Research on Coverage Optimization in a WSN Based on an Improved COOT Bird Algorithm
To address the problems of uneven distribution and low coverage of wireless sensor network (WSN) nodes in random deployment, a node coverage optimization strategy with an improved COOT bird algorithm (COOTCLCO) is proposed. Firstly, the chaotic tent map is used to initialize the population, increase...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 9; p. 3383 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
28.04.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s22093383 |
Cover
Abstract | To address the problems of uneven distribution and low coverage of wireless sensor network (WSN) nodes in random deployment, a node coverage optimization strategy with an improved COOT bird algorithm (COOTCLCO) is proposed. Firstly, the chaotic tent map is used to initialize the population, increase the diversity of the population, and lay the foundation for the global search for the optimal solutions. Secondly, the Lévy flight strategy is used to perturb the individual positions to improve the search range of the population. Thirdly, Cauchy mutation and an opposition-based learning strategy are fused to perturb the optimal solutions to generate new solutions and enhance the ability of the algorithm to jump out of the local optimum. Finally, the COOTCLCO algorithm is applied to WSN coverage optimization problems. Simulation results show that COOTCLCO has a faster convergence speed and better search accuracy than several other typical algorithms on 23 benchmark test functions; meanwhile, the coverage rate of the COOTCLCO algorithm is increased by 9.654%, 13.888%, 6.188%, 5.39%, 1.31%, and 2.012% compared to particle swarm optimization (PSO), butterfly optimization algorithm (BOA), seagull optimization algorithm (SOA), whale optimization algorithm (WOA), Harris hawks optimization (HHO), and bald eagle search (BES), respectively. This means that in terms of coverage optimization effect, COOTCLCO can obtain a higher coverage rate compared to these algorithms. The experimental results demonstrate that COOTCLCO can effectively improve the coverage rate of sensor nodes and improve the distribution of nodes in WSN coverage optimization problems. |
---|---|
AbstractList | To address the problems of uneven distribution and low coverage of wireless sensor network (WSN) nodes in random deployment, a node coverage optimization strategy with an improved COOT bird algorithm (COOTCLCO) is proposed. Firstly, the chaotic tent map is used to initialize the population, increase the diversity of the population, and lay the foundation for the global search for the optimal solutions. Secondly, the Lévy flight strategy is used to perturb the individual positions to improve the search range of the population. Thirdly, Cauchy mutation and an opposition-based learning strategy are fused to perturb the optimal solutions to generate new solutions and enhance the ability of the algorithm to jump out of the local optimum. Finally, the COOTCLCO algorithm is applied to WSN coverage optimization problems. Simulation results show that COOTCLCO has a faster convergence speed and better search accuracy than several other typical algorithms on 23 benchmark test functions; meanwhile, the coverage rate of the COOTCLCO algorithm is increased by 9.654%, 13.888%, 6.188%, 5.39%, 1.31%, and 2.012% compared to particle swarm optimization (PSO), butterfly optimization algorithm (BOA), seagull optimization algorithm (SOA), whale optimization algorithm (WOA), Harris hawks optimization (HHO), and bald eagle search (BES), respectively. This means that in terms of coverage optimization effect, COOTCLCO can obtain a higher coverage rate compared to these algorithms. The experimental results demonstrate that COOTCLCO can effectively improve the coverage rate of sensor nodes and improve the distribution of nodes in WSN coverage optimization problems. To address the problems of uneven distribution and low coverage of wireless sensor network (WSN) nodes in random deployment, a node coverage optimization strategy with an improved COOT bird algorithm (COOTCLCO) is proposed. Firstly, the chaotic tent map is used to initialize the population, increase the diversity of the population, and lay the foundation for the global search for the optimal solutions. Secondly, the Lévy flight strategy is used to perturb the individual positions to improve the search range of the population. Thirdly, Cauchy mutation and an opposition-based learning strategy are fused to perturb the optimal solutions to generate new solutions and enhance the ability of the algorithm to jump out of the local optimum. Finally, the COOTCLCO algorithm is applied to WSN coverage optimization problems. Simulation results show that COOTCLCO has a faster convergence speed and better search accuracy than several other typical algorithms on 23 benchmark test functions; meanwhile, the coverage rate of the COOTCLCO algorithm is increased by 9.654%, 13.888%, 6.188%, 5.39%, 1.31%, and 2.012% compared to particle swarm optimization (PSO), butterfly optimization algorithm (BOA), seagull optimization algorithm (SOA), whale optimization algorithm (WOA), Harris hawks optimization (HHO), and bald eagle search (BES), respectively. This means that in terms of coverage optimization effect, COOTCLCO can obtain a higher coverage rate compared to these algorithms. The experimental results demonstrate that COOTCLCO can effectively improve the coverage rate of sensor nodes and improve the distribution of nodes in WSN coverage optimization problems.To address the problems of uneven distribution and low coverage of wireless sensor network (WSN) nodes in random deployment, a node coverage optimization strategy with an improved COOT bird algorithm (COOTCLCO) is proposed. Firstly, the chaotic tent map is used to initialize the population, increase the diversity of the population, and lay the foundation for the global search for the optimal solutions. Secondly, the Lévy flight strategy is used to perturb the individual positions to improve the search range of the population. Thirdly, Cauchy mutation and an opposition-based learning strategy are fused to perturb the optimal solutions to generate new solutions and enhance the ability of the algorithm to jump out of the local optimum. Finally, the COOTCLCO algorithm is applied to WSN coverage optimization problems. Simulation results show that COOTCLCO has a faster convergence speed and better search accuracy than several other typical algorithms on 23 benchmark test functions; meanwhile, the coverage rate of the COOTCLCO algorithm is increased by 9.654%, 13.888%, 6.188%, 5.39%, 1.31%, and 2.012% compared to particle swarm optimization (PSO), butterfly optimization algorithm (BOA), seagull optimization algorithm (SOA), whale optimization algorithm (WOA), Harris hawks optimization (HHO), and bald eagle search (BES), respectively. This means that in terms of coverage optimization effect, COOTCLCO can obtain a higher coverage rate compared to these algorithms. The experimental results demonstrate that COOTCLCO can effectively improve the coverage rate of sensor nodes and improve the distribution of nodes in WSN coverage optimization problems. |
Audience | Academic |
Author | Zhang, Jing Luo, Xuemei Qin, Tao Wei, Wei Yang, Jing Huang, Yihui Fan, Yuancheng |
AuthorAffiliation | 1 Electrical Engineering College, Guizhou University, Guiyang 550025, China; gs.yhhuang20@gzu.edu.cn (Y.H.); zhangjing@gzu.edu.cn (J.Z.); tqin@gzu.edu.cn (T.Q.); xmluo1@126.com (X.L.) 2 Power China Guizhou Electric Power Engineering Co., Ltd., Guiyang 550025, China; weiwei-gzy@powerchina.cn 3 Power China Guizhou Engineering Co., Ltd., Guiyang 550001, China; fanyc-gzgc@powerchina.cn 4 Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University, Guiyang 550025, China |
AuthorAffiliation_xml | – name: 1 Electrical Engineering College, Guizhou University, Guiyang 550025, China; gs.yhhuang20@gzu.edu.cn (Y.H.); zhangjing@gzu.edu.cn (J.Z.); tqin@gzu.edu.cn (T.Q.); xmluo1@126.com (X.L.) – name: 3 Power China Guizhou Engineering Co., Ltd., Guiyang 550001, China; fanyc-gzgc@powerchina.cn – name: 2 Power China Guizhou Electric Power Engineering Co., Ltd., Guiyang 550025, China; weiwei-gzy@powerchina.cn – name: 4 Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University, Guiyang 550025, China |
Author_xml | – sequence: 1 givenname: Yihui orcidid: 0000-0002-4451-9651 surname: Huang fullname: Huang, Yihui – sequence: 2 givenname: Jing orcidid: 0000-0002-3732-7432 surname: Zhang fullname: Zhang, Jing – sequence: 3 givenname: Wei surname: Wei fullname: Wei, Wei – sequence: 4 givenname: Tao surname: Qin fullname: Qin, Tao – sequence: 5 givenname: Yuancheng surname: Fan fullname: Fan, Yuancheng – sequence: 6 givenname: Xuemei surname: Luo fullname: Luo, Xuemei – sequence: 7 givenname: Jing orcidid: 0000-0002-6407-1276 surname: Yang fullname: Yang, Jing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35591071$$D View this record in MEDLINE/PubMed |
BookMark | eNplkltrHCEUgKWkNMm2D_0DRehL-7CJ15nxpbBZelkIXWhS-iiOOrsuM7rV2UD763s2m4QkRVA5fn569Jyio5iiR-gtJWecK3JeGCOK84a_QCdUMDFtIHD0aH6MTkvZEMI4UK_QMZdSUVLTE3T1wxdvsl3jFPE83fhsVh4vt2MYwl8zBoiGiA3-dfUdX5ji3Z4zES-GbQba4flyeY0vQnZ41q9SDuN6eI1edqYv_s3dOEE_v3y-nn-bXi6_Luazy6mVpBmnNTVOcNbV0HlGraSesQruXLtGNY2lXjhiLBFCUdW1XDimlBCy4owTwTo-QYuD1yWz0dscBpP_6GSCvg2kvNImj8H2XldOSsYVbaSgopO-5Uq1rBJVWxtQc3B9Ori2u3bwzvo4ZtM_kT5diWGtV-lGwztKKiQIPtwJcvq982XUQyjW972JPu2KZlVV10qomgL6_hm6Sbsc4an2FKe0YpDiBJ0dqJWBBELsEpxroTk_BAsF0AWIz-qGVpQ0Yq999ziFh7vffzYA5wfA5lRK9p22Ybz9YzCHXlOi9-WkH8oJdnx8tuNe-j_7D5RyxJs |
CitedBy_id | crossref_primary_10_1016_j_aej_2024_07_052 crossref_primary_10_3390_s23052804 crossref_primary_10_3390_s25051467 crossref_primary_10_1515_mt_2023_0319 crossref_primary_10_1007_s00607_024_01349_z crossref_primary_10_3390_s23084124 crossref_primary_10_1007_s12083_024_01637_7 crossref_primary_10_3390_app12115634 crossref_primary_10_1016_j_mex_2025_103176 crossref_primary_10_1007_s11227_023_05400_2 crossref_primary_10_1016_j_rineng_2024_103143 crossref_primary_10_3390_w15193417 crossref_primary_10_1007_s13369_025_10026_y crossref_primary_10_1155_2023_9709608 crossref_primary_10_1007_s12053_024_10238_5 crossref_primary_10_1007_s43452_024_00976_9 crossref_primary_10_3390_biomimetics8010070 crossref_primary_10_1109_ACCESS_2023_3299031 crossref_primary_10_1109_ACCESS_2024_3365511 crossref_primary_10_1016_j_aej_2024_08_021 crossref_primary_10_3390_app13116628 crossref_primary_10_3390_s24154791 crossref_primary_10_1016_j_heliyon_2024_e34455 crossref_primary_10_1186_s41601_023_00289_8 crossref_primary_10_1007_s10586_024_04856_y |
Cites_doi | 10.1109/JSEN.2016.2633409 10.1016/j.advengsoft.2016.01.008 10.1016/j.ins.2014.10.042 10.1038/scientificamerican0792-66 10.1109/ICC.2017.7997101 10.1016/j.cad.2010.12.015 10.1016/j.asoc.2014.02.006 10.1016/j.cor.2014.11.002 10.1016/j.micpro.2015.07.003 10.1016/j.asoc.2020.106602 10.1016/j.advengsoft.2017.07.002 10.1109/CEC.2007.4425083 10.1016/j.eswa.2011.03.053 10.1016/j.jnca.2011.11.016 10.1007/s12652-020-01698-5 10.1016/j.asoc.2014.06.034 10.1109/TC.2005.123 10.1109/4235.771163 10.1016/j.ins.2012.08.023 10.1109/ICFST.2017.8210494 10.3390/s19122735 10.1126/science.220.4598.671 10.3390/s110606056 10.1016/j.est.2021.103848 10.1109/NABIC.2009.5393690 10.3390/s21010184 10.1016/j.future.2019.02.028 10.1016/j.knosys.2020.105709 10.1016/j.energy.2022.123321 10.1007/s12205-020-0504-5 10.1109/TEVC.2008.919004 10.1177/003754970107600201 10.3390/math9182335 10.1109/IDAACS-SWS.2018.8525824 10.3390/s21010023 10.1016/j.knosys.2018.11.024 10.3390/s21175869 10.1016/S1389-1286(01)00302-4 10.1016/j.jpdc.2019.08.013 10.1007/s00500-018-3102-4 10.1109/ACCESS.2021.3103146 10.1016/j.compstruc.2012.09.003 10.1016/j.compeleceng.2021.107359 10.1016/j.est.2021.103401 10.1016/j.advengsoft.2013.12.007 10.1016/j.knosys.2015.12.022 10.1002/9783527622979 10.1007/s11227-021-04171-y 10.1109/VTCSpring.2014.7022965 10.1016/j.eswa.2021.115352 10.1007/BF00175355 10.1007/s10462-019-09732-5 10.1103/PhysRevE.49.4677 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22093383 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection (ProQuest) Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_6d55239185414f5eb399b2646b7afb33 PMC9105145 A781610841 35591071 10_3390_s22093383 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NNSF of China (No.61640014), Industrial Project of Guizhou province (No. Qiankehe Zhicheng [2022]017, [2019] 2152), Innovation group of Guizhou Education Department (No. Qianjiaohe KY [2021]012), Science and Technology Fund of Guizhou Province (No. Qianke grantid: (No.61640014),(No. Qiankehe Zhicheng [2022]017, [2019] 2152), (No. Qianjiaohe KY [2021]012), (No. Qiankehe [2020]1Y266), CASE Library of IOT(KCALK201708), (No. 2015) – fundername: NNSF of China grantid: 61640014; 61963009 – fundername: platform about IoT of Guiyang National High Technology Industry Development Zone grantid: No. 2015 – fundername: Innovation group of Guizhou Education Department grantid: [2021]012 – fundername: CASE Library of IoT grantid: KCALK201708 – fundername: Industrial Project of Guizhou Province grantid: [2022]Yiban017; [2019]2152 – fundername: Science and Technology Fund of Guizhou Province grantid: [2020]1Y266 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c508t-71ad432f7432e21c51e2261427d8988c1e4d0ac044919fb34d2994456323042f3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:13:35 EDT 2025 Thu Aug 21 18:19:47 EDT 2025 Thu Sep 04 17:50:05 EDT 2025 Fri Jul 25 20:36:07 EDT 2025 Tue Jun 10 21:13:01 EDT 2025 Wed Feb 19 02:13:01 EST 2025 Thu Apr 24 22:58:18 EDT 2025 Tue Jul 01 02:41:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | coverage optimization chaotic tent map opposition-based learning wireless sensor networks COOT bird optimization algorithm Lévy flight |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-71ad432f7432e21c51e2261427d8988c1e4d0ac044919fb34d2994456323042f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3732-7432 0000-0002-4451-9651 0000-0002-6407-1276 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22093383 |
PMID | 35591071 |
PQID | 2663116232 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6d55239185414f5eb399b2646b7afb33 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9105145 proquest_miscellaneous_2667794971 proquest_journals_2663116232 gale_infotracacademiconefile_A781610841 pubmed_primary_35591071 crossref_citationtrail_10_3390_s22093383 crossref_primary_10_3390_s22093383 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220428 |
PublicationDateYYYYMMDD | 2022-04-28 |
PublicationDate_xml | – month: 4 year: 2022 text: 20220428 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ghorbani (ref_37) 2014; 19 Zhu (ref_54) 2019; 40 Liao (ref_44) 2011; 38 ref_14 Mirjalili (ref_28) 2016; 95 ref_57 Kirkpatrick (ref_31) 1983; 220 ref_55 ref_10 Houssein (ref_50) 2022; 46 Zhu (ref_2) 2012; 35 Hatamlou (ref_32) 2013; 222 Rao (ref_35) 2011; 43 ref_16 Mahdy (ref_49) 2022; 245 Mirjalili (ref_25) 2017; 114 Tsai (ref_12) 2015; 39 Li (ref_53) 2020; 24 ref_60 Alia (ref_13) 2017; 17 ZainEldin (ref_40) 2020; 11 ref_23 ref_21 Alsattar (ref_30) 2020; 53 ref_63 Kaveh (ref_34) 2012; 112–113 ref_62 Memarzadeh (ref_47) 2021; 44 Mantegna (ref_58) 1994; 49 Gouda (ref_48) 2021; 9 Yao (ref_20) 1999; 3 Mirjalili (ref_33) 2016; 96 Shan (ref_52) 2005; 20 Askari (ref_39) 2020; 195 Dhiman (ref_27) 2019; 165 Arora (ref_26) 2019; 23 Holland (ref_18) 1992; 267 Heidari (ref_29) 2019; 97 Koza (ref_19) 1994; 4 Wang (ref_56) 2017; 32 Zou (ref_11) 2005; 54 He (ref_61) 2021; 36 ref_38 Ozturk (ref_45) 2011; 11 Rebai (ref_4) 2015; 59 Naruei (ref_17) 2021; 183 Mirjalili (ref_24) 2014; 69 Geem (ref_36) 2001; 76 Mahdavi (ref_15) 2015; 295 Tariq (ref_5) 2019; 134 Akyildiz (ref_1) 2002; 38 Miao (ref_3) 2020; 96 Deepa (ref_7) 2021; 94 Simon (ref_22) 2008; 12 Zhang (ref_41) 2021; 2021 ref_46 Alqahtani (ref_51) 2022; 78 ref_43 ref_42 ref_9 ref_8 (ref_59) 2014; 23 ref_6 |
References_xml | – volume: 17 start-page: 882 year: 2017 ident: ref_13 article-title: Maximizing Wireless Sensor Network Coverage With Minimum Cost Using Harmony Search Algorithm publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2633409 – volume: 95 start-page: 51 year: 2016 ident: ref_28 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 295 start-page: 407 year: 2015 ident: ref_15 article-title: Metaheuristics in Large-Scale Global Continues Optimization: A Survey publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.10.042 – volume: 267 start-page: 66 year: 1992 ident: ref_18 article-title: Genetic Algorithms publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – ident: ref_14 doi: 10.1109/ICC.2017.7997101 – volume: 43 start-page: 303 year: 2011 ident: ref_35 article-title: Teaching-Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems publication-title: Comput.-Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 19 start-page: 177 year: 2014 ident: ref_37 article-title: Exchange Market Algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.02.006 – volume: 59 start-page: 11 year: 2015 ident: ref_4 article-title: Sensor Deployment Optimization Methods to Achieve Both Coverage and Connectivity in Wireless Sensor Networks publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2014.11.002 – volume: 39 start-page: 1305 year: 2015 ident: ref_12 article-title: Metaheuristics for the Deployment Problem of WSN: A Review publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2015.07.003 – volume: 96 start-page: 106602 year: 2020 ident: ref_3 article-title: Grey Wolf Optimizer with an Enhanced Hierarchy and Its Application to the Wireless Sensor Network Coverage Optimization Problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106602 – volume: 2021 start-page: 1 year: 2021 ident: ref_41 article-title: A Novel Coverage Optimization Strategy Based on Grey Wolf Algorithm Optimized by Simulated Annealing for Wireless Sensor Networks publication-title: Comput. Intell. Neurosci. – volume: 114 start-page: 163 year: 2017 ident: ref_25 article-title: Salp Swarm Algorithm: A Bio-Inspired Optimizer for Engineering Design Problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – ident: ref_38 doi: 10.1109/CEC.2007.4425083 – ident: ref_23 – volume: 38 start-page: 12180 year: 2011 ident: ref_44 article-title: A Sensor Deployment Approach Using Glowworm Swarm Optimization Algorithm in Wireless Sensor Networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.03.053 – volume: 36 start-page: 1558 year: 2021 ident: ref_61 article-title: Hybrid Cauchy Mutation and Uniform Distribution of Grasshopper Optimization Algorithm publication-title: Control Decis. – volume: 35 start-page: 619 year: 2012 ident: ref_2 article-title: A Survey on Coverage and Connectivity Issues in Wireless Sensor Networks publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2011.11.016 – volume: 11 start-page: 4177 year: 2020 ident: ref_40 article-title: An Improved Dynamic Deployment Technique Based-on Genetic Algorithm (IDDT-GA) for Maximizing Coverage in Wireless Sensor Networks publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-020-01698-5 – volume: 23 start-page: 333 year: 2014 ident: ref_59 article-title: A Novel Particle Swarm Optimization Algorithm with Levy Flight publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.06.034 – volume: 54 start-page: 978 year: 2005 ident: ref_11 article-title: A Distributed Coverage- and Connectivity-Centric Technique for Selecting Active Nodes in Wireless Sensor Networks publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2005.123 – volume: 3 start-page: 82 year: 1999 ident: ref_20 article-title: Evolutionary Programming Made Faster publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – volume: 222 start-page: 175 year: 2013 ident: ref_32 article-title: Black Hole: A New Heuristic Optimization Approach for Data Clustering publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.08.023 – ident: ref_43 doi: 10.1109/ICFST.2017.8210494 – volume: 20 start-page: 179 year: 2005 ident: ref_52 article-title: Chaotic Optimization Algorithm Based on Tent Map publication-title: Control Decis. – ident: ref_8 doi: 10.3390/s19122735 – volume: 220 start-page: 671 year: 1983 ident: ref_31 article-title: Optimization by Simulated Annealing publication-title: Science doi: 10.1126/science.220.4598.671 – ident: ref_62 – volume: 11 start-page: 6056 year: 2011 ident: ref_45 article-title: Probabilistic Dynamic Deployment of Wireless Sensor Networks by Artificial Bee Colony Algorithm publication-title: Sensors doi: 10.3390/s110606056 – volume: 46 start-page: 103848 year: 2022 ident: ref_50 article-title: Battery Parameter Identification Strategy Based on Modified Coot Optimization Algorithm publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103848 – ident: ref_57 doi: 10.1109/NABIC.2009.5393690 – ident: ref_10 doi: 10.3390/s21010184 – volume: 97 start-page: 849 year: 2019 ident: ref_29 article-title: Harris Hawks Optimization: Algorithm and Applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 195 start-page: 105709 year: 2020 ident: ref_39 article-title: Political Optimizer: A Novel Socio-Inspired Meta-Heuristic for Global Optimization publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105709 – volume: 245 start-page: 123321 year: 2022 ident: ref_49 article-title: Transient Stability Improvement of Wave Energy Conversion Systems Connected to Power Grid Using Anti-Windup-Coot Optimization Strategy publication-title: Energy doi: 10.1016/j.energy.2022.123321 – volume: 24 start-page: 3703 year: 2020 ident: ref_53 article-title: Modified Whale Optimization Algorithm Based on Tent Chaotic Mapping and Its Application in Structural Optimization publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-020-0504-5 – volume: 12 start-page: 702 year: 2008 ident: ref_22 article-title: Biogeography-Based Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – volume: 76 start-page: 60 year: 2001 ident: ref_36 article-title: A New Heuristic Optimization Algorithm: Harmony Search publication-title: Simulation doi: 10.1177/003754970107600201 – ident: ref_16 doi: 10.3390/math9182335 – ident: ref_63 – ident: ref_42 doi: 10.1109/IDAACS-SWS.2018.8525824 – ident: ref_21 – ident: ref_6 doi: 10.3390/s21010023 – volume: 165 start-page: 169 year: 2019 ident: ref_27 article-title: Seagull Optimization Algorithm: Theory and Its Applications for Large-Scale Industrial Engineering Problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.11.024 – ident: ref_46 doi: 10.3390/s21175869 – volume: 38 start-page: 393 year: 2002 ident: ref_1 article-title: Wireless Sensor Networks: A Survey publication-title: Comput. Netw. doi: 10.1016/S1389-1286(01)00302-4 – volume: 134 start-page: 198 year: 2019 ident: ref_5 article-title: A Mobile Code-Driven Trust Mechanism for Detecting Internal Attacks in Sensor Node-Powered IoT publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2019.08.013 – volume: 23 start-page: 715 year: 2019 ident: ref_26 article-title: Butterfly Optimization Algorithm: A Novel Approach for Global Optimization publication-title: Soft Comput. doi: 10.1007/s00500-018-3102-4 – volume: 9 start-page: 111616 year: 2021 ident: ref_48 article-title: Performance Assessment of Solar Generating Units Based on Coot Bird Metaheuristic Optimizer publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3103146 – volume: 40 start-page: 1510 year: 2019 ident: ref_54 article-title: Two-dimensional Sine-tent-based Hyper Chaotic Map and Its Application in Image Encryption publication-title: J. Chin. Comput. Syst. – volume: 112–113 start-page: 283 year: 2012 ident: ref_34 article-title: A New Meta-Heuristic Method: Ray Optimization publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.09.003 – volume: 94 start-page: 107359 year: 2021 ident: ref_7 article-title: Enhancing Whale Optimization Algorithm with Levy Flight for Coverage Optimization in Wireless Sensor Networks publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2021.107359 – volume: 44 start-page: 103401 year: 2021 ident: ref_47 article-title: A New Optimal Energy Storage System Model for Wind Power Producers Based on Long Short Term Memory and Coot Bird Search Algorithm publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103401 – volume: 69 start-page: 46 year: 2014 ident: ref_24 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 96 start-page: 120 year: 2016 ident: ref_33 article-title: SCA: A Sine Cosine Algorithm for Solving Optimization Problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – ident: ref_55 doi: 10.1002/9783527622979 – volume: 78 start-page: 8625 year: 2022 ident: ref_51 article-title: An Automatic Query Expansion Based on Hybrid CMO-COOT Algorithm for Optimized Information Retrieval publication-title: J. Supercomput. doi: 10.1007/s11227-021-04171-y – ident: ref_9 doi: 10.1109/VTCSpring.2014.7022965 – volume: 183 start-page: 115352 year: 2021 ident: ref_17 article-title: A New Optimization Method Based on COOT Bird Natural Life Model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115352 – volume: 32 start-page: 373 year: 2017 ident: ref_56 article-title: Welding Robot Path Planning Based on Levy-PSO publication-title: Control Decis. – volume: 4 start-page: 87 year: 1994 ident: ref_19 article-title: Genetic Programming as a Means for Programming Computers by Natural Selection publication-title: Stat. Comput. doi: 10.1007/BF00175355 – volume: 53 start-page: 2237 year: 2020 ident: ref_30 article-title: Novel Meta-Heuristic Bald Eagle Search Optimisation Algorithm publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09732-5 – ident: ref_60 – volume: 49 start-page: 4677 year: 1994 ident: ref_58 article-title: Fast, Accurate Algorithm for Numerical Simulation of Lévy Stable Stochastic Processes publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.49.4677 |
SSID | ssj0023338 |
Score | 2.4995568 |
Snippet | To address the problems of uneven distribution and low coverage of wireless sensor network (WSN) nodes in random deployment, a node coverage optimization... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3383 |
SubjectTerms | Algorithms Animal behavior Benchmarking chaotic tent map Communication Computer Simulation COOT bird optimization algorithm coverage optimization Data Collection Integer programming Linear programming Lévy flight Mathematical optimization opposition-based learning Optimization algorithms Query expansion Sensors Wireless networks Wireless sensor networks Wireless Technology - instrumentation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTu2hKoXSFKhchASXCL-yto-7KxBCKnsAVG6Wn2UlyFbL8v8ZJ9loo1bqhWPiSeSMx55vnPE3CB27FHTSOpbJc1kK4VzpolVlCkl5ryxxTeW5n9ejyztxdV_db5T6yjlhLT1wq7izUaggVtLgVgQVqYLYT2sHXnzkpE2ONzyfRJN1MNWFWhwir5ZHiENQf_bMWI7cFR94n4ak_--leMMXDfMkNxzPxSf0sUOMeNz2dBu9i_Vn9GGDR3AH3azz5_CixtOclAmrBJ7BavDUHbPE8xpb_OvmGk_AbYUsZ2vc7ijA5XQ2u8WT-TLg8ePvxXK-enjaRXcX57fTy7KrllB6AFmrUlIbBGcJIAGLjPqKRoBWVDAZlFbK0ygCsZ4IoakGzYkAnkgAfuJ5X5gl_gVt1Ys6fkU4iBhTlCAVdU6bsS7DjkiUDJIINyrQ6VqLxndU4rmixaOBkCIr3PQKL9BRL_qn5c_4l9AkD0UvkCmvmxtgCKYzBPM_QyjQSR5IkycmdMbb7nwBfFKmuDJjqQDdEiVogQ7WY226GftsAKhwSgEMsgL96JthruUfKLaOi5dGRsL6pSW8Yq81jb7PgNsAeeUWOTCawUcNW-r5Q8PnDc8BbK2-vYUW9tF7lg9oEFEydYC2VsuXeAiwaeW-NzPkFf1SEuE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgvMAD4nsdAxmEBC_R4o_UzhNqK8qExPqwTewt8udWaUtG2_3_u0vc0AjEY-JLZPvOd7-zz3eEfLLRl7EsQxadUJmU1mY2GJ1FH7Vz2uS2rTz382R8fC5_XBQXacNtncIqtzqxVdS-cbhHfgSGRDAGxpp_vf2dYdUoPF1NJTQekkcMCfCm-Px773AJ8L-6bEICXPujNefov2sxsEFtqv6_FfKORRpGS-6Yn_kz8jThRjrpGP2cPAj1C_JkJ5vgS3K6jaKjTU1nGJoJuoIuQCfcpMuWdFlTQ3-dntApGC-PdKam3b4CPM4WizM6Xa48nVxfwtg3VzevyPn829nsOEs1EzIHUGuTKWa8FDwCMOCBM1ewAACLSa68LrV2LEifG5dLWbIyWiE92CMJKErg7jCP4jXZq5s67BPqZQgxKKAKJQbPGIvgI-RaeZVLOx6RL9tZrFxKKI51La4rcCxwwqt-wkfkY09622XR-BfRFFnRE2Di6_ZFs7qs0jqqxr4A17kElCGZjEWwALAsgLqxVQaGAz_5jIyscHlCZ5xJtwxgSJjoqpooDRg315KNyOGW11Vat-vqj5SNyIe-GVYcHqOYOjR3LY0CLVYq-MWbTjT6PgN6A_yFLWogNINBDVvq5VWb1Ru-A_BaHPy_W2_JY44XMHKZcX1I9jaru_AOYNHGvm9l_x50ZQs9 priority: 102 providerName: ProQuest |
Title | Research on Coverage Optimization in a WSN Based on an Improved COOT Bird Algorithm |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35591071 https://www.proquest.com/docview/2663116232 https://www.proquest.com/docview/2667794971 https://pubmed.ncbi.nlm.nih.gov/PMC9105145 https://doaj.org/article/6d55239185414f5eb399b2646b7afb33 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELf28QIPiO8VRmUQErwEYseJnQeE2mplQlqL2Cr6FtmxvVXqEsg6Cf577tIkasQeeYmU3MWyzx_3O_t8R8hb423q09QFPo9kIIQxgXFaBd56ledKh6bOPHc2S04X4usyXu6RNsdmI8CbO007zCe1qNYffv_68xkm_Ce0OMFk_3jDOdrlKtonh6CQErTBzkR3mMAjoG2DCvXZe6qojtj_77q8o5j6TpM7Wmj6kDxo4CMdbfv7EdlzxWNyfyeo4BNy3jrT0bKgE_TQhCWDzmFpuG7uXNJVQTX9cT6jY9BhFvl0QbfbC_A6mc8v6HhVWTpaX5bVanN1_ZQspicXk9OgSZ0Q5IC4NoFk2oqIe8AH3HGWx8wBzmKCS6tSpXLmhA11HgqRstSbSFhQSwLAVISbxNxHz8hBURbuiFArnPNOApdL0YdGG8QgLlTSylCYZEDet1LM8iauOKa3WGdgX6DAs07gA_KmY_25DaZxF9MYu6JjwPjX9Yeyusya6ZQlNgYLOgWwIZjwsTOAswxgu8RIDc2BQt5hR2Y4bqAyuW4uG0CTMN5VNpIKoG6oBBuQ47avs3b0ZYBaIsYAGfIBed2RYeLhaYouXHlb80hYzFIJRTzfDo2uzgDiAIYhRfYGTa9RfUqxuqqDe8N_gGHjF_9DCi_JPY63NUIRcHVMDjbVrXsFGGpjhmRfLiU81fTLkByOT2bfvg_r_YhhPXf-AtIIHak |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQCHijcpBQwCwWXVXa83tg8IJYEqpW1yaCpyM_ba20Zqd0uSCvGn-I3M7KuJQNx63PWs5cc8vvGOZwh5azOnMqV8kKWxCDi3NrDeyCBzmUxTaUJbVp47GnWHJ_zrNJlukN_NXRgMq2x0YqmoXZHiGfkuGJI4isBYs0-XPwKsGoV_V5sSGhVbHPhfP8FlW3zc_wz7-46xvS-TwTCoqwoEKYCRZSAi43jMMjCdzLMoTSIPECTiTDippEwjz11o0pBzFanMxtyBxuaAM2I8P2VZDP3eIrc5noyD_IjptYMXg79XZS-KYxXuLhjD8wIZr9m8sjTA3wZgxQKuR2eumLu9-2Srxqm0VzHWA7Lh84fk3kr2wkfkuInao0VOBxgKCrqJjkEHXdSXO-ksp4Z-Ox7RPhhLh3Qmp9U5BjwOxuMJ7c_mjvbOT2Gtl2cXj8nJjazmE7KZF7l_Rqjj3mdeAJVXGKxjLIIdH0rhRMhtt0M-NKuo0zqBOdbRONfgyOCC63bBO-RNS3pZZe34F1Eft6IlwETb5YtifqprudVdl4CrrgDV8IhnibcA6CyAyK4VBqYDnbzHjdSoDmAwqalvNcCUMLGW7gkJmDqUPOqQnWavda0nFvqaqzvkddsMEo6_bUzui6uSRoDWVAK6eFqxRjtmQIuA97BFrDHN2qTWW_LZWZlFHL4DsJxs_39Yr8id4eToUB_ujw6ek7sML3-EPGByh2wu51f-BUCypX1ZygEl329a8P4AIddE0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkRAcKt4EChgEgssqu7Y39h4QSlKilkKC1FbkZvxsI7W7bZIK8df4dYz31UQgbj3uetayx56Zb7zjGYTeaG8zn2Uu8obyiDGtI-2UiLz1whihYl1Wnvs67u0esc_TdLqBfjd3YUJYZaMTS0VtCxPOyLtgSGiSgLEmXV-HRXzbGX08v4hCBanwp7Upp1FtkX336ye4b4sPezuw1m8JGX06HO5GdYWByAAwWUY8UZZR4sGMEkcSkyYO4EjCCLciE8IkjtlYmZixLMm8psyC9maAOWg4SyWeQr830E1OAVWBLPHplbNHwferMhlRmsXdBSHh7EDQNftXlgn42xisWMP1SM0V0ze6i7ZqzIr71Sa7hzZcfh_dWclk-AAdNBF8uMjxMISFgp7CE9BHZ_VFTzzLscLfD8Z4AIbTBjqV4-pMAx6Hk8khHszmFvdPj4HXy5Ozh-joWrj5CG3mRe6eIGyZc95xoHJZCNxROgAfFwtuecx0r4PeN1yUpk5mHmpqnEpwagLDZcvwDnrdkp5XGTz-RTQIS9EShKTb5YtifixrGZY9m4LbngHCYQnzqdMA7jQAyp7mCqYDnbwLCymDaoDBGFXfcIAphSRbss8F4OtYsKSDtpu1lrXOWMirHd5Br9pmkPbwC0flrrgsaTho0IxDF4-rrdGOGZAjYL_Qwtc2zdqk1lvy2UmZURy-A-CcPv3_sF6iWyBy8sveeP8Zuk3CPZCYRURso83l_NI9B3S21C9KMcDox3XL3R-Y4EkP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Coverage+Optimization+in+a+WSN+Based+on+an+Improved+COOT+Bird+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yihui+Huang&rft.au=Jing+Zhang&rft.au=Wei+Wei&rft.au=Tao+Qin&rft.date=2022-04-28&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=9&rft.spage=3383&rft_id=info:doi/10.3390%2Fs22093383&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6d55239185414f5eb399b2646b7afb33 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |