Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection

In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concent...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 16; no. 5; pp. 2843 - 2862
Main Authors Jones, Anthony C, Haywood, James M, Jones, Andy
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 04.03.2016
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020–2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all three aerosol-injection scenarios, though there is a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature response is much lower, the severity of stratospheric temperature changes (> +70 °C) and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (> +20 °C). As injection rates and climatic impacts for titania are close to those for sulfate, there appears to be little benefit in terms of climatic influence of using titania when compared to the injection of sulfur dioxide, which has the added benefit of being well-modeled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions.
AbstractList In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020–2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all three aerosol-injection scenarios, though there is a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature response is much lower, the severity of stratospheric temperature changes (> +70 ∘C) and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (> +20 ∘C). As injection rates and climatic impacts for titania are close to those for sulfate, there appears to be little benefit in terms of climatic influence of using titania when compared to the injection of sulfur dioxide, which has the added benefit of being well-modeled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions.
In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020-2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all three aerosol-injection scenarios, though there is a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature response is much lower, the severity of stratospheric temperature changes (> +70 °C) and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (> +20 °C). As injection rates and climatic impacts for titania are close to those for sulfate, there appears to be little benefit in terms of climatic influence of using titania when compared to the injection of sulfur dioxide, which has the added benefit of being well-modeled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions.
In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020–2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all three aerosol-injection scenarios, though there is a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature response is much lower, the severity of stratospheric temperature changes (> +70 °C) and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (> +20 °C). As injection rates and climatic impacts for titania are close to those for sulfate, there appears to be little benefit in terms of climatic influence of using titania when compared to the injection of sulfur dioxide, which has the added benefit of being well-modeled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions.
In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020-2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all three aerosol-injection scenarios, though there is a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature response is much lower, the severity of stratospheric temperature changes (>+70°C) and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (>+20°C). As injection rates and climatic impacts for titania are close to those for sulfate, there appears to be little benefit in terms of climatic influence of using titania when compared to the injection of sulfur dioxide, which has the added benefit of being well-modeled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions.
Audience Academic
Author Jones, Anthony C
Haywood, James M
Jones, Andy
Author_xml – sequence: 1
  fullname: Jones, Anthony C
– sequence: 2
  fullname: Haywood, James M
– sequence: 3
  fullname: Jones, Andy
BookMark eNp9ksuLFDEQxhtZwd3Vu8eAJ8Fek3Qe3cdl8DGwIPg4h8qrN2NP0iYZ1P_ejCPqgEgOSSq_quSrfFfdRUzRdd1Tgm84mdhLMGtPRE9HNvQUE_GguyRixL0cKLv4a_2ouyplhzHlmLDLDjZL2EMNBoX9CqYWlDwqNUNNZb13uR3MLrk4h-jaLs7oa6j3qBwWD9W9QHoB8xkZyDpFBNGiGirEACjEnTM1pPi4e-hhKe7Jr_m6-_T61cfN2_7u3Zvt5vauNxyPtZfWckEwB0wp0xqPRlvRhAyeTp4PhnOCJdFeCw6MkEmLacSMUNqiA2AxXHfbU12bYKfW3GTl7ypBUD8DKc8KchO6OKU55qP1GrQFNmIzSepHJi21k5_o4FutZ6daa05fDq5UtUuHHNvzFWWEEclHIv9HESkxFRgL-oeaoV0dok-tu2YfilG3TDI2DBMZG3XzD6oN6_bBtK_2ocXPEp6fJTSmum91hkMpavvh_TmLT6zJqZTs_O_2EKyO7lHNPYoIdXSPOrpn-AG6srXt
CitedBy_id crossref_primary_10_1073_pnas_1615572113
crossref_primary_10_5194_acp_22_2999_2022
crossref_primary_10_5194_acp_22_93_2022
crossref_primary_10_5194_acp_21_1287_2021
crossref_primary_10_1038_s41467_017_01606_0
crossref_primary_10_1175_AMSMONOGRAPHS_D_19_0001_1
crossref_primary_10_5194_acp_17_6957_2017
crossref_primary_10_5194_acp_22_6135_2022
crossref_primary_10_1039_D3EA00134B
crossref_primary_10_1007_s11027_016_9723_y
crossref_primary_10_1146_annurev_chembioeng_060816_101538
crossref_primary_10_5194_acp_17_3339_2017
crossref_primary_10_1002_2017EF000720
crossref_primary_10_5194_acp_21_8915_2021
crossref_primary_10_3390_cli12020026
crossref_primary_10_5194_acp_20_8975_2020
crossref_primary_10_1029_2018EF000933
crossref_primary_10_1038_s41467_018_05938_3
crossref_primary_10_5194_acp_23_5149_2023
crossref_primary_10_1038_s43247_024_01329_3
crossref_primary_10_1039_D1CP04068E
crossref_primary_10_5194_esd_8_1_2017
crossref_primary_10_1007_s11625_018_0527_8
crossref_primary_10_1002_2016GL069258
crossref_primary_10_1029_2018JD028285
crossref_primary_10_1002_2016JD025001
crossref_primary_10_1134_S0001433818050122
crossref_primary_10_1002_2017JD026912
crossref_primary_10_5194_acp_23_1687_2023
crossref_primary_10_1038_s43247_024_01421_8
crossref_primary_10_1007_s10584_017_1930_3
crossref_primary_10_1038_s43247_020_00058_7
crossref_primary_10_5194_acp_16_15397_2016
Cites_doi 10.1029/2008JD010050
10.5194/tc-8-1625-2014
10.1002/2013GL058818
10.1016/B978-0-08-054721-3.50044-7
10.1088/1748-9326/4/4/045108
10.1038/nclimate2876
10.1175/BAMS-D-12-00227.1
10.1029/2008JD010221
10.1029/2011GL049761
10.5194/acp-15-11835-2015
10.1088/1748-9326/9/1/014001
10.1038/nclimate1857
10.1002/2013JD020445
10.5194/acp-13-2015-2013
10.1175/2010JTECHA1521.1
10.1175/JCLI-D-14-00556.1
10.1038/nclimate1169
10.1016/j.gloplacha.2015.02.010
10.1029/1999RG000073
10.5194/gmd-4-723-2011
10.1002/jgrd.50868
10.1073/pnas.0711648105
10.1098/rsta.2008.0131
10.1002/asl.316
10.5194/gmd-8-3379-2015
10.1002/2015GL064314
10.1029/2008JD011420
10.1029/2010JD014447
10.1029/2011JD016074
10.1007/s10584-013-0705-8
10.1029/2010GL043975
10.1007/s00382-013-1822-9
10.1029/2011JD016968
10.5194/acp-12-10945-2012
10.1007/s10584-011-0156-z
10.1002/asl.304
10.1029/2009JD013638
10.1002/2013JD020566
10.1073/pnas.1310344110
10.1038/nclimate1528
10.1029/2011JD017341
10.1002/app.20327
10.1038/nature12140
10.1038/ngeo2071
10.1029/2012JD017607
10.1038/nclimate1722
10.1029/2006GL027665
10.1175/BAMS-D-11-00094.1
10.1029/2007JD009518
10.1029/2011JD016000
10.5194/acp-14-2399-2014
10.1029/2009GL037348
10.1029/2007GL032006
10.1002/jame.20014
10.1029/2002JD002090
10.1002/2013JD020569
10.1175/JCLI-D-14-00343.1
10.1038/nclimate1783
10.1002/2013JD020627
10.5194/acp-14-6035-2014
10.1029/96JD03436
10.5194/acp-12-4775-2012
10.1007/s10584-006-9101-y
10.1088/1748-9326/9/4/044006
10.5194/acp-14-11221-2014
ContentType Journal Article
Copyright COPYRIGHT 2016 Copernicus GmbH
Copyright Copernicus GmbH 2016
2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2016 Copernicus GmbH
– notice: Copyright Copernicus GmbH 2016
– notice: 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.5194/acp-16-2843-2016
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 2862
ExternalDocumentID oai_doaj_org_article_b5058dfbabda480c972f847d2d9f923f
3970793011
A474433918
10_5194_acp_16_2843_2016
GroupedDBID 23N
2WC
3V.
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BBORY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
IPNFZ
ISR
ITC
K6-
KQ8
M~E
OK1
P2P
P62
PATMY
PCBAR
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c508t-7dd56105a0224bb08cbd62013f29f53c551071bfb65a4119b698041220713a063
IEDL.DBID BENPR
ISSN 1680-7324
1680-7316
IngestDate Tue Oct 22 15:16:24 EDT 2024
Sat Nov 09 07:45:02 EST 2024
Thu Oct 10 20:03:21 EDT 2024
Thu Feb 22 23:59:57 EST 2024
Wed Oct 25 09:18:35 EDT 2023
Thu Aug 01 19:49:08 EDT 2024
Fri Aug 23 00:58:20 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-7dd56105a0224bb08cbd62013f29f53c551071bfb65a4119b698041220713a063
ORCID 0000-0003-1814-7601
OpenAccessLink https://www.proquest.com/docview/1770260062?pq-origsite=%requestingapplication%
PQID 1770260062
PQPubID 105744
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_b5058dfbabda480c972f847d2d9f923f
proquest_journals_2414175817
proquest_journals_1770260062
gale_infotracmisc_A474433918
gale_infotracacademiconefile_A474433918
gale_incontextgauss_ISR_A474433918
crossref_primary_10_5194_acp_16_2843_2016
PublicationCentury 2000
PublicationDate 2016-03-04
PublicationDateYYYYMMDD 2016-03-04
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-04
  day: 04
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2016
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref60
  doi: 10.1029/2008JD010050
– ident: ref43
  doi: 10.5194/tc-8-1625-2014
– ident: ref2
  doi: 10.1002/2013GL058818
– ident: ref59
  doi: 10.1016/B978-0-08-054721-3.50044-7
– ident: ref5
– ident: ref26
  doi: 10.1088/1748-9326/4/4/045108
– ident: ref73
  doi: 10.1038/nclimate2876
– ident: ref27
  doi: 10.1175/BAMS-D-12-00227.1
– ident: ref62
  doi: 10.1029/2008JD010221
– ident: ref19
  doi: 10.1029/2011GL049761
– ident: ref74
  doi: 10.5194/acp-15-11835-2015
– ident: ref20
  doi: 10.1088/1748-9326/9/1/014001
– ident: ref9
– ident: ref25
  doi: 10.1038/nclimate1857
– ident: ref49
  doi: 10.1002/2013JD020445
– ident: ref39
  doi: 10.5194/acp-13-2015-2013
– ident: ref57
– ident: ref56
  doi: 10.1175/2010JTECHA1521.1
– ident: ref38
  doi: 10.1175/JCLI-D-14-00556.1
– ident: ref46
  doi: 10.1038/nclimate1169
– ident: ref11
– ident: ref76
  doi: 10.1016/j.gloplacha.2015.02.010
– ident: ref4
  doi: 10.1029/1999RG000073
– ident: ref69
  doi: 10.5194/gmd-4-723-2011
– ident: ref72
  doi: 10.1002/jgrd.50868
– ident: ref3
  doi: 10.1073/pnas.0711648105
– ident: ref13
– ident: ref58
  doi: 10.1098/rsta.2008.0131
– ident: ref33
  doi: 10.1002/asl.316
– ident: ref37
  doi: 10.5194/gmd-8-3379-2015
– ident: ref44
  doi: 10.1002/2015GL064314
– ident: ref70
  doi: 10.1029/2008JD011420
– ident: ref23
  doi: 10.1029/2010JD014447
– ident: ref6
  doi: 10.1029/2011JD016074
– ident: ref31
  doi: 10.1007/s10584-013-0705-8
– ident: ref52
  doi: 10.1029/2010GL043975
– ident: ref42
  doi: 10.1007/s00382-013-1822-9
– ident: ref1
  doi: 10.1029/2011JD016968
– ident: ref71
  doi: 10.5194/acp-12-10945-2012
– ident: ref45
  doi: 10.1007/s10584-011-0156-z
– ident: ref48
  doi: 10.1002/asl.304
– ident: ref21
  doi: 10.1029/2009JD013638
– ident: ref53
  doi: 10.1002/2013JD020566
– ident: ref12
– ident: ref15
  doi: 10.1073/pnas.1310344110
– ident: ref55
  doi: 10.1038/nclimate1528
– ident: ref34
  doi: 10.1029/2011JD017341
– ident: ref75
  doi: 10.1002/app.20327
– ident: ref68
– ident: ref30
  doi: 10.1038/nature12140
– ident: ref54
  doi: 10.1038/ngeo2071
– ident: ref17
  doi: 10.1029/2012JD017607
– ident: ref41
  doi: 10.1038/nclimate1722
– ident: ref50
  doi: 10.1029/2006GL027665
– ident: ref66
  doi: 10.1175/BAMS-D-11-00094.1
– ident: ref67
  doi: 10.1029/2007JD009518
– ident: ref24
  doi: 10.1029/2011JD016000
– ident: ref29
  doi: 10.5194/acp-14-2399-2014
– ident: ref32
  doi: 10.1029/2009GL037348
– ident: ref47
  doi: 10.1029/2007GL032006
– ident: ref61
  doi: 10.1002/jame.20014
– ident: ref63
– ident: ref28
– ident: ref64
  doi: 10.1029/2002JD002090
– ident: ref35
  doi: 10.1002/2013JD020569
– ident: ref40
  doi: 10.1175/JCLI-D-14-00343.1
– ident: ref51
  doi: 10.1038/nclimate1783
– ident: ref7
  doi: 10.1002/2013JD020627
– ident: ref8
– ident: ref65
  doi: 10.5194/acp-14-6035-2014
– ident: ref22
  doi: 10.1029/96JD03436
– ident: ref18
  doi: 10.5194/acp-12-4775-2012
– ident: ref10
  doi: 10.1007/s10584-006-9101-y
– ident: ref36
  doi: 10.1088/1748-9326/9/4/044006
– ident: ref14
– ident: ref16
  doi: 10.5194/acp-14-11221-2014
SSID ssj0025014
Score 2.4038348
Snippet In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 2843
SubjectTerms Aerosols
Atmosphere
Black carbon
Carbon
Carbon black
Carbon dioxide removal
Chemical properties
Climate change
Climate effects
Computer simulation
Environmental aspects
Environmental impact analysis
General circulation models
Geoengineering
Global temperatures
Greenhouse effect
Greenhouse gases
Historic temperatures
Injection
Mean temperatures
Methods
Observations
Optical properties
Precipitation
Radiation
Simulation
Solar radiation
Solar ultraviolet radiation
Stratosphere
Stratosphere radiation
Stratospheric circulation
Stratospheric sulfate
Stratospheric warming
Sulfates
Sulfur
Sulfur dioxide
Sulphur
Sulphur dioxide
Temperature
Temperature changes
Titanium dioxide
Ultraviolet radiation
Volcanic eruption effects
Volcanic eruptions
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15K-qJu0yJKaChUxJJlWTqmoSEtJIekgdyEHlbYEuSw3v3_nZG9bRZSeslR1mBbnx7zjR6fCNnnDRe98Ib5po5MxlYzB36KCRnwnqRkZMLDyWfn6vRK_rhur-9d9YV7wiZ54Am4Qw8uWsfknY9O6jqYTiQYUaOIJgE5SWX0rc0mmJpDLVwtw1BL6ZrhN6cFSmAr8tCFO8YVg2G5gSaC95zfc0hFt_9fo3NxOSe75NnMFenR9I_PyZM-vyDVGdDcYVlmw-kneny7AM5ZUi-Jm1KLQKfDjyMdEi3CuMOI8gGQcdMP_V8JQorTsHRc3yagnF-ox9k8GtzSD5m6HCmeQMsLRxf5V9mylV-Rq5NvP49P2XyHAgtAvVasixEZUuvQV3tf6-CjgmI3SZjUNgEIE5AMn7xqneTceGVQkUgIjF4d8JfXZCcPuX9DKFDLgMt-tXRRRie89kr3PsG7TZQyVuTzBkh7N0llWAgxEHQLoFuuLIJuEfSKfEWk_9ihyHV5AFVv56q3_6v6inzEerIoY5Fxn8yNW4-j_X55YY9kJ2XTGK4rcjAbpQHwDm4-dgBlQuWrLcu9LUvoZ2E7e9Mc7NzPR8u7DkXZaiUezAZ6JIGfad69fYwCvyNPEbyyBU7ukZ3Vct2_B0608h9K8_8NBfcGhA
  priority: 102
  providerName: Directory of Open Access Journals
Title Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection
URI https://www.proquest.com/docview/1770260062
https://www.proquest.com/docview/2414175817
https://doaj.org/article/b5058dfbabda480c972f847d2d9f923f
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdY98IL4lNkG5U1IRAS1hLHSZwntE0rA6kTDCb2ZvkjrjpNSWna_587x92oxHiKHDuJfLF9v7uzf0fI2yzPeMNNzUyeOiZcIZkGPcW4sJgnydfC4-Hk6UV5fiW-XhfX0eHWx22VmzUxLNSus-gjP8qqCumv0pJ_WvxmmDUKo6sxhcYO2eVgKaQjsntydvHt8s7kwqgZmlylTBl-ewhUAmoRR9ouWFYyWJ5zGCqY7_wvxRT4-x9apYPqmTwlTyJmpMfDT35GHjXtc5JMAe52y-AVp-_o6e0csGcovSB6KM0tHQ5B9rTzNBDkdj3SCEDFrOmaeypCiu5Y2q9vPUDPj9SgV49avTRdS3XrKJ5Ea-eaztubsHWrfUmuJmc_T89ZzKXALECwFaucQ6RUaNTZxqTSGldCt3PPa1_kFoATgA3jTVlokWW1KWtkJuIcrVgNOOYVGbVd27wmFCCmxfBfKrQTTnMjTSkb4-HdtRPCJeTDRpBqMVBmKDA1UOgKhK6yUqHQFQo9ISco6bt2SHYdbnTLmYpzRxlAadJ5o43TQqa2rrgHpeq4qz3gU5-QQ_xPCuksWtwvM9PrvldfflyqY1EJked1JhPyPjbyHcjb6nj8APqEDFhbLQ-2WsJ8s9vVm-Gg4nzv1f3o_Gc1wCQBOE1m1d7_n94nj1EsYZObOCCj1XLdvAHUszJjsiMnn8dxgON1Mv3-axx8CH8AygwBzw
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHOCCeIpAAQshEBJWE8d5nVCpWLbQ7QFaqTfLj3i1VWUvm93_z4zjbVkJODqeJPL4MZ_Hnm8IeVuUBe-57pguc8uErVqmwE4xLgzmSXKdcBicPDutp-fi20V1kRxuQ7pWuV0T40Jtg0Ef-UHRNEh_ldf80_IXw6xReLqaUmjcJndECbYaI8UnX683XHhmhhuuus0Z_nk8pgTMIg6UWbKiZrA4lzBQMNv5H2Ypsvf_a42OhmfygNxPiJEejl38kNzq_SOSzQDshlX0idN39OhqAcgzlh4TNZYWho4hkAMNjkZ63DAgiQBUzPvQ3xARUnTG0mFz5QB4fqQafXrUqJUOnipvKcah-YWiC38ZL275J-R88uXsaMpSJgVmAICtWWMt4qRKocXWOm-NtjU0u3S8c1VpADYB1NBO15USRdHpukNeIs5xD6sAxTwlez74_hmhADANHv7lQllhFdetrtteO_h2Z4WwGfmwVaRcjoQZEjYaqHQJSpdFLVHpEpWekc-o6Ws5pLqOD8JqLtPMkRowWmudVtoq0eama7gDk2q57RygU5eRN9hPEsksPN6WmavNMMjjnz_koWiEKMuuaDPyPgm5APo2KgUfQJuQ_2pHcn9HEmab2a3eDgeZZvsgb8bmX6sBJAlAaW3RPP__26_J3enZ7ESeHJ9-f0HuoYridTexT_bWq03_EvDPWr-Kg_w3nf3_0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgSIgXxKfINsBCCISE1cRxHOcJjUHZgE0ImLQ3yx9xVTQlXdP-_9w57kYl4NHxJYrPZ9_P9vl3hLwsyoK33DbMlrlnwleKGfBTjAuHeZJCIwJeTj45lUdn4vN5dZ7in4YUVrmZE-NE7XuHe-SToq6R_iqXfBJSWMS3D9N3i0uGGaTwpDWl07hJboFXlGjhavrpavGF52e4-JIqZ_gX45El4BcxMW7BCslgoi7BaDDz-R8uKjL5_2u-jk5oeo_cTeiRHozdfZ_caLsHJDsB4Nsv4_44fUUPL-aAQmPpITFjae7oeB1yoH2gkSq3H5BQACpmbd9ekxJS3Jilw_oiAAh9Sy3u71FnlrbvqOk8xTtp3dzQefcrBnF1j8jZ9OPPwyOWsiowB2BsxWrvETNVBr23tbly1ktodhl4E6rSAYQC2GGDlZURRdFY2SBHEee4njWAaB6Tna7v2ieEAth0eBCYC-OFN9wqK1VrA3y78UL4jLzZKFIvRvIMDYsOVLoGpetCalS6RqVn5D1q-koOaa_jg34502kUaQt4TflgjfVGqNw1NQ_gXj33TQCkGjLyAvtJI7FFhyYyM-th0Mc_vusDUQtRlk2hMvI6CYUe9O1MuogAbUIurC3J_S1JGHluu3pjDjqN_EFf2-lfqwEwCUBsqqh3___2c3Ib7Ft_PT79skfuoIZi5JvYJzur5bp9ClBoZZ9FG_8N4GMEHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climatic+impacts+of+stratospheric+geoengineering+with+sulfate%2C+black+carbon+and+titania+injection&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Jones%2C+Anthony+C&rft.au=Haywood%2C+James+M&rft.au=Jones%2C+Andy&rft.date=2016-03-04&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=16&rft.issue=5&rft.spage=2843&rft_id=info:doi/10.5194%2Facp-16-2843-2016&rft.externalDocID=A474433918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon