Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection
In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concent...
Saved in:
Published in | Atmospheric chemistry and physics Vol. 16; no. 5; pp. 2843 - 2862 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
04.03.2016
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020–2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all three aerosol-injection scenarios, though there is a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature response is much lower, the severity of stratospheric temperature changes (> +70 °C) and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (> +20 °C). As injection rates and climatic impacts for titania are close to those for sulfate, there appears to be little benefit in terms of climatic influence of using titania when compared to the injection of sulfur dioxide, which has the added benefit of being well-modeled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions. |
---|---|
AbstractList | In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020–2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all three aerosol-injection scenarios, though there is a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature response is much lower, the severity of stratospheric temperature changes (> +70 ∘C) and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (> +20 ∘C). As injection rates and climatic impacts for titania are close to those for sulfate, there appears to be little benefit in terms of climatic influence of using titania when compared to the injection of sulfur dioxide, which has the added benefit of being well-modeled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions. In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020-2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all three aerosol-injection scenarios, though there is a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature response is much lower, the severity of stratospheric temperature changes (>â¯+70⯰C) and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (>â¯+20⯰C). As injection rates and climatic impacts for titania are close to those for sulfate, there appears to be little benefit in terms of climatic influence of using titania when compared to the injection of sulfur dioxide, which has the added benefit of being well-modeled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions. In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020–2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all three aerosol-injection scenarios, though there is a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature response is much lower, the severity of stratospheric temperature changes (> +70 °C) and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (> +20 °C). As injection rates and climatic impacts for titania are close to those for sulfate, there appears to be little benefit in terms of climatic influence of using titania when compared to the injection of sulfur dioxide, which has the added benefit of being well-modeled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions. In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020-2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all three aerosol-injection scenarios, though there is a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature response is much lower, the severity of stratospheric temperature changes (>+70°C) and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (>+20°C). As injection rates and climatic impacts for titania are close to those for sulfate, there appears to be little benefit in terms of climatic influence of using titania when compared to the injection of sulfur dioxide, which has the added benefit of being well-modeled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions. |
Audience | Academic |
Author | Jones, Anthony C Haywood, James M Jones, Andy |
Author_xml | – sequence: 1 fullname: Jones, Anthony C – sequence: 2 fullname: Haywood, James M – sequence: 3 fullname: Jones, Andy |
BookMark | eNp9ksuLFDEQxhtZwd3Vu8eAJ8Fek3Qe3cdl8DGwIPg4h8qrN2NP0iYZ1P_ejCPqgEgOSSq_quSrfFfdRUzRdd1Tgm84mdhLMGtPRE9HNvQUE_GguyRixL0cKLv4a_2ouyplhzHlmLDLDjZL2EMNBoX9CqYWlDwqNUNNZb13uR3MLrk4h-jaLs7oa6j3qBwWD9W9QHoB8xkZyDpFBNGiGirEACjEnTM1pPi4e-hhKe7Jr_m6-_T61cfN2_7u3Zvt5vauNxyPtZfWckEwB0wp0xqPRlvRhAyeTp4PhnOCJdFeCw6MkEmLacSMUNqiA2AxXHfbU12bYKfW3GTl7ypBUD8DKc8KchO6OKU55qP1GrQFNmIzSepHJi21k5_o4FutZ6daa05fDq5UtUuHHNvzFWWEEclHIv9HESkxFRgL-oeaoV0dok-tu2YfilG3TDI2DBMZG3XzD6oN6_bBtK_2ocXPEp6fJTSmum91hkMpavvh_TmLT6zJqZTs_O_2EKyO7lHNPYoIdXSPOrpn-AG6srXt |
CitedBy_id | crossref_primary_10_1073_pnas_1615572113 crossref_primary_10_5194_acp_22_2999_2022 crossref_primary_10_5194_acp_22_93_2022 crossref_primary_10_5194_acp_21_1287_2021 crossref_primary_10_1038_s41467_017_01606_0 crossref_primary_10_1175_AMSMONOGRAPHS_D_19_0001_1 crossref_primary_10_5194_acp_17_6957_2017 crossref_primary_10_5194_acp_22_6135_2022 crossref_primary_10_1039_D3EA00134B crossref_primary_10_1007_s11027_016_9723_y crossref_primary_10_1146_annurev_chembioeng_060816_101538 crossref_primary_10_5194_acp_17_3339_2017 crossref_primary_10_1002_2017EF000720 crossref_primary_10_5194_acp_21_8915_2021 crossref_primary_10_3390_cli12020026 crossref_primary_10_5194_acp_20_8975_2020 crossref_primary_10_1029_2018EF000933 crossref_primary_10_1038_s41467_018_05938_3 crossref_primary_10_5194_acp_23_5149_2023 crossref_primary_10_1038_s43247_024_01329_3 crossref_primary_10_1039_D1CP04068E crossref_primary_10_5194_esd_8_1_2017 crossref_primary_10_1007_s11625_018_0527_8 crossref_primary_10_1002_2016GL069258 crossref_primary_10_1029_2018JD028285 crossref_primary_10_1002_2016JD025001 crossref_primary_10_1134_S0001433818050122 crossref_primary_10_1002_2017JD026912 crossref_primary_10_5194_acp_23_1687_2023 crossref_primary_10_1038_s43247_024_01421_8 crossref_primary_10_1007_s10584_017_1930_3 crossref_primary_10_1038_s43247_020_00058_7 crossref_primary_10_5194_acp_16_15397_2016 |
Cites_doi | 10.1029/2008JD010050 10.5194/tc-8-1625-2014 10.1002/2013GL058818 10.1016/B978-0-08-054721-3.50044-7 10.1088/1748-9326/4/4/045108 10.1038/nclimate2876 10.1175/BAMS-D-12-00227.1 10.1029/2008JD010221 10.1029/2011GL049761 10.5194/acp-15-11835-2015 10.1088/1748-9326/9/1/014001 10.1038/nclimate1857 10.1002/2013JD020445 10.5194/acp-13-2015-2013 10.1175/2010JTECHA1521.1 10.1175/JCLI-D-14-00556.1 10.1038/nclimate1169 10.1016/j.gloplacha.2015.02.010 10.1029/1999RG000073 10.5194/gmd-4-723-2011 10.1002/jgrd.50868 10.1073/pnas.0711648105 10.1098/rsta.2008.0131 10.1002/asl.316 10.5194/gmd-8-3379-2015 10.1002/2015GL064314 10.1029/2008JD011420 10.1029/2010JD014447 10.1029/2011JD016074 10.1007/s10584-013-0705-8 10.1029/2010GL043975 10.1007/s00382-013-1822-9 10.1029/2011JD016968 10.5194/acp-12-10945-2012 10.1007/s10584-011-0156-z 10.1002/asl.304 10.1029/2009JD013638 10.1002/2013JD020566 10.1073/pnas.1310344110 10.1038/nclimate1528 10.1029/2011JD017341 10.1002/app.20327 10.1038/nature12140 10.1038/ngeo2071 10.1029/2012JD017607 10.1038/nclimate1722 10.1029/2006GL027665 10.1175/BAMS-D-11-00094.1 10.1029/2007JD009518 10.1029/2011JD016000 10.5194/acp-14-2399-2014 10.1029/2009GL037348 10.1029/2007GL032006 10.1002/jame.20014 10.1029/2002JD002090 10.1002/2013JD020569 10.1175/JCLI-D-14-00343.1 10.1038/nclimate1783 10.1002/2013JD020627 10.5194/acp-14-6035-2014 10.1029/96JD03436 10.5194/acp-12-4775-2012 10.1007/s10584-006-9101-y 10.1088/1748-9326/9/4/044006 10.5194/acp-14-11221-2014 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2016 Copernicus GmbH Copyright Copernicus GmbH 2016 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2016 Copernicus GmbH – notice: Copyright Copernicus GmbH 2016 – notice: 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PIMPY PQEST PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.5194/acp-16-2843-2016 |
DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1680-7324 |
EndPage | 2862 |
ExternalDocumentID | oai_doaj_org_article_b5058dfbabda480c972f847d2d9f923f 3970793011 A474433918 10_5194_acp_16_2843_2016 |
GroupedDBID | 23N 2WC 3V. 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BBORY BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA IPNFZ ISR ITC K6- KQ8 M~E OK1 P2P P62 PATMY PCBAR PIMPY PQQKQ PROAC PYCSY Q2X RIG RKB RNS TR2 XSB ~02 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c508t-7dd56105a0224bb08cbd62013f29f53c551071bfb65a4119b698041220713a063 |
IEDL.DBID | BENPR |
ISSN | 1680-7324 1680-7316 |
IngestDate | Tue Oct 22 15:16:24 EDT 2024 Sat Nov 09 07:45:02 EST 2024 Thu Oct 10 20:03:21 EDT 2024 Thu Feb 22 23:59:57 EST 2024 Wed Oct 25 09:18:35 EDT 2023 Thu Aug 01 19:49:08 EDT 2024 Fri Aug 23 00:58:20 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-7dd56105a0224bb08cbd62013f29f53c551071bfb65a4119b698041220713a063 |
ORCID | 0000-0003-1814-7601 |
OpenAccessLink | https://www.proquest.com/docview/1770260062?pq-origsite=%requestingapplication% |
PQID | 1770260062 |
PQPubID | 105744 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b5058dfbabda480c972f847d2d9f923f proquest_journals_2414175817 proquest_journals_1770260062 gale_infotracmisc_A474433918 gale_infotracacademiconefile_A474433918 gale_incontextgauss_ISR_A474433918 crossref_primary_10_5194_acp_16_2843_2016 |
PublicationCentury | 2000 |
PublicationDate | 2016-03-04 |
PublicationDateYYYYMMDD | 2016-03-04 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Atmospheric chemistry and physics |
PublicationYear | 2016 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref60 doi: 10.1029/2008JD010050 – ident: ref43 doi: 10.5194/tc-8-1625-2014 – ident: ref2 doi: 10.1002/2013GL058818 – ident: ref59 doi: 10.1016/B978-0-08-054721-3.50044-7 – ident: ref5 – ident: ref26 doi: 10.1088/1748-9326/4/4/045108 – ident: ref73 doi: 10.1038/nclimate2876 – ident: ref27 doi: 10.1175/BAMS-D-12-00227.1 – ident: ref62 doi: 10.1029/2008JD010221 – ident: ref19 doi: 10.1029/2011GL049761 – ident: ref74 doi: 10.5194/acp-15-11835-2015 – ident: ref20 doi: 10.1088/1748-9326/9/1/014001 – ident: ref9 – ident: ref25 doi: 10.1038/nclimate1857 – ident: ref49 doi: 10.1002/2013JD020445 – ident: ref39 doi: 10.5194/acp-13-2015-2013 – ident: ref57 – ident: ref56 doi: 10.1175/2010JTECHA1521.1 – ident: ref38 doi: 10.1175/JCLI-D-14-00556.1 – ident: ref46 doi: 10.1038/nclimate1169 – ident: ref11 – ident: ref76 doi: 10.1016/j.gloplacha.2015.02.010 – ident: ref4 doi: 10.1029/1999RG000073 – ident: ref69 doi: 10.5194/gmd-4-723-2011 – ident: ref72 doi: 10.1002/jgrd.50868 – ident: ref3 doi: 10.1073/pnas.0711648105 – ident: ref13 – ident: ref58 doi: 10.1098/rsta.2008.0131 – ident: ref33 doi: 10.1002/asl.316 – ident: ref37 doi: 10.5194/gmd-8-3379-2015 – ident: ref44 doi: 10.1002/2015GL064314 – ident: ref70 doi: 10.1029/2008JD011420 – ident: ref23 doi: 10.1029/2010JD014447 – ident: ref6 doi: 10.1029/2011JD016074 – ident: ref31 doi: 10.1007/s10584-013-0705-8 – ident: ref52 doi: 10.1029/2010GL043975 – ident: ref42 doi: 10.1007/s00382-013-1822-9 – ident: ref1 doi: 10.1029/2011JD016968 – ident: ref71 doi: 10.5194/acp-12-10945-2012 – ident: ref45 doi: 10.1007/s10584-011-0156-z – ident: ref48 doi: 10.1002/asl.304 – ident: ref21 doi: 10.1029/2009JD013638 – ident: ref53 doi: 10.1002/2013JD020566 – ident: ref12 – ident: ref15 doi: 10.1073/pnas.1310344110 – ident: ref55 doi: 10.1038/nclimate1528 – ident: ref34 doi: 10.1029/2011JD017341 – ident: ref75 doi: 10.1002/app.20327 – ident: ref68 – ident: ref30 doi: 10.1038/nature12140 – ident: ref54 doi: 10.1038/ngeo2071 – ident: ref17 doi: 10.1029/2012JD017607 – ident: ref41 doi: 10.1038/nclimate1722 – ident: ref50 doi: 10.1029/2006GL027665 – ident: ref66 doi: 10.1175/BAMS-D-11-00094.1 – ident: ref67 doi: 10.1029/2007JD009518 – ident: ref24 doi: 10.1029/2011JD016000 – ident: ref29 doi: 10.5194/acp-14-2399-2014 – ident: ref32 doi: 10.1029/2009GL037348 – ident: ref47 doi: 10.1029/2007GL032006 – ident: ref61 doi: 10.1002/jame.20014 – ident: ref63 – ident: ref28 – ident: ref64 doi: 10.1029/2002JD002090 – ident: ref35 doi: 10.1002/2013JD020569 – ident: ref40 doi: 10.1175/JCLI-D-14-00343.1 – ident: ref51 doi: 10.1038/nclimate1783 – ident: ref7 doi: 10.1002/2013JD020627 – ident: ref8 – ident: ref65 doi: 10.5194/acp-14-6035-2014 – ident: ref22 doi: 10.1029/96JD03436 – ident: ref18 doi: 10.5194/acp-12-4775-2012 – ident: ref10 doi: 10.1007/s10584-006-9101-y – ident: ref36 doi: 10.1088/1748-9326/9/4/044006 – ident: ref14 – ident: ref16 doi: 10.5194/acp-14-11221-2014 |
SSID | ssj0025014 |
Score | 2.4038348 |
Snippet | In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario.... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 2843 |
SubjectTerms | Aerosols Atmosphere Black carbon Carbon Carbon black Carbon dioxide removal Chemical properties Climate change Climate effects Computer simulation Environmental aspects Environmental impact analysis General circulation models Geoengineering Global temperatures Greenhouse effect Greenhouse gases Historic temperatures Injection Mean temperatures Methods Observations Optical properties Precipitation Radiation Simulation Solar radiation Solar ultraviolet radiation Stratosphere Stratosphere radiation Stratospheric circulation Stratospheric sulfate Stratospheric warming Sulfates Sulfur Sulfur dioxide Sulphur Sulphur dioxide Temperature Temperature changes Titanium dioxide Ultraviolet radiation Volcanic eruption effects Volcanic eruptions |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15K-qJu0yJKaChUxJJlWTqmoSEtJIekgdyEHlbYEuSw3v3_nZG9bRZSeslR1mBbnx7zjR6fCNnnDRe98Ib5po5MxlYzB36KCRnwnqRkZMLDyWfn6vRK_rhur-9d9YV7wiZ54Am4Qw8uWsfknY9O6jqYTiQYUaOIJgE5SWX0rc0mmJpDLVwtw1BL6ZrhN6cFSmAr8tCFO8YVg2G5gSaC95zfc0hFt_9fo3NxOSe75NnMFenR9I_PyZM-vyDVGdDcYVlmw-kneny7AM5ZUi-Jm1KLQKfDjyMdEi3CuMOI8gGQcdMP_V8JQorTsHRc3yagnF-ox9k8GtzSD5m6HCmeQMsLRxf5V9mylV-Rq5NvP49P2XyHAgtAvVasixEZUuvQV3tf6-CjgmI3SZjUNgEIE5AMn7xqneTceGVQkUgIjF4d8JfXZCcPuX9DKFDLgMt-tXRRRie89kr3PsG7TZQyVuTzBkh7N0llWAgxEHQLoFuuLIJuEfSKfEWk_9ihyHV5AFVv56q3_6v6inzEerIoY5Fxn8yNW4-j_X55YY9kJ2XTGK4rcjAbpQHwDm4-dgBlQuWrLcu9LUvoZ2E7e9Mc7NzPR8u7DkXZaiUezAZ6JIGfad69fYwCvyNPEbyyBU7ukZ3Vct2_B0608h9K8_8NBfcGhA priority: 102 providerName: Directory of Open Access Journals |
Title | Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection |
URI | https://www.proquest.com/docview/1770260062 https://www.proquest.com/docview/2414175817 https://doaj.org/article/b5058dfbabda480c972f847d2d9f923f |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdY98IL4lNkG5U1IRAS1hLHSZwntE0rA6kTDCb2ZvkjrjpNSWna_587x92oxHiKHDuJfLF9v7uzf0fI2yzPeMNNzUyeOiZcIZkGPcW4sJgnydfC4-Hk6UV5fiW-XhfX0eHWx22VmzUxLNSus-gjP8qqCumv0pJ_WvxmmDUKo6sxhcYO2eVgKaQjsntydvHt8s7kwqgZmlylTBl-ewhUAmoRR9ouWFYyWJ5zGCqY7_wvxRT4-x9apYPqmTwlTyJmpMfDT35GHjXtc5JMAe52y-AVp-_o6e0csGcovSB6KM0tHQ5B9rTzNBDkdj3SCEDFrOmaeypCiu5Y2q9vPUDPj9SgV49avTRdS3XrKJ5Ea-eaztubsHWrfUmuJmc_T89ZzKXALECwFaucQ6RUaNTZxqTSGldCt3PPa1_kFoATgA3jTVlokWW1KWtkJuIcrVgNOOYVGbVd27wmFCCmxfBfKrQTTnMjTSkb4-HdtRPCJeTDRpBqMVBmKDA1UOgKhK6yUqHQFQo9ISco6bt2SHYdbnTLmYpzRxlAadJ5o43TQqa2rrgHpeq4qz3gU5-QQ_xPCuksWtwvM9PrvldfflyqY1EJked1JhPyPjbyHcjb6nj8APqEDFhbLQ-2WsJ8s9vVm-Gg4nzv1f3o_Gc1wCQBOE1m1d7_n94nj1EsYZObOCCj1XLdvAHUszJjsiMnn8dxgON1Mv3-axx8CH8AygwBzw |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHOCCeIpAAQshEBJWE8d5nVCpWLbQ7QFaqTfLj3i1VWUvm93_z4zjbVkJODqeJPL4MZ_Hnm8IeVuUBe-57pguc8uErVqmwE4xLgzmSXKdcBicPDutp-fi20V1kRxuQ7pWuV0T40Jtg0Ef-UHRNEh_ldf80_IXw6xReLqaUmjcJndECbYaI8UnX683XHhmhhuuus0Z_nk8pgTMIg6UWbKiZrA4lzBQMNv5H2Ypsvf_a42OhmfygNxPiJEejl38kNzq_SOSzQDshlX0idN39OhqAcgzlh4TNZYWho4hkAMNjkZ63DAgiQBUzPvQ3xARUnTG0mFz5QB4fqQafXrUqJUOnipvKcah-YWiC38ZL275J-R88uXsaMpSJgVmAICtWWMt4qRKocXWOm-NtjU0u3S8c1VpADYB1NBO15USRdHpukNeIs5xD6sAxTwlez74_hmhADANHv7lQllhFdetrtteO_h2Z4WwGfmwVaRcjoQZEjYaqHQJSpdFLVHpEpWekc-o6Ws5pLqOD8JqLtPMkRowWmudVtoq0eama7gDk2q57RygU5eRN9hPEsksPN6WmavNMMjjnz_koWiEKMuuaDPyPgm5APo2KgUfQJuQ_2pHcn9HEmab2a3eDgeZZvsgb8bmX6sBJAlAaW3RPP__26_J3enZ7ESeHJ9-f0HuoYridTexT_bWq03_EvDPWr-Kg_w3nf3_0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgSIgXxKfINsBCCISE1cRxHOcJjUHZgE0ImLQ3yx9xVTQlXdP-_9w57kYl4NHxJYrPZ9_P9vl3hLwsyoK33DbMlrlnwleKGfBTjAuHeZJCIwJeTj45lUdn4vN5dZ7in4YUVrmZE-NE7XuHe-SToq6R_iqXfBJSWMS3D9N3i0uGGaTwpDWl07hJboFXlGjhavrpavGF52e4-JIqZ_gX45El4BcxMW7BCslgoi7BaDDz-R8uKjL5_2u-jk5oeo_cTeiRHozdfZ_caLsHJDsB4Nsv4_44fUUPL-aAQmPpITFjae7oeB1yoH2gkSq3H5BQACpmbd9ekxJS3Jilw_oiAAh9Sy3u71FnlrbvqOk8xTtp3dzQefcrBnF1j8jZ9OPPwyOWsiowB2BsxWrvETNVBr23tbly1ktodhl4E6rSAYQC2GGDlZURRdFY2SBHEee4njWAaB6Tna7v2ieEAth0eBCYC-OFN9wqK1VrA3y78UL4jLzZKFIvRvIMDYsOVLoGpetCalS6RqVn5D1q-koOaa_jg34502kUaQt4TflgjfVGqNw1NQ_gXj33TQCkGjLyAvtJI7FFhyYyM-th0Mc_vusDUQtRlk2hMvI6CYUe9O1MuogAbUIurC3J_S1JGHluu3pjDjqN_EFf2-lfqwEwCUBsqqh3___2c3Ib7Ft_PT79skfuoIZi5JvYJzur5bp9ClBoZZ9FG_8N4GMEHQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climatic+impacts+of+stratospheric+geoengineering+with+sulfate%2C+black+carbon+and+titania+injection&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Jones%2C+Anthony+C&rft.au=Haywood%2C+James+M&rft.au=Jones%2C+Andy&rft.date=2016-03-04&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=16&rft.issue=5&rft.spage=2843&rft_id=info:doi/10.5194%2Facp-16-2843-2016&rft.externalDocID=A474433918 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |