In Situ Sea Cucumber Detection across Multiple Underwater Scenes Based on Convolutional Neural Networks and Image Enhancements

Recently, rapidly developing artificial intelligence and computer vision techniques have provided technical solutions to promote production efficiency and reduce labor costs in aquaculture and marine resource surveys. Traditional manual surveys are being replaced by advanced intelligent technologies...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 4; p. 2037
Main Authors Wang, Yi, Fu, Boya, Fu, Longwen, Xia, Chunlei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.02.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, rapidly developing artificial intelligence and computer vision techniques have provided technical solutions to promote production efficiency and reduce labor costs in aquaculture and marine resource surveys. Traditional manual surveys are being replaced by advanced intelligent technologies. However, underwater object detection and recognition are suffering from the image distortion and degradation issues. In this work, automatic monitoring of sea cucumber in natural conditions is implemented based on a state-of-the-art object detector, YOLOv7. To depress the image distortion and degradation issues, image enhancement methods are adopted to improve the accuracy and stability of sea cucumber detection across multiple underwater scenes. Five well-known image enhancement methods are employed to improve the detection performance of sea cucumber by YOLOv7 and YOLOv5. The effectiveness of these image enhancement methods is evaluated by experiments. Non-local image dehazing (NLD) was the most effective in sea cucumber detection from multiple underwater scenes for both YOLOv7 and YOLOv5. The best average precision (AP) of sea cucumber detection was 0.940, achieved by YOLOv7 with NLD. With NLD enhancement, the APs of YOLOv7 and YOLOv5 were increased by 1.1% and 1.6%, respectively. The best AP was 2.8% higher than YOLOv5 without image enhancement. Moreover, the real-time ability of YOLOv7 was examined and its average prediction time was 4.3 ms. Experimental results demonstrated that the proposed method can be applied to marine organism surveying by underwater mobile platforms or automatic analysis of underwater videos.
AbstractList Recently, rapidly developing artificial intelligence and computer vision techniques have provided technical solutions to promote production efficiency and reduce labor costs in aquaculture and marine resource surveys. Traditional manual surveys are being replaced by advanced intelligent technologies. However, underwater object detection and recognition are suffering from the image distortion and degradation issues. In this work, automatic monitoring of sea cucumber in natural conditions is implemented based on a state-of-the-art object detector, YOLOv7. To depress the image distortion and degradation issues, image enhancement methods are adopted to improve the accuracy and stability of sea cucumber detection across multiple underwater scenes. Five well-known image enhancement methods are employed to improve the detection performance of sea cucumber by YOLOv7 and YOLOv5. The effectiveness of these image enhancement methods is evaluated by experiments. Non-local image dehazing (NLD) was the most effective in sea cucumber detection from multiple underwater scenes for both YOLOv7 and YOLOv5. The best average precision (AP) of sea cucumber detection was 0.940, achieved by YOLOv7 with NLD. With NLD enhancement, the APs of YOLOv7 and YOLOv5 were increased by 1.1% and 1.6%, respectively. The best AP was 2.8% higher than YOLOv5 without image enhancement. Moreover, the real-time ability of YOLOv7 was examined and its average prediction time was 4.3 ms. Experimental results demonstrated that the proposed method can be applied to marine organism surveying by underwater mobile platforms or automatic analysis of underwater videos.
Recently, rapidly developing artificial intelligence and computer vision techniques have provided technical solutions to promote production efficiency and reduce labor costs in aquaculture and marine resource surveys. Traditional manual surveys are being replaced by advanced intelligent technologies. However, underwater object detection and recognition are suffering from the image distortion and degradation issues. In this work, automatic monitoring of sea cucumber in natural conditions is implemented based on a state-of-the-art object detector, YOLOv7. To depress the image distortion and degradation issues, image enhancement methods are adopted to improve the accuracy and stability of sea cucumber detection across multiple underwater scenes. Five well-known image enhancement methods are employed to improve the detection performance of sea cucumber by YOLOv7 and YOLOv5. The effectiveness of these image enhancement methods is evaluated by experiments. Non-local image dehazing (NLD) was the most effective in sea cucumber detection from multiple underwater scenes for both YOLOv7 and YOLOv5. The best average precision (AP) of sea cucumber detection was 0.940, achieved by YOLOv7 with NLD. With NLD enhancement, the APs of YOLOv7 and YOLOv5 were increased by 1.1% and 1.6%, respectively. The best AP was 2.8% higher than YOLOv5 without image enhancement. Moreover, the real-time ability of YOLOv7 was examined and its average prediction time was 4.3 ms. Experimental results demonstrated that the proposed method can be applied to marine organism surveying by underwater mobile platforms or automatic analysis of underwater videos.Recently, rapidly developing artificial intelligence and computer vision techniques have provided technical solutions to promote production efficiency and reduce labor costs in aquaculture and marine resource surveys. Traditional manual surveys are being replaced by advanced intelligent technologies. However, underwater object detection and recognition are suffering from the image distortion and degradation issues. In this work, automatic monitoring of sea cucumber in natural conditions is implemented based on a state-of-the-art object detector, YOLOv7. To depress the image distortion and degradation issues, image enhancement methods are adopted to improve the accuracy and stability of sea cucumber detection across multiple underwater scenes. Five well-known image enhancement methods are employed to improve the detection performance of sea cucumber by YOLOv7 and YOLOv5. The effectiveness of these image enhancement methods is evaluated by experiments. Non-local image dehazing (NLD) was the most effective in sea cucumber detection from multiple underwater scenes for both YOLOv7 and YOLOv5. The best average precision (AP) of sea cucumber detection was 0.940, achieved by YOLOv7 with NLD. With NLD enhancement, the APs of YOLOv7 and YOLOv5 were increased by 1.1% and 1.6%, respectively. The best AP was 2.8% higher than YOLOv5 without image enhancement. Moreover, the real-time ability of YOLOv7 was examined and its average prediction time was 4.3 ms. Experimental results demonstrated that the proposed method can be applied to marine organism surveying by underwater mobile platforms or automatic analysis of underwater videos.
Audience Academic
Author Wang, Yi
Fu, Boya
Fu, Longwen
Xia, Chunlei
AuthorAffiliation 1 Coastal Defense College, Naval Aeronautical University, Yantai 264003, China
2 Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
AuthorAffiliation_xml – name: 1 Coastal Defense College, Naval Aeronautical University, Yantai 264003, China
– name: 2 Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
Author_xml – sequence: 1
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
– sequence: 2
  givenname: Boya
  surname: Fu
  fullname: Fu, Boya
– sequence: 3
  givenname: Longwen
  surname: Fu
  fullname: Fu, Longwen
– sequence: 4
  givenname: Chunlei
  orcidid: 0000-0002-6379-9863
  surname: Xia
  fullname: Xia, Chunlei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36850633$$D View this record in MEDLINE/PubMed
BookMark eNplks9vFCEUxyemxv7Qg_-AIfFiD9syMDPAxaSuVTepelh7Jgzz2LLOwApMm17822V226at4fDI4_O-8OW9w2LPeQdF8bbEJ5QKfBoJxRXBlL0oDsqKVDNOCN57tN8vDmNcY0wopfxVsU8bXuOG0oPi78KhpU0jWoJC81GPQwsBfYYEOlnvkNLBx4i-j32ymx7Qpesg3KiUoaUGBxF9UhE6lNG5d9e-H6cy1aMfMIZtSDc-_I5IuQ4tBrUCdO6ulNMwgEvxdfHSqD7Cm7t4VFx-Of81_za7-Pl1MT-7mOka8zRj0BGqiRbCcEOoqHQNrKNMmIrjllNDSk5qZoBhCka0Nekq3eqOiYqTqib0qFjsdDuv1nIT7KDCrfTKym3Ch5VUIVndg-QYmlbouqJNUwnBWqUMgC5L0SneGJa1Pu60NmM7QJd_IWWnT0Sfnjh7JVf-WgrREE5FFvhwJxD8nxFikoONGvpeOfBjlIRxzBraYJ7R98_QtR9D_t-JYqLhWIjJ3cmOWqlswDrj8706rw4Gq_OsGJvzZ6yiU-PZZOHdYwsPb7-fiwyc7oBt-wMYqW1SU2uzsu1lieU0efJh8nLF8bOKe9H_2X8YnNhE
CitedBy_id crossref_primary_10_1080_19479832_2024_2416227
crossref_primary_10_3390_buildings13041070
crossref_primary_10_1109_LRA_2024_3426382
crossref_primary_10_3390_s23177337
crossref_primary_10_3390_app15063148
Cites_doi 10.1016/j.fishres.2014.01.019
10.1109/OCEANSKOBE.2018.8559317
10.3390/s17102309
10.1016/j.compag.2017.02.008
10.1109/ICISC.2018.8398874
10.1109/ICCAT.2013.6522017
10.1007/s11263-009-0275-4
10.1023/B:VLSI.0000028532.53893.82
10.3390/s22155717
10.1111/j.1467-2979.2011.00443.x
10.1016/j.patrec.2005.10.010
10.1016/j.compag.2019.01.012
10.1109/CVPR.2016.185
10.1371/journal.pone.0038179
10.1109/ICPICS47731.2019.8942503
10.1080/23308249.2016.1193472
10.1007/s13280-011-0195-8
10.1109/CVPR.2016.90
10.1109/IAEAC47372.2019.8997970
10.3390/jmse10091230
10.1016/j.patcog.2022.108926
10.1109/CVPR.2016.91
10.3390/md9101761
10.1109/IMCEC46724.2019.8983935
10.1109/CVPR.2017.690
10.1007/s11042-022-12502-1
10.1109/OCEANSE.2017.8084742
10.1016/j.neucom.2019.01.084
10.1109/ICRA.2018.8460552
10.1109/ICASSP40776.2020.9053829
10.1038/nature14539
10.3390/s21217205
10.1109/OCEANSKOBE.2018.8558804
10.1145/3474085.3475563
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23042037
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database

MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_80e6b9c543664997baafeec119da86f7
PMC9962839
A743368577
36850633
10_3390_s23042037
Genre Journal Article
GrantInformation_xml – fundername: Shandong Province Key R&D Program (Major Science and Technology Innovation Project)
  grantid: 2020CXGC010704
– fundername: National Key Research and Development Program of China
  grantid: 2019YFD0901105
– fundername: Shandong Province Science and Technology SMES Innovation Ability Enhancement Project
  grantid: 2022TSGC1120
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c508t-7ed23c2c99f8f2394c5e7d379f480b83f218257fe703ef9b52d4cbcd794824523
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 00:38:02 EDT 2025
Thu Aug 21 18:37:50 EDT 2025
Thu Jul 10 17:25:25 EDT 2025
Fri Jul 25 20:02:34 EDT 2025
Tue Jul 01 05:44:26 EDT 2025
Mon Jul 21 05:44:24 EDT 2025
Tue Jul 01 01:19:50 EDT 2025
Thu Apr 24 22:53:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords marine survey
object detection
underwater image enhancement
YOLOv5
YOLOv7
marine organism recognition
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-7ed23c2c99f8f2394c5e7d379f480b83f218257fe703ef9b52d4cbcd794824523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-6379-9863
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23042037
PMID 36850633
PQID 2779680992
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_80e6b9c543664997baafeec119da86f7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9962839
proquest_miscellaneous_2780763608
proquest_journals_2779680992
gale_infotracacademiconefile_A743368577
pubmed_primary_36850633
crossref_citationtrail_10_3390_s23042037
crossref_primary_10_3390_s23042037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230210
PublicationDateYYYYMMDD 2023-02-10
PublicationDate_xml – month: 2
  year: 2023
  text: 20230210
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References He (ref_33) 2010; 33
Bordbar (ref_1) 2011; 9
LeCun (ref_12) 2015; 521
ref_13
ref_35
Fawcett (ref_36) 2006; 27
ref_34
Qiao (ref_10) 2017; 135
ref_11
ref_32
ref_31
ref_30
Fayaz (ref_14) 2022; 81
ref_19
ref_18
ref_17
ref_16
ref_15
Huang (ref_24) 2021; 9
Han (ref_2) 2016; 24
Guo (ref_20) 2019; 6
Huang (ref_25) 2019; 337
Everingham (ref_37) 2010; 88
Mallet (ref_5) 2014; 154
Purcell (ref_3) 2013; 14
Eriksson (ref_4) 2012; 41
ref_23
ref_22
ref_21
ref_40
ref_29
Chen (ref_39) 2022; 132
ref_28
ref_27
ref_26
Tian (ref_38) 2019; 157
ref_8
Reza (ref_9) 2004; 38
ref_7
ref_6
References_xml – volume: 154
  start-page: 44
  year: 2014
  ident: ref_5
  article-title: Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952–2012)
  publication-title: Fish. Res.
  doi: 10.1016/j.fishres.2014.01.019
– volume: 9
  start-page: 213
  year: 2021
  ident: ref_24
  article-title: A Comparative Study of Underwater Marine Products Detection based on YOLOv5 and Underwater Image Enhancement
  publication-title: Int. Core J. Eng.
– ident: ref_13
  doi: 10.1109/OCEANSKOBE.2018.8559317
– ident: ref_6
  doi: 10.3390/s17102309
– volume: 135
  start-page: 134
  year: 2017
  ident: ref_10
  article-title: An automatic active contour method for sea cucumber segmentation in natural underwater environments
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.02.008
– ident: ref_35
  doi: 10.1109/ICISC.2018.8398874
– ident: ref_32
  doi: 10.1109/ICCAT.2013.6522017
– volume: 88
  start-page: 303
  year: 2010
  ident: ref_37
  article-title: The pascal visual object classes (voc) challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-009-0275-4
– volume: 38
  start-page: 35
  year: 2004
  ident: ref_9
  article-title: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement
  publication-title: J. VLSI Signal Process. Syst. Signal Image Video Technol.
  doi: 10.1023/B:VLSI.0000028532.53893.82
– ident: ref_18
  doi: 10.3390/s22155717
– volume: 14
  start-page: 34
  year: 2013
  ident: ref_3
  article-title: Sea cucumber fisheries: Global analysis of stocks, management measures and drivers of overfishing
  publication-title: Fish Fish.
  doi: 10.1111/j.1467-2979.2011.00443.x
– volume: 27
  start-page: 861
  year: 2006
  ident: ref_36
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 157
  start-page: 417
  year: 2019
  ident: ref_38
  article-title: Apple detection during different growth stages in orchards using the improved YOLO-V3 model
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.01.012
– ident: ref_34
  doi: 10.1109/CVPR.2016.185
– ident: ref_7
  doi: 10.1371/journal.pone.0038179
– ident: ref_15
  doi: 10.1109/ICPICS47731.2019.8942503
– volume: 24
  start-page: 326
  year: 2016
  ident: ref_2
  article-title: A review of sea cucumber aquaculture, ranching, and stock enhancement in China
  publication-title: Rev. Fish. Sci. Aquac.
  doi: 10.1080/23308249.2016.1193472
– volume: 41
  start-page: 109
  year: 2012
  ident: ref_4
  article-title: Sea cucumber aquaculture in the Western Indian Ocean: Challenges for sustainable livelihood and stock improvement
  publication-title: Ambio
  doi: 10.1007/s13280-011-0195-8
– ident: ref_28
  doi: 10.1109/CVPR.2016.90
– ident: ref_8
– ident: ref_19
  doi: 10.1109/IAEAC47372.2019.8997970
– ident: ref_17
  doi: 10.3390/jmse10091230
– ident: ref_31
– volume: 132
  start-page: 108926
  year: 2022
  ident: ref_39
  article-title: SWIPENET: Object detection in noisy underwater scenes
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108926
– ident: ref_27
– ident: ref_29
  doi: 10.1109/CVPR.2016.91
– volume: 9
  start-page: 1761
  year: 2011
  ident: ref_1
  article-title: High-value components and bioactives from sea cucumbers for functional foods—A review
  publication-title: Mar. Drugs
  doi: 10.3390/md9101761
– ident: ref_16
  doi: 10.1109/IMCEC46724.2019.8983935
– ident: ref_30
  doi: 10.1109/CVPR.2017.690
– volume: 81
  start-page: 20871
  year: 2022
  ident: ref_14
  article-title: Underwater object detection: Architectures and algorithms—A comprehensive review
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12502-1
– volume: 33
  start-page: 2341
  year: 2010
  ident: ref_33
  article-title: Single image haze removal using dark channel prior
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: ref_11
  doi: 10.1109/OCEANSE.2017.8084742
– volume: 6
  start-page: 307
  year: 2019
  ident: ref_20
  article-title: Underwater sea cucumber identification via deep residual networks
  publication-title: Inf. Process. Agric.
– volume: 337
  start-page: 372
  year: 2019
  ident: ref_25
  article-title: Faster R-CNN for marine organisms detection and recognition using data augmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.084
– ident: ref_26
  doi: 10.1109/ICRA.2018.8460552
– ident: ref_40
  doi: 10.1109/ICASSP40776.2020.9053829
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_12
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_22
  doi: 10.3390/s21217205
– ident: ref_23
  doi: 10.1109/OCEANSKOBE.2018.8558804
– ident: ref_21
  doi: 10.1145/3474085.3475563
SSID ssj0023338
Score 2.4194534
Snippet Recently, rapidly developing artificial intelligence and computer vision techniques have provided technical solutions to promote production efficiency and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2037
SubjectTerms Accuracy
Algorithms
Aquaculture
Aquaculture industry
Artificial intelligence
Cameras
Computer vision
Datasets
Deep learning
Detectors
Efficiency
Fisheries
Investigations
Labor costs
Machine vision
marine organism recognition
marine survey
Methods
Neural networks
object detection
Organisms
Surveillance
Surveys
underwater image enhancement
YOLOv5
YOLOv7
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAfBMoyCAkuERNYie2j-3SqkUql6VSb5bt2Gol8KJult7625lxvFFWIHHhFCkeOY4943mTjN8Q8sHJ2vk2mNICPC656nlpQwtADuCvciZ4k4rBnH_tTi_4l8v2clbqC3PCRnrgceIOZOU7q1zLWdcBOhfWQAfe1bXqjexCOkcOPm8bTOVQi0HkNfIIMQjqD9b46bOpsNj5zPskkv4_t-KZL9rNk5w5npNH5GFGjPRwHOljcs_HJ-TBjEfwKbk7i3R5PWzo0hu62LhU5YN-9kPKs4rUpNHQ85w8SFOxo1tAmTd06XCzo0fgzHoKootV_JW1ER6K1B3pknLF19TEnp79gC2IHscr1Jd0QO4ZuTg5_rY4LXNhhdIBHhtK4fuGucYpFWTA2uiu9aJnQgUuKytZQFr3VgQP24EPyrZNz511PdiuxD-17DnZi6voXxJqQwINyntpOG-lATjADEy3DH2tDC_Ip-2Ea5dZx7H4xXcN0QeujZ7WpiDvJ9GfI9XG34SOcNUmAWTHTjdAZ3TWGf0vnSnIR1xzjTYMg3EmH0WAV0I2LH0IsAqJ-QVI7m_VQmfjXutGCNVJgNZNQd5NzWCW-K_FRL_aoIysBHKxyYK8GLVoGjN2DciQFUTs6NfOS-22xOurRP0N0SngQfXqf8zCa3K_AUvBFPS62id7w83GvwGENdi3yZh-AwmIJmw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeJNSkEFIcImahxPbJ9QuXVqkclkq9Rb52VYCp93Nwo3fzozXG3YF4hQpGSVO5uFv7Mk3hLw1ojSu8SrXAI9zJi3LtW8AyAH8lUZ5p2IzmNMv7fEZ-3zenKcFt0Uqq1zHxBiobW9wjXy_4ly2AvBM9eH6JseuUbi7mlpo3CZ3SphpsKRLTD-NCVcN-deKTaiG1H5_gQugVYEtzzfmoEjV_3dA3piRtqslN6af6QNyP-FGerBS9ENyy4VH5N4Gm-Bj8usk0NnVsKQzp-hkaWKvD_rRDbHaKlAVR0NPUwkhjS2PfgLWnNOZwZBHD2FKsxREJ334kWwSHooEHvEQK8YXVAVLT75DIKJH4RKtJv4m94ScTY--To7z1F4hN4DKhpw7W9WmMlJ64bFDumkctzWXnolCi9ojuXvDvYOg4LzUTWWZ0caCBwvcr62fkp3QB_ecUO0jdJDOCcVYIxSAglrB5xbellKxjLxff_DOJO5xbIHxrYMcBHXTjbrJyJtR9HpFuPEvoUPU2iiAHNnxRD-_6JLLdaJwrZamYXXbQl7HtQLTc6YspVWi9XCTd6jzDj0ZBmNU-iEBXgk5sboDAFdIz89Bcm9tFl1y8UX3xyAz8nq8DM6JOy4quH6JMqLgyMgmMvJsZUXjmPHWgA_rjPAt-9p6qe0r4eoyEoBDjgqoUO7-f1gvyN0KfABLzMtij-wM86V7CQhq0K-im_wGLUcdag
  priority: 102
  providerName: ProQuest
Title In Situ Sea Cucumber Detection across Multiple Underwater Scenes Based on Convolutional Neural Networks and Image Enhancements
URI https://www.ncbi.nlm.nih.gov/pubmed/36850633
https://www.proquest.com/docview/2779680992
https://www.proquest.com/docview/2780763608
https://pubmed.ncbi.nlm.nih.gov/PMC9962839
https://doaj.org/article/80e6b9c543664997baafeec119da86f7
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7t4wIHxHsDS2UQElwCeTixfUBoW1p2kbpClEq9RY5jsystKfTB48JvZ8ZNo0asuKRSMkodz4znm3jyDcBzI2NjM6fDEuFxyFXFw9JlCOQQ_iqjndW-Gcz4PD-d8g-zbLYH2x6bzQQur03tqJ_UdHH16tf332_R4d9Qxokp--slvdhMolTswyEGJEGNDMa83UxIUkzDNqRCXfFOKPKM_f-uyzuBqVs0uROFRrfhVgMf2clG33dgz9Z34eYOqeA9-HNWs8nlas0mVrPB2viWH-ydXfmiq5ppPxo2bioJme989BMh54JNDK18rI-RrWIoOpjXPxrTxD8lHg__4wvHl0zXFTv7iusRG9YXZDz-a7n7MB0NPw9Ow6bLQmgQnK1CYaskNYlRyklHjdJNZkWVCuW4jEqZOuJ4z4SzuDZYp8osqbgpTYWOLGnbNn0AB_W8tkfASucRhLJWas4zqREbpBqnW7oqVpoH8HI74YVpKMipE8ZVgakI6aZodRPAs1b024Z34zqhPmmtFSCqbH9ivvhSNJ5XyMjmpTIZT_Mc0ztRarRAa-JYVVrmDm_ygnRekInhYIxuvkvARyJqrOIEMRax9AuUPN6aRbE11CIRQuUScXYSwNP2Mvoobbzo2s7XJCMjQcRsMoCHGytqx0y3RpiYBiA69tV5qO6V-vLC84BjqorgUD36_7Aew40EfYAqzePoGA5Wi7V9gkBqVfZgX8wEHuXofQ8O-8Pzj596_qVEzzvQXw1LIxc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQAHxJuFAgaB4LLqvm0fEGrThoQ2vaSVett6_aCV2t2SbKi48JP4jcx4HyQCcesp0nrkeD2vb9bjGULeKh4qk1rpFwCP_UToxC9sCkAO4K9Q0hrpmsFMDrLRUfLlOD1eI7-6uzCYVtnZRGeodaXwG_lmxJjIOOCZ6NPlNx-7RuHpatdCoxGLPfPjCkK2-cfxDvD3XRQNdw8HI7_tKuArACO1z4yOYhUpISy32BhcpYbpmAmb8KDgscWa5imzBnTBWFGkkU5UoTQILsdjyhjmvUFuJjF4cryZPvzcB3gxxHtN9SIYDDbn-ME1CrDF-pLPc60B_nYASx5wNTtzyd0N75G7LU6lW41g3SdrpnxA7ixVL3xIfo5LOj2rF3RqJB0slOstQndM7bK7SirdauikTVmkrsXSFWDbGZ0qNLF0G1yopkA6qMrvrQ7An2LBEPfjMtTnVJaaji_A8NHd8hSl1F3Le0SOrmXjH5P1sirNU0IL66CKMIbLJEm5BBASS9hubnUoZOKRD92G56qtdY4tN85ziHmQN3nPG4-86UkvmwIf_yLaRq71BFiT2z2oZl_zVsVzHpisECpN4iyDOJIVEkTdqDAUWvLMwiTvkec5Wg5YjJLtBQh4JazBlW8BmMN2AAwoNzqxyFuTMs__KIBHXvfDYAzwhEeWplogDQ8YVoDjHnnSSFG_Zpwa8GjsEbYiXysvtTpSnp26guMQEwMKFc_-v6xX5NbocLKf748P9p6T2xHoA6a3h8EGWa9nC_MC0FtdvHQqQ8nJdevob8YIWag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPimMMAgELxETfNl-wGh9UsrY9VEmbS34Dj2Nmkko02ZeOEP46_jzk1DKxBve4qUnBzHvjv_Lj7fD-CVFl1tYqu8DOGxF8k88jIbI5BD-Cu1skY5MpiDSbJ3FH04jo-34NfqLAylVa58onPUeanpH3kn4FwmAvFM0LF1WsThYPT-4ptHDFK007qi01iqyL75cYnh2_zdeIBz_ToIRsPP_T2vZhjwNAKTyuMmD0IdaCmtsEQSrmPD85BLGwk_E6Gl-uYxtwbtwliZxUEe6UznqMSCtixDbPcabHOKilqw3RtODj814V6I0d-yllEYSr8zp9-vgU-E62sroCMK-Hs5WFsPN3M11xa_0W24VaNWtrtUszuwZYq7cHOtluE9-Dku2PSsWrCpUay_0I5phA1M5XK9CqZcb9hBncDIHOHSJSLdGZtqcrishwtqzlC0Xxbfa4vAl1L5EHdx-epzpoqcjb-iG2TD4pR01h3Suw9HVzL0D6BVlIV5BCyzDrhIY4SKolgohCShwuEWNu9KFbXh7WrAU11XPicCjvMUIyCam7SZmza8bEQvluU-_iXUo1lrBKhCt7tRzk7S2uBT4ZskkzqOwiTBqJJnChXf6G5X5kokFht5Q3Oekh_BzmhVH4fAT6KKXOkuQjsiB-AoubNSi7R2MPP0jzm04UXzGF0D7feowpQLkhE-p3pwog0Pl1rU9JmaRnQatoFv6NfGR20-Kc5OXflxjJARk8rH_-_Wc7iO9pl-HE_2n8CNAM2Bct27_g60qtnCPEUoV2XPapth8OWqzfQ3gv9fOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Sea+Cucumber+Detection+across+Multiple+Underwater+Scenes+Based+on+Convolutional+Neural+Networks+and+Image+Enhancements&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yi&rft.au=Fu%2C+Boya&rft.au=Fu%2C+Longwen&rft.au=Xia%2C+Chunlei&rft.date=2023-02-10&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=4&rft.spage=2037&rft_id=info:doi/10.3390%2Fs23042037&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon