Digital Twin for Training Bayesian Networks for Fault Diagnostics of Manufacturing Systems

Smart manufacturing systems are being advocated to leverage technological advances that enable them to be more resilient to faults through rapid diagnosis for performance assurance. In this paper, we propose a co-simulation approach for engineering digital twins (DTs) that are used to train Bayesian...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 4; p. 1430
Main Authors Ademujimi, Toyosi, Prabhu, Vittaldas
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.02.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Smart manufacturing systems are being advocated to leverage technological advances that enable them to be more resilient to faults through rapid diagnosis for performance assurance. In this paper, we propose a co-simulation approach for engineering digital twins (DTs) that are used to train Bayesian Networks (BNs) for fault diagnostics at equipment and factory levels. Specifically, the co-simulation model is engineered by using cyber–physical system (CPS) consisting of networked sensors, high-fidelity simulation model of each equipment, and a detailed discrete-event simulation (DES) model of the factory. The proposed DT approach enables injection of faults in the virtual system, thereby alleviating the need for expensive factory-floor experimentation. It should be emphasized that this approach of injecting faults eliminates the need for obtaining balanced data that include faulty and normal factory operations. We propose a Structural Intervention Algorithm (SIA) in this paper to first detect all possible directed edges and then distinguish between a parent and an ancestor node of the BN. We engineered a DT research test-bed in our laboratory consisting of four industrial robots configured into an assembly cell where each robot has an industrial Internet-of-Things sensor that can monitor vibrations in two-axes. A detailed equipment-level simulator of these robots was integrated with a detailed DES model of the robotic assembly cell. The resulting DT was used to carry out interventions to learn a BN model structure for fault diagnostics. Laboratory experiments validated the efficacy of the proposed approach by accurately learning the BN structure, and in the experiments, the accuracy obtained by the proposed approach (measured using Structural Hamming Distance) was found to be significantly better than traditional methods. Furthermore, the BN structure learned was found to be robust to variations in parameters, such as mean time to failure (MTTF).
AbstractList Smart manufacturing systems are being advocated to leverage technological advances that enable them to be more resilient to faults through rapid diagnosis for performance assurance. In this paper, we propose a co-simulation approach for engineering digital twins (DTs) that are used to train Bayesian Networks (BNs) for fault diagnostics at equipment and factory levels. Specifically, the co-simulation model is engineered by using cyber–physical system (CPS) consisting of networked sensors, high-fidelity simulation model of each equipment, and a detailed discrete-event simulation (DES) model of the factory. The proposed DT approach enables injection of faults in the virtual system, thereby alleviating the need for expensive factory-floor experimentation. It should be emphasized that this approach of injecting faults eliminates the need for obtaining balanced data that include faulty and normal factory operations. We propose a Structural Intervention Algorithm (SIA) in this paper to first detect all possible directed edges and then distinguish between a parent and an ancestor node of the BN. We engineered a DT research test-bed in our laboratory consisting of four industrial robots configured into an assembly cell where each robot has an industrial Internet-of-Things sensor that can monitor vibrations in two-axes. A detailed equipment-level simulator of these robots was integrated with a detailed DES model of the robotic assembly cell. The resulting DT was used to carry out interventions to learn a BN model structure for fault diagnostics. Laboratory experiments validated the efficacy of the proposed approach by accurately learning the BN structure, and in the experiments, the accuracy obtained by the proposed approach (measured using Structural Hamming Distance) was found to be significantly better than traditional methods. Furthermore, the BN structure learned was found to be robust to variations in parameters, such as mean time to failure (MTTF).
Smart manufacturing systems are being advocated to leverage technological advances that enable them to be more resilient to faults through rapid diagnosis for performance assurance. In this paper, we propose a co-simulation approach for engineering digital twins (DTs) that are used to train Bayesian Networks (BNs) for fault diagnostics at equipment and factory levels. Specifically, the co-simulation model is engineered by using cyber-physical system (CPS) consisting of networked sensors, high-fidelity simulation model of each equipment, and a detailed discrete-event simulation (DES) model of the factory. The proposed DT approach enables injection of faults in the virtual system, thereby alleviating the need for expensive factory-floor experimentation. It should be emphasized that this approach of injecting faults eliminates the need for obtaining balanced data that include faulty and normal factory operations. We propose a Structural Intervention Algorithm (SIA) in this paper to first detect all possible directed edges and then distinguish between a parent and an ancestor node of the BN. We engineered a DT research test-bed in our laboratory consisting of four industrial robots configured into an assembly cell where each robot has an industrial Internet-of-Things sensor that can monitor vibrations in two-axes. A detailed equipment-level simulator of these robots was integrated with a detailed DES model of the robotic assembly cell. The resulting DT was used to carry out interventions to learn a BN model structure for fault diagnostics. Laboratory experiments validated the efficacy of the proposed approach by accurately learning the BN structure, and in the experiments, the accuracy obtained by the proposed approach (measured using Structural Hamming Distance) was found to be significantly better than traditional methods. Furthermore, the BN structure learned was found to be robust to variations in parameters, such as mean time to failure (MTTF).Smart manufacturing systems are being advocated to leverage technological advances that enable them to be more resilient to faults through rapid diagnosis for performance assurance. In this paper, we propose a co-simulation approach for engineering digital twins (DTs) that are used to train Bayesian Networks (BNs) for fault diagnostics at equipment and factory levels. Specifically, the co-simulation model is engineered by using cyber-physical system (CPS) consisting of networked sensors, high-fidelity simulation model of each equipment, and a detailed discrete-event simulation (DES) model of the factory. The proposed DT approach enables injection of faults in the virtual system, thereby alleviating the need for expensive factory-floor experimentation. It should be emphasized that this approach of injecting faults eliminates the need for obtaining balanced data that include faulty and normal factory operations. We propose a Structural Intervention Algorithm (SIA) in this paper to first detect all possible directed edges and then distinguish between a parent and an ancestor node of the BN. We engineered a DT research test-bed in our laboratory consisting of four industrial robots configured into an assembly cell where each robot has an industrial Internet-of-Things sensor that can monitor vibrations in two-axes. A detailed equipment-level simulator of these robots was integrated with a detailed DES model of the robotic assembly cell. The resulting DT was used to carry out interventions to learn a BN model structure for fault diagnostics. Laboratory experiments validated the efficacy of the proposed approach by accurately learning the BN structure, and in the experiments, the accuracy obtained by the proposed approach (measured using Structural Hamming Distance) was found to be significantly better than traditional methods. Furthermore, the BN structure learned was found to be robust to variations in parameters, such as mean time to failure (MTTF).
Audience Academic
Author Ademujimi, Toyosi
Prabhu, Vittaldas
AuthorAffiliation Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, Pennsylvania State University, University Park, PA 16802, USA; tta5@psu.edu
AuthorAffiliation_xml – name: Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, Pennsylvania State University, University Park, PA 16802, USA; tta5@psu.edu
Author_xml – sequence: 1
  givenname: Toyosi
  orcidid: 0000-0002-4051-3308
  surname: Ademujimi
  fullname: Ademujimi, Toyosi
– sequence: 2
  givenname: Vittaldas
  surname: Prabhu
  fullname: Prabhu, Vittaldas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35214332$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhi1URNuFA38AReICh239ESfOBam0FCoVOLBcuFgTZxy8ZO1iJ1T77_HullVbIR9szTzzer6OyYEPHgl5yeiJEA09TZzTkpWCPiFHrOTlXGXDwb33ITlOaUkpF0KoZ-RQSJ5xwY_IjwvXuxGGYnHrfGFDLBYRnHe-L97DGpMDX3zB8TbEX2nrvoRpGIsLB70PaXQmFcEWn8FPFsw4xU3gt3UacZWek6cWhoQv7u4Z-X75YXH-aX799ePV-dn13EiqxnmNlIIRrC2VYW1d1dYoU3eGCgplZ1tkVMiOK8URFbS1pFRwii0DFFJaFDNytdPtAiz1TXQriGsdwOmtIcReQ8yZDqirNhctoeK0syU2oqmqphF1SXnHZVfVWevdTutmalfYGfRjhOGB6EOPdz91H_5opeqyyi2dkTd3AjH8njCNeuWSwWEAj2FKmld5AlIyyTP6-hG6DFP0uVVbiqlSVk2mTnZUD7kA523I_5p8Olw5k_fAumw_qxWraNPkFGbk1f0S9rn_m3kG3u4AE0NKEe0eYVRv9knv9ymzp49Yk7dldGFTvRv-E_EXSp_Kig
CitedBy_id crossref_primary_10_1049_cim2_12066
crossref_primary_10_1016_j_ress_2024_110760
crossref_primary_10_3390_s25061716
crossref_primary_10_3390_app12178862
crossref_primary_10_3390_batteries9100521
crossref_primary_10_3389_fmtec_2024_1320166
crossref_primary_10_1016_j_aei_2024_102963
crossref_primary_10_1016_j_jai_2023_07_002
crossref_primary_10_1080_0951192X_2024_2314787
crossref_primary_10_1007_s44196_023_00241_6
crossref_primary_10_3390_su151813369
crossref_primary_10_3390_su16020513
crossref_primary_10_1142_S1793962323410313
crossref_primary_10_1002_sd_3270
crossref_primary_10_1007_s00607_024_01399_3
crossref_primary_10_1016_j_simpat_2024_103045
crossref_primary_10_1109_JRFID_2024_3387996
crossref_primary_10_3390_s23167087
crossref_primary_10_3390_smartcities7050105
crossref_primary_10_58224_2618_7183_2024_7_4_7
Cites_doi 10.7551/mitpress/1754.001.0001
10.3390/s21227633
10.1016/j.jmsy.2021.05.015
10.2514/1.J055201
10.1109/BigData.2017.8258120
10.1016/j.compind.2020.103316
10.1007/s10845-019-01516-6
10.1016/j.ijar.2013.11.007
10.1017/CBO9780511803161
10.1016/j.dss.2021.113524
10.1504/IJPD.2010.036389
10.1016/j.ifacol.2018.08.474
10.1016/j.procir.2019.03.136
10.1016/j.procir.2019.02.087
10.1109/TASE.2017.2747130
10.1016/j.knosys.2010.12.010
10.1016/j.procir.2021.01.156
10.1016/j.mfglet.2014.12.001
10.1007/s10618-010-0178-6
10.18637/jss.v035.i03
10.1016/j.cirp.2021.04.043
10.3233/AO-190208
10.1080/0740817X.2016.1241455
10.1109/CVPR.2017.632
10.1080/00207543.2017.1299947
10.1016/j.rcim.2021.102173
10.1109/ACCESS.2017.2657006
10.1177/0142331219826665
10.1016/j.procir.2019.02.125
10.1016/j.jmsy.2020.07.005
10.1016/j.procir.2019.03.072
10.1016/j.jmsy.2021.12.011
10.1080/01605682.2019.1678406
10.1115/MSEC2017-2937
10.36001/phmconf.2019.v11i1.836
10.1016/j.cirp.2018.04.055
10.1016/j.jlp.2016.11.016
10.1016/j.engappai.2016.12.024
10.1109/WSC.2017.8248105
10.1016/j.eswa.2010.08.083
10.1016/j.procir.2013.05.005
10.1016/S0007-8506(16)30007-5
10.1007/978-3-319-66923-6_48
10.1080/13528160412331326487
10.1016/j.ijmachtools.2004.06.018
10.1016/0278-6125(94)90025-6
10.1109/WSC.2018.8632330
10.1007/s10845-021-01740-z
10.1109/WSC.2017.8248023
10.1016/j.procir.2019.03.141
10.1007/s00170-018-1617-6
10.1109/87.388129
10.1109/WSC40007.2019.9004893
10.1186/s40323-020-00147-4
10.1016/j.mfglet.2021.01.005
10.3390/buildings11040151
10.1016/j.artmed.2011.08.004
10.1023/B:APIN.0000011143.95085.74
10.1109/BigData.2017.8258117
10.1080/07408170600899532
10.1016/j.eswa.2019.112830
10.1016/j.ijar.2013.03.009
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22041430
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_6b3325a620df4e939669937402d25d67
PMC8874643
A781609964
35214332
10_3390_s22041430
Genre Journal Article
GeographicLocations New York
GeographicLocations_xml – name: New York
GrantInformation_xml – fundername: NIST DOC
  grantid: 70NANB14H255
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c508t-7e00ac31b48c1b767fc8c7dc030a4dfbe1035d2882ee8ab7500320eb1ae355fe3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:32:46 EDT 2025
Thu Aug 21 18:08:00 EDT 2025
Fri Jul 11 12:43:34 EDT 2025
Fri Jul 25 20:06:56 EDT 2025
Tue Jun 10 21:12:58 EDT 2025
Wed Feb 19 02:26:43 EST 2025
Thu Apr 24 23:10:43 EDT 2025
Tue Jul 01 02:41:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords fault diagnostics
digital twin
smart manufacturing
Bayesian network
small data set
structure learning
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-7e00ac31b48c1b767fc8c7dc030a4dfbe1035d2882ee8ab7500320eb1ae355fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4051-3308
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22041430
PMID 35214332
PQID 2633184569
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_6b3325a620df4e939669937402d25d67
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8874643
proquest_miscellaneous_2633855152
proquest_journals_2633184569
gale_infotracacademiconefile_A781609964
pubmed_primary_35214332
crossref_primary_10_3390_s22041430
crossref_citationtrail_10_3390_s22041430
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220213
PublicationDateYYYYMMDD 2022-02-13
PublicationDate_xml – month: 2
  year: 2022
  text: 20220213
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhuang (ref_53) 2018; 96
Jain (ref_17) 2019; Volume 2019
Savolainen (ref_55) 2021; 32
Zhang (ref_52) 2019; 83
Yu (ref_56) 2021; 58
ref_14
ref_13
ref_11
Chen (ref_60) 2017; 59
Wang (ref_67) 2021; 60
ref_16
Cheng (ref_38) 2019; 41
Nguyen (ref_2) 2016; 230
Smith (ref_9) 2017; 45
ref_59
Magnanini (ref_21) 2021; 70
Chickering (ref_26) 2004; 5
Khan (ref_8) 2019; Volume 1
Tolio (ref_18) 2013; 7
Hauser (ref_71) 2014; 55
Xiao (ref_36) 2018; 15
Duffie (ref_76) 1994; 13
MacAllister (ref_32) 2020; 139
ref_25
ref_69
Li (ref_58) 2017; 55
ref_68
ref_23
ref_66
ref_64
Lechler (ref_62) 2020; 96
ref_63
Yiakopoulos (ref_72) 2011; 38
ref_29
Masegosa (ref_35) 2013; 54
Karray (ref_22) 2019; 14
Scutari (ref_28) 2010; 35
Lee (ref_43) 2015; 3
Lee (ref_10) 2017; 55
ref_70
Hyttinen (ref_19) 2013; 14
Alam (ref_57) 2017; 5
Dey (ref_41) 2005; 45
Aivaliotis (ref_44) 2019; 81
Koomsap (ref_74) 2005; 43
De (ref_37) 2010; 12
ref_33
ref_31
ref_30
Tao (ref_49) 2018; 67
Zhang (ref_54) 2022; 62
Duffie (ref_77) 1995; 3
Kegg (ref_3) 1984; 33
ref_73
VanDerHorn (ref_20) 2021; 145
Kritzinger (ref_46) 2018; 51
Errandonea (ref_47) 2020; 123
Greasley (ref_65) 2019; 72
Lee (ref_42) 2021; 27
Biesinger (ref_48) 2019; 79
Redelinghuys (ref_50) 2020; 31
Hong (ref_75) 2004; 20
Wright (ref_45) 2020; 7
Li (ref_12) 2017; 49
Nicholson (ref_34) 2011; 53
Modoni (ref_15) 2019; 79
ref_40
ref_1
Panicker (ref_39) 2019; 81
Dai (ref_51) 2021; 72
Li (ref_24) 2007; 39
Yang (ref_61) 2011; 24
ref_5
Mateo (ref_27) 2011; 22
ref_4
ref_7
ref_6
References_xml – volume: 14
  start-page: 3041
  year: 2013
  ident: ref_19
  article-title: Experiment Selection for Causal Discovery
  publication-title: J. Mach. Learn. Res.
– ident: ref_29
  doi: 10.7551/mitpress/1754.001.0001
– ident: ref_40
  doi: 10.3390/s21227633
– ident: ref_5
– volume: 5
  start-page: 1287
  year: 2004
  ident: ref_26
  article-title: Large-Sample Learning of Bayesian Networks is NP-Hard
  publication-title: J. Mach. Learn. Res.
– volume: 60
  start-page: 350
  year: 2021
  ident: ref_67
  article-title: Digital twin enhanced fault prediction for the autoclave with insufficient data
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.05.015
– volume: 55
  start-page: 930
  year: 2017
  ident: ref_58
  article-title: Dynamic Bayesian Network for Aircraft Wing Health Monitoring Digital Twin
  publication-title: AIAA J.
  doi: 10.2514/1.J055201
– ident: ref_68
  doi: 10.1109/BigData.2017.8258120
– volume: 123
  start-page: 103316
  year: 2020
  ident: ref_47
  article-title: Digital Twin for maintenance: A literature review
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2020.103316
– volume: 31
  start-page: 1383
  year: 2020
  ident: ref_50
  article-title: A six-layer architecture for the digital twin: A manufacturing case study implementation
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-019-01516-6
– volume: 55
  start-page: 926
  year: 2014
  ident: ref_71
  article-title: Two optimal strategies for active learning of causal models from interventional data
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2013.11.007
– ident: ref_25
  doi: 10.1017/CBO9780511803161
– volume: 145
  start-page: 113524
  year: 2021
  ident: ref_20
  article-title: Digital Twin: Generalization, characterization and implementation
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2021.113524
– volume: 12
  start-page: 235
  year: 2010
  ident: ref_37
  article-title: Product failure root cause analysis during warranty analysis for integrated product design and quality improvement for early results in downturn economy
  publication-title: Int. J. Prod. Dev.
  doi: 10.1504/IJPD.2010.036389
– volume: 51
  start-page: 1016
  year: 2018
  ident: ref_46
  article-title: Digital Twin in manufacturing: A categorical literature review and classification
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.08.474
– volume: 81
  start-page: 500
  year: 2019
  ident: ref_39
  article-title: Tracing the Interrelationship between Key Performance Indicators and Production Cost using Bayesian Networks
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2019.03.136
– volume: 79
  start-page: 355
  year: 2019
  ident: ref_48
  article-title: A digital twin for production planning based on cyber-physical systems: A Case Study for a Cyber-Physical System-Based Creation of a Digital Twin
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2019.02.087
– ident: ref_1
– volume: Volume 1
  start-page: 1
  year: 2019
  ident: ref_8
  article-title: Development of novel hybrid manufacturing technique for manufacturing support structures free complex parts
  publication-title: Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference
– volume: 15
  start-page: 1163
  year: 2018
  ident: ref_36
  article-title: Optimal Expert Knowledge Elicitation for Bayesian Network Structure Identification
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2017.2747130
– ident: ref_23
– volume: 24
  start-page: 740
  year: 2011
  ident: ref_61
  article-title: A novel virtual sample generation method based on Gaussian distribution
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2010.12.010
– volume: 96
  start-page: 230
  year: 2020
  ident: ref_62
  article-title: Data Farming in Production Systems—A Review on Potentials, Challenges and Exemplary Applications
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.01.156
– volume: 3
  start-page: 18
  year: 2015
  ident: ref_43
  article-title: A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems
  publication-title: Manuf. Lett.
  doi: 10.1016/j.mfglet.2014.12.001
– volume: 22
  start-page: 106
  year: 2011
  ident: ref_27
  article-title: Learning Bayesian networks by hill climbing: Efficient methods based on progressive restriction of the neighborhood
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-010-0178-6
– volume: 35
  start-page: 1
  year: 2010
  ident: ref_28
  article-title: Learning Bayesian Networks with the bnlearn R Package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v035.i03
– ident: ref_31
– volume: 70
  start-page: 353
  year: 2021
  ident: ref_21
  article-title: A model-based Digital Twin to support responsive manufacturing systems
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2021.04.043
– volume: 14
  start-page: 155
  year: 2019
  ident: ref_22
  article-title: ROMAIN: Towards a BFO compliant reference ontology for industrial maintenance
  publication-title: Appl. Ontol.
  doi: 10.3233/AO-190208
– volume: 49
  start-page: 332
  year: 2017
  ident: ref_12
  article-title: Causation-based process monitoring and diagnosis for multivariate categorical processes
  publication-title: IISE Trans.
  doi: 10.1080/0740817X.2016.1241455
– ident: ref_59
  doi: 10.1109/CVPR.2017.632
– volume: 55
  start-page: 4785
  year: 2017
  ident: ref_10
  article-title: Predictive maintenance of complex system with multi-level reliability structure
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2017.1299947
– volume: 72
  start-page: 102173
  year: 2021
  ident: ref_51
  article-title: Ontology-based information modeling method for digital twin creation of as-fabricated machining parts
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2021.102173
– volume: 5
  start-page: 2050
  year: 2017
  ident: ref_57
  article-title: C2PS: A Digital Twin Architecture Reference Model for the Cloud-Based Cyber-Physical Systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2657006
– volume: 41
  start-page: 3406
  year: 2019
  ident: ref_38
  article-title: An Imitation medical diagnosis method of hydro-turbine generating unit based on Bayesian network
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/0142331219826665
– volume: 79
  start-page: 472
  year: 2019
  ident: ref_15
  article-title: Synchronizing physical and digital factory: Benefits and technical challenges
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2019.02.125
– volume: 58
  start-page: 293
  year: 2021
  ident: ref_56
  article-title: A Digital Twin approach based on nonparametric Bayesian network for complex system health monitoring
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.07.005
– volume: 81
  start-page: 417
  year: 2019
  ident: ref_44
  article-title: Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2019.03.072
– volume: 62
  start-page: 417
  year: 2022
  ident: ref_54
  article-title: A multi-scale modeling method for digital twin shop-floor
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.12.011
– volume: 72
  start-page: 247
  year: 2019
  ident: ref_65
  article-title: Enhancing discrete-event simulation with big data analytics: A review
  publication-title: J. Oper. Res. Soc.
  doi: 10.1080/01605682.2019.1678406
– ident: ref_13
– ident: ref_4
  doi: 10.1115/MSEC2017-2937
– volume: 230
  start-page: 178
  year: 2016
  ident: ref_2
  article-title: Fault diagnosis for the complex manufacturing system
  publication-title: Proc. Inst. Mech. Eng. Part O J. Risk Reliab.
– ident: ref_69
  doi: 10.36001/phmconf.2019.v11i1.836
– ident: ref_7
– volume: 67
  start-page: 169
  year: 2018
  ident: ref_49
  article-title: Digital twin driven prognostics and health management for complex equipment
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2018.04.055
– ident: ref_30
– volume: 45
  start-page: 88
  year: 2017
  ident: ref_9
  article-title: Understanding industrial safety: Comparing Fault tree, Bayesian network, and FRAM approaches
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2016.11.016
– volume: 59
  start-page: 236
  year: 2017
  ident: ref_60
  article-title: A PSO based virtual sample generation method for small sample sets: Applications to regression datasets
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.12.024
– ident: ref_64
  doi: 10.1109/WSC.2017.8248105
– volume: 38
  start-page: 2888
  year: 2011
  ident: ref_72
  article-title: Rolling element bearing fault detection in industrial environments based on a K-means clustering approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.08.083
– volume: 7
  start-page: 25
  year: 2013
  ident: ref_18
  article-title: Virtual Factory: An Integrated Framework for Manufacturing Systems Design and Analysis
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2013.05.005
– volume: 33
  start-page: 469
  year: 1984
  ident: ref_3
  article-title: One-Line Machine and Process Diagnostics
  publication-title: CIRP Ann.
  doi: 10.1016/S0007-8506(16)30007-5
– ident: ref_11
  doi: 10.1007/978-3-319-66923-6_48
– volume: 43
  start-page: 1625
  year: 2005
  ident: ref_74
  article-title: Integrated process control and condition-based maintenance scheduler for distributed manufacturing control systems
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/13528160412331326487
– volume: 45
  start-page: 75
  year: 2005
  ident: ref_41
  article-title: A Bayesian network approach to root cause diagnosis of process variations
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2004.06.018
– volume: 13
  start-page: 94
  year: 1994
  ident: ref_76
  article-title: Real-time distributed scheduling of heterarchical manufacturing systems
  publication-title: J. Manuf. Syst.
  doi: 10.1016/0278-6125(94)90025-6
– ident: ref_14
– ident: ref_16
  doi: 10.1109/WSC.2018.8632330
– volume: 32
  start-page: 1953
  year: 2021
  ident: ref_55
  article-title: Maintenance optimization for a multi-unit system with digital twin simulation: Example from the mining industry
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-021-01740-z
– ident: ref_66
  doi: 10.1109/WSC.2017.8248023
– volume: 83
  start-page: 118
  year: 2019
  ident: ref_52
  article-title: A reconfigurable modeling approach for digital twin-based manufacturing system
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2019.03.141
– volume: 96
  start-page: 1149
  year: 2018
  ident: ref_53
  article-title: Digital twin-based smart production management and control framework for the complex product assembly shop-floor
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-1617-6
– volume: 3
  start-page: 212
  year: 1995
  ident: ref_77
  article-title: Distributed system-level control of vehicles in a high-performance material transfer system
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/87.388129
– ident: ref_6
– volume: Volume 2019
  start-page: 2037
  year: 2019
  ident: ref_17
  article-title: Infrastructure for Model Based Analytics for Manufacturing
  publication-title: Proceedings of the 2019 Winter Simulation Conference (WSC)
  doi: 10.1109/WSC40007.2019.9004893
– volume: 7
  start-page: 13
  year: 2020
  ident: ref_45
  article-title: How to tell the difference between a model and a digital twin
  publication-title: Adv. Model. Simul. Eng. Sci.
  doi: 10.1186/s40323-020-00147-4
– volume: 27
  start-page: 87
  year: 2021
  ident: ref_42
  article-title: A unified digital twin framework for shop floor design in industry 4.0 manufacturing systems
  publication-title: Manuf. Lett.
  doi: 10.1016/j.mfglet.2021.01.005
– ident: ref_33
– ident: ref_73
  doi: 10.3390/buildings11040151
– volume: 53
  start-page: 181
  year: 2011
  ident: ref_34
  article-title: Incorporating expert knowledge when learning Bayesian network structure: A medical case study
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2011.08.004
– volume: 20
  start-page: 71
  year: 2004
  ident: ref_75
  article-title: Distributed Reinforcement Learning Control for Batch Sequencing and Sizing in Just-In-Time Manufacturing Systems
  publication-title: Appl. Intell.
  doi: 10.1023/B:APIN.0000011143.95085.74
– ident: ref_63
  doi: 10.1109/BigData.2017.8258117
– volume: 39
  start-page: 681
  year: 2007
  ident: ref_24
  article-title: Knowledge discovery from observational data for process control using causal Bayesian networks
  publication-title: IIE Trans.
  doi: 10.1080/07408170600899532
– volume: 139
  start-page: 112830
  year: 2020
  ident: ref_32
  article-title: Using high-fidelity meta-models to improve performance of small dataset trained Bayesian Networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112830
– ident: ref_70
– volume: 54
  start-page: 1168
  year: 2013
  ident: ref_35
  article-title: An interactive approach for Bayesian network learning using domain/expert knowledge
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2013.03.009
SSID ssj0023338
Score 2.471598
Snippet Smart manufacturing systems are being advocated to leverage technological advances that enable them to be more resilient to faults through rapid diagnosis for...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1430
SubjectTerms Algorithms
Bayesian network
Computational linguistics
Design of experiments
digital twin
Fault diagnosis
fault diagnostics
Heuristic
Industrial Internet of Things
Innovations
Language processing
Learning
Manufacturing
Natural language interfaces
OEM
Ontology
Random variables
Robots
Sensors
Simulation
small data set
smart manufacturing
structure learning
Subject specialists
Twins
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5CTu0h9F23aVFDoL2Y2JL8OiZNlxBIThsIvQg924XgDdldSv99ZyytWdNAL71aOsijeXxjz3wDcCw6Z1sRqGPZdrmkHl1tqzIPQhjTUYgP9B3y6rq-uJGXt9XtzqgvqgmL9MBRcCe1EYJXuuaFC9J3AuE5hVRMexyvXD30kWPM2yZTKdUSmHlFHiGBSf3JivNCIjIoJtFnIOn_2xXvxKJpneRO4Jk9g4OEGNlpPOlz2PP9C3i6wyP4Er6fL37Q8A82_7XoGcJQNk-TH9iZ_u2pT5Jdx3rv1bA805u7NTuPZXZE1MyWgV3pfkN9DkPjIktU5q_gZvZt_vUiT0MTcotYa503vii0FaWRrS1NUzfBtrZxFo1ZSxeMLwtROY7A2vtWGwQMNEIdPbb2CD2CF69hv1_2_i2wUtjKWeFtqDQR03fSSGddQHk7b1qewZetMJVNjOI02OJOYWZBclej3DM4GrfeRxqNxzad0Y2MG4j5eniA-qCSPqh_6UMGn-k-FdknHsbq1GaAr0RMV-q0acsaYXEtMzjcXrlKhrtSvBbo5RBVdhl8GpfR5Og_iu79chP3tIg0K5TAm6gh45kRz5ZECZdBM9GdyUtNV_rFz4HWG929RHz47n9I4T084dSnQZNrxCHsrx82_gOip7X5OBjKHxgIFpk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SalIIOQ4BI1sZ3XCbWUVYXUnrbSiovlZ1mpSkp3VxX_npnEm24E4hr74Mc8vnFmvgH4KBpnaxGoYtk2qaQaXW2LPA1CGNOQiw_0Dnl2Xp5eyO-LYhEf3FYxrXJrE3tD7TpLb-SHvBQofujumy_Xv1LqGkV_V2MLjfvwgKjLKKWrWtwFXALjr4FNSGBof7jiPJOID7KJD-qp-v82yDseaZotueN-Zk_gccSN7Gi46Kdwz7fP4NEOm-Bz-HGyvKQWIGx-u2wZglE2j_0f2LH-7alakp0PWd-rfnimN1drdjIk2xFdM-sCO9Pthqod-vJFFgnNX8DF7Nv862kaWyekFhHXOq18lmkrciNrm5uqrIKtbeUsqrSWLhifZ6JwHOG197U2CBuokTrabe0RgAQvXsJe27X-NbBc2MJZ4W0oNNHTN9JIZ13gWeO8qXkCn7eHqWzkFaf2FlcK4ws6dzWeewIfxqnXA5nGvyYd042ME4j_uv_Q3VyqqE6qNELwQpc8c0H6RmDQRkALg2HHC1dWCXyi-1SkpbgYq2OxAW6J-K7UUVXnJYLjUiZwsL1yFdV3pe6ELYH34zAqHv1N0a3vNsOcGvFmgSfwapCQcc2IanMihkugmsjOZFPTkXb5syf3RqMvESXu_39Zb-AhpzoM6kwjDmBvfbPxbxEdrc27XgX-AG_xD9I
  priority: 102
  providerName: ProQuest
Title Digital Twin for Training Bayesian Networks for Fault Diagnostics of Manufacturing Systems
URI https://www.ncbi.nlm.nih.gov/pubmed/35214332
https://www.proquest.com/docview/2633184569
https://www.proquest.com/docview/2633855152
https://pubmed.ncbi.nlm.nih.gov/PMC8874643
https://doaj.org/article/6b3325a620df4e939669937402d25d67
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Li9RAEC7WXZDdg_g2ug6tCHqJJt2d10Fkx91xEWYQmYHBS-j0Yx0YMus80P33VuXFBNdLDukiJF1VXV91ur4CeCMyo1PhqGJZZ76kGl2lo9B3QhRFRiHe0T7keBJfzuTXeTQ_gLbHZjOBm1tTO-onNVsv3__5dfMJHf4jZZyYsn_YcB5IjPuYuR9hQErIP8ey-5nABaZhNalQX_wY7iL8CInBqxeVKvL-f5fovRjVPz-5F5BG9-FegyTZWa36B3Bgy4dwsscv-Ah-nC-uqCkIm_5elAzhKZs2HSHYUN1Yqp9kk_oc-KYaHqndcsvO6-N3RODMVo6NVbmj-oeqoJE1FOePYTa6mH6-9JtmCr5GDLb1ExsESouwkKkOiyROnE51YjQ6uZLGFTYMRGQ4Am5rU1UgkKDW6riSK4uQxFnxBA7LVWmfAQuFjowWVrtIEWF9JgtptHE8yIwtUu7Bu3Yyc90wjVPDi2WOGQepIO9U4MHrTvS6pte4TWhIGukEiBG7urFaX-WNg-VxgWqMVMwD46TNBKZxBL0wPTY8MnHiwVvSZ06WhC-jVVN-gJ9EDFj5WZKGMcLlWHpw2qo8b-0x57HA1Q_RZubBq24YXZH-r6jSrna1TIoINMIZeFpbSPfOraF5kPRsp_dR_ZFy8bOi-8YwIBE3Pv_vM1_AMaeiDGpTI07hcLve2ZcIlbbFAO4k8wSv6ejLAI6GF5Nv3wfVtsOgcpG_8s8VPg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCwcWqvevnAaGWEKW0ySmVIi7bfblEquzSJKr6p_iNzPjVRCBuvWZX0Xp3Zr5v7J1vAN6L3JpMFFSxbHI_ohpdZeLQL4TQOieIL-g95HiSjI6j77N4tgW_u1oYulbZxcQ6UNvK0DvyXZ4IND-E-_zL-S-fukbR19WuhUZjFofu6hJTtsXngwGe7wfOh9-mX0d-21XAN0hGln7qgkAZEeooM6FOk7QwmUmtQWtXkS20CwMRW47M07lMaURU6jGOIU05xObCCfzfW3AbgTcgj0pn1wmewHyvUS8SIg92F5wHEfKRYAPz6tYAfwPAGgJu3s5cg7vhA7jf8lS21xjWQ9hy5SO4t6Ze-Bh-DOan1HKETS_nJUPyy6Ztvwm2r64cVWeySXPLfFEPD9XqbMkGzeU-kodmVcHGqlxRdUVdLslaAfUncHwjm_oUtsuqdM-BhcLE1ghniliRHH4e6cgaW_Agt05n3INP3WZK0-qYUzuNM4n5DO277Pfdg3f91PNGvONfk_bpRPoJpLdd_1BdnMrWfWWiheCxSnhgi8jlApNEInaYfFse2yT14COdp6SogIsxqi1uwEcifS25l2ZhgmQ8iTzY6Y5ctuFiIa-N24O3_TA6On29UaWrVs2cDPltjDvwrLGQfs3IokMSovMg3bCdjYfaHCnnP2sxcQSZCFnpi_8v6w3cGU3HR_LoYHL4Eu5yqgGhrjhiB7aXFyv3CpnZUr-u3YHByU373x-IZE1R
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN64FFgQCC5W7F0_Dwi1hKilNOKQShGX7XofJVJlt02iqn-NX8eMX00E4tZrdhWtZ-fxjT3zDcA7kRudCUcdyzr3I-rRVToOfSdEUeQU4h29hzwcJ3tH0bdpPN2A310vDJVVdj6xdtSm0vSOfMATgeqH4T4fuLYs4sdw9Pns3KcJUvSltRun0ajIgb26xPRt_ml_iHf9nvPR18mXPb-dMOBrBCYLP7VBoLQIiyjTYZEmqdOZTo1GzVeRcYUNAxEbjijU2kwVGF1p3ji6N2UxTjsr8H9vwe1UxCHZWDq9TvYE5n4Nk5EQeTCYcx5EiE2CtfhXjwn4OxisRMP1Ss2V0Dd6APdbzMp2GiV7CBu2fAT3VpgMH8PP4eyExo-wyeWsZAiE2aSdPcF21ZWlTk02birO5_XySC1PF2zYFPoRVTSrHDtU5ZI6LerWSdaSqT-BoxsR6lPYLKvSPgcWCh0bLax2sSJq_DwqIqON40FubJFxDz52wpS65TSn0RqnEnMbkrvs5e7B237rWUPk8a9Nu3Qj_Qbi3q5_qC5OZGvKMimE4LFKeGBcZHOBCSOBPEzEDY9Nknrwge5TkofAw2jVNjrgIxHXltxJszBBYJ5EHmx3Vy5b1zGX14ruwZt-GY2evuSo0lbLZk-GWDdGCTxrNKQ_MyLqkEjpPEjXdGftodZXytmvmlgcA06ECHXr_8d6DXfQ8uT3_fHBC7jLqR2EBuSIbdhcXCztSwRpi-JVbQ0Mjm_a_P4A5PlRhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+Twin+for+Training+Bayesian+Networks+for+Fault+Diagnostics+of+Manufacturing+Systems&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ademujimi%2C+Toyosi&rft.au=Prabhu%2C+Vittaldas&rft.date=2022-02-13&rft.eissn=1424-8220&rft.volume=22&rft.issue=4&rft_id=info:doi/10.3390%2Fs22041430&rft_id=info%3Apmid%2F35214332&rft.externalDocID=35214332
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon