Research on Coverage Optimization in a WSN Based on an Improved COOT Bird Algorithm

To address the problems of uneven distribution and low coverage of wireless sensor network (WSN) nodes in random deployment, a node coverage optimization strategy with an improved COOT bird algorithm (COOTCLCO) is proposed. Firstly, the chaotic tent map is used to initialize the population, increase...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 9; p. 3383
Main Authors Huang, Yihui, Zhang, Jing, Wei, Wei, Qin, Tao, Fan, Yuancheng, Luo, Xuemei, Yang, Jing
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.04.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22093383

Cover

Abstract To address the problems of uneven distribution and low coverage of wireless sensor network (WSN) nodes in random deployment, a node coverage optimization strategy with an improved COOT bird algorithm (COOTCLCO) is proposed. Firstly, the chaotic tent map is used to initialize the population, increase the diversity of the population, and lay the foundation for the global search for the optimal solutions. Secondly, the Lévy flight strategy is used to perturb the individual positions to improve the search range of the population. Thirdly, Cauchy mutation and an opposition-based learning strategy are fused to perturb the optimal solutions to generate new solutions and enhance the ability of the algorithm to jump out of the local optimum. Finally, the COOTCLCO algorithm is applied to WSN coverage optimization problems. Simulation results show that COOTCLCO has a faster convergence speed and better search accuracy than several other typical algorithms on 23 benchmark test functions; meanwhile, the coverage rate of the COOTCLCO algorithm is increased by 9.654%, 13.888%, 6.188%, 5.39%, 1.31%, and 2.012% compared to particle swarm optimization (PSO), butterfly optimization algorithm (BOA), seagull optimization algorithm (SOA), whale optimization algorithm (WOA), Harris hawks optimization (HHO), and bald eagle search (BES), respectively. This means that in terms of coverage optimization effect, COOTCLCO can obtain a higher coverage rate compared to these algorithms. The experimental results demonstrate that COOTCLCO can effectively improve the coverage rate of sensor nodes and improve the distribution of nodes in WSN coverage optimization problems.
AbstractList To address the problems of uneven distribution and low coverage of wireless sensor network (WSN) nodes in random deployment, a node coverage optimization strategy with an improved COOT bird algorithm (COOTCLCO) is proposed. Firstly, the chaotic tent map is used to initialize the population, increase the diversity of the population, and lay the foundation for the global search for the optimal solutions. Secondly, the Lévy flight strategy is used to perturb the individual positions to improve the search range of the population. Thirdly, Cauchy mutation and an opposition-based learning strategy are fused to perturb the optimal solutions to generate new solutions and enhance the ability of the algorithm to jump out of the local optimum. Finally, the COOTCLCO algorithm is applied to WSN coverage optimization problems. Simulation results show that COOTCLCO has a faster convergence speed and better search accuracy than several other typical algorithms on 23 benchmark test functions; meanwhile, the coverage rate of the COOTCLCO algorithm is increased by 9.654%, 13.888%, 6.188%, 5.39%, 1.31%, and 2.012% compared to particle swarm optimization (PSO), butterfly optimization algorithm (BOA), seagull optimization algorithm (SOA), whale optimization algorithm (WOA), Harris hawks optimization (HHO), and bald eagle search (BES), respectively. This means that in terms of coverage optimization effect, COOTCLCO can obtain a higher coverage rate compared to these algorithms. The experimental results demonstrate that COOTCLCO can effectively improve the coverage rate of sensor nodes and improve the distribution of nodes in WSN coverage optimization problems.
To address the problems of uneven distribution and low coverage of wireless sensor network (WSN) nodes in random deployment, a node coverage optimization strategy with an improved COOT bird algorithm (COOTCLCO) is proposed. Firstly, the chaotic tent map is used to initialize the population, increase the diversity of the population, and lay the foundation for the global search for the optimal solutions. Secondly, the Lévy flight strategy is used to perturb the individual positions to improve the search range of the population. Thirdly, Cauchy mutation and an opposition-based learning strategy are fused to perturb the optimal solutions to generate new solutions and enhance the ability of the algorithm to jump out of the local optimum. Finally, the COOTCLCO algorithm is applied to WSN coverage optimization problems. Simulation results show that COOTCLCO has a faster convergence speed and better search accuracy than several other typical algorithms on 23 benchmark test functions; meanwhile, the coverage rate of the COOTCLCO algorithm is increased by 9.654%, 13.888%, 6.188%, 5.39%, 1.31%, and 2.012% compared to particle swarm optimization (PSO), butterfly optimization algorithm (BOA), seagull optimization algorithm (SOA), whale optimization algorithm (WOA), Harris hawks optimization (HHO), and bald eagle search (BES), respectively. This means that in terms of coverage optimization effect, COOTCLCO can obtain a higher coverage rate compared to these algorithms. The experimental results demonstrate that COOTCLCO can effectively improve the coverage rate of sensor nodes and improve the distribution of nodes in WSN coverage optimization problems.To address the problems of uneven distribution and low coverage of wireless sensor network (WSN) nodes in random deployment, a node coverage optimization strategy with an improved COOT bird algorithm (COOTCLCO) is proposed. Firstly, the chaotic tent map is used to initialize the population, increase the diversity of the population, and lay the foundation for the global search for the optimal solutions. Secondly, the Lévy flight strategy is used to perturb the individual positions to improve the search range of the population. Thirdly, Cauchy mutation and an opposition-based learning strategy are fused to perturb the optimal solutions to generate new solutions and enhance the ability of the algorithm to jump out of the local optimum. Finally, the COOTCLCO algorithm is applied to WSN coverage optimization problems. Simulation results show that COOTCLCO has a faster convergence speed and better search accuracy than several other typical algorithms on 23 benchmark test functions; meanwhile, the coverage rate of the COOTCLCO algorithm is increased by 9.654%, 13.888%, 6.188%, 5.39%, 1.31%, and 2.012% compared to particle swarm optimization (PSO), butterfly optimization algorithm (BOA), seagull optimization algorithm (SOA), whale optimization algorithm (WOA), Harris hawks optimization (HHO), and bald eagle search (BES), respectively. This means that in terms of coverage optimization effect, COOTCLCO can obtain a higher coverage rate compared to these algorithms. The experimental results demonstrate that COOTCLCO can effectively improve the coverage rate of sensor nodes and improve the distribution of nodes in WSN coverage optimization problems.
Audience Academic
Author Zhang, Jing
Luo, Xuemei
Qin, Tao
Wei, Wei
Yang, Jing
Huang, Yihui
Fan, Yuancheng
AuthorAffiliation 1 Electrical Engineering College, Guizhou University, Guiyang 550025, China; gs.yhhuang20@gzu.edu.cn (Y.H.); zhangjing@gzu.edu.cn (J.Z.); tqin@gzu.edu.cn (T.Q.); xmluo1@126.com (X.L.)
2 Power China Guizhou Electric Power Engineering Co., Ltd., Guiyang 550025, China; weiwei-gzy@powerchina.cn
3 Power China Guizhou Engineering Co., Ltd., Guiyang 550001, China; fanyc-gzgc@powerchina.cn
4 Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University, Guiyang 550025, China
AuthorAffiliation_xml – name: 1 Electrical Engineering College, Guizhou University, Guiyang 550025, China; gs.yhhuang20@gzu.edu.cn (Y.H.); zhangjing@gzu.edu.cn (J.Z.); tqin@gzu.edu.cn (T.Q.); xmluo1@126.com (X.L.)
– name: 3 Power China Guizhou Engineering Co., Ltd., Guiyang 550001, China; fanyc-gzgc@powerchina.cn
– name: 2 Power China Guizhou Electric Power Engineering Co., Ltd., Guiyang 550025, China; weiwei-gzy@powerchina.cn
– name: 4 Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University, Guiyang 550025, China
Author_xml – sequence: 1
  givenname: Yihui
  orcidid: 0000-0002-4451-9651
  surname: Huang
  fullname: Huang, Yihui
– sequence: 2
  givenname: Jing
  orcidid: 0000-0002-3732-7432
  surname: Zhang
  fullname: Zhang, Jing
– sequence: 3
  givenname: Wei
  surname: Wei
  fullname: Wei, Wei
– sequence: 4
  givenname: Tao
  surname: Qin
  fullname: Qin, Tao
– sequence: 5
  givenname: Yuancheng
  surname: Fan
  fullname: Fan, Yuancheng
– sequence: 6
  givenname: Xuemei
  surname: Luo
  fullname: Luo, Xuemei
– sequence: 7
  givenname: Jing
  orcidid: 0000-0002-6407-1276
  surname: Yang
  fullname: Yang, Jing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35591071$$D View this record in MEDLINE/PubMed
BookMark eNplkltrHCEUgKWkNMm2D_0DRehL-7CJ15nxpbBZelkIXWhS-iiOOrsuM7rV2UD763s2m4QkRVA5fn569Jyio5iiR-gtJWecK3JeGCOK84a_QCdUMDFtIHD0aH6MTkvZEMI4UK_QMZdSUVLTE3T1wxdvsl3jFPE83fhsVh4vt2MYwl8zBoiGiA3-dfUdX5ji3Z4zES-GbQba4flyeY0vQnZ41q9SDuN6eI1edqYv_s3dOEE_v3y-nn-bXi6_Luazy6mVpBmnNTVOcNbV0HlGraSesQruXLtGNY2lXjhiLBFCUdW1XDimlBCy4owTwTo-QYuD1yWz0dscBpP_6GSCvg2kvNImj8H2XldOSsYVbaSgopO-5Uq1rBJVWxtQc3B9Ori2u3bwzvo4ZtM_kT5diWGtV-lGwztKKiQIPtwJcvq982XUQyjW972JPu2KZlVV10qomgL6_hm6Sbsc4an2FKe0YpDiBJ0dqJWBBELsEpxroTk_BAsF0AWIz-qGVpQ0Yq999ziFh7vffzYA5wfA5lRK9p22Ybz9YzCHXlOi9-WkH8oJdnx8tuNe-j_7D5RyxJs
CitedBy_id crossref_primary_10_1016_j_aej_2024_07_052
crossref_primary_10_3390_s23052804
crossref_primary_10_3390_s25051467
crossref_primary_10_1515_mt_2023_0319
crossref_primary_10_1007_s00607_024_01349_z
crossref_primary_10_3390_s23084124
crossref_primary_10_1007_s12083_024_01637_7
crossref_primary_10_3390_app12115634
crossref_primary_10_1016_j_mex_2025_103176
crossref_primary_10_1007_s11227_023_05400_2
crossref_primary_10_1016_j_rineng_2024_103143
crossref_primary_10_3390_w15193417
crossref_primary_10_1007_s13369_025_10026_y
crossref_primary_10_1155_2023_9709608
crossref_primary_10_1007_s12053_024_10238_5
crossref_primary_10_1007_s43452_024_00976_9
crossref_primary_10_3390_biomimetics8010070
crossref_primary_10_1109_ACCESS_2023_3299031
crossref_primary_10_1109_ACCESS_2024_3365511
crossref_primary_10_1016_j_aej_2024_08_021
crossref_primary_10_3390_app13116628
crossref_primary_10_3390_s24154791
crossref_primary_10_1016_j_heliyon_2024_e34455
crossref_primary_10_1186_s41601_023_00289_8
crossref_primary_10_1007_s10586_024_04856_y
Cites_doi 10.1109/JSEN.2016.2633409
10.1016/j.advengsoft.2016.01.008
10.1016/j.ins.2014.10.042
10.1038/scientificamerican0792-66
10.1109/ICC.2017.7997101
10.1016/j.cad.2010.12.015
10.1016/j.asoc.2014.02.006
10.1016/j.cor.2014.11.002
10.1016/j.micpro.2015.07.003
10.1016/j.asoc.2020.106602
10.1016/j.advengsoft.2017.07.002
10.1109/CEC.2007.4425083
10.1016/j.eswa.2011.03.053
10.1016/j.jnca.2011.11.016
10.1007/s12652-020-01698-5
10.1016/j.asoc.2014.06.034
10.1109/TC.2005.123
10.1109/4235.771163
10.1016/j.ins.2012.08.023
10.1109/ICFST.2017.8210494
10.3390/s19122735
10.1126/science.220.4598.671
10.3390/s110606056
10.1016/j.est.2021.103848
10.1109/NABIC.2009.5393690
10.3390/s21010184
10.1016/j.future.2019.02.028
10.1016/j.knosys.2020.105709
10.1016/j.energy.2022.123321
10.1007/s12205-020-0504-5
10.1109/TEVC.2008.919004
10.1177/003754970107600201
10.3390/math9182335
10.1109/IDAACS-SWS.2018.8525824
10.3390/s21010023
10.1016/j.knosys.2018.11.024
10.3390/s21175869
10.1016/S1389-1286(01)00302-4
10.1016/j.jpdc.2019.08.013
10.1007/s00500-018-3102-4
10.1109/ACCESS.2021.3103146
10.1016/j.compstruc.2012.09.003
10.1016/j.compeleceng.2021.107359
10.1016/j.est.2021.103401
10.1016/j.advengsoft.2013.12.007
10.1016/j.knosys.2015.12.022
10.1002/9783527622979
10.1007/s11227-021-04171-y
10.1109/VTCSpring.2014.7022965
10.1016/j.eswa.2021.115352
10.1007/BF00175355
10.1007/s10462-019-09732-5
10.1103/PhysRevE.49.4677
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22093383
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection (ProQuest)
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_6d55239185414f5eb399b2646b7afb33
PMC9105145
A781610841
35591071
10_3390_s22093383
Genre Journal Article
GrantInformation_xml – fundername: NNSF of China (No.61640014), Industrial Project of Guizhou province (No. Qiankehe Zhicheng [2022]017, [2019] 2152), Innovation group of Guizhou Education Department (No. Qianjiaohe KY [2021]012), Science and Technology Fund of Guizhou Province (No. Qianke
  grantid: (No.61640014),(No. Qiankehe Zhicheng [2022]017, [2019] 2152), (No. Qianjiaohe KY [2021]012), (No. Qiankehe [2020]1Y266), CASE Library of IOT(KCALK201708), (No. 2015)
– fundername: NNSF of China
  grantid: 61640014; 61963009
– fundername: platform about IoT of Guiyang National High Technology Industry Development Zone
  grantid: No. 2015
– fundername: Innovation group of Guizhou Education Department
  grantid: [2021]012
– fundername: CASE Library of IoT
  grantid: KCALK201708
– fundername: Industrial Project of Guizhou Province
  grantid: [2022]Yiban017; [2019]2152
– fundername: Science and Technology Fund of Guizhou Province
  grantid: [2020]1Y266
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c508t-71ad432f7432e21c51e2261427d8988c1e4d0ac044919fb34d2994456323042f3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:13:35 EDT 2025
Thu Aug 21 18:19:47 EDT 2025
Thu Sep 04 17:50:05 EDT 2025
Fri Jul 25 20:36:07 EDT 2025
Tue Jun 10 21:13:01 EDT 2025
Wed Feb 19 02:13:01 EST 2025
Thu Apr 24 22:58:18 EDT 2025
Tue Jul 01 02:41:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords coverage optimization
chaotic tent map
opposition-based learning
wireless sensor networks
COOT bird optimization algorithm
Lévy flight
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-71ad432f7432e21c51e2261427d8988c1e4d0ac044919fb34d2994456323042f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3732-7432
0000-0002-4451-9651
0000-0002-6407-1276
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22093383
PMID 35591071
PQID 2663116232
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_6d55239185414f5eb399b2646b7afb33
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9105145
proquest_miscellaneous_2667794971
proquest_journals_2663116232
gale_infotracacademiconefile_A781610841
pubmed_primary_35591071
crossref_citationtrail_10_3390_s22093383
crossref_primary_10_3390_s22093383
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220428
PublicationDateYYYYMMDD 2022-04-28
PublicationDate_xml – month: 4
  year: 2022
  text: 20220428
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ghorbani (ref_37) 2014; 19
Zhu (ref_54) 2019; 40
Liao (ref_44) 2011; 38
ref_14
Mirjalili (ref_28) 2016; 95
ref_57
Kirkpatrick (ref_31) 1983; 220
ref_55
ref_10
Houssein (ref_50) 2022; 46
Zhu (ref_2) 2012; 35
Hatamlou (ref_32) 2013; 222
Rao (ref_35) 2011; 43
ref_16
Mahdy (ref_49) 2022; 245
Mirjalili (ref_25) 2017; 114
Tsai (ref_12) 2015; 39
Li (ref_53) 2020; 24
ref_60
Alia (ref_13) 2017; 17
ZainEldin (ref_40) 2020; 11
ref_23
ref_21
Alsattar (ref_30) 2020; 53
ref_63
Kaveh (ref_34) 2012; 112–113
ref_62
Memarzadeh (ref_47) 2021; 44
Mantegna (ref_58) 1994; 49
Gouda (ref_48) 2021; 9
Yao (ref_20) 1999; 3
Mirjalili (ref_33) 2016; 96
Shan (ref_52) 2005; 20
Askari (ref_39) 2020; 195
Dhiman (ref_27) 2019; 165
Arora (ref_26) 2019; 23
Holland (ref_18) 1992; 267
Heidari (ref_29) 2019; 97
Koza (ref_19) 1994; 4
Wang (ref_56) 2017; 32
Zou (ref_11) 2005; 54
He (ref_61) 2021; 36
ref_38
Ozturk (ref_45) 2011; 11
Rebai (ref_4) 2015; 59
Naruei (ref_17) 2021; 183
Mirjalili (ref_24) 2014; 69
Geem (ref_36) 2001; 76
Mahdavi (ref_15) 2015; 295
Tariq (ref_5) 2019; 134
Akyildiz (ref_1) 2002; 38
Miao (ref_3) 2020; 96
Deepa (ref_7) 2021; 94
Simon (ref_22) 2008; 12
Zhang (ref_41) 2021; 2021
ref_46
Alqahtani (ref_51) 2022; 78
ref_43
ref_42
ref_9
ref_8
(ref_59) 2014; 23
ref_6
References_xml – volume: 17
  start-page: 882
  year: 2017
  ident: ref_13
  article-title: Maximizing Wireless Sensor Network Coverage With Minimum Cost Using Harmony Search Algorithm
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2633409
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_28
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 295
  start-page: 407
  year: 2015
  ident: ref_15
  article-title: Metaheuristics in Large-Scale Global Continues Optimization: A Survey
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.10.042
– volume: 267
  start-page: 66
  year: 1992
  ident: ref_18
  article-title: Genetic Algorithms
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– ident: ref_14
  doi: 10.1109/ICC.2017.7997101
– volume: 43
  start-page: 303
  year: 2011
  ident: ref_35
  article-title: Teaching-Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems
  publication-title: Comput.-Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 19
  start-page: 177
  year: 2014
  ident: ref_37
  article-title: Exchange Market Algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.02.006
– volume: 59
  start-page: 11
  year: 2015
  ident: ref_4
  article-title: Sensor Deployment Optimization Methods to Achieve Both Coverage and Connectivity in Wireless Sensor Networks
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2014.11.002
– volume: 39
  start-page: 1305
  year: 2015
  ident: ref_12
  article-title: Metaheuristics for the Deployment Problem of WSN: A Review
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2015.07.003
– volume: 96
  start-page: 106602
  year: 2020
  ident: ref_3
  article-title: Grey Wolf Optimizer with an Enhanced Hierarchy and Its Application to the Wireless Sensor Network Coverage Optimization Problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106602
– volume: 2021
  start-page: 1
  year: 2021
  ident: ref_41
  article-title: A Novel Coverage Optimization Strategy Based on Grey Wolf Algorithm Optimized by Simulated Annealing for Wireless Sensor Networks
  publication-title: Comput. Intell. Neurosci.
– volume: 114
  start-page: 163
  year: 2017
  ident: ref_25
  article-title: Salp Swarm Algorithm: A Bio-Inspired Optimizer for Engineering Design Problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– ident: ref_38
  doi: 10.1109/CEC.2007.4425083
– ident: ref_23
– volume: 38
  start-page: 12180
  year: 2011
  ident: ref_44
  article-title: A Sensor Deployment Approach Using Glowworm Swarm Optimization Algorithm in Wireless Sensor Networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.03.053
– volume: 36
  start-page: 1558
  year: 2021
  ident: ref_61
  article-title: Hybrid Cauchy Mutation and Uniform Distribution of Grasshopper Optimization Algorithm
  publication-title: Control Decis.
– volume: 35
  start-page: 619
  year: 2012
  ident: ref_2
  article-title: A Survey on Coverage and Connectivity Issues in Wireless Sensor Networks
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2011.11.016
– volume: 11
  start-page: 4177
  year: 2020
  ident: ref_40
  article-title: An Improved Dynamic Deployment Technique Based-on Genetic Algorithm (IDDT-GA) for Maximizing Coverage in Wireless Sensor Networks
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-01698-5
– volume: 23
  start-page: 333
  year: 2014
  ident: ref_59
  article-title: A Novel Particle Swarm Optimization Algorithm with Levy Flight
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.06.034
– volume: 54
  start-page: 978
  year: 2005
  ident: ref_11
  article-title: A Distributed Coverage- and Connectivity-Centric Technique for Selecting Active Nodes in Wireless Sensor Networks
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2005.123
– volume: 3
  start-page: 82
  year: 1999
  ident: ref_20
  article-title: Evolutionary Programming Made Faster
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– volume: 222
  start-page: 175
  year: 2013
  ident: ref_32
  article-title: Black Hole: A New Heuristic Optimization Approach for Data Clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.08.023
– ident: ref_43
  doi: 10.1109/ICFST.2017.8210494
– volume: 20
  start-page: 179
  year: 2005
  ident: ref_52
  article-title: Chaotic Optimization Algorithm Based on Tent Map
  publication-title: Control Decis.
– ident: ref_8
  doi: 10.3390/s19122735
– volume: 220
  start-page: 671
  year: 1983
  ident: ref_31
  article-title: Optimization by Simulated Annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– ident: ref_62
– volume: 11
  start-page: 6056
  year: 2011
  ident: ref_45
  article-title: Probabilistic Dynamic Deployment of Wireless Sensor Networks by Artificial Bee Colony Algorithm
  publication-title: Sensors
  doi: 10.3390/s110606056
– volume: 46
  start-page: 103848
  year: 2022
  ident: ref_50
  article-title: Battery Parameter Identification Strategy Based on Modified Coot Optimization Algorithm
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103848
– ident: ref_57
  doi: 10.1109/NABIC.2009.5393690
– ident: ref_10
  doi: 10.3390/s21010184
– volume: 97
  start-page: 849
  year: 2019
  ident: ref_29
  article-title: Harris Hawks Optimization: Algorithm and Applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 195
  start-page: 105709
  year: 2020
  ident: ref_39
  article-title: Political Optimizer: A Novel Socio-Inspired Meta-Heuristic for Global Optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105709
– volume: 245
  start-page: 123321
  year: 2022
  ident: ref_49
  article-title: Transient Stability Improvement of Wave Energy Conversion Systems Connected to Power Grid Using Anti-Windup-Coot Optimization Strategy
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123321
– volume: 24
  start-page: 3703
  year: 2020
  ident: ref_53
  article-title: Modified Whale Optimization Algorithm Based on Tent Chaotic Mapping and Its Application in Structural Optimization
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-020-0504-5
– volume: 12
  start-page: 702
  year: 2008
  ident: ref_22
  article-title: Biogeography-Based Optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– volume: 76
  start-page: 60
  year: 2001
  ident: ref_36
  article-title: A New Heuristic Optimization Algorithm: Harmony Search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– ident: ref_16
  doi: 10.3390/math9182335
– ident: ref_63
– ident: ref_42
  doi: 10.1109/IDAACS-SWS.2018.8525824
– ident: ref_21
– ident: ref_6
  doi: 10.3390/s21010023
– volume: 165
  start-page: 169
  year: 2019
  ident: ref_27
  article-title: Seagull Optimization Algorithm: Theory and Its Applications for Large-Scale Industrial Engineering Problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.11.024
– ident: ref_46
  doi: 10.3390/s21175869
– volume: 38
  start-page: 393
  year: 2002
  ident: ref_1
  article-title: Wireless Sensor Networks: A Survey
  publication-title: Comput. Netw.
  doi: 10.1016/S1389-1286(01)00302-4
– volume: 134
  start-page: 198
  year: 2019
  ident: ref_5
  article-title: A Mobile Code-Driven Trust Mechanism for Detecting Internal Attacks in Sensor Node-Powered IoT
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2019.08.013
– volume: 23
  start-page: 715
  year: 2019
  ident: ref_26
  article-title: Butterfly Optimization Algorithm: A Novel Approach for Global Optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3102-4
– volume: 9
  start-page: 111616
  year: 2021
  ident: ref_48
  article-title: Performance Assessment of Solar Generating Units Based on Coot Bird Metaheuristic Optimizer
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3103146
– volume: 40
  start-page: 1510
  year: 2019
  ident: ref_54
  article-title: Two-dimensional Sine-tent-based Hyper Chaotic Map and Its Application in Image Encryption
  publication-title: J. Chin. Comput. Syst.
– volume: 112–113
  start-page: 283
  year: 2012
  ident: ref_34
  article-title: A New Meta-Heuristic Method: Ray Optimization
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2012.09.003
– volume: 94
  start-page: 107359
  year: 2021
  ident: ref_7
  article-title: Enhancing Whale Optimization Algorithm with Levy Flight for Coverage Optimization in Wireless Sensor Networks
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2021.107359
– volume: 44
  start-page: 103401
  year: 2021
  ident: ref_47
  article-title: A New Optimal Energy Storage System Model for Wind Power Producers Based on Long Short Term Memory and Coot Bird Search Algorithm
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103401
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_24
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 96
  start-page: 120
  year: 2016
  ident: ref_33
  article-title: SCA: A Sine Cosine Algorithm for Solving Optimization Problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– ident: ref_55
  doi: 10.1002/9783527622979
– volume: 78
  start-page: 8625
  year: 2022
  ident: ref_51
  article-title: An Automatic Query Expansion Based on Hybrid CMO-COOT Algorithm for Optimized Information Retrieval
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-04171-y
– ident: ref_9
  doi: 10.1109/VTCSpring.2014.7022965
– volume: 183
  start-page: 115352
  year: 2021
  ident: ref_17
  article-title: A New Optimization Method Based on COOT Bird Natural Life Model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115352
– volume: 32
  start-page: 373
  year: 2017
  ident: ref_56
  article-title: Welding Robot Path Planning Based on Levy-PSO
  publication-title: Control Decis.
– volume: 4
  start-page: 87
  year: 1994
  ident: ref_19
  article-title: Genetic Programming as a Means for Programming Computers by Natural Selection
  publication-title: Stat. Comput.
  doi: 10.1007/BF00175355
– volume: 53
  start-page: 2237
  year: 2020
  ident: ref_30
  article-title: Novel Meta-Heuristic Bald Eagle Search Optimisation Algorithm
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09732-5
– ident: ref_60
– volume: 49
  start-page: 4677
  year: 1994
  ident: ref_58
  article-title: Fast, Accurate Algorithm for Numerical Simulation of Lévy Stable Stochastic Processes
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.49.4677
SSID ssj0023338
Score 2.4995568
Snippet To address the problems of uneven distribution and low coverage of wireless sensor network (WSN) nodes in random deployment, a node coverage optimization...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3383
SubjectTerms Algorithms
Animal behavior
Benchmarking
chaotic tent map
Communication
Computer Simulation
COOT bird optimization algorithm
coverage optimization
Data Collection
Integer programming
Linear programming
Lévy flight
Mathematical optimization
opposition-based learning
Optimization algorithms
Query expansion
Sensors
Wireless networks
Wireless sensor networks
Wireless Technology - instrumentation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTu2hKoXSFKhchASXCL-yto-7KxBCKnsAVG6Wn2UlyFbL8v8ZJ9loo1bqhWPiSeSMx55vnPE3CB27FHTSOpbJc1kK4VzpolVlCkl5ryxxTeW5n9ejyztxdV_db5T6yjlhLT1wq7izUaggVtLgVgQVqYLYT2sHXnzkpE2ONzyfRJN1MNWFWhwir5ZHiENQf_bMWI7cFR94n4ak_--leMMXDfMkNxzPxSf0sUOMeNz2dBu9i_Vn9GGDR3AH3azz5_CixtOclAmrBJ7BavDUHbPE8xpb_OvmGk_AbYUsZ2vc7ijA5XQ2u8WT-TLg8ePvxXK-enjaRXcX57fTy7KrllB6AFmrUlIbBGcJIAGLjPqKRoBWVDAZlFbK0ygCsZ4IoakGzYkAnkgAfuJ5X5gl_gVt1Ys6fkU4iBhTlCAVdU6bsS7DjkiUDJIINyrQ6VqLxndU4rmixaOBkCIr3PQKL9BRL_qn5c_4l9AkD0UvkCmvmxtgCKYzBPM_QyjQSR5IkycmdMbb7nwBfFKmuDJjqQDdEiVogQ7WY226GftsAKhwSgEMsgL96JthruUfKLaOi5dGRsL6pSW8Yq81jb7PgNsAeeUWOTCawUcNW-r5Q8PnDc8BbK2-vYUW9tF7lg9oEFEydYC2VsuXeAiwaeW-NzPkFf1SEuE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgvMAD4nsdAxmEBC_R4o_UzhNqK8qExPqwTewt8udWaUtG2_3_u0vc0AjEY-JLZPvOd7-zz3eEfLLRl7EsQxadUJmU1mY2GJ1FH7Vz2uS2rTz382R8fC5_XBQXacNtncIqtzqxVdS-cbhHfgSGRDAGxpp_vf2dYdUoPF1NJTQekkcMCfCm-Px773AJ8L-6bEICXPujNefov2sxsEFtqv6_FfKORRpGS-6Yn_kz8jThRjrpGP2cPAj1C_JkJ5vgS3K6jaKjTU1nGJoJuoIuQCfcpMuWdFlTQ3-dntApGC-PdKam3b4CPM4WizM6Xa48nVxfwtg3VzevyPn829nsOEs1EzIHUGuTKWa8FDwCMOCBM1ewAACLSa68LrV2LEifG5dLWbIyWiE92CMJKErg7jCP4jXZq5s67BPqZQgxKKAKJQbPGIvgI-RaeZVLOx6RL9tZrFxKKI51La4rcCxwwqt-wkfkY09622XR-BfRFFnRE2Di6_ZFs7qs0jqqxr4A17kElCGZjEWwALAsgLqxVQaGAz_5jIyscHlCZ5xJtwxgSJjoqpooDRg315KNyOGW11Vat-vqj5SNyIe-GVYcHqOYOjR3LY0CLVYq-MWbTjT6PgN6A_yFLWogNINBDVvq5VWb1Ru-A_BaHPy_W2_JY44XMHKZcX1I9jaru_AOYNHGvm9l_x50ZQs9
  priority: 102
  providerName: ProQuest
Title Research on Coverage Optimization in a WSN Based on an Improved COOT Bird Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/35591071
https://www.proquest.com/docview/2663116232
https://www.proquest.com/docview/2667794971
https://pubmed.ncbi.nlm.nih.gov/PMC9105145
https://doaj.org/article/6d55239185414f5eb399b2646b7afb33
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELf28QIPiO8VRmUQErwEYseJnQeE2mplQlqL2Cr6FtmxvVXqEsg6Cf577tIkasQeeYmU3MWyzx_3O_t8R8hb423q09QFPo9kIIQxgXFaBd56ledKh6bOPHc2S04X4usyXu6RNsdmI8CbO007zCe1qNYffv_68xkm_Ce0OMFk_3jDOdrlKtonh6CQErTBzkR3mMAjoG2DCvXZe6qojtj_77q8o5j6TpM7Wmj6kDxo4CMdbfv7EdlzxWNyfyeo4BNy3jrT0bKgE_TQhCWDzmFpuG7uXNJVQTX9cT6jY9BhFvl0QbfbC_A6mc8v6HhVWTpaX5bVanN1_ZQspicXk9OgSZ0Q5IC4NoFk2oqIe8AH3HGWx8wBzmKCS6tSpXLmhA11HgqRstSbSFhQSwLAVISbxNxHz8hBURbuiFArnPNOApdL0YdGG8QgLlTSylCYZEDet1LM8iauOKa3WGdgX6DAs07gA_KmY_25DaZxF9MYu6JjwPjX9Yeyusya6ZQlNgYLOgWwIZjwsTOAswxgu8RIDc2BQt5hR2Y4bqAyuW4uG0CTMN5VNpIKoG6oBBuQ47avs3b0ZYBaIsYAGfIBed2RYeLhaYouXHlb80hYzFIJRTzfDo2uzgDiAIYhRfYGTa9RfUqxuqqDe8N_gGHjF_9DCi_JPY63NUIRcHVMDjbVrXsFGGpjhmRfLiU81fTLkByOT2bfvg_r_YhhPXf-AtIIHak
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQCHijcpBQwCwWXVXa83tg8IJYEqpW1yaCpyM_ba20Zqd0uSCvGn-I3M7KuJQNx63PWs5cc8vvGOZwh5azOnMqV8kKWxCDi3NrDeyCBzmUxTaUJbVp47GnWHJ_zrNJlukN_NXRgMq2x0YqmoXZHiGfkuGJI4isBYs0-XPwKsGoV_V5sSGhVbHPhfP8FlW3zc_wz7-46xvS-TwTCoqwoEKYCRZSAi43jMMjCdzLMoTSIPECTiTDippEwjz11o0pBzFanMxtyBxuaAM2I8P2VZDP3eIrc5noyD_IjptYMXg79XZS-KYxXuLhjD8wIZr9m8sjTA3wZgxQKuR2eumLu9-2Srxqm0VzHWA7Lh84fk3kr2wkfkuInao0VOBxgKCrqJjkEHXdSXO-ksp4Z-Ox7RPhhLh3Qmp9U5BjwOxuMJ7c_mjvbOT2Gtl2cXj8nJjazmE7KZF7l_Rqjj3mdeAJVXGKxjLIIdH0rhRMhtt0M-NKuo0zqBOdbRONfgyOCC63bBO-RNS3pZZe34F1Eft6IlwETb5YtifqprudVdl4CrrgDV8IhnibcA6CyAyK4VBqYDnbzHjdSoDmAwqalvNcCUMLGW7gkJmDqUPOqQnWavda0nFvqaqzvkddsMEo6_bUzui6uSRoDWVAK6eFqxRjtmQIuA97BFrDHN2qTWW_LZWZlFHL4DsJxs_39Yr8id4eToUB_ujw6ek7sML3-EPGByh2wu51f-BUCypX1ZygEl329a8P4AIddE0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkRAcKt4EChgEgssqu7Y39h4QSlKilkKC1FbkZvxsI7W7bZIK8df4dYz31UQgbj3uetayx56Zb7zjGYTeaG8zn2Uu8obyiDGtI-2UiLz1whihYl1Wnvs67u0esc_TdLqBfjd3YUJYZaMTS0VtCxPOyLtgSGiSgLEmXV-HRXzbGX08v4hCBanwp7Upp1FtkX336ye4b4sPezuw1m8JGX06HO5GdYWByAAwWUY8UZZR4sGMEkcSkyYO4EjCCLciE8IkjtlYmZixLMm8psyC9maAOWg4SyWeQr830E1OAVWBLPHplbNHwferMhlRmsXdBSHh7EDQNftXlgn42xisWMP1SM0V0ze6i7ZqzIr71Sa7hzZcfh_dWclk-AAdNBF8uMjxMISFgp7CE9BHZ_VFTzzLscLfD8Z4AIbTBjqV4-pMAx6Hk8khHszmFvdPj4HXy5Ozh-joWrj5CG3mRe6eIGyZc95xoHJZCNxROgAfFwtuecx0r4PeN1yUpk5mHmpqnEpwagLDZcvwDnrdkp5XGTz-RTQIS9EShKTb5YtifixrGZY9m4LbngHCYQnzqdMA7jQAyp7mCqYDnbwLCymDaoDBGFXfcIAphSRbss8F4OtYsKSDtpu1lrXOWMirHd5Br9pmkPbwC0flrrgsaTho0IxDF4-rrdGOGZAjYL_Qwtc2zdqk1lvy2UmZURy-A-CcPv3_sF6iWyBy8sveeP8Zuk3CPZCYRURso83l_NI9B3S21C9KMcDox3XL3R-Y4EkP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Coverage+Optimization+in+a+WSN+Based+on+an+Improved+COOT+Bird+Algorithm&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yihui+Huang&rft.au=Jing+Zhang&rft.au=Wei+Wei&rft.au=Tao+Qin&rft.date=2022-04-28&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=9&rft.spage=3383&rft_id=info:doi/10.3390%2Fs22093383&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6d55239185414f5eb399b2646b7afb33
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon