stereo+Vision&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Timm+Haucke&rft.au=Hjalmar+S.+K%C3%BChl&rft.au=Volker+Steinhage&rft.date=2022-11-23&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=23&rft.spage=9082&rft_id=info:doi/10.3390%2Fs22239082&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7b42f3a4eb474135ac65d608f22fd077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon