Large variation in waterlogging tolerance and recovery among the three subspecies of Trifolium subterranean L. is related to root and shoot responses

Aims Tolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover ( Trifolium subterraneum L.) to identify tolerance mechanisms, in order to guide future subclover breeding activities. Methods Three cultivars each of ssp. yanninicum , subterraneum and...

Full description

Saved in:
Bibliographic Details
Published inPlant and Soil Vol. 464; no. 1/2; pp. 467 - 487
Main Authors Enkhbat, Gereltsetseg, Ryan, Megan H., Foster, Kevin J., Nichols, Phillip G. H., Kotula, Lukasz, Hamblin, Ann, Inukai, Yoshiaki, Erskine, William
Format Journal Article
LanguageEnglish
Published Cham Springer Science + Business Media 01.07.2021
Springer Science and Business Media LLC
Springer International Publishing
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims Tolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover ( Trifolium subterraneum L.) to identify tolerance mechanisms, in order to guide future subclover breeding activities. Methods Three cultivars each of ssp. yanninicum , subterraneum and brachycalycinum were grown in a controlled environment glasshouse with T. michelianum as a waterlogging-tolerant control. After 28 days of growth two treatments were imposed for 35 days: free-draining (control) and waterlogged. A 21-day recovery period followed. Results After 35 days, waterlogging reduced shoot dry weight (DW) to 58–27% and root DW to 35–21% of respective controls in each subspecies. Shoot relative growth rate (RGR) of yanninicum was least affected (78–104% of control), compared to subterraneum (51–100%) and brachycalycinum (45–69%). The subterraneum cv. Denmark had a similar response to subspecies yanninicum . Shoot RGR of T. michelianum was 138% of its control. After recovery, all traits (except tap root length) recovered to control values. Up to 21 days, the main traits associated with waterlogging tolerance (shoot and root growth) were high petiole length, less petiole anthocyanin pigmentation and high leaf chlorophyll content, but by 35 days these were a high proportion of leaf biomass, high stomatal conductance and enhanced root porosity. Average root diameter and nodulation rates were unrelated to waterlogging tolerance. Conclusions Subspecies yanninicum had superior waterlogging tolerance. Priority traits for easily-assessed indicators of waterlogging tolerance are less reduction of leaf size and high stomatal conductance.
AbstractList AimsTolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover (Trifolium subterraneum L.) to identify tolerance mechanisms, in order to guide future subclover breeding activities.MethodsThree cultivars each of ssp. yanninicum, subterraneum and brachycalycinum were grown in a controlled environment glasshouse with T. michelianum as a waterlogging-tolerant control. After 28 days of growth two treatments were imposed for 35 days: free-draining (control) and waterlogged. A 21-day recovery period followed.ResultsAfter 35 days, waterlogging reduced shoot dry weight (DW) to 58–27% and root DW to 35–21% of respective controls in each subspecies. Shoot relative growth rate (RGR) of yanninicum was least affected (78–104% of control), compared to subterraneum (51–100%) and brachycalycinum (45–69%). The subterraneum cv. Denmark had a similar response to subspecies yanninicum. Shoot RGR of T. michelianum was 138% of its control. After recovery, all traits (except tap root length) recovered to control values. Up to 21 days, the main traits associated with waterlogging tolerance (shoot and root growth) were high petiole length, less petiole anthocyanin pigmentation and high leaf chlorophyll content, but by 35 days these were a high proportion of leaf biomass, high stomatal conductance and enhanced root porosity. Average root diameter and nodulation rates were unrelated to waterlogging tolerance.ConclusionsSubspecies yanninicum had superior waterlogging tolerance. Priority traits for easily-assessed indicators of waterlogging tolerance are less reduction of leaf size and high stomatal conductance.
Aims Tolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover ( Trifolium subterraneum L.) to identify tolerance mechanisms, in order to guide future subclover breeding activities. Methods Three cultivars each of ssp. yanninicum , subterraneum and brachycalycinum were grown in a controlled environment glasshouse with T. michelianum as a waterlogging-tolerant control. After 28 days of growth two treatments were imposed for 35 days: free-draining (control) and waterlogged. A 21-day recovery period followed. Results After 35 days, waterlogging reduced shoot dry weight (DW) to 58–27% and root DW to 35–21% of respective controls in each subspecies. Shoot relative growth rate (RGR) of yanninicum was least affected (78–104% of control), compared to subterraneum (51–100%) and brachycalycinum (45–69%). The subterraneum cv. Denmark had a similar response to subspecies yanninicum . Shoot RGR of T. michelianum was 138% of its control. After recovery, all traits (except tap root length) recovered to control values. Up to 21 days, the main traits associated with waterlogging tolerance (shoot and root growth) were high petiole length, less petiole anthocyanin pigmentation and high leaf chlorophyll content, but by 35 days these were a high proportion of leaf biomass, high stomatal conductance and enhanced root porosity. Average root diameter and nodulation rates were unrelated to waterlogging tolerance. Conclusions Subspecies yanninicum had superior waterlogging tolerance. Priority traits for easily-assessed indicators of waterlogging tolerance are less reduction of leaf size and high stomatal conductance.
Aims Tolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover (Trifolium subterraneum L.) to identify tolerance mechanisms, in order to guide future subclover breeding activities. Methods Three cultivars each of ssp. yanninicum, subterraneum and brachycalycinum were grown in a controlled environment glasshouse with T. michelianum as a waterlogging-tolerant control. After 28 days of growth two treatments were imposed for 35 days: free-draining (control) and waterlogged. A 21-day recovery period followed. Results After 35 days, waterlogging reduced shoot dry weight (DW) to 58-27% and root DW to 35-21% of respective controls in each subspecies. Shoot relative growth rate (RGR) of yanninicum was least affected (78-104% of control), compared to subterraneum (51-100%) and brachycalycinum (45-69%). The subterraneum cv. Denmark had a similar response to subspecies yanninicum. Shoot RGR of T. michelianum was 138% of its control. After recovery, all traits (except tap root length) recovered to control values. Up to 21 days, the main traits associated with waterlogging tolerance (shoot and root growth) were high petiole length, less petiole anthocyanin pigmentation and high leaf chlorophyll content, but by 35 days these were a high proportion of leaf biomass, high stomatal conductance and enhanced root porosity. Average root diameter and nodulation rates were unrelated to waterlogging tolerance. Conclusions Subspecies yanninicum had superior waterlogging tolerance. Priority traits for easily-assessed indicators of waterlogging tolerance are less reduction of leaf size and high stomatal conductance.
Audience Academic
Author Enkhbat, Gereltsetseg
Nichols, Phillip G. H.
Kotula, Lukasz
Ryan, Megan H.
Inukai, Yoshiaki
Hamblin, Ann
Foster, Kevin J.
Erskine, William
Author_xml – sequence: 1
  givenname: Gereltsetseg
  surname: Enkhbat
  fullname: Enkhbat, Gereltsetseg
– sequence: 2
  givenname: Megan H.
  surname: Ryan
  fullname: Ryan, Megan H.
– sequence: 3
  givenname: Kevin J.
  surname: Foster
  fullname: Foster, Kevin J.
– sequence: 4
  givenname: Phillip G. H.
  surname: Nichols
  fullname: Nichols, Phillip G. H.
– sequence: 5
  givenname: Lukasz
  surname: Kotula
  fullname: Kotula, Lukasz
– sequence: 6
  givenname: Ann
  surname: Hamblin
  fullname: Hamblin, Ann
– sequence: 7
  givenname: Yoshiaki
  surname: Inukai
  fullname: Inukai, Yoshiaki
– sequence: 8
  givenname: William
  surname: Erskine
  fullname: Erskine, William
BackLink https://cir.nii.ac.jp/crid/1871709542971982720$$DView record in CiNii
BookMark eNp9Uctq3DAUNSWFTtL-QKEgaBfdeHol2ZK9DKEvGOgmhe6ELF87GjzSVPKk5EP6v70elxayCELv89DVuSwuQgxYFK85bDmA_pA551CVIHgJVVu3JTwrNrzWsqxBqotiAyBFCbr98aK4zHkPy56rTfF7Z9OI7N4mb2cfA_OB_bIzpimOow8jm-OEyQaHzIaeJXTxHtMDs4e4XN4h9YTI8qnLR3QeM4sDu01-iJM_HZZzEiMBtIHttsxn0pjIoCdllmKcz7r5blklzMcYMuaXxfPBThlf_Z2viu-fPt7efCl33z5_vbnela6GZi5Vix23nA_AdaPrTqGTjXat1KLC3gJa1TUWZAdCd30tqqqvGhia2slBQ4fyqni_6h5T_HnCPJuDzw6nid4bT9kIpZbv5bUg6NtH0H08pUCvM6KuNNet0JpQ2xU12gmND0Ock3XUejx4R5kNns6vlSJCo6QiglgJLsWcEw7mmPzBpgfDwSzeZo3WULTmHK0BIjWPSM7P5_jIzU9PU-VKzeQTRkz_y3iS9W5lBe_Jaxl5QyVAW1ei1bxthBYL7M0K2-c5pn-V0F0raxDyD6rLz8I
CitedBy_id crossref_primary_10_3390_agronomy11122487
crossref_primary_10_1111_aab_12856
crossref_primary_10_1071_CP21226
crossref_primary_10_1071_FP22151
crossref_primary_10_3390_plants12234033
crossref_primary_10_1007_s11104_022_05404_6
crossref_primary_10_4081_nhs_2023_641
Cites_doi 10.1104/pp.17.01157
10.1007/s11284-009-0583-8
10.1007/s10681-006-4723-8
10.1046/j.0028-646X.2001.00318.x
10.3389/fpls.2015.01165
10.1016/j.ympev.2006.01.004
10.1071/FP09144
10.1111/plb.12014
10.1146/annurev.arplant.59.032607.092752
10.1007/s11284-012-0978-9
10.1016/S0168-9452(03)00128-6
10.1071/EA9720614
10.1111/j.1469-8137.1987.tb00153.x
10.1016/j.envexpbot.2011.11.020
10.1016/S0065-2296(08)60089-0
10.1071/PP9740009
10.1046/j.1365-3040.2003.00846.x
10.1071/SR11266
10.1007/s10722-003-4449-6
10.1111/pce.12676
10.1071/AR9640231
10.1007/BF00011133
10.1093/jxb/46.3.285
10.1007/s10722-005-0777-z
10.1093/aobpla/plv040
10.1071/CP19491
10.1111/j.1469-8137.1987.tb00894.x
10.1080/00087114.1987.10797816
10.1093/jxb/erq271
10.1071/CP13071
10.1111/j.1751-1097.1999.tb01944.x
10.1046/j.1365-3040.1999.00472.x
10.1071/EA07110
10.1007/BF00012313
10.1071/AR9690819
10.1016/j.fcr.2007.03.016
10.1071/CP11303
10.1111/j.1365-3040.1990.tb02144.x
10.1071/CP13118
10.4141/cjps2013-175
10.1371/journal.pone.0223699
10.1111/j.1469-8137.1983.tb04864.x
10.1071/A96074
10.1071/AR03097
10.1071/AR9840399
10.1006/anbo.2001.1506
10.1007/978-3-642-10305-6_8
10.1071/CP08123
10.1071/FP02192
10.1071/EA00086_CU
10.1071/AR9941063
10.1111/gfs.12212
10.1071/CP10270
10.1071/EA9920611
10.1016/B978-0-12-424120-6.50007-9
10.1071/FP05043
10.1006/anbo.1993.1137
10.1023/A:1024573305997
10.1007/s11104-019-04254-z
10.1016/S0065-2113(06)94001-2
10.1071/EA02141
10.1071/EA9730711
10.1071/EA9670367
10.1093/jxb/45.2.193
10.1093/aob/mcx202
10.1017/S0021859614000793
10.1071/EA9850351
10.21273/HORTSCI.18.5.698
10.1007/s11104-005-5084-0
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
COPYRIGHT 2021 Springer
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
DBID RYH
AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7S9
L.6
DOI 10.1007/s11104-021-04959-0
DatabaseName CiNii Complete
CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database


AGRICOLA
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Botany
Ecology
EISSN 1573-5036
EndPage 487
ExternalDocumentID A667178636
10_1007_s11104_021_04959_0
27293502
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GroupedDBID -~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
203
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2XV
2~F
2~H
30V
4.4
406
408
409
40D
40E
5VS
67N
67Z
6NX
78A
7X2
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBHK
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEEJZ
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
B0M
BA0
BBNVY
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EMK
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JZLTJ
KDC
KOV
KPH
LAK
LK8
LLZTM
M0K
M4Y
M7P
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3A
S3B
SA0
SAP
SBL
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WJK
WK8
Y6R
YLTOR
Z45
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
RYH
-4W
-56
-5G
-BR
-EM
-Y2
1SB
2.D
28-
2P1
2VQ
3SX
3V.
53G
5QI
88A
AANXM
AARHV
AAYTO
ABQSL
ABULA
ABXSQ
ACBXY
ACHIC
ACKIV
ADINQ
ADULT
ADYPR
AEBTG
AEFIE
AEKMD
AFEXP
AFFNX
AFGCZ
AGGDS
AIDBO
AJBLW
AQVQM
BBWZM
BDATZ
CAG
COF
EJD
EN4
FINBP
FSGXE
GQ6
H13
JSODD
KOW
M0L
N2Q
NDZJH
O9-
OVD
P0-
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SBY
SCLPG
T16
TEORI
UZXMN
VFIZW
WK6
XOL
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
AAYXX
ADHKG
AGQPQ
CITATION
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c508t-69eb1a11f017875b6ec387c93724eda0ea6b8a03b027bd5244d480f85c3f70be3
IEDL.DBID BENPR
ISSN 0032-079X
IngestDate Fri Jul 11 07:20:19 EDT 2025
Fri Jul 25 19:00:19 EDT 2025
Tue Jun 10 20:31:53 EDT 2025
Tue Jul 01 01:47:13 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Fri Feb 21 02:48:11 EST 2025
Fri Jun 27 01:13:15 EDT 2025
Thu Jul 03 21:36:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1/2
Keywords Leaf size
Root porosity
Pasture legumes
Stomatal conductance
Anthocyanin pigmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-69eb1a11f017875b6ec387c93724eda0ea6b8a03b027bd5244d480f85c3f70be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8760-7099
0000-0002-9716-5252
0000-0003-0749-0199
0000-0001-6778-5525
0000-0002-2074-4299
PQID 2547179277
PQPubID 54098
PageCount 21
ParticipantIDs proquest_miscellaneous_2661007152
proquest_journals_2547179277
gale_infotracacademiconefile_A667178636
crossref_primary_10_1007_s11104_021_04959_0
crossref_citationtrail_10_1007_s11104_021_04959_0
springer_journals_10_1007_s11104_021_04959_0
nii_cinii_1871709542971982720
jstor_primary_27293502
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and Soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2021
Publisher Springer Science + Business Media
Springer Science and Business Media LLC
Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer Science + Business Media
– name: Springer Science and Business Media LLC
– name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References ThomsonCJArmstrongWWatersIGreenwayHAerenchyma formation and associated oxygen movement in seminal and nodal roots of wheatPlant Cell Environ199013395403
PonnamperumaFNKozlowskiTTEffects of flooding on soilsFlooding and plant growth1984San DiegoAcademic Press945
PianoEPreliminary observations on the structure and variability of Sardinian populations of subterranean cloverGenet Agr1984387590
Fiedler S, Vepraskas MJ, Richardson JL (2007) Soil redox potential: importance, field measurements, and observations. In: Advances in Agronomy, vol 94. Elsevier Science & Technology, San Diego, pp 1–54
SiddiqueKHMErskineWHobsonKKnightsEJLeonforteAKhanTNPaullJGReddenRMaterneMCool-season grain legume improvement in Australia -use of genetic resourcesCrop Pasture Sci2013643473601:CAS:528:DC%2BC3sXht12jt7bM
YamauchiTColmerTDPedersenONakazonoMRegulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stressPlant Physiol2018176111811301:CAS:528:DC%2BC1cXhs1eqsbjE29118247
Falistocco E, Piccirilli M, Falcinelli M (1987) Cytotaxonomy of Trifolium Subterraneum L. Caryologia 40:123–130
FrancisCMObservations on the ecology of subterranean clover in Greece and Crete : a report based on a seed collection tour 19761976Perth, WAWestern Australian Dept. of Agriculture
Chalker-ScottLEnvironmental significance of anthocyanins in plant stress responsesPhotochem Photobiol199970191:CAS:528:DyaK1MXksFOktr0%3D
SetterTLWatersIReview of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oatsPlant Soil20032531341:CAS:528:DC%2BD3sXltVemsb4%3D
GibberdMRCocksPSEffect of waterlogging and soil pH on the micro-distribution of naturalised annual legumesAust J Agric Res199748223230
ChapmanSCChakrabortySMDreccerMFHowdenSMPlant adaptation to climate change-opportunities and priorities in breedingCrop Pasture Sci201263251268
Huang Bingru B, Johnson JW, Nesmith S, Bridges DC (1994) Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply. J Exp Bot 45:193-202
TalbotRJEtheringtonJRBryantJAComparative studies of plant growth and distribution in relation to waterlogging. XII. Growth, photosynthetic capacity and metal ion uptake in Salix caprea and S. cinerea ssp. OleifoliaNew Phytol19871055635741:CAS:528:DyaL2sXktlKrtrk%3D
BramleyHTyermanSRoot water transport under waterlogged conditions and the roles of aquaporinsWaterlogging signalling and tolerance in plants2010Berlin Heidelberg, Berlin, HeidelbergSpringer151180
FrancisCDevittAThe effect of waterlogging on the growth and isoflavone concentration of Trifolium subterraneum LAust J Agric Res196920819825
NicholsPGHFosterKJPianoEPecettiLKaurPGhamkharKCollinsWJGenetic improvement of subterranean clover (Trifolium subterraneum L.). 1. Germplasm, traits and future prospectsCrop Pasture Sci2013643123461:CAS:528:DC%2BC3sXht12jt7nE
GibberdMRColmerTDCocksPSRoot porosity and oxygen movement in waterlogging-tolerant Trifolium tomentosum and -intolerant Trifolium glomeratumPlant Cell Environ19992211611168
MarshallTMillingtonAFlooding tolerance of some Western Australian pasture legumesAust J Exp Agric19677367371
AshrafMMehmoodSEffects of waterlogging on growth and some physiological parameters of four Brassica speciesPlant Soil19901212032091:CAS:528:DyaK3cXhsFGntbs%3D
CocksPColonization of a south Australian grassland by invading Mediterranean annual and perennial pasture speciesAust J Agric Res19944510631076
Stoddard FL, Balko C, Erskine W, Khan HR, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:167–186
PorquedduCAtesSLouhaichiMKyriazopoulosAPMorenoGPozoAOvalleCEwingMANicholsPGHGrasslands in 'Old World' and 'New World' Mediterranean-climate zones: past trends, current status and future research prioritiesGrass Forage Sci201671135
RenBZhangJLiXFanXDongSLiuPZhaoBEffects of waterlogging on the yield and growth of summer maize under field conditionsCan J Plant Sci2013942331
Short R, McConnell C (2001) Extent and impacts of dryland salinity. Report 202. Department of Agriculture and Food, Western Australia, Perth
MalikAIColmerTDLambersHSetterTLSchortemeyerMShort-term waterlogging has long-term effects on the growth and physiology of wheatNew Phytol2002153225236
KiddDRDi BellaCEKotulaLColmerTDRyanMHStrikerGGDefining the waterlogging tolerance of Ornithopus spp. for the temperate pasture zone of southern AustraliaCrop Pasture Sci2020715065161:CAS:528:DC%2BB3cXpslygt7Y%3D
ReedKSchroderPEalesJMcDonaldRChinJComparative productivity of Trifolium subterraneum and T. yanninicum in South-Western VictoriaAust J Exp Agric198525351361
Nichols PGH, Collins WJ, Barbetti MJ (1996) Registered cultivars of subterranean clover -their characteristics, origin and identification. Bulletin no. 4327. Chief executive officer, Agriculture Western Australia
SmethurstCFShabalaSScreening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll contentFunct Plant Biol20033033534332689016
Malik AI, Ailewe TI, Erskine W (2015) Tolerance of three grain legume species to transient waterlogging. AoB Plants 7:plv040
JustinSHFWArmstrongWThe anatomical characteristics of roots and plant response to soil floodingNew Phytol1987106465495
RogersMEColmerTDNicholsPGHHughesSJFrostKCornwallDChandraSMillerSMCraigADSalinity and waterlogging tolerance amongst accessions of Messina (Melilotus siculus)Crop Pasture Sci201162225235
Williams R, Evans L, Ludwig L (1964) Estimation of leaf area for clover and lucerne. Aust J Agric Res 15:231-233
SandralGAPeoplesMBWilsonBCDTaylorJNRodhamCAGrowth, seed set and nitrogen fixation of 28 annual legume species on 3 Vertosol soils in southern New South WalesAnim Prod Sci20034311011115
Ewing MA, Poole C, Skinner P, Bennett A (2001) Sulla and other forage species for southern Australia. RIRDC publication no 01/41. Rural industries research and development corporation, Barton WA
Minchin FR, Summerfield RJ (1976) Symbiotic nitrogen fixation and vegetative growth of cowpea (Vigna Unguiculata (L.) Walp.) in waterlogged condition. Plant Soil 45:113-127
HoMDRosasJCBrownKMLynchJPRoot architectural tradeoffs for water and phosphorus acquisitionFunct Plant Biol2005327377481:CAS:528:DC%2BD2MXmvVOgsLw%3D32689171
RealDWardenJSandralGAColmerTDWaterlogging tolerance and recovery of 10 Lotus speciesAust J Exp Agric200848480487
RogersMEColmerTEFrostKHenryDCornwallDHulmEHughesSSnowballRNicholsPGHCraigADThe influence of NaCl salinity and hypoxia on aspects of growth in Trifolium speciesCrop Pasture Sci20096071821:CAS:528:DC%2BD1MXhtVegs78%3D
YaduvanshiNPSSetterTLSharmaSKSinghKNKulshreshthaNInfluence of waterlogging on yield of wheat (Triticum aestivum), redox potentials, and concentrations of microelements in different soils in India and AustraliaSoil Res2012504894991:CAS:528:DC%2BC38Xhtl2lsL%2FE
PughRWittyJFMyttonLRMinchinFRThe effect of waterlogging on nitrogen fixation and nodule morphology in soil-grown white clover (Trifolium repens L.)J Exp Bot1995462852901:CAS:528:DyaK2MXks1Cltb8%3D
NicholsPGHNuttBJEvansPMCraigADPengellyBCDearBSLloydDLRevellCKNairRMEwingMAHowiesonJGAurichtGAHowieJHSandralGACarrSJDe KoningCTHackneyBFCrockerGJSnowballRHughesSJHallEJFosterKJSkinnerPWBarbettiMJYouMPNew annual and short-lived perennial pasture legumes for Australian agriculture −15 years of revolutionField Crops Res20071041023
RogersMEWestDWThe effects of rootzone salinity and hypoxia on shoot and root growth in Trifolium speciesAnn Bot199372503509
Peak JW, Morley FHW (1973) Comparison of introduced lines of Trifolium subterraneum subsp. yanninicum with cultivars of T. subterraneum. 3 Irrigated and dryland sward trials at Canberra, Australian Capital Territory. Field station record 12. Division of plant industry, CSIRO (Australia)
Bailey-SerresJVoesenekLACJFlooding stress: acclimations and genetic diversityAnnu Rev Plant Biol2008593133391:CAS:528:DC%2BD1cXntFaqsLc%3D18444902
ColmerTDVoesenekLACJFlooding tolerance: suites of plant traits in variable environmentsFunct Plant Biol2009366656811:STN:280:DC%2BB38jkvVCrtw%3D%3D32688679
CollinsWJRossiterRCHaynesYBrownAHDMarshallDRIdentification of subterranean clover cultivars and their genetic relationships by isozyme analysisCrop Pasture Sci198435399411
Hamilton G, Bakker D, Houlebrook D, Spann C (2000) Raised beds prevent waterlogging and increase productivity. Journal of the Department of Agriculture, Western Australia 41
Armstrong W (1980) Aeration in higher plants. In: Woolhouse HW (ed) Advances in botanical research, vol 7. Elsevier Science & Technology, pp 225-332
FrancisCMDevittACSteelePInfluence of flooding on the alcohol dehydrogenase activity of roots of Trifolium subterraneum LFunct Plant Biol197419131:CAS:528:DyaE2cXhtlSltb8%3D
StrikerGMworiaJKFlooding stress on plants: anatomical, morphological and physiological responsesBotany2012IntechOpen
TeakleNLBowmanSBarrett-LennardEGRealDColmerTDComparisons of annual pasture legumes in growth, ion regulation and root porosity demonstrate that Melilotus siculus has exceptional tolerance to combinations of salinity and waterloggingEnviron Exp Bot2012771751841:CAS:528:DC%2BC38Xht1Ontbg%3D
YatesRJAbaidooRHowiesonJHowiesonJDilworthMField experiments with rhizobiaWorking with rhizobia2016CanberraAustralian Centre for International Agricultural Centre
HerzogMStrikerGGColmerTDPedersenOMechanisms of waterlogging tolerance in wheat -a review of root and shoot physiologyPlant Cell Environ201639106810861:CAS:528:DC%2BC28XlvVaitLg%3D26565998
KonnerupDToroGPedersenOColmerTDWaterlogging tolerance, tissue nitrogen and oxygen transport in the forage legume Melilotus siculus: a comparison of nodulated and nitrate-fed plantsAnn Bot20181216997091:CAS:528:DC%2BC1MXmt1Sru7c%3D293515755853006
VoesenekLACJSasidharanREthylene- and oxygen signalling-drive plant survival during floodingPlant Biol2013154264351:CAS:528:DC%2BC3sXosVKks7w%3D23574304
ColmerTDLong-dist
WJ Collins (4959_CR13) 1984; 35
TD Colmer (4959_CR15) 2011; 62
SC Chapman (4959_CR11) 2012; 63
MR Gibberd (4959_CR31) 2001; 88
4959_CR1
I Raskin (4959_CR60) 1983; 18
G Striker (4959_CR77) 2005; 276
4959_CR3
D Konnerup (4959_CR41) 2018; 121
TL Setter (4959_CR69) 2003; 253
ME Rogers (4959_CR65) 2009; 60
KHM Siddique (4959_CR71) 2013; 64
A Nakai (4959_CR48) 2009; 24
T Marshall (4959_CR45) 1967; 7
LACJ Voesenek (4959_CR81) 2013; 15
A Craig (4959_CR17) 1992; 32
4959_CR46
MR Gibberd (4959_CR30) 1999; 22
4959_CR44
4959_CR49
4959_CR47
B Ren (4959_CR63) 2013; 94
AI Malik (4959_CR43) 2002; 153
CF Smethurst (4959_CR72) 2003; 30
M Herzog (4959_CR33) 2016; 39
C Francis (4959_CR26) 1973; 13
M Ashraf (4959_CR6) 1993; 70
MD Ho (4959_CR34) 2005; 32
GA Sandral (4959_CR68) 2003; 43
GG Striker (4959_CR75) 2012; 27
ME Rogers (4959_CR64) 1993; 72
NL Teakle (4959_CR79) 2012; 77
TD Colmer (4959_CR16) 2009; 36
NPS Yaduvanshi (4959_CR83) 2012; 50
RJ Talbot (4959_CR78) 1987; 105
G Piluzza (4959_CR56) 2005; 52
P Cocks (4959_CR12) 1994; 45
4959_CR54
A Jarvis (4959_CR37) 2010
C Porqueddu (4959_CR58) 2016; 71
DR Kidd (4959_CR40) 2020; 71
GG Striker (4959_CR76) 2017; 68
MR Gibberd (4959_CR29) 1997; 48
J Bailey-Serres (4959_CR8) 2008; 59
ME Rogers (4959_CR66) 2011; 62
PGH Nichols (4959_CR50) 2007; 104
SHFW Justin (4959_CR38) 1987; 106
AD Craig (4959_CR18) 2000; 40
J Katznelson (4959_CR39) 1965; 14
BS Rosso (4959_CR67) 2005; 52
4959_CR70
L Chalker-Scott (4959_CR10) 1999; 70
4959_CR20
C Francis (4959_CR25) 1969; 20
4959_CR23
4959_CR21
4959_CR22
R Pugh (4959_CR59) 1995; 46
M Ashraf (4959_CR7) 1990; 121
G Striker (4959_CR74) 2012
T Yamauchi (4959_CR84) 2018; 176
L Kotula (4959_CR42) 2019; 444
M Ashraf (4959_CR5) 2003; 165
FN Ponnamperuma (4959_CR57) 1984
W Patrick (4959_CR53) 1996
D Real (4959_CR61) 2008; 48
TD Colmer (4959_CR14) 2003; 26
CM Francis (4959_CR27) 1974; 1
4959_CR82
RJ Yates (4959_CR85) 2016
4959_CR73
PGH Nichols (4959_CR51) 2013; 64
E Piano (4959_CR55) 1984; 38
4959_CR35
4959_CR32
R Hunt (4959_CR36) 1982
NW Albert (4959_CR2) 2015; 6
H Bramley (4959_CR9) 2010
W Armstrong (4959_CR4) 1983; 94
CJ Thomson (4959_CR80) 1990; 13
A Devitt (4959_CR19) 1972; 12
K Reed (4959_CR62) 1985; 25
CM Francis (4959_CR24) 1976
K Ghamkhar (4959_CR28) 2015; 153
J Pang (4959_CR52) 2004; 55
References_xml – reference: YaduvanshiNPSSetterTLSharmaSKSinghKNKulshreshthaNInfluence of waterlogging on yield of wheat (Triticum aestivum), redox potentials, and concentrations of microelements in different soils in India and AustraliaSoil Res2012504894991:CAS:528:DC%2BC38Xhtl2lsL%2FE
– reference: ColmerTDVoesenekLACJFlooding tolerance: suites of plant traits in variable environmentsFunct Plant Biol2009366656811:STN:280:DC%2BB38jkvVCrtw%3D%3D32688679
– reference: JustinSHFWArmstrongWThe anatomical characteristics of roots and plant response to soil floodingNew Phytol1987106465495
– reference: DevittAFrancisCThe effect of waterlogging on the mineral nutrient content of "Trifolium subterraneum"Aust J Exp Agric1972126141:CAS:528:DyaE3sXot1WrtA%3D%3D
– reference: StrikerGMworiaJKFlooding stress on plants: anatomical, morphological and physiological responsesBotany2012IntechOpen
– reference: Minchin FR, Summerfield RJ (1976) Symbiotic nitrogen fixation and vegetative growth of cowpea (Vigna Unguiculata (L.) Walp.) in waterlogged condition. Plant Soil 45:113-127
– reference: CraigADSandralGADearBSLattaRAEvansPMHillNLRegister of Australian herbage plant cultivars, B: legumes, 1: clover: Trifolium michelianum Savi (balansa clover) cv. FrontierAust J Exp Agric20004012011202
– reference: Chalker-ScottLEnvironmental significance of anthocyanins in plant stress responsesPhotochem Photobiol199970191:CAS:528:DyaK1MXksFOktr0%3D
– reference: AshrafMMehmoodSEffects of waterlogging on growth and some physiological parameters of four Brassica speciesPlant Soil19901212032091:CAS:528:DyaK3cXhsFGntbs%3D
– reference: KiddDRDi BellaCEKotulaLColmerTDRyanMHStrikerGGDefining the waterlogging tolerance of Ornithopus spp. for the temperate pasture zone of southern AustraliaCrop Pasture Sci2020715065161:CAS:528:DC%2BB3cXpslygt7Y%3D
– reference: KatznelsonJMorleyFHWA taxonomic revison of sect. Calycomorphum of the genus Trifolium. I. the geocarpic speciesIsr J Bot196514112134
– reference: MarshallTMillingtonAFlooding tolerance of some Western Australian pasture legumesAust J Exp Agric19677367371
– reference: RealDWardenJSandralGAColmerTDWaterlogging tolerance and recovery of 10 Lotus speciesAust J Exp Agric200848480487
– reference: Bailey-SerresJVoesenekLACJFlooding stress: acclimations and genetic diversityAnnu Rev Plant Biol2008593133391:CAS:528:DC%2BD1cXntFaqsLc%3D18444902
– reference: MalikAIColmerTDLambersHSetterTLSchortemeyerMShort-term waterlogging has long-term effects on the growth and physiology of wheatNew Phytol2002153225236
– reference: SmethurstCFShabalaSScreening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll contentFunct Plant Biol20033033534332689016
– reference: Falistocco E, Piccirilli M, Falcinelli M (1987) Cytotaxonomy of Trifolium Subterraneum L. Caryologia 40:123–130
– reference: GibberdMRCocksPSEffect of waterlogging and soil pH on the micro-distribution of naturalised annual legumesAust J Agric Res199748223230
– reference: AshrafMRelationships between leaf gas exchange characteristics and growth of differently adapted populations of blue panicgrass (Panicum antidotale Retz.) under salinity or waterloggingPlant Sci200316569751:CAS:528:DC%2BD3sXks1Wlsbg%3D
– reference: NicholsPGHNuttBJEvansPMCraigADPengellyBCDearBSLloydDLRevellCKNairRMEwingMAHowiesonJGAurichtGAHowieJHSandralGACarrSJDe KoningCTHackneyBFCrockerGJSnowballRHughesSJHallEJFosterKJSkinnerPWBarbettiMJYouMPNew annual and short-lived perennial pasture legumes for Australian agriculture −15 years of revolutionField Crops Res20071041023
– reference: PorquedduCAtesSLouhaichiMKyriazopoulosAPMorenoGPozoAOvalleCEwingMANicholsPGHGrasslands in 'Old World' and 'New World' Mediterranean-climate zones: past trends, current status and future research prioritiesGrass Forage Sci201671135
– reference: RossoBSPaganoEMEvaluation of introduced and naturalised populations of red clover (Trifolium pratense L.) at Pergamino EEA-INTA, ArgentinaGenet Resour Crop Evol200552507511
– reference: NicholsPGHFosterKJPianoEPecettiLKaurPGhamkharKCollinsWJGenetic improvement of subterranean clover (Trifolium subterraneum L.). 1. Germplasm, traits and future prospectsCrop Pasture Sci2013643123461:CAS:528:DC%2BC3sXht12jt7nE
– reference: RaskinIA method for measuring leaf volume, density, thickness, and internal gas volumeHortScience198318698699
– reference: Huang Bingru B, Johnson JW, Nesmith S, Bridges DC (1994) Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply. J Exp Bot 45:193-202
– reference: PatrickWGambrellRPFaulknerSPSparksDPageAHelmkePLoeppertRSoltanpourPNTabatabaiMAJohnstonCTSumnerMERedox measurements of soilsMethods of soil analysis part 3 -chemical methods1996American Society of Agronomy, Madison, WISoil Science Society of America
– reference: FrancisCMObservations on the ecology of subterranean clover in Greece and Crete : a report based on a seed collection tour 19761976Perth, WAWestern Australian Dept. of Agriculture
– reference: PonnamperumaFNKozlowskiTTEffects of flooding on soilsFlooding and plant growth1984San DiegoAcademic Press945
– reference: RenBZhangJLiXFanXDongSLiuPZhaoBEffects of waterlogging on the yield and growth of summer maize under field conditionsCan J Plant Sci2013942331
– reference: CocksPColonization of a south Australian grassland by invading Mediterranean annual and perennial pasture speciesAust J Agric Res19944510631076
– reference: Nichols PGH, Collins WJ, Barbetti MJ (1996) Registered cultivars of subterranean clover -their characteristics, origin and identification. Bulletin no. 4327. Chief executive officer, Agriculture Western Australia
– reference: SiddiqueKHMErskineWHobsonKKnightsEJLeonforteAKhanTNPaullJGReddenRMaterneMCool-season grain legume improvement in Australia -use of genetic resourcesCrop Pasture Sci2013643473601:CAS:528:DC%2BC3sXht12jt7bM
– reference: NakaiAYurugiYKisanukiHGrowth responses of Salix gracilistyla cuttings to a range of substrate moisture and oxygen availabilityEcol Res20092410571065
– reference: StrikerGGTime is on our side: the importance of considering a recovery period when assessing flooding tolerance in plantsEcol Res201227983987
– reference: HoMDRosasJCBrownKMLynchJPRoot architectural tradeoffs for water and phosphorus acquisitionFunct Plant Biol2005327377481:CAS:528:DC%2BD2MXmvVOgsLw%3D32689171
– reference: PangJZhouMMendhamNShaballaSGrowth and physiological responses of six barley genotypes to waterlogging and subsequent recoveryAust J Agric Res200455895895
– reference: FrancisCDevittAThe effect of waterlogging on the growth and isoflavone concentration of Trifolium subterraneum LAust J Agric Res196920819825
– reference: YamauchiTColmerTDPedersenONakazonoMRegulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stressPlant Physiol2018176111811301:CAS:528:DC%2BC1cXhs1eqsbjE29118247
– reference: Short R, McConnell C (2001) Extent and impacts of dryland salinity. Report 202. Department of Agriculture and Food, Western Australia, Perth
– reference: Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL (2006) Molecular phylogenetics of the clover genus (Trifolium-Leguminosae). Mol Phylogen Evol 39:688–705
– reference: StrikerGInsaustiPGrimoldiAPloschukEVasellatiVPhysiological and anatomical basis of differential tolerance to soil flooding of Lotus corniculatus L. and Lotus glaber millPlant Soil20052763013111:CAS:528:DC%2BD2MXht1KnsL3N
– reference: RogersMEColmerTEFrostKHenryDCornwallDHulmEHughesSSnowballRNicholsPGHCraigADThe influence of NaCl salinity and hypoxia on aspects of growth in Trifolium speciesCrop Pasture Sci20096071821:CAS:528:DC%2BD1MXhtVegs78%3D
– reference: HuntRPlant growth curves: the functional approach to plant growth analysis1982LondonEdward Arnold
– reference: PughRWittyJFMyttonLRMinchinFRThe effect of waterlogging on nitrogen fixation and nodule morphology in soil-grown white clover (Trifolium repens L.)J Exp Bot1995462852901:CAS:528:DyaK2MXks1Cltb8%3D
– reference: Abdi AI, Nichols PGH, Kaur P, Wintle BJ, Erskine W (2020) Morphological diversity within a core collection of subterranean clover (Trifolium subterraneum L.): lessons in pasture adaptation from the wild. PloS One 15:e0223699–e0223699
– reference: BramleyHTyermanSRoot water transport under waterlogged conditions and the roles of aquaporinsWaterlogging signalling and tolerance in plants2010Berlin Heidelberg, Berlin, HeidelbergSpringer151180
– reference: Ewing MA, Poole C, Skinner P, Bennett A (2001) Sulla and other forage species for southern Australia. RIRDC publication no 01/41. Rural industries research and development corporation, Barton WA
– reference: ColmerTDLong-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from rootsPlant Cell Environ20032617361:CAS:528:DC%2BD3sXhtlKrtLs%3D
– reference: GhamkharKNicholsPGHErskineWSnowballRMurilloMAppelsRRyanMHHotspots and gaps in the world collection of subterranean clover (Trifolium subterraneum L.)J Agric Sci201515310691083
– reference: GibberdMRColmerTDCocksPSRoot porosity and oxygen movement in waterlogging-tolerant Trifolium tomentosum and -intolerant Trifolium glomeratumPlant Cell Environ19992211611168
– reference: PiluzzaGPecettiLBullittaSPianoEDiscrimination among subterranean clover (Trifolium subterraneum L. complex) genotypes using RAPD markersGenet Resour Crop Evol2005521931991:CAS:528:DC%2BD2MXltlWnt7k%3D
– reference: CollinsWJRossiterRCHaynesYBrownAHDMarshallDRIdentification of subterranean clover cultivars and their genetic relationships by isozyme analysisCrop Pasture Sci198435399411
– reference: FrancisCPooleMEffect of waterlogging on the growth of annual Medicago speciesAust J Exp Agric197313711713
– reference: KonnerupDToroGPedersenOColmerTDWaterlogging tolerance, tissue nitrogen and oxygen transport in the forage legume Melilotus siculus: a comparison of nodulated and nitrate-fed plantsAnn Bot20181216997091:CAS:528:DC%2BC1MXmt1Sru7c%3D293515755853006
– reference: FrancisCMDevittACSteelePInfluence of flooding on the alcohol dehydrogenase activity of roots of Trifolium subterraneum LFunct Plant Biol197419131:CAS:528:DyaE2cXhtlSltb8%3D
– reference: Fiedler S, Vepraskas MJ, Richardson JL (2007) Soil redox potential: importance, field measurements, and observations. In: Advances in Agronomy, vol 94. Elsevier Science & Technology, San Diego, pp 1–54
– reference: CraigAPasture production of two cultivars of Trifolium subterraneum at Kybybolite, South AustraliaAust J Exp Agric199232611617
– reference: StrikerGGColmerTDFlooding tolerance of forage legumesJ Exp Bot201768185118721:CAS:528:DC%2BC1cXhsV2qtrfO27325893
– reference: PianoEPreliminary observations on the structure and variability of Sardinian populations of subterranean cloverGenet Agr1984387590
– reference: RogersMEWestDWThe effects of rootzone salinity and hypoxia on shoot and root growth in Trifolium speciesAnn Bot199372503509
– reference: TeakleNLBowmanSBarrett-LennardEGRealDColmerTDComparisons of annual pasture legumes in growth, ion regulation and root porosity demonstrate that Melilotus siculus has exceptional tolerance to combinations of salinity and waterloggingEnviron Exp Bot2012771751841:CAS:528:DC%2BC38Xht1Ontbg%3D
– reference: ChapmanSCChakrabortySMDreccerMFHowdenSMPlant adaptation to climate change-opportunities and priorities in breedingCrop Pasture Sci201263251268
– reference: ThomsonCJArmstrongWWatersIGreenwayHAerenchyma formation and associated oxygen movement in seminal and nodal roots of wheatPlant Cell Environ199013395403
– reference: AlbertNWSubspecialization of R2R3-MYB repressors for anthocyanin and proanthocyanidin regulation in forage legumesFront Plant Sci2015611651165267791944689181
– reference: Malik AI, Ailewe TI, Erskine W (2015) Tolerance of three grain legume species to transient waterlogging. AoB Plants 7:plv040
– reference: RogersMEColmerTDNicholsPGHHughesSJFrostKCornwallDChandraSMillerSMCraigADSalinity and waterlogging tolerance amongst accessions of Messina (Melilotus siculus)Crop Pasture Sci201162225235
– reference: TalbotRJEtheringtonJRBryantJAComparative studies of plant growth and distribution in relation to waterlogging. XII. Growth, photosynthetic capacity and metal ion uptake in Salix caprea and S. cinerea ssp. OleifoliaNew Phytol19871055635741:CAS:528:DyaL2sXktlKrtrk%3D
– reference: SetterTLWatersIReview of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oatsPlant Soil20032531341:CAS:528:DC%2BD3sXltVemsb4%3D
– reference: ArmstrongWHealyMTLytheSOxygen diffusion in pea. II. Oxygen concentrations in the primary pea root apex as affected by growth, the production of laterals and radial oxygen lossNew Phytol198394549559
– reference: Peak JW, Morley FHW (1973) Comparison of introduced lines of Trifolium subterraneum subsp. yanninicum with cultivars of T. subterraneum. 3 Irrigated and dryland sward trials at Canberra, Australian Capital Territory. Field station record 12. Division of plant industry, CSIRO (Australia)
– reference: ColmerTDGreenwayHIon transport in seminal and adventitious roots of cereals during O2 deficiencyJ Exp Bot20116239571:CAS:528:DC%2BC3cXhsFamurnE20847100
– reference: Stoddard FL, Balko C, Erskine W, Khan HR, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:167–186
– reference: Hamilton G, Bakker D, Houlebrook D, Spann C (2000) Raised beds prevent waterlogging and increase productivity. Journal of the Department of Agriculture, Western Australia 41
– reference: ReedKSchroderPEalesJMcDonaldRChinJComparative productivity of Trifolium subterraneum and T. yanninicum in South-Western VictoriaAust J Exp Agric198525351361
– reference: YatesRJAbaidooRHowiesonJHowiesonJDilworthMField experiments with rhizobiaWorking with rhizobia2016CanberraAustralian Centre for International Agricultural Centre
– reference: McFarlane D, Barrett-Lennard E, Setter T (1989) Waterlogging: a hidden constraint to crop and pasture production in southern regions of Australia. In: Proceedings of the 5th Australian agronomy conference, pp 74–83
– reference: VoesenekLACJSasidharanREthylene- and oxygen signalling-drive plant survival during floodingPlant Biol2013154264351:CAS:528:DC%2BC3sXosVKks7w%3D23574304
– reference: Williams R, Evans L, Ludwig L (1964) Estimation of leaf area for clover and lucerne. Aust J Agric Res 15:231-233
– reference: JarvisARamirezJAndersonBLeibingCAggarwalPReynoldsMPScenarios of climate change within the context of agricultureClimate change and crop production2010WallingfordCABI
– reference: GibberdMRGrayJDCocksPSColmerTDWaterlogging tolerance among a diverse range of Trifolium accessions is related to root porosity, lateral root formation and 'aerotropic rooting'Ann Bot200188579589
– reference: HerzogMStrikerGGColmerTDPedersenOMechanisms of waterlogging tolerance in wheat -a review of root and shoot physiologyPlant Cell Environ201639106810861:CAS:528:DC%2BC28XlvVaitLg%3D26565998
– reference: AshrafMChishtiSNWaterlogging tolerance of some accessions of lentil (Lens culinaris medic.)Trop Agric1993706067
– reference: SandralGAPeoplesMBWilsonBCDTaylorJNRodhamCAGrowth, seed set and nitrogen fixation of 28 annual legume species on 3 Vertosol soils in southern New South WalesAnim Prod Sci20034311011115
– reference: KotulaLKwaHYNicholsPGHColmerTDTolerance and recovery of the annual pasture legumes Melilotus siculus, Trifolium michelianum and Medicago polymorpha to soil salinity, soil waterlogging and the combination of these stressesPlant Soil20194442672801:CAS:528:DC%2BC1MXhs1Oht7jP
– reference: Armstrong W (1980) Aeration in higher plants. In: Woolhouse HW (ed) Advances in botanical research, vol 7. Elsevier Science & Technology, pp 225-332
– volume: 176
  start-page: 1118
  year: 2018
  ident: 4959_CR84
  publication-title: Plant Physiol
  doi: 10.1104/pp.17.01157
– volume: 24
  start-page: 1057
  year: 2009
  ident: 4959_CR48
  publication-title: Ecol Res
  doi: 10.1007/s11284-009-0583-8
– ident: 4959_CR73
  doi: 10.1007/s10681-006-4723-8
– volume: 153
  start-page: 225
  year: 2002
  ident: 4959_CR43
  publication-title: New Phytol
  doi: 10.1046/j.0028-646X.2001.00318.x
– volume: 6
  start-page: 1165
  year: 2015
  ident: 4959_CR2
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2015.01165
– ident: 4959_CR20
  doi: 10.1016/j.ympev.2006.01.004
– volume-title: Climate change and crop production
  year: 2010
  ident: 4959_CR37
– volume: 36
  start-page: 665
  year: 2009
  ident: 4959_CR16
  publication-title: Funct Plant Biol
  doi: 10.1071/FP09144
– volume: 15
  start-page: 426
  year: 2013
  ident: 4959_CR81
  publication-title: Plant Biol
  doi: 10.1111/plb.12014
– volume: 59
  start-page: 313
  year: 2008
  ident: 4959_CR8
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.59.032607.092752
– volume: 27
  start-page: 983
  year: 2012
  ident: 4959_CR75
  publication-title: Ecol Res
  doi: 10.1007/s11284-012-0978-9
– volume: 165
  start-page: 69
  year: 2003
  ident: 4959_CR5
  publication-title: Plant Sci
  doi: 10.1016/S0168-9452(03)00128-6
– volume: 38
  start-page: 75
  year: 1984
  ident: 4959_CR55
  publication-title: Genet Agr
– volume-title: Working with rhizobia
  year: 2016
  ident: 4959_CR85
– volume: 12
  start-page: 614
  year: 1972
  ident: 4959_CR19
  publication-title: Aust J Exp Agric
  doi: 10.1071/EA9720614
– volume: 106
  start-page: 465
  year: 1987
  ident: 4959_CR38
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1987.tb00153.x
– volume: 77
  start-page: 175
  year: 2012
  ident: 4959_CR79
  publication-title: Environ Exp Bot
  doi: 10.1016/j.envexpbot.2011.11.020
– ident: 4959_CR3
  doi: 10.1016/S0065-2296(08)60089-0
– volume: 1
  start-page: 9
  year: 1974
  ident: 4959_CR27
  publication-title: Funct Plant Biol
  doi: 10.1071/PP9740009
– volume: 26
  start-page: 17
  year: 2003
  ident: 4959_CR14
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.2003.00846.x
– volume: 50
  start-page: 489
  year: 2012
  ident: 4959_CR83
  publication-title: Soil Res
  doi: 10.1071/SR11266
– volume: 52
  start-page: 193
  year: 2005
  ident: 4959_CR56
  publication-title: Genet Resour Crop Evol
  doi: 10.1007/s10722-003-4449-6
– volume: 39
  start-page: 1068
  year: 2016
  ident: 4959_CR33
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12676
– ident: 4959_CR82
  doi: 10.1071/AR9640231
– ident: 4959_CR47
  doi: 10.1007/BF00011133
– volume: 46
  start-page: 285
  year: 1995
  ident: 4959_CR59
  publication-title: J Exp Bot
  doi: 10.1093/jxb/46.3.285
– volume: 52
  start-page: 507
  year: 2005
  ident: 4959_CR67
  publication-title: Genet Resour Crop Evol
  doi: 10.1007/s10722-005-0777-z
– ident: 4959_CR44
  doi: 10.1093/aobpla/plv040
– ident: 4959_CR54
– volume: 68
  start-page: 1851
  year: 2017
  ident: 4959_CR76
  publication-title: J Exp Bot
– volume: 71
  start-page: 506
  year: 2020
  ident: 4959_CR40
  publication-title: Crop Pasture Sci
  doi: 10.1071/CP19491
– volume: 105
  start-page: 563
  year: 1987
  ident: 4959_CR78
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1987.tb00894.x
– ident: 4959_CR22
  doi: 10.1080/00087114.1987.10797816
– volume: 62
  start-page: 39
  year: 2011
  ident: 4959_CR15
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erq271
– volume: 64
  start-page: 347
  year: 2013
  ident: 4959_CR71
  publication-title: Crop Pasture Sci
  doi: 10.1071/CP13071
– volume: 70
  start-page: 1
  year: 1999
  ident: 4959_CR10
  publication-title: Photochem Photobiol
  doi: 10.1111/j.1751-1097.1999.tb01944.x
– volume: 22
  start-page: 1161
  year: 1999
  ident: 4959_CR30
  publication-title: Plant Cell Environ
  doi: 10.1046/j.1365-3040.1999.00472.x
– volume: 70
  start-page: 60
  year: 1993
  ident: 4959_CR6
  publication-title: Trop Agric
– volume: 48
  start-page: 480
  year: 2008
  ident: 4959_CR61
  publication-title: Aust J Exp Agric
  doi: 10.1071/EA07110
– volume: 121
  start-page: 203
  year: 1990
  ident: 4959_CR7
  publication-title: Plant Soil
  doi: 10.1007/BF00012313
– volume: 20
  start-page: 819
  year: 1969
  ident: 4959_CR25
  publication-title: Aust J Agric Res
  doi: 10.1071/AR9690819
– volume: 104
  start-page: 10
  year: 2007
  ident: 4959_CR50
  publication-title: Field Crops Res
  doi: 10.1016/j.fcr.2007.03.016
– volume: 63
  start-page: 251
  year: 2012
  ident: 4959_CR11
  publication-title: Crop Pasture Sci
  doi: 10.1071/CP11303
– volume: 13
  start-page: 395
  year: 1990
  ident: 4959_CR80
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.1990.tb02144.x
– volume: 64
  start-page: 312
  year: 2013
  ident: 4959_CR51
  publication-title: Crop Pasture Sci
  doi: 10.1071/CP13118
– volume: 94
  start-page: 23
  year: 2013
  ident: 4959_CR63
  publication-title: Can J Plant Sci
  doi: 10.4141/cjps2013-175
– ident: 4959_CR70
– ident: 4959_CR1
  doi: 10.1371/journal.pone.0223699
– volume: 94
  start-page: 549
  year: 1983
  ident: 4959_CR4
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1983.tb04864.x
– ident: 4959_CR49
– volume: 48
  start-page: 223
  year: 1997
  ident: 4959_CR29
  publication-title: Aust J Agric Res
  doi: 10.1071/A96074
– volume-title: Plant growth curves: the functional approach to plant growth analysis
  year: 1982
  ident: 4959_CR36
– volume: 14
  start-page: 112
  year: 1965
  ident: 4959_CR39
  publication-title: Isr J Bot
– ident: 4959_CR32
– volume: 55
  start-page: 895
  year: 2004
  ident: 4959_CR52
  publication-title: Aust J Agric Res
  doi: 10.1071/AR03097
– volume: 35
  start-page: 399
  year: 1984
  ident: 4959_CR13
  publication-title: Crop Pasture Sci
  doi: 10.1071/AR9840399
– volume: 88
  start-page: 579
  year: 2001
  ident: 4959_CR31
  publication-title: Ann Bot
  doi: 10.1006/anbo.2001.1506
– start-page: 151
  volume-title: Waterlogging signalling and tolerance in plants
  year: 2010
  ident: 4959_CR9
  doi: 10.1007/978-3-642-10305-6_8
– volume: 60
  start-page: 71
  year: 2009
  ident: 4959_CR65
  publication-title: Crop Pasture Sci
  doi: 10.1071/CP08123
– volume-title: Methods of soil analysis part 3 -chemical methods
  year: 1996
  ident: 4959_CR53
– volume: 30
  start-page: 335
  year: 2003
  ident: 4959_CR72
  publication-title: Funct Plant Biol
  doi: 10.1071/FP02192
– volume: 40
  start-page: 1201
  year: 2000
  ident: 4959_CR18
  publication-title: Aust J Exp Agric
  doi: 10.1071/EA00086_CU
– volume: 45
  start-page: 1063
  year: 1994
  ident: 4959_CR12
  publication-title: Aust J Agric Res
  doi: 10.1071/AR9941063
– volume: 71
  start-page: 1
  year: 2016
  ident: 4959_CR58
  publication-title: Grass Forage Sci
  doi: 10.1111/gfs.12212
– volume: 62
  start-page: 225
  year: 2011
  ident: 4959_CR66
  publication-title: Crop Pasture Sci
  doi: 10.1071/CP10270
– volume-title: Botany
  year: 2012
  ident: 4959_CR74
– volume: 32
  start-page: 611
  year: 1992
  ident: 4959_CR17
  publication-title: Aust J Exp Agric
  doi: 10.1071/EA9920611
– volume-title: Observations on the ecology of subterranean clover in Greece and Crete : a report based on a seed collection tour 1976
  year: 1976
  ident: 4959_CR24
– start-page: 9
  volume-title: Flooding and plant growth
  year: 1984
  ident: 4959_CR57
  doi: 10.1016/B978-0-12-424120-6.50007-9
– volume: 32
  start-page: 737
  year: 2005
  ident: 4959_CR34
  publication-title: Funct Plant Biol
  doi: 10.1071/FP05043
– ident: 4959_CR46
– volume: 72
  start-page: 503
  year: 1993
  ident: 4959_CR64
  publication-title: Ann Bot
  doi: 10.1006/anbo.1993.1137
– volume: 253
  start-page: 1
  year: 2003
  ident: 4959_CR69
  publication-title: Plant Soil
  doi: 10.1023/A:1024573305997
– volume: 444
  start-page: 267
  year: 2019
  ident: 4959_CR42
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-04254-z
– ident: 4959_CR23
  doi: 10.1016/S0065-2113(06)94001-2
– volume: 43
  start-page: 1101
  year: 2003
  ident: 4959_CR68
  publication-title: Anim Prod Sci
  doi: 10.1071/EA02141
– volume: 13
  start-page: 711
  year: 1973
  ident: 4959_CR26
  publication-title: Aust J Exp Agric
  doi: 10.1071/EA9730711
– volume: 7
  start-page: 367
  year: 1967
  ident: 4959_CR45
  publication-title: Aust J Exp Agric
  doi: 10.1071/EA9670367
– ident: 4959_CR35
  doi: 10.1093/jxb/45.2.193
– volume: 121
  start-page: 699
  year: 2018
  ident: 4959_CR41
  publication-title: Ann Bot
  doi: 10.1093/aob/mcx202
– volume: 153
  start-page: 1069
  year: 2015
  ident: 4959_CR28
  publication-title: J Agric Sci
  doi: 10.1017/S0021859614000793
– volume: 25
  start-page: 351
  year: 1985
  ident: 4959_CR62
  publication-title: Aust J Exp Agric
  doi: 10.1071/EA9850351
– ident: 4959_CR21
– volume: 18
  start-page: 698
  year: 1983
  ident: 4959_CR60
  publication-title: HortScience
  doi: 10.21273/HORTSCI.18.5.698
– volume: 276
  start-page: 301
  year: 2005
  ident: 4959_CR77
  publication-title: Plant Soil
  doi: 10.1007/s11104-005-5084-0
SSID ssj0003216
ssib004299087
Score 2.3942654
Snippet Aims Tolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover ( Trifolium subterraneum L.) to identify...
Aims Tolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover (Trifolium subterraneum L.) to identify...
AimsTolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover (Trifolium subterraneum L.) to identify...
AIMS: Tolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover (Trifolium subterraneum L.) to identify...
SourceID proquest
gale
crossref
springer
nii
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 467
SubjectTerms Anthocyanins
biomass
Biomedical and Life Sciences
Chlorophyll
Clover
Conductance
Cultivars
Drainage
Ecology
Environmental aspects
Greenhouses
Growth rate
Hardiness
leaf area
leaf chlorophyll content
Leaves
Life Sciences
Nodulation
petioles
Physiological aspects
Pigmentation
Plant breeding
Plant growth
Plant Physiology
Plant Sciences
Plants
Porosity
Recovery
Regular Article
REGULAR ARTICLES
Resistance
root growth
Roots (Botany)
Shoots (Botany)
soil
Soil moisture
Soil Science & Conservation
Stomata
Stomatal conductance
tap roots
Trifolium subterraneum
Waterlogging
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1di9NAFB1kVdAH0epidFdGEHzQSL5mJnmssssiq09b6FuYSWbWQE0kSZX-EP-v507TlhUVfGgIzfQm5d65c07mfjD2KjamSHRiQuGUCeHwNPygKcJM1XmqlRPKUb7zp8_yYpF9XIrllBQ27KLdd1uS3lMfkt2wUmUhhRQA1YoiBFG_LYi7w4oXyXzvf9PENzylkzBSxXJKlfmzjBvL0eSUt4GJWGzaprkBPH_bK_VL0PlD9mDCjny-VfYjdsu2M3Z_ft1P9TPsjN153wHtbWbs7pkvR715zH5eUrA3_w5S7LXAm5b_0BTI2dHb5ms-ditL7TUs123NiSHDvDfctyHiwIf49NbyAS6GmtXbgXeOX_WN61bN-it9D2EQYHXLL9_xZuA-QcbWkMwBzEcvd_hCZ_02JNcOT9ji_Ozqw0U4NWMIK2C4MZQFvLqOY4cpDI5jpK3SXFVAN0lmax1ZLU2uo9RAIaYWQA11lkcuF1XqVGRsesyO2q61TxmXdSFFrayrK5dZHef0IkpKF2kliAEGLN7ppKymSuXUMGNVHmoskx5L6LH0eiyjgL3Z_-bbtk7HP0e_JlWXNIkhudJTLgKej8phlXMpQXNzmcqAHXtr2AtNwEZSESUBO4V54PnoGIN2KoBV2LqKi5z2tgN2sjOccnILQwk2joFFolTAXu4vY0LTLg301K0xBoiJgJ_ALd7uDO4g4u9_6tn_DX_O7iV-IlDo8Qk7Gvu1PQXAGs0LP59-Aa8YGFQ
  priority: 102
  providerName: Springer Nature
Title Large variation in waterlogging tolerance and recovery among the three subspecies of Trifolium subterranean L. is related to root and shoot responses
URI https://www.jstor.org/stable/27293502
https://cir.nii.ac.jp/crid/1871709542971982720
https://link.springer.com/article/10.1007/s11104-021-04959-0
https://www.proquest.com/docview/2547179277
https://www.proquest.com/docview/2661007152
Volume 464
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7RhgMcEBSqmrbRIiFxAIOfu_YJOSihghIh1EjhZO3au8VSsNs4AfWH8H-ZsTeJikQPSazEHjua2dnv250HwEtfqTSQgXJjI5SLDk-iH1SpG4kyCaUwsTCU7_xlys9m0ad5PLcLbq0Nq9z4xM5Rl01Ba-TvkMgg80gDId5fXbvUNYp2V20LjT0YoAtOkHwNRuPp129bXxwGXfNTOnA9kc5t2kyfPIczX-RSiAKi5Dh1vVtTk3XQfZAiTjx1Vd0Cof_sm3bT0eQxPLI4kmW94p_APV0fwMPscmlraegDuD9qEPndPIU_5xTuzX4hLe70wKqa_ZYUytnQevMlWzULTQ02NJN1yYgjo4HfsK4REUOEiK-l1qxFJ0Pt6nXLGsMulpVpFtX6J32PwlCAljU7f8uqlnUpMrpEyQyh-aqT2_6go2UflKvbZzCbjC8-nLm2HYNbIIpbuTxFvy593-AgRpajuC7CRBSIb4JIl9LTkqtEeqFCpqvKGHFDGSWeSeIiNMJTOjyE_bqp9REwXqY8LoU2ZWEiLf2ElqI4N54UMXFAB_yNJvLC1iqnlhmLfFdlmbSXo_byTnu558Dr7TVXfaWOO89-RQrOaRij5ELabAR8PiqIlWeco7klPOQOHHY2sBUaIB8JYy9w4BSNAp-P3n0kngLhKlq78NOEdrcdONmYS24dQ5vvzNiBF9ufcUjTPg3qqVnjOYiZCPrFeIs3GzPbifj_n3p-9x2P4UHQmTsFG5_A_mq51qcIqVZqCINsMhpN6fPj98_joR1HQ9ibBdlfffsd_g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VFAk4IChUGFpYJBAHMPh31z4glEKrlKYRQqmUm9m1d4ulYIc4ocqD8Bo8IzP-SVQkeushlhU7Y0cz-818uzM7AC9cpWJPesoOjVA2Ap5EHFSxHYgs8qUwoTBU73w64oOz4PMknGzBn64WhtIqO0ysgTorU5ojf4dEBplH7AnxYfbTpq5RtLratdBozOJEry6QslXvjz-hfl963tHh-OPAbrsK2CkGIwubxwhP0nUNNaYXoeI69SORopv2Ap1JR0uuIun4CgmbykJ0f1kQOSYKU98IR2kf5d6A7cBHKtOD7YPD0Zeva-z3vbrZKp3YjognbZlOU6yHnjawKSUCo_Iwtp1LrrB1CE1SJDq6Is8vBb3_rNPW7u_oHtxt41bWbwztPmzpYgfu9M_n7d4degduHpQYaa4ewO8hpZezX0jDa72zvGAXklJHS5rfPmeLcqqpoYdmssgYcXIcUCtWNz5iGJHiZ641qxDUZhrBp2KlYeN5bsppvvxB36MwFKBlwYZvWV6xuiRHZyiZIRVY1HKr73Q2b5KAdfUQzq5FUbvQK8pCPwLGs5iHmdAmS02gpRvR1BfnxpEiJM5pgdtpIknbvdGpRcc02ezqTNpLUHtJrb3EseD1-jezZmeQK-9-RQpOCDZQcirb6gd8P9qAK-lzjuYdcZ9bsFvbwFqoh_zHDx3Pgn00Cnw_OrpIdAWGxzi6hBtHtJpuwV5nLkkLRFWyGTYWPF9fRgihdSHUU7nEezBGo1AzxEe86cxsI-L_f-rx1U98BrcG49NhMjwenTyB215t-pTovAe9xXyp9zGcW6in7Rhi8O26h-1f9yZWlg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFCE4IChUGFpYJBAHMPVz1z4glNJGLQ1RhVopN7Nr7xZLwQ5xQpUfwp_h1zHjR6Ii0VsPsazYGTua57c7D4BXrlKxJz1lh0YoGw2eRDuoYjsQWeRLYUJhqN75y4gfnQefx-F4A_50tTCUVtnZxNpQZ2VKa-R7CGQQecSeEHumTYs4PRh8nP60aYIU7bR24zQaETnRy0uEb9WH4wPk9WvPGxyefTqy2wkDdoqBydzmMZoq6bqGhtSLUHGd-pFI0WV7gc6koyVXkXR8heBNZSG6wiyIHBOFqW-Eo7SPdG_BpkBU5PRgc_9wdPp15Qd8rx68Sie2I-JxW7LTFO6h1w1sSo_ACD2MbeeKW2ydQ5MgiU6vyPMrAfA_e7a1Kxw8gPttDMv6jdA9hA1dbMG9_sWs7eOht-D2folR5_IR_B5Sqjn7hZC8lgGWF-xSUhppSWvdF2xeTjQN99BMFhkjfI7KtWT1ECSG0Sl-ZlqzCg3cVKMhqlhp2NksN-UkX_yg75EYEtCyYMP3LK9YXZ6jM6TMEBbMa7rVdzqbNQnBunoM5zfCqG3oFWWhnwDjWczDTGiTpSbQ0o1oGYxz40gREv60wO04kaRtn3Qa1zFJ1h2eiXsJci-puZc4Frxd_WbadAm59u43xOCETAhSTmVbCYHvR824kj7nKOoR97kF27UMrIh6iIX80PEs2EWhwPejo4ugV2CojJom3DiinXULdjpxSVqjVCVrFbLg5eoymhPaI0I-lQu8B-M1CjtDfMS7TszWJP7_p55e_8QXcAfVNRkej06ewV2vlnzKed6B3ny20LsY2c3V81aFGHy7aa39C0mnWss
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+variation+in+waterlogging+tolerance+and+recovery+among+the+three+subspecies+of+Trifolium+subterranean+L.+is+related+to+root+and+shoot+responses&rft.jtitle=Plant+and+soil&rft.au=Enkhbat%2C+Gereltsetseg&rft.au=Ryan%2C+Megan+H.&rft.au=Foster%2C+Kevin+J.&rft.au=Nichols%2C+Phillip+G.+H.&rft.date=2021-07-01&rft.pub=Springer+Science+%2B+Business+Media&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=464&rft.issue=1%2F2&rft.spage=467&rft.epage=487&rft_id=info:doi/10.1007%2Fs11104-021-04959-0&rft.externalDocID=27293502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon