Digital Twin for Training Bayesian Networks for Fault Diagnostics of Manufacturing Systems
Smart manufacturing systems are being advocated to leverage technological advances that enable them to be more resilient to faults through rapid diagnosis for performance assurance. In this paper, we propose a co-simulation approach for engineering digital twins (DTs) that are used to train Bayesian...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 4; p. 1430 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
13.02.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Smart manufacturing systems are being advocated to leverage technological advances that enable them to be more resilient to faults through rapid diagnosis for performance assurance. In this paper, we propose a co-simulation approach for engineering digital twins (DTs) that are used to train Bayesian Networks (BNs) for fault diagnostics at equipment and factory levels. Specifically, the co-simulation model is engineered by using cyber–physical system (CPS) consisting of networked sensors, high-fidelity simulation model of each equipment, and a detailed discrete-event simulation (DES) model of the factory. The proposed DT approach enables injection of faults in the virtual system, thereby alleviating the need for expensive factory-floor experimentation. It should be emphasized that this approach of injecting faults eliminates the need for obtaining balanced data that include faulty and normal factory operations. We propose a Structural Intervention Algorithm (SIA) in this paper to first detect all possible directed edges and then distinguish between a parent and an ancestor node of the BN. We engineered a DT research test-bed in our laboratory consisting of four industrial robots configured into an assembly cell where each robot has an industrial Internet-of-Things sensor that can monitor vibrations in two-axes. A detailed equipment-level simulator of these robots was integrated with a detailed DES model of the robotic assembly cell. The resulting DT was used to carry out interventions to learn a BN model structure for fault diagnostics. Laboratory experiments validated the efficacy of the proposed approach by accurately learning the BN structure, and in the experiments, the accuracy obtained by the proposed approach (measured using Structural Hamming Distance) was found to be significantly better than traditional methods. Furthermore, the BN structure learned was found to be robust to variations in parameters, such as mean time to failure (MTTF). |
---|---|
AbstractList | Smart manufacturing systems are being advocated to leverage technological advances that enable them to be more resilient to faults through rapid diagnosis for performance assurance. In this paper, we propose a co-simulation approach for engineering digital twins (DTs) that are used to train Bayesian Networks (BNs) for fault diagnostics at equipment and factory levels. Specifically, the co-simulation model is engineered by using cyber–physical system (CPS) consisting of networked sensors, high-fidelity simulation model of each equipment, and a detailed discrete-event simulation (DES) model of the factory. The proposed DT approach enables injection of faults in the virtual system, thereby alleviating the need for expensive factory-floor experimentation. It should be emphasized that this approach of injecting faults eliminates the need for obtaining balanced data that include faulty and normal factory operations. We propose a Structural Intervention Algorithm (SIA) in this paper to first detect all possible directed edges and then distinguish between a parent and an ancestor node of the BN. We engineered a DT research test-bed in our laboratory consisting of four industrial robots configured into an assembly cell where each robot has an industrial Internet-of-Things sensor that can monitor vibrations in two-axes. A detailed equipment-level simulator of these robots was integrated with a detailed DES model of the robotic assembly cell. The resulting DT was used to carry out interventions to learn a BN model structure for fault diagnostics. Laboratory experiments validated the efficacy of the proposed approach by accurately learning the BN structure, and in the experiments, the accuracy obtained by the proposed approach (measured using Structural Hamming Distance) was found to be significantly better than traditional methods. Furthermore, the BN structure learned was found to be robust to variations in parameters, such as mean time to failure (MTTF). Smart manufacturing systems are being advocated to leverage technological advances that enable them to be more resilient to faults through rapid diagnosis for performance assurance. In this paper, we propose a co-simulation approach for engineering digital twins (DTs) that are used to train Bayesian Networks (BNs) for fault diagnostics at equipment and factory levels. Specifically, the co-simulation model is engineered by using cyber-physical system (CPS) consisting of networked sensors, high-fidelity simulation model of each equipment, and a detailed discrete-event simulation (DES) model of the factory. The proposed DT approach enables injection of faults in the virtual system, thereby alleviating the need for expensive factory-floor experimentation. It should be emphasized that this approach of injecting faults eliminates the need for obtaining balanced data that include faulty and normal factory operations. We propose a Structural Intervention Algorithm (SIA) in this paper to first detect all possible directed edges and then distinguish between a parent and an ancestor node of the BN. We engineered a DT research test-bed in our laboratory consisting of four industrial robots configured into an assembly cell where each robot has an industrial Internet-of-Things sensor that can monitor vibrations in two-axes. A detailed equipment-level simulator of these robots was integrated with a detailed DES model of the robotic assembly cell. The resulting DT was used to carry out interventions to learn a BN model structure for fault diagnostics. Laboratory experiments validated the efficacy of the proposed approach by accurately learning the BN structure, and in the experiments, the accuracy obtained by the proposed approach (measured using Structural Hamming Distance) was found to be significantly better than traditional methods. Furthermore, the BN structure learned was found to be robust to variations in parameters, such as mean time to failure (MTTF).Smart manufacturing systems are being advocated to leverage technological advances that enable them to be more resilient to faults through rapid diagnosis for performance assurance. In this paper, we propose a co-simulation approach for engineering digital twins (DTs) that are used to train Bayesian Networks (BNs) for fault diagnostics at equipment and factory levels. Specifically, the co-simulation model is engineered by using cyber-physical system (CPS) consisting of networked sensors, high-fidelity simulation model of each equipment, and a detailed discrete-event simulation (DES) model of the factory. The proposed DT approach enables injection of faults in the virtual system, thereby alleviating the need for expensive factory-floor experimentation. It should be emphasized that this approach of injecting faults eliminates the need for obtaining balanced data that include faulty and normal factory operations. We propose a Structural Intervention Algorithm (SIA) in this paper to first detect all possible directed edges and then distinguish between a parent and an ancestor node of the BN. We engineered a DT research test-bed in our laboratory consisting of four industrial robots configured into an assembly cell where each robot has an industrial Internet-of-Things sensor that can monitor vibrations in two-axes. A detailed equipment-level simulator of these robots was integrated with a detailed DES model of the robotic assembly cell. The resulting DT was used to carry out interventions to learn a BN model structure for fault diagnostics. Laboratory experiments validated the efficacy of the proposed approach by accurately learning the BN structure, and in the experiments, the accuracy obtained by the proposed approach (measured using Structural Hamming Distance) was found to be significantly better than traditional methods. Furthermore, the BN structure learned was found to be robust to variations in parameters, such as mean time to failure (MTTF). |
Audience | Academic |
Author | Ademujimi, Toyosi Prabhu, Vittaldas |
AuthorAffiliation | Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, Pennsylvania State University, University Park, PA 16802, USA; tta5@psu.edu |
AuthorAffiliation_xml | – name: Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, Pennsylvania State University, University Park, PA 16802, USA; tta5@psu.edu |
Author_xml | – sequence: 1 givenname: Toyosi orcidid: 0000-0002-4051-3308 surname: Ademujimi fullname: Ademujimi, Toyosi – sequence: 2 givenname: Vittaldas surname: Prabhu fullname: Prabhu, Vittaldas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35214332$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhi1URNuFA38AReICh239ESfOBam0FCoVOLBcuFgTZxy8ZO1iJ1T77_HullVbIR9szTzzer6OyYEPHgl5yeiJEA09TZzTkpWCPiFHrOTlXGXDwb33ITlOaUkpF0KoZ-RQSJ5xwY_IjwvXuxGGYnHrfGFDLBYRnHe-L97DGpMDX3zB8TbEX2nrvoRpGIsLB70PaXQmFcEWn8FPFsw4xU3gt3UacZWek6cWhoQv7u4Z-X75YXH-aX799ePV-dn13EiqxnmNlIIRrC2VYW1d1dYoU3eGCgplZ1tkVMiOK8URFbS1pFRwii0DFFJaFDNytdPtAiz1TXQriGsdwOmtIcReQ8yZDqirNhctoeK0syU2oqmqphF1SXnHZVfVWevdTutmalfYGfRjhOGB6EOPdz91H_5opeqyyi2dkTd3AjH8njCNeuWSwWEAj2FKmld5AlIyyTP6-hG6DFP0uVVbiqlSVk2mTnZUD7kA523I_5p8Olw5k_fAumw_qxWraNPkFGbk1f0S9rn_m3kG3u4AE0NKEe0eYVRv9knv9ymzp49Yk7dldGFTvRv-E_EXSp_Kig |
CitedBy_id | crossref_primary_10_1049_cim2_12066 crossref_primary_10_1016_j_ress_2024_110760 crossref_primary_10_3390_s25061716 crossref_primary_10_3390_app12178862 crossref_primary_10_3390_batteries9100521 crossref_primary_10_3389_fmtec_2024_1320166 crossref_primary_10_1016_j_aei_2024_102963 crossref_primary_10_1016_j_jai_2023_07_002 crossref_primary_10_1080_0951192X_2024_2314787 crossref_primary_10_1007_s44196_023_00241_6 crossref_primary_10_3390_su151813369 crossref_primary_10_3390_su16020513 crossref_primary_10_1142_S1793962323410313 crossref_primary_10_1002_sd_3270 crossref_primary_10_1007_s00607_024_01399_3 crossref_primary_10_1016_j_simpat_2024_103045 crossref_primary_10_1109_JRFID_2024_3387996 crossref_primary_10_3390_s23167087 crossref_primary_10_3390_smartcities7050105 crossref_primary_10_58224_2618_7183_2024_7_4_7 |
Cites_doi | 10.7551/mitpress/1754.001.0001 10.3390/s21227633 10.1016/j.jmsy.2021.05.015 10.2514/1.J055201 10.1109/BigData.2017.8258120 10.1016/j.compind.2020.103316 10.1007/s10845-019-01516-6 10.1016/j.ijar.2013.11.007 10.1017/CBO9780511803161 10.1016/j.dss.2021.113524 10.1504/IJPD.2010.036389 10.1016/j.ifacol.2018.08.474 10.1016/j.procir.2019.03.136 10.1016/j.procir.2019.02.087 10.1109/TASE.2017.2747130 10.1016/j.knosys.2010.12.010 10.1016/j.procir.2021.01.156 10.1016/j.mfglet.2014.12.001 10.1007/s10618-010-0178-6 10.18637/jss.v035.i03 10.1016/j.cirp.2021.04.043 10.3233/AO-190208 10.1080/0740817X.2016.1241455 10.1109/CVPR.2017.632 10.1080/00207543.2017.1299947 10.1016/j.rcim.2021.102173 10.1109/ACCESS.2017.2657006 10.1177/0142331219826665 10.1016/j.procir.2019.02.125 10.1016/j.jmsy.2020.07.005 10.1016/j.procir.2019.03.072 10.1016/j.jmsy.2021.12.011 10.1080/01605682.2019.1678406 10.1115/MSEC2017-2937 10.36001/phmconf.2019.v11i1.836 10.1016/j.cirp.2018.04.055 10.1016/j.jlp.2016.11.016 10.1016/j.engappai.2016.12.024 10.1109/WSC.2017.8248105 10.1016/j.eswa.2010.08.083 10.1016/j.procir.2013.05.005 10.1016/S0007-8506(16)30007-5 10.1007/978-3-319-66923-6_48 10.1080/13528160412331326487 10.1016/j.ijmachtools.2004.06.018 10.1016/0278-6125(94)90025-6 10.1109/WSC.2018.8632330 10.1007/s10845-021-01740-z 10.1109/WSC.2017.8248023 10.1016/j.procir.2019.03.141 10.1007/s00170-018-1617-6 10.1109/87.388129 10.1109/WSC40007.2019.9004893 10.1186/s40323-020-00147-4 10.1016/j.mfglet.2021.01.005 10.3390/buildings11040151 10.1016/j.artmed.2011.08.004 10.1023/B:APIN.0000011143.95085.74 10.1109/BigData.2017.8258117 10.1080/07408170600899532 10.1016/j.eswa.2019.112830 10.1016/j.ijar.2013.03.009 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22041430 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_6b3325a620df4e939669937402d25d67 PMC8874643 A781609964 35214332 10_3390_s22041430 |
Genre | Journal Article |
GeographicLocations | New York |
GeographicLocations_xml | – name: New York |
GrantInformation_xml | – fundername: NIST DOC grantid: 70NANB14H255 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c508t-7e00ac31b48c1b767fc8c7dc030a4dfbe1035d2882ee8ab7500320eb1ae355fe3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:32:46 EDT 2025 Thu Aug 21 18:08:00 EDT 2025 Fri Jul 11 12:43:34 EDT 2025 Fri Jul 25 20:06:56 EDT 2025 Tue Jun 10 21:12:58 EDT 2025 Wed Feb 19 02:26:43 EST 2025 Thu Apr 24 23:10:43 EDT 2025 Tue Jul 01 02:41:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | fault diagnostics digital twin smart manufacturing Bayesian network small data set structure learning |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-7e00ac31b48c1b767fc8c7dc030a4dfbe1035d2882ee8ab7500320eb1ae355fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4051-3308 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22041430 |
PMID | 35214332 |
PQID | 2633184569 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6b3325a620df4e939669937402d25d67 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8874643 proquest_miscellaneous_2633855152 proquest_journals_2633184569 gale_infotracacademiconefile_A781609964 pubmed_primary_35214332 crossref_primary_10_3390_s22041430 crossref_citationtrail_10_3390_s22041430 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220213 |
PublicationDateYYYYMMDD | 2022-02-13 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220213 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhuang (ref_53) 2018; 96 Jain (ref_17) 2019; Volume 2019 Savolainen (ref_55) 2021; 32 Zhang (ref_52) 2019; 83 Yu (ref_56) 2021; 58 ref_14 ref_13 ref_11 Chen (ref_60) 2017; 59 Wang (ref_67) 2021; 60 ref_16 Cheng (ref_38) 2019; 41 Nguyen (ref_2) 2016; 230 Smith (ref_9) 2017; 45 ref_59 Magnanini (ref_21) 2021; 70 Chickering (ref_26) 2004; 5 Khan (ref_8) 2019; Volume 1 Tolio (ref_18) 2013; 7 Hauser (ref_71) 2014; 55 Xiao (ref_36) 2018; 15 Duffie (ref_76) 1994; 13 MacAllister (ref_32) 2020; 139 ref_25 ref_69 Li (ref_58) 2017; 55 ref_68 ref_23 ref_66 ref_64 Lechler (ref_62) 2020; 96 ref_63 Yiakopoulos (ref_72) 2011; 38 ref_29 Masegosa (ref_35) 2013; 54 Karray (ref_22) 2019; 14 Scutari (ref_28) 2010; 35 Lee (ref_43) 2015; 3 Lee (ref_10) 2017; 55 ref_70 Hyttinen (ref_19) 2013; 14 Alam (ref_57) 2017; 5 Dey (ref_41) 2005; 45 Aivaliotis (ref_44) 2019; 81 Koomsap (ref_74) 2005; 43 De (ref_37) 2010; 12 ref_33 ref_31 ref_30 Tao (ref_49) 2018; 67 Zhang (ref_54) 2022; 62 Duffie (ref_77) 1995; 3 Kegg (ref_3) 1984; 33 ref_73 VanDerHorn (ref_20) 2021; 145 Kritzinger (ref_46) 2018; 51 Errandonea (ref_47) 2020; 123 Greasley (ref_65) 2019; 72 Lee (ref_42) 2021; 27 Biesinger (ref_48) 2019; 79 Redelinghuys (ref_50) 2020; 31 Hong (ref_75) 2004; 20 Wright (ref_45) 2020; 7 Li (ref_12) 2017; 49 Nicholson (ref_34) 2011; 53 Modoni (ref_15) 2019; 79 ref_40 ref_1 Panicker (ref_39) 2019; 81 Dai (ref_51) 2021; 72 Li (ref_24) 2007; 39 Yang (ref_61) 2011; 24 ref_5 Mateo (ref_27) 2011; 22 ref_4 ref_7 ref_6 |
References_xml | – volume: 14 start-page: 3041 year: 2013 ident: ref_19 article-title: Experiment Selection for Causal Discovery publication-title: J. Mach. Learn. Res. – ident: ref_29 doi: 10.7551/mitpress/1754.001.0001 – ident: ref_40 doi: 10.3390/s21227633 – ident: ref_5 – volume: 5 start-page: 1287 year: 2004 ident: ref_26 article-title: Large-Sample Learning of Bayesian Networks is NP-Hard publication-title: J. Mach. Learn. Res. – volume: 60 start-page: 350 year: 2021 ident: ref_67 article-title: Digital twin enhanced fault prediction for the autoclave with insufficient data publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.05.015 – volume: 55 start-page: 930 year: 2017 ident: ref_58 article-title: Dynamic Bayesian Network for Aircraft Wing Health Monitoring Digital Twin publication-title: AIAA J. doi: 10.2514/1.J055201 – ident: ref_68 doi: 10.1109/BigData.2017.8258120 – volume: 123 start-page: 103316 year: 2020 ident: ref_47 article-title: Digital Twin for maintenance: A literature review publication-title: Comput. Ind. doi: 10.1016/j.compind.2020.103316 – volume: 31 start-page: 1383 year: 2020 ident: ref_50 article-title: A six-layer architecture for the digital twin: A manufacturing case study implementation publication-title: J. Intell. Manuf. doi: 10.1007/s10845-019-01516-6 – volume: 55 start-page: 926 year: 2014 ident: ref_71 article-title: Two optimal strategies for active learning of causal models from interventional data publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2013.11.007 – ident: ref_25 doi: 10.1017/CBO9780511803161 – volume: 145 start-page: 113524 year: 2021 ident: ref_20 article-title: Digital Twin: Generalization, characterization and implementation publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2021.113524 – volume: 12 start-page: 235 year: 2010 ident: ref_37 article-title: Product failure root cause analysis during warranty analysis for integrated product design and quality improvement for early results in downturn economy publication-title: Int. J. Prod. Dev. doi: 10.1504/IJPD.2010.036389 – volume: 51 start-page: 1016 year: 2018 ident: ref_46 article-title: Digital Twin in manufacturing: A categorical literature review and classification publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.08.474 – volume: 81 start-page: 500 year: 2019 ident: ref_39 article-title: Tracing the Interrelationship between Key Performance Indicators and Production Cost using Bayesian Networks publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.03.136 – volume: 79 start-page: 355 year: 2019 ident: ref_48 article-title: A digital twin for production planning based on cyber-physical systems: A Case Study for a Cyber-Physical System-Based Creation of a Digital Twin publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.02.087 – ident: ref_1 – volume: Volume 1 start-page: 1 year: 2019 ident: ref_8 article-title: Development of novel hybrid manufacturing technique for manufacturing support structures free complex parts publication-title: Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference – volume: 15 start-page: 1163 year: 2018 ident: ref_36 article-title: Optimal Expert Knowledge Elicitation for Bayesian Network Structure Identification publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2017.2747130 – ident: ref_23 – volume: 24 start-page: 740 year: 2011 ident: ref_61 article-title: A novel virtual sample generation method based on Gaussian distribution publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2010.12.010 – volume: 96 start-page: 230 year: 2020 ident: ref_62 article-title: Data Farming in Production Systems—A Review on Potentials, Challenges and Exemplary Applications publication-title: Procedia CIRP doi: 10.1016/j.procir.2021.01.156 – volume: 3 start-page: 18 year: 2015 ident: ref_43 article-title: A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems publication-title: Manuf. Lett. doi: 10.1016/j.mfglet.2014.12.001 – volume: 22 start-page: 106 year: 2011 ident: ref_27 article-title: Learning Bayesian networks by hill climbing: Efficient methods based on progressive restriction of the neighborhood publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-010-0178-6 – volume: 35 start-page: 1 year: 2010 ident: ref_28 article-title: Learning Bayesian Networks with the bnlearn R Package publication-title: J. Stat. Softw. doi: 10.18637/jss.v035.i03 – ident: ref_31 – volume: 70 start-page: 353 year: 2021 ident: ref_21 article-title: A model-based Digital Twin to support responsive manufacturing systems publication-title: CIRP Ann. doi: 10.1016/j.cirp.2021.04.043 – volume: 14 start-page: 155 year: 2019 ident: ref_22 article-title: ROMAIN: Towards a BFO compliant reference ontology for industrial maintenance publication-title: Appl. Ontol. doi: 10.3233/AO-190208 – volume: 49 start-page: 332 year: 2017 ident: ref_12 article-title: Causation-based process monitoring and diagnosis for multivariate categorical processes publication-title: IISE Trans. doi: 10.1080/0740817X.2016.1241455 – ident: ref_59 doi: 10.1109/CVPR.2017.632 – volume: 55 start-page: 4785 year: 2017 ident: ref_10 article-title: Predictive maintenance of complex system with multi-level reliability structure publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2017.1299947 – volume: 72 start-page: 102173 year: 2021 ident: ref_51 article-title: Ontology-based information modeling method for digital twin creation of as-fabricated machining parts publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2021.102173 – volume: 5 start-page: 2050 year: 2017 ident: ref_57 article-title: C2PS: A Digital Twin Architecture Reference Model for the Cloud-Based Cyber-Physical Systems publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2657006 – volume: 41 start-page: 3406 year: 2019 ident: ref_38 article-title: An Imitation medical diagnosis method of hydro-turbine generating unit based on Bayesian network publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331219826665 – volume: 79 start-page: 472 year: 2019 ident: ref_15 article-title: Synchronizing physical and digital factory: Benefits and technical challenges publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.02.125 – volume: 58 start-page: 293 year: 2021 ident: ref_56 article-title: A Digital Twin approach based on nonparametric Bayesian network for complex system health monitoring publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.07.005 – volume: 81 start-page: 417 year: 2019 ident: ref_44 article-title: Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.03.072 – volume: 62 start-page: 417 year: 2022 ident: ref_54 article-title: A multi-scale modeling method for digital twin shop-floor publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.12.011 – volume: 72 start-page: 247 year: 2019 ident: ref_65 article-title: Enhancing discrete-event simulation with big data analytics: A review publication-title: J. Oper. Res. Soc. doi: 10.1080/01605682.2019.1678406 – ident: ref_13 – ident: ref_4 doi: 10.1115/MSEC2017-2937 – volume: 230 start-page: 178 year: 2016 ident: ref_2 article-title: Fault diagnosis for the complex manufacturing system publication-title: Proc. Inst. Mech. Eng. Part O J. Risk Reliab. – ident: ref_69 doi: 10.36001/phmconf.2019.v11i1.836 – ident: ref_7 – volume: 67 start-page: 169 year: 2018 ident: ref_49 article-title: Digital twin driven prognostics and health management for complex equipment publication-title: CIRP Ann. doi: 10.1016/j.cirp.2018.04.055 – ident: ref_30 – volume: 45 start-page: 88 year: 2017 ident: ref_9 article-title: Understanding industrial safety: Comparing Fault tree, Bayesian network, and FRAM approaches publication-title: J. Loss Prev. Process Ind. doi: 10.1016/j.jlp.2016.11.016 – volume: 59 start-page: 236 year: 2017 ident: ref_60 article-title: A PSO based virtual sample generation method for small sample sets: Applications to regression datasets publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.12.024 – ident: ref_64 doi: 10.1109/WSC.2017.8248105 – volume: 38 start-page: 2888 year: 2011 ident: ref_72 article-title: Rolling element bearing fault detection in industrial environments based on a K-means clustering approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.08.083 – volume: 7 start-page: 25 year: 2013 ident: ref_18 article-title: Virtual Factory: An Integrated Framework for Manufacturing Systems Design and Analysis publication-title: Procedia CIRP doi: 10.1016/j.procir.2013.05.005 – volume: 33 start-page: 469 year: 1984 ident: ref_3 article-title: One-Line Machine and Process Diagnostics publication-title: CIRP Ann. doi: 10.1016/S0007-8506(16)30007-5 – ident: ref_11 doi: 10.1007/978-3-319-66923-6_48 – volume: 43 start-page: 1625 year: 2005 ident: ref_74 article-title: Integrated process control and condition-based maintenance scheduler for distributed manufacturing control systems publication-title: Int. J. Prod. Res. doi: 10.1080/13528160412331326487 – volume: 45 start-page: 75 year: 2005 ident: ref_41 article-title: A Bayesian network approach to root cause diagnosis of process variations publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2004.06.018 – volume: 13 start-page: 94 year: 1994 ident: ref_76 article-title: Real-time distributed scheduling of heterarchical manufacturing systems publication-title: J. Manuf. Syst. doi: 10.1016/0278-6125(94)90025-6 – ident: ref_14 – ident: ref_16 doi: 10.1109/WSC.2018.8632330 – volume: 32 start-page: 1953 year: 2021 ident: ref_55 article-title: Maintenance optimization for a multi-unit system with digital twin simulation: Example from the mining industry publication-title: J. Intell. Manuf. doi: 10.1007/s10845-021-01740-z – ident: ref_66 doi: 10.1109/WSC.2017.8248023 – volume: 83 start-page: 118 year: 2019 ident: ref_52 article-title: A reconfigurable modeling approach for digital twin-based manufacturing system publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.03.141 – volume: 96 start-page: 1149 year: 2018 ident: ref_53 article-title: Digital twin-based smart production management and control framework for the complex product assembly shop-floor publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-1617-6 – volume: 3 start-page: 212 year: 1995 ident: ref_77 article-title: Distributed system-level control of vehicles in a high-performance material transfer system publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/87.388129 – ident: ref_6 – volume: Volume 2019 start-page: 2037 year: 2019 ident: ref_17 article-title: Infrastructure for Model Based Analytics for Manufacturing publication-title: Proceedings of the 2019 Winter Simulation Conference (WSC) doi: 10.1109/WSC40007.2019.9004893 – volume: 7 start-page: 13 year: 2020 ident: ref_45 article-title: How to tell the difference between a model and a digital twin publication-title: Adv. Model. Simul. Eng. Sci. doi: 10.1186/s40323-020-00147-4 – volume: 27 start-page: 87 year: 2021 ident: ref_42 article-title: A unified digital twin framework for shop floor design in industry 4.0 manufacturing systems publication-title: Manuf. Lett. doi: 10.1016/j.mfglet.2021.01.005 – ident: ref_33 – ident: ref_73 doi: 10.3390/buildings11040151 – volume: 53 start-page: 181 year: 2011 ident: ref_34 article-title: Incorporating expert knowledge when learning Bayesian network structure: A medical case study publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2011.08.004 – volume: 20 start-page: 71 year: 2004 ident: ref_75 article-title: Distributed Reinforcement Learning Control for Batch Sequencing and Sizing in Just-In-Time Manufacturing Systems publication-title: Appl. Intell. doi: 10.1023/B:APIN.0000011143.95085.74 – ident: ref_63 doi: 10.1109/BigData.2017.8258117 – volume: 39 start-page: 681 year: 2007 ident: ref_24 article-title: Knowledge discovery from observational data for process control using causal Bayesian networks publication-title: IIE Trans. doi: 10.1080/07408170600899532 – volume: 139 start-page: 112830 year: 2020 ident: ref_32 article-title: Using high-fidelity meta-models to improve performance of small dataset trained Bayesian Networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112830 – ident: ref_70 – volume: 54 start-page: 1168 year: 2013 ident: ref_35 article-title: An interactive approach for Bayesian network learning using domain/expert knowledge publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2013.03.009 |
SSID | ssj0023338 |
Score | 2.471598 |
Snippet | Smart manufacturing systems are being advocated to leverage technological advances that enable them to be more resilient to faults through rapid diagnosis for... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1430 |
SubjectTerms | Algorithms Bayesian network Computational linguistics Design of experiments digital twin Fault diagnosis fault diagnostics Heuristic Industrial Internet of Things Innovations Language processing Learning Manufacturing Natural language interfaces OEM Ontology Random variables Robots Sensors Simulation small data set smart manufacturing structure learning Subject specialists Twins |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5CTu0h9F23aVFDoL2Y2JL8OiZNlxBIThsIvQg924XgDdldSv99ZyytWdNAL71aOsijeXxjz3wDcCw6Z1sRqGPZdrmkHl1tqzIPQhjTUYgP9B3y6rq-uJGXt9XtzqgvqgmL9MBRcCe1EYJXuuaFC9J3AuE5hVRMexyvXD30kWPM2yZTKdUSmHlFHiGBSf3JivNCIjIoJtFnIOn_2xXvxKJpneRO4Jk9g4OEGNlpPOlz2PP9C3i6wyP4Er6fL37Q8A82_7XoGcJQNk-TH9iZ_u2pT5Jdx3rv1bA805u7NTuPZXZE1MyWgV3pfkN9DkPjIktU5q_gZvZt_vUiT0MTcotYa503vii0FaWRrS1NUzfBtrZxFo1ZSxeMLwtROY7A2vtWGwQMNEIdPbb2CD2CF69hv1_2_i2wUtjKWeFtqDQR03fSSGddQHk7b1qewZetMJVNjOI02OJOYWZBclej3DM4GrfeRxqNxzad0Y2MG4j5eniA-qCSPqh_6UMGn-k-FdknHsbq1GaAr0RMV-q0acsaYXEtMzjcXrlKhrtSvBbo5RBVdhl8GpfR5Og_iu79chP3tIg0K5TAm6gh45kRz5ZECZdBM9GdyUtNV_rFz4HWG929RHz47n9I4T084dSnQZNrxCHsrx82_gOip7X5OBjKHxgIFpk priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB8SalIIOQ4BI1sZ3XCbWUVYXUnrbSiovlZ1mpSkp3VxX_npnEm24E4hr74Mc8vnFmvgH4KBpnaxGoYtk2qaQaXW2LPA1CGNOQiw_0Dnl2Xp5eyO-LYhEf3FYxrXJrE3tD7TpLb-SHvBQofujumy_Xv1LqGkV_V2MLjfvwgKjLKKWrWtwFXALjr4FNSGBof7jiPJOID7KJD-qp-v82yDseaZotueN-Zk_gccSN7Gi46Kdwz7fP4NEOm-Bz-HGyvKQWIGx-u2wZglE2j_0f2LH-7alakp0PWd-rfnimN1drdjIk2xFdM-sCO9Pthqod-vJFFgnNX8DF7Nv862kaWyekFhHXOq18lmkrciNrm5uqrIKtbeUsqrSWLhifZ6JwHOG197U2CBuokTrabe0RgAQvXsJe27X-NbBc2MJZ4W0oNNHTN9JIZ13gWeO8qXkCn7eHqWzkFaf2FlcK4ws6dzWeewIfxqnXA5nGvyYd042ME4j_uv_Q3VyqqE6qNELwQpc8c0H6RmDQRkALg2HHC1dWCXyi-1SkpbgYq2OxAW6J-K7UUVXnJYLjUiZwsL1yFdV3pe6ELYH34zAqHv1N0a3vNsOcGvFmgSfwapCQcc2IanMihkugmsjOZFPTkXb5syf3RqMvESXu_39Zb-AhpzoM6kwjDmBvfbPxbxEdrc27XgX-AG_xD9I priority: 102 providerName: ProQuest |
Title | Digital Twin for Training Bayesian Networks for Fault Diagnostics of Manufacturing Systems |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35214332 https://www.proquest.com/docview/2633184569 https://www.proquest.com/docview/2633855152 https://pubmed.ncbi.nlm.nih.gov/PMC8874643 https://doaj.org/article/6b3325a620df4e939669937402d25d67 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Li9RAEC7WXZDdg_g2ug6tCHqJJt2d10Fkx91xEWYQmYHBS-j0Yx0YMus80P33VuXFBNdLDukiJF1VXV91ur4CeCMyo1PhqGJZZ76kGl2lo9B3QhRFRiHe0T7keBJfzuTXeTQ_gLbHZjOBm1tTO-onNVsv3__5dfMJHf4jZZyYsn_YcB5IjPuYuR9hQErIP8ey-5nABaZhNalQX_wY7iL8CInBqxeVKvL-f5fovRjVPz-5F5BG9-FegyTZWa36B3Bgy4dwsscv-Ah-nC-uqCkIm_5elAzhKZs2HSHYUN1Yqp9kk_oc-KYaHqndcsvO6-N3RODMVo6NVbmj-oeqoJE1FOePYTa6mH6-9JtmCr5GDLb1ExsESouwkKkOiyROnE51YjQ6uZLGFTYMRGQ4Am5rU1UgkKDW6riSK4uQxFnxBA7LVWmfAQuFjowWVrtIEWF9JgtptHE8yIwtUu7Bu3Yyc90wjVPDi2WOGQepIO9U4MHrTvS6pte4TWhIGukEiBG7urFaX-WNg-VxgWqMVMwD46TNBKZxBL0wPTY8MnHiwVvSZ06WhC-jVVN-gJ9EDFj5WZKGMcLlWHpw2qo8b-0x57HA1Q_RZubBq24YXZH-r6jSrna1TIoINMIZeFpbSPfOraF5kPRsp_dR_ZFy8bOi-8YwIBE3Pv_vM1_AMaeiDGpTI07hcLve2ZcIlbbFAO4k8wSv6ejLAI6GF5Nv3wfVtsOgcpG_8s8VPg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiDeGAgsCwcWqvevnAaGWEKW0ySmVIi7bfblEquzSJKr6p_iNzPjVRCBuvWZX0Xp3Zr5v7J1vAN6L3JpMFFSxbHI_ohpdZeLQL4TQOieIL-g95HiSjI6j77N4tgW_u1oYulbZxcQ6UNvK0DvyXZ4IND-E-_zL-S-fukbR19WuhUZjFofu6hJTtsXngwGe7wfOh9-mX0d-21XAN0hGln7qgkAZEeooM6FOk7QwmUmtQWtXkS20CwMRW47M07lMaURU6jGOIU05xObCCfzfW3AbgTcgj0pn1wmewHyvUS8SIg92F5wHEfKRYAPz6tYAfwPAGgJu3s5cg7vhA7jf8lS21xjWQ9hy5SO4t6Ze-Bh-DOan1HKETS_nJUPyy6Ztvwm2r64cVWeySXPLfFEPD9XqbMkGzeU-kodmVcHGqlxRdUVdLslaAfUncHwjm_oUtsuqdM-BhcLE1ghniliRHH4e6cgaW_Agt05n3INP3WZK0-qYUzuNM4n5DO277Pfdg3f91PNGvONfk_bpRPoJpLdd_1BdnMrWfWWiheCxSnhgi8jlApNEInaYfFse2yT14COdp6SogIsxqi1uwEcifS25l2ZhgmQ8iTzY6Y5ctuFiIa-N24O3_TA6On29UaWrVs2cDPltjDvwrLGQfs3IokMSovMg3bCdjYfaHCnnP2sxcQSZCFnpi_8v6w3cGU3HR_LoYHL4Eu5yqgGhrjhiB7aXFyv3CpnZUr-u3YHByU373x-IZE1R |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IN64FFgQCC5W7F0_Dwi1hKilNOKQShGX7XofJVJlt02iqn-NX8eMX00E4tZrdhWtZ-fxjT3zDcA7kRudCUcdyzr3I-rRVToOfSdEUeQU4h29hzwcJ3tH0bdpPN2A310vDJVVdj6xdtSm0vSOfMATgeqH4T4fuLYs4sdw9Pns3KcJUvSltRun0ajIgb26xPRt_ml_iHf9nvPR18mXPb-dMOBrBCYLP7VBoLQIiyjTYZEmqdOZTo1GzVeRcYUNAxEbjijU2kwVGF1p3ji6N2UxTjsr8H9vwe1UxCHZWDq9TvYE5n4Nk5EQeTCYcx5EiE2CtfhXjwn4OxisRMP1Ss2V0Dd6APdbzMp2GiV7CBu2fAT3VpgMH8PP4eyExo-wyeWsZAiE2aSdPcF21ZWlTk02birO5_XySC1PF2zYFPoRVTSrHDtU5ZI6LerWSdaSqT-BoxsR6lPYLKvSPgcWCh0bLax2sSJq_DwqIqON40FubJFxDz52wpS65TSn0RqnEnMbkrvs5e7B237rWUPk8a9Nu3Qj_Qbi3q5_qC5OZGvKMimE4LFKeGBcZHOBCSOBPEzEDY9Nknrwge5TkofAw2jVNjrgIxHXltxJszBBYJ5EHmx3Vy5b1zGX14ruwZt-GY2evuSo0lbLZk-GWDdGCTxrNKQ_MyLqkEjpPEjXdGftodZXytmvmlgcA06ECHXr_8d6DXfQ8uT3_fHBC7jLqR2EBuSIbdhcXCztSwRpi-JVbQ0Mjm_a_P4A5PlRhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+Twin+for+Training+Bayesian+Networks+for+Fault+Diagnostics+of+Manufacturing+Systems&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ademujimi%2C+Toyosi&rft.au=Prabhu%2C+Vittaldas&rft.date=2022-02-13&rft.eissn=1424-8220&rft.volume=22&rft.issue=4&rft_id=info:doi/10.3390%2Fs22041430&rft_id=info%3Apmid%2F35214332&rft.externalDocID=35214332 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |