SOCRATES: Introducing Depth in Visual Wildlife Monitoring Using Stereo Vision
The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of ecosystems, species communities and populations, and in order to understand important drivers of change. For estimating wildlife abundance,...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 23; p. 9082 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.11.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of ecosystems, species communities and populations, and in order to understand important drivers of change. For estimating wildlife abundance, camera trapping in combination with three-dimensional (3D) measurements of habitats is highly valuable. Additionally, 3D information improves the accuracy of wildlife detection using camera trapping. This study presents a novel approach to 3D camera trapping featuring highly optimized hardware and software. This approach employs stereo vision to infer the 3D information of natural habitats and is designated as StereO CameRA Trap for monitoring of biodivErSity (SOCRATES). A comprehensive evaluation of SOCRATES shows not only a 3.23% improvement in animal detection (bounding box mAP75), but also its superior applicability for estimating animal abundance using camera trap distance sampling. The software and documentation of SOCRATES is openly provided. |
---|---|
AbstractList | The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of ecosystems, species communities and populations, and in order to understand important drivers of change. For estimating wildlife abundance, camera trapping in combination with three-dimensional (3D) measurements of habitats is highly valuable. Additionally, 3D information improves the accuracy of wildlife detection using camera trapping. This study presents a novel approach to 3D camera trapping featuring highly optimized hardware and software. This approach employs stereo vision to infer the 3D information of natural habitats and is designated as StereO CameRA Trap for monitoring of biodivErSity (SOCRATES). A comprehensive evaluation of SOCRATES shows not only a 3.23% improvement in animal detection (bounding box mAP75), but also its superior applicability for estimating animal abundance using camera trap distance sampling. The software and documentation of SOCRATES is openly provided.The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of ecosystems, species communities and populations, and in order to understand important drivers of change. For estimating wildlife abundance, camera trapping in combination with three-dimensional (3D) measurements of habitats is highly valuable. Additionally, 3D information improves the accuracy of wildlife detection using camera trapping. This study presents a novel approach to 3D camera trapping featuring highly optimized hardware and software. This approach employs stereo vision to infer the 3D information of natural habitats and is designated as StereO CameRA Trap for monitoring of biodivErSity (SOCRATES). A comprehensive evaluation of SOCRATES shows not only a 3.23% improvement in animal detection (bounding box mAP75), but also its superior applicability for estimating animal abundance using camera trap distance sampling. The software and documentation of SOCRATES is openly provided. The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of ecosystems, species communities and populations, and in order to understand important drivers of change. For estimating wildlife abundance, camera trapping in combination with three-dimensional (3D) measurements of habitats is highly valuable. Additionally, 3D information improves the accuracy of wildlife detection using camera trapping. This study presents a novel approach to 3D camera trapping featuring highly optimized hardware and software. This approach employs stereo vision to infer the 3D information of natural habitats and is designated as StereO CameRA Trap for monitoring of biodivErSity (SOCRATES). A comprehensive evaluation of SOCRATES shows not only a 3.23% improvement in animal detection (bounding box mAP[sub.75]), but also its superior applicability for estimating animal abundance using camera trap distance sampling. The software and documentation of SOCRATES is openly provided. The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of ecosystems, species communities and populations, and in order to understand important drivers of change. For estimating wildlife abundance, camera trapping in combination with three-dimensional (3D) measurements of habitats is highly valuable. Additionally, 3D information improves the accuracy of wildlife detection using camera trapping. This study presents a novel approach to 3D camera trapping featuring highly optimized hardware and software. This approach employs stereo vision to infer the 3D information of natural habitats and is designated as StereO CameRA Trap for monitoring of biodivErSity (SOCRATES). A comprehensive evaluation of SOCRATES shows not only a 3.23 % improvement in animal detection (bounding box mAP 75 ), but also its superior applicability for estimating animal abundance using camera trap distance sampling. The software and documentation of SOCRATES is openly provided. The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of ecosystems, species communities and populations, and in order to understand important drivers of change. For estimating wildlife abundance, camera trapping in combination with three-dimensional (3D) measurements of habitats is highly valuable. Additionally, 3D information improves the accuracy of wildlife detection using camera trapping. This study presents a novel approach to 3D camera trapping featuring highly optimized hardware and software. This approach employs stereo vision to infer the 3D information of natural habitats and is designated as StereO CameRA Trap for monitoring of biodivErSity (SOCRATES). A comprehensive evaluation of SOCRATES shows not only a 3.23% improvement in animal detection (bounding box mAP75 ), but also its superior applicability for estimating animal abundance using camera trap distance sampling. The software and documentation of SOCRATES is openly provided. |
Audience | Academic |
Author | Haucke, Timm Steinhage, Volker Kühl, Hjalmar S. |
AuthorAffiliation | 1 Institute of Computer Science IV, University of Bonn, Friedrich-Hirzebruch-Allee 8, 53115 Bonn, Germany 2 Senckenberg Museum for Natural History Görlitz, Senckenberg—Member of the Leibniz Association, Am Museum 1, 02826 Görlitz, Germany 4 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany 3 International Institute Zittau, Technische Universität Dresden, Markt 23, 02763 Zittau, Germany |
AuthorAffiliation_xml | – name: 3 International Institute Zittau, Technische Universität Dresden, Markt 23, 02763 Zittau, Germany – name: 2 Senckenberg Museum for Natural History Görlitz, Senckenberg—Member of the Leibniz Association, Am Museum 1, 02826 Görlitz, Germany – name: 1 Institute of Computer Science IV, University of Bonn, Friedrich-Hirzebruch-Allee 8, 53115 Bonn, Germany – name: 4 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany |
Author_xml | – sequence: 1 givenname: Timm orcidid: 0000-0003-1696-6937 surname: Haucke fullname: Haucke, Timm – sequence: 2 givenname: Hjalmar S. surname: Kühl fullname: Kühl, Hjalmar S. – sequence: 3 givenname: Volker orcidid: 0000-0002-3172-3645 surname: Steinhage fullname: Steinhage, Volker |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36501782$$D View this record in MEDLINE/PubMed |
BookMark | eNplkltrHCEUgCWk5LLtQ_9AGehL-7CJt1GnD4Vlm7YLCYFuLo_i6pmNy6xudabQf183m4QkRVDR73x6PB6j_RADIPSe4BPGGnyaKaVlVHQPHRFO-VhRivefzQ_Rcc4rjCljTB2gQyZqTKSiR-hifjn9Nbk6m3-pZqFP0Q3Wh2X1DTb9XeVDdePzYLrq1neu8y1UFzH4PqYtc523_byHBHHL-Rjeojet6TK8exhH6Pr72dX05_j88sdsOjkf2xqrfqyUwRJqAOEaIh3FLSlNmKYx0DYEHONKCWWskAtDJAfKHLbWcmM4xxizEZrtvC6ald4kvzbpr47G6_uFmJbapN7bDrRccNoyw2HBJSesLtLaCaxaSluHpSyurzvXZliswVkoz2C6F9KXO8Hf6WX8oxvJlJCiCD49CFL8PUDu9dpnC11nAsQhayprxkjdCFXQj6_QVRxSKE9VKK5qQci98GRHLU1JwIc2lnNtaQ7W3pbSt76sTyQXNeO4JDVCH56n8HT3xzIX4HQH2BRzTtBq63vTl4oVs-80wXr7kfTTRyoRn19FPEr_Z_8BXLfFcg |
CitedBy_id | crossref_primary_10_1155_2024_3599911 crossref_primary_10_1063_5_0246825 |
Cites_doi | 10.1109/CVPR.2019.00027 10.1016/j.ecoinf.2022.101734 10.1016/j.baae.2022.01.003 10.1109/ICIP46576.2022.9897365 10.1109/CVPR.2018.00644 10.1016/j.ecoinf.2021.101536 10.1109/ICCV.2017.322 10.1109/IC3D.2014.7032599 10.1109/CVPR.2016.350 10.1007/s13280-015-0713-1 10.1038/293133a0 10.1109/IVS.2013.6629513 10.1007/978-3-030-01424-7_27 10.1111/j.1365-2664.2008.01473.x 10.1016/j.ecoinf.2021.101535 10.1109/CVPR.2009.5206848 10.1111/j.1365-2664.2009.01737.x 10.1007/978-3-319-10602-1_48 10.1109/CVPR52688.2022.00135 10.1109/CVPR52688.2022.01563 10.1109/CVPR.2018.00567 10.1109/TCSVT.2012.2221191 10.1109/ICRA.2011.5979561 10.1109/ICCV48922.2021.00986 10.1109/ICCV48922.2021.01196 10.1364/AO.389835 10.1109/MIC.2012.29 10.1109/TPAMI.2020.3019967 10.1002/ecs2.2331 10.1109/CVPR42600.2020.00203 10.1007/978-1-4615-0913-4_11 10.1109/CVPR52688.2022.01578 10.1109/ICCV.2019.00393 10.1109/CVPR.2016.90 10.1007/978-3-319-10590-1_53 10.1111/1365-2664.13059 10.1111/2041-210X.12790 10.1016/j.ecoinf.2022.101790 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22239082 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Proquest Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_7b42f3a4eb474135ac65d608f22fd077 PMC9738676 A746534041 36501782 10_3390_s22239082 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: Federal Ministry of Education and Research grantid: FKZ 01LC1903B – fundername: German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung), Bonn, Germany grantid: FKZ 01LC1903B |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c508t-88a07e5ee6d917d20f1f1f6a99aef91ed348868ac67ba174e23d0ccc4aa440003 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:29:23 EDT 2025 Thu Aug 21 18:39:00 EDT 2025 Tue Aug 05 10:10:02 EDT 2025 Fri Jul 25 10:07:04 EDT 2025 Tue Jul 01 05:43:26 EDT 2025 Wed Feb 19 02:26:20 EST 2025 Tue Jul 01 01:19:33 EDT 2025 Thu Apr 24 22:54:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | animal abundance instance segmentation camera trapping animal density stereo vision |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-88a07e5ee6d917d20f1f1f6a99aef91ed348868ac67ba174e23d0ccc4aa440003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1696-6937 0000-0002-3172-3645 |
OpenAccessLink | https://doaj.org/article/7b42f3a4eb474135ac65d608f22fd077 |
PMID | 36501782 |
PQID | 2748561176 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7b42f3a4eb474135ac65d608f22fd077 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9738676 proquest_miscellaneous_2753315968 proquest_journals_2748561176 gale_infotracacademiconefile_A746534041 pubmed_primary_36501782 crossref_citationtrail_10_3390_s22239082 crossref_primary_10_3390_s22239082 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221123 |
PublicationDateYYYYMMDD | 2022-11-23 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221123 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_14 ref_58 ref_57 Dai (ref_9) 2019; Volume 11187 ref_12 ref_11 ref_55 Haucke (ref_25) 2022; 68 ref_51 ref_19 Klasen (ref_53) 2022; 68 ref_18 ref_17 ref_16 Sullivan (ref_38) 2012; 22 ref_15 ref_59 Moeller (ref_23) 2018; 9 Xu (ref_10) 2020; 59 Klasen (ref_54) 2022; 71 ref_60 Johanns (ref_26) 2022; 70 Newey (ref_50) 2015; 44 Srivastava (ref_61) 2014; 15 Bodesheim (ref_1) 2022; 59 ref_20 ref_63 Ranftl (ref_56) 2022; 44 ref_29 ref_28 (ref_3) 1981; 293 ref_27 Howe (ref_24) 2017; 8 ref_36 ref_35 ref_34 ref_33 ref_32 ref_31 ref_30 Zbontar (ref_4) 2016; 17 ref_39 Ren (ref_13) 2015; 28 ref_37 Thomas (ref_49) 2010; 47 Nakashima (ref_22) 2018; 55 ref_47 ref_46 Rowcliffe (ref_21) 2008; 45 ref_45 ref_44 ref_43 ref_42 ref_41 ref_40 Bormann (ref_62) 2012; 16 ref_2 ref_48 Shrader (ref_52) 2006; 36 ref_8 ref_5 ref_7 ref_6 |
References_xml | – ident: ref_6 doi: 10.1109/CVPR.2019.00027 – volume: 36 start-page: 1 year: 2006 ident: ref_52 article-title: Digital photogrammetry and laser rangefinder techniques to measure African elephants publication-title: S. Afr. J. Wildl. Res. – volume: 70 start-page: 101734 year: 2022 ident: ref_26 article-title: Automated distance estimation for wildlife camera trapping publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2022.101734 – ident: ref_32 – ident: ref_51 – volume: 59 start-page: 105 year: 2022 ident: ref_1 article-title: Towards a multisensor station for automated biodiversity monitoring publication-title: Basic Appl. Ecol. doi: 10.1016/j.baae.2022.01.003 – ident: ref_29 doi: 10.1109/ICIP46576.2022.9897365 – ident: ref_42 doi: 10.1109/CVPR.2018.00644 – volume: 68 start-page: 101536 year: 2022 ident: ref_25 article-title: Overcoming the distance estimation bottleneck in estimating animal abundance with camera traps publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2021.101536 – ident: ref_35 – volume: 15 start-page: 1929 year: 2014 ident: ref_61 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref_14 doi: 10.1109/ICCV.2017.322 – ident: ref_58 doi: 10.1109/IC3D.2014.7032599 – volume: 28 start-page: 91 year: 2015 ident: ref_13 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_45 doi: 10.1109/CVPR.2016.350 – volume: 44 start-page: 624 year: 2015 ident: ref_50 article-title: Limitations of recreational camera traps for wildlife management and conservation research: A practitioner’s perspective publication-title: Ambio doi: 10.1007/s13280-015-0713-1 – volume: 293 start-page: 133 year: 1981 ident: ref_3 article-title: A computer algorithm for reconstructing a scene from two projections publication-title: Nature doi: 10.1038/293133a0 – ident: ref_39 doi: 10.1109/IVS.2013.6629513 – ident: ref_16 doi: 10.1007/978-3-030-01424-7_27 – volume: 45 start-page: 1228 year: 2008 ident: ref_21 article-title: Estimating animal density using camera traps without the need for individual recognition publication-title: J. Appl. Ecol. doi: 10.1111/j.1365-2664.2008.01473.x – ident: ref_31 – ident: ref_27 – volume: 68 start-page: 101535 year: 2022 ident: ref_53 article-title: Improving wildlife tracking using 3D information publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2021.101535 – ident: ref_48 – ident: ref_17 doi: 10.1109/CVPR.2009.5206848 – volume: 47 start-page: 5 year: 2010 ident: ref_49 article-title: Distance software: Design and analysis of distance sampling surveys for estimating population size publication-title: J. Appl. Ecol. doi: 10.1111/j.1365-2664.2009.01737.x – ident: ref_41 – ident: ref_60 doi: 10.1007/978-3-319-10602-1_48 – ident: ref_15 doi: 10.1109/CVPR52688.2022.00135 – ident: ref_19 doi: 10.1109/CVPR52688.2022.01563 – ident: ref_5 doi: 10.1109/CVPR.2018.00567 – volume: 22 start-page: 1649 year: 2012 ident: ref_38 article-title: Overview of the High Efficiency Video Coding (HEVC) Standard publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2012.2221191 – ident: ref_59 – volume: Volume 11187 start-page: 111871C year: 2019 ident: ref_9 article-title: Binocular camera trap for wildlife detection publication-title: Proceedings of the Optoelectronic Imaging and Multimedia Technology VI – ident: ref_30 – ident: ref_34 – ident: ref_47 – ident: ref_11 – ident: ref_40 doi: 10.1109/ICRA.2011.5979561 – ident: ref_20 doi: 10.1109/ICCV48922.2021.00986 – ident: ref_57 doi: 10.1109/ICCV48922.2021.01196 – volume: 59 start-page: 3262 year: 2020 ident: ref_10 article-title: Stereo camera trap for wildlife in situ observations and measurements publication-title: Appl. Opt. doi: 10.1364/AO.389835 – volume: 16 start-page: 62 year: 2012 ident: ref_62 article-title: CoAP: An Application Protocol for Billions of Tiny Internet Nodes publication-title: IEEE Internet Comput. doi: 10.1109/MIC.2012.29 – volume: 44 start-page: 1623 year: 2022 ident: ref_56 article-title: Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-Shot Cross-Dataset Transfer publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3019967 – volume: 9 start-page: e02331 year: 2018 ident: ref_23 article-title: Three novel methods to estimate abundance of unmarked animals using remote cameras publication-title: Ecosphere doi: 10.1002/ecs2.2331 – ident: ref_7 doi: 10.1109/CVPR42600.2020.00203 – ident: ref_37 – ident: ref_44 – ident: ref_28 doi: 10.1007/978-1-4615-0913-4_11 – ident: ref_8 doi: 10.1109/CVPR52688.2022.01578 – ident: ref_33 – ident: ref_55 doi: 10.1109/ICCV.2019.00393 – ident: ref_2 – ident: ref_63 doi: 10.1109/CVPR.2016.90 – ident: ref_46 – ident: ref_12 – ident: ref_18 doi: 10.1007/978-3-319-10590-1_53 – volume: 55 start-page: 735 year: 2018 ident: ref_22 article-title: Estimating animal density without individual recognition using information derivable exclusively from camera traps publication-title: J. Appl. Ecol. doi: 10.1111/1365-2664.13059 – ident: ref_36 – ident: ref_43 – volume: 8 start-page: 1558 year: 2017 ident: ref_24 article-title: Distance sampling with camera traps publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12790 – volume: 71 start-page: 101790 year: 2022 ident: ref_54 article-title: Wildlife 3D multi-object tracking publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2022.101790 – volume: 17 start-page: 65:1 year: 2016 ident: ref_4 article-title: Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches publication-title: J. Mach. Learn. Res. |
SSID | ssj0023338 |
Score | 2.413153 |
Snippet | The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 9082 |
SubjectTerms | animal abundance animal density Animal populations Animals Animals, Wild Automation Biodiversity Biological monitoring Calibration camera trapping Cameras Datasets Deep learning Ecosystem instance segmentation Sensors Software stereo vision Technology application |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQ8W6gVAYhwSVqHDt2wgUtpVVBKkhsi_ZmOX60K1XJ0t39_8wk3nSjIpRbMonseXhm7Mk3hLy3DJSgEKC8weSpsFymtTe4B18o0B-uQlc8fvZDnl6I77NiFjfclrGscrMmdgu1ay3ukR9C9lSCr2dKfl78SbFrFJ6uxhYa98kDhC7Dki41u024OORfPZoQh9T-cIm-EFt8j3xQB9V_d0He8kjjaskt93PymOzGuJFOekE_Ifd885Q82kITfEbOpj-Pfk3Oj6ef6DesP3drC_fpV79YXdF5Q3_Pl2v4BKwD7noePO3NGd-lXeEAnQKPfYt0IKzn5OLk-PzoNI3dElILQdYqLUuTKV94Lx2kYC7PAoNLmqoyPlTMOw62KktjpaoN5CE-5y6z1gpjhMDU6AXZadrG7xHKjPLS1BDLSSMgBqiCB1ZmNZOVMiL4hHzc8E_bCCWOHS2uNaQUyGo9sDoh7wbSRY-f8S-iLyiEgQAhr7sb7c2ljhakVS3ywI3wtYAoiBcwkcLJrAx5HlymVEI-oAg1GiYMxpr4fwFMCSGu9EQhlJzIBEvI_kbKOlrsUt_qV0LeDo_B1vAAxTS-XSMNBMcQ_8kyIS97pRjGzCHUZQrnokbqMprU-Ekzv-rwvCtsvKrkq_8P6zV5mOOvF4ylOd8nO6ubtX8DAdGqPui0_i_7xQmY priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6VcoED4o1pQQtCgovB-_CujYRQKK0KUkAiDerNWq93aaTIafOQ4N8zYztWLHpEudmTyDsPz_fF628AXjmOSZAqTN5gRayc1HHpLf0HnxrMH2lCs3l8_E2fTtXX8_R8D7YzNjsHrq6ldjRParqcv_199ecjFvwHYpxI2d-tqMfR6O4bcBMbkqH6HKv-YYKQSMNaUaGh-aAVNYr9_96XdxrTcNPkThc6uQt3OvjIRm2878Ger-_D7R1RwQcwnnw_-jE6O568Z19oG3q1cXicffaX6ws2q9nP2WqDP4G3g2o-C561VU3fZc3-ATZBV_sF2WHMHsL05Pjs6DTuhibEDrHWOs4ymxifeq8rZGKVSALHj7Z5bn3Iua8klqzOrNOmtEhHvJBV4pxT1ipFDOkR7NeL2j8Bxq3x2pYI6bRVCAXy4NGVScl1bqwKPoI3W_8VrlMUp8EW8wKZBbm66F0dwcve9LKV0bjO6BMFoTcg5evmwGL5q-gKqTClEkFa5UuFYEimuJC00kkWhAhVYkwErymEBWUMXoyz3WsGuCRSuipGhhTlVKJ4BIfbKBfbvCuQpGcIKbnREbzoT2PJ0XMUW_vFhmwQIyMM1FkEj9uk6K9ZIuLlhtZiBukyWNTwTD27aGS9c5q_avTT_-GFA7gl6D0NzmMhD2F_vdz4Z4ie1uXzpjb-Au9DF84 priority: 102 providerName: Scholars Portal |
Title | SOCRATES: Introducing Depth in Visual Wildlife Monitoring Using Stereo Vision |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36501782 https://www.proquest.com/docview/2748561176 https://www.proquest.com/docview/2753315968 https://pubmed.ncbi.nlm.nih.gov/PMC9738676 https://doaj.org/article/7b42f3a4eb474135ac65d608f22fd077 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED7BeIEHxG_CRmUQErxEi2PHTnjrRstA6kDrhvpmOY6tVZrSibb__-6SNGoEEi-oUh6SS2Wf73L3JefvAD44jkaQSTTeYNNYOqHi0lt6B59ptB-hQ1M8PjtXZ1fy-yJb7LX6opqwlh64VdyxLmUahJW-lBj8RGadyiqV5CFNQ5XoZh85xrwdmOqglkDk1fIICQT1x2uKgtTcexB9GpL-Px_Fe7FoWCe5F3imT-BxlzGycTvSp3DP18_g0R6P4HOYzX-cXowvJ_PP7BtVnldbh-fZF3-7uWbLmv1arrf4F_gEqG6WwbPWkele1pQMsDlq169IDpfpBVxNJ5enZ3HXJyF2mF5t4jy3ifaZ96pC8FWlSeD4U7YorA8F95VAL1U5ak6XFhGIT0WVOOektVISKHoJB_Wq9q-Bcau9siVmccpKjP5F8KjKpOSq0FYGH8Gnnf6M60jEqZfFjUEwQao2vaojeN-L3rbMGX8TOqFF6AWI7Lo5gSZgOhMw_zKBCD7SEhpySRyMs93OApwSkVuZsSYSOZlIHsHRbpVN56trg7g8xyySaxXBu_4yehl9OrG1X21JBtNizPxUHsGr1ij6MQtMcrmmueiBuQwmNbxSL68bJu-CWq5q9eZ_aOEQHqa0NYPzOBVHcLD5vfVvMWHalCO4rxcaj_n06wgenEzOf16MGn_B40zmd1e1Ff4 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDcuBQwCwcWq7V3v2kgIhT6U0KZIJK1yM-v1bhupskOTCPGn-I3M-NVEIG5VbvbE2p355mXPzgC80QGCIOIIXqtCj2smvMwoegcfScQPk7YqHh8ei_4J_zKJJhvwuz0LQ2WVrU2sDHVeanpHvoPZU4y-PpDi0-yHR1Oj6OtqO0KjhsWh-fUTU7b5x8EeyvdtGB7sj3f7XjNVwNMYjCy8OFa-NJExIsdUJQ99G-BPqCRRxiaByRliWsRKC5kpjNdNyHJfa82V4pxSCHzuDbiJjtcnjZKTqwSPYb5Xdy9iLPF35uR7aaT4ms-rRgP87QBWPOB6deaKuzu4B3ebONXt1cC6DxumeAB3VroXPoTh6Ovut954f_TBHVC9e77UeN3dM7PFuTst3NPpfImPQLuTX0ytcWvzQf91q0IFd4QyNSXRITgewcm18PExbBZlYZ6CGyhphMowdhSKY8yRWIOs9LNAJFJxaxx43_Iv1U3rcpqgcZFiCkOsTjtWO_C6I53V_Tr-RfSZhNARUIvt6kJ5eZY2GpvKjIeWKW4yjlEXi3AjUS782IahzX0pHXhHIkzJEOBitGrOM-CWqKVW2pPUuo77PHBgu5Vy2liIeXqFZwdedbdRt-mDjSpMuSQaDMYx3hSxA09qUHRrZhhaB5L2Itfgsrap9TvF9LzqH57QoFcptv6_rJdwqz8eHqVHg-PDZ3A7pGMfQeCFbBs2F5dL8xyDsUX2otIAF75ft8r9AWG7RvU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISH2gPheYEBAIHiJGseOnSAhVNZVK2MD0W3qW3Acm1WakrK2Qvxr_HXcJWnXCsTb1LfkGtn3-bvkfAfw0jBUglig8jodBcJwGeRW0zv4WKH-cOXq4vHDI7l_Ij6O4tEG_F6chaGyyoVPrB11URl6R97B7CnBWM-U7Li2LOJLr_9-8iOgCVL0pXUxTqNRkQP76yemb9N3gx7K-lUU9feOd_eDdsJAYBCYzIIk0aGysbWywLSliELH8Cd1mmrrUmYLjvotE22kyjVidxvxIjTGCK2FoHQCn3sNriseM7IxNbpM9jjmfk0nI87TsDOlOEzjxdfiXz0m4O9gsBIN1ys1V0Jf_zbcajGr322U7A5s2PIubK10MrwHh8PPu1-7x3vDt_6Aat-LucHrfs9OZmf-uPRPx9M5PgJ9UHE-dtZvXAn916-LFvwhytdWRIeKch9OroSPD2CzrEq7DT7TykqdI46UWiD-SJ1FVoY5k6nSwlkP3iz4l5m2jTlN0zjPMJ0hVmdLVnvwYkk6aXp3_IvoAwlhSUDttusL1cX3rLXeTOUiclwLmwtEYDzGjcSFDBMXRa4IlfLgNYkwI6eAizG6PduAW6L2WllXURs7EQrmwc5CylnrLabZpW578Hx5G-2cPt7o0lZzokFgjthTJh48bJRiuWaOMJsp2otaU5e1Ta3fKcdndS_xlIa-Kvno_8t6BjfQ2LJPg6ODx3AzohMgjAUR34HN2cXcPkFcNsuf1gbgw7ertrg_hQZLKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SOCRATES%3A+Introducing+Depth+in+Visual+Wildlife+Monitoring+Using+Stereo+Vision&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Timm+Haucke&rft.au=Hjalmar+S.+K%C3%BChl&rft.au=Volker+Steinhage&rft.date=2022-11-23&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=23&rft.spage=9082&rft_id=info:doi/10.3390%2Fs22239082&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7b42f3a4eb474135ac65d608f22fd077 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |