Large variation in waterlogging tolerance and recovery among the three subspecies of Trifolium subterranean L. is related to root and shoot responses
Aims Tolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover ( Trifolium subterraneum L.) to identify tolerance mechanisms, in order to guide future subclover breeding activities. Methods Three cultivars each of ssp. yanninicum , subterraneum and...
Saved in:
Published in | Plant and Soil Vol. 464; no. 1/2; pp. 467 - 487 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer Science + Business Media
01.07.2021
Springer Science and Business Media LLC Springer International Publishing Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims
Tolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover (
Trifolium subterraneum
L.) to identify tolerance mechanisms, in order to guide future subclover breeding activities.
Methods
Three cultivars each of ssp.
yanninicum
,
subterraneum
and
brachycalycinum
were grown in a controlled environment glasshouse with
T. michelianum
as a waterlogging-tolerant control. After 28 days of growth two treatments were imposed for 35 days: free-draining (control) and waterlogged. A 21-day recovery period followed.
Results
After 35 days, waterlogging reduced shoot dry weight (DW) to 58–27% and root DW to 35–21% of respective controls in each subspecies. Shoot relative growth rate (RGR) of
yanninicum
was least affected (78–104% of control), compared to
subterraneum
(51–100%) and
brachycalycinum
(45–69%). The
subterraneum
cv. Denmark had a similar response to subspecies
yanninicum
. Shoot RGR of
T. michelianum
was 138% of its control. After recovery, all traits (except tap root length) recovered to control values. Up to 21 days, the main traits associated with waterlogging tolerance (shoot and root growth) were high petiole length, less petiole anthocyanin pigmentation and high leaf chlorophyll content, but by 35 days these were a high proportion of leaf biomass, high stomatal conductance and enhanced root porosity. Average root diameter and nodulation rates were unrelated to waterlogging tolerance.
Conclusions
Subspecies
yanninicum
had superior waterlogging tolerance. Priority traits for easily-assessed indicators of waterlogging tolerance are less reduction of leaf size and high stomatal conductance. |
---|---|
AbstractList | AimsTolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover (Trifolium subterraneum L.) to identify tolerance mechanisms, in order to guide future subclover breeding activities.MethodsThree cultivars each of ssp. yanninicum, subterraneum and brachycalycinum were grown in a controlled environment glasshouse with T. michelianum as a waterlogging-tolerant control. After 28 days of growth two treatments were imposed for 35 days: free-draining (control) and waterlogged. A 21-day recovery period followed.ResultsAfter 35 days, waterlogging reduced shoot dry weight (DW) to 58–27% and root DW to 35–21% of respective controls in each subspecies. Shoot relative growth rate (RGR) of yanninicum was least affected (78–104% of control), compared to subterraneum (51–100%) and brachycalycinum (45–69%). The subterraneum cv. Denmark had a similar response to subspecies yanninicum. Shoot RGR of T. michelianum was 138% of its control. After recovery, all traits (except tap root length) recovered to control values. Up to 21 days, the main traits associated with waterlogging tolerance (shoot and root growth) were high petiole length, less petiole anthocyanin pigmentation and high leaf chlorophyll content, but by 35 days these were a high proportion of leaf biomass, high stomatal conductance and enhanced root porosity. Average root diameter and nodulation rates were unrelated to waterlogging tolerance.ConclusionsSubspecies yanninicum had superior waterlogging tolerance. Priority traits for easily-assessed indicators of waterlogging tolerance are less reduction of leaf size and high stomatal conductance. Aims Tolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover ( Trifolium subterraneum L.) to identify tolerance mechanisms, in order to guide future subclover breeding activities. Methods Three cultivars each of ssp. yanninicum , subterraneum and brachycalycinum were grown in a controlled environment glasshouse with T. michelianum as a waterlogging-tolerant control. After 28 days of growth two treatments were imposed for 35 days: free-draining (control) and waterlogged. A 21-day recovery period followed. Results After 35 days, waterlogging reduced shoot dry weight (DW) to 58–27% and root DW to 35–21% of respective controls in each subspecies. Shoot relative growth rate (RGR) of yanninicum was least affected (78–104% of control), compared to subterraneum (51–100%) and brachycalycinum (45–69%). The subterraneum cv. Denmark had a similar response to subspecies yanninicum . Shoot RGR of T. michelianum was 138% of its control. After recovery, all traits (except tap root length) recovered to control values. Up to 21 days, the main traits associated with waterlogging tolerance (shoot and root growth) were high petiole length, less petiole anthocyanin pigmentation and high leaf chlorophyll content, but by 35 days these were a high proportion of leaf biomass, high stomatal conductance and enhanced root porosity. Average root diameter and nodulation rates were unrelated to waterlogging tolerance. Conclusions Subspecies yanninicum had superior waterlogging tolerance. Priority traits for easily-assessed indicators of waterlogging tolerance are less reduction of leaf size and high stomatal conductance. Aims Tolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover (Trifolium subterraneum L.) to identify tolerance mechanisms, in order to guide future subclover breeding activities. Methods Three cultivars each of ssp. yanninicum, subterraneum and brachycalycinum were grown in a controlled environment glasshouse with T. michelianum as a waterlogging-tolerant control. After 28 days of growth two treatments were imposed for 35 days: free-draining (control) and waterlogged. A 21-day recovery period followed. Results After 35 days, waterlogging reduced shoot dry weight (DW) to 58-27% and root DW to 35-21% of respective controls in each subspecies. Shoot relative growth rate (RGR) of yanninicum was least affected (78-104% of control), compared to subterraneum (51-100%) and brachycalycinum (45-69%). The subterraneum cv. Denmark had a similar response to subspecies yanninicum. Shoot RGR of T. michelianum was 138% of its control. After recovery, all traits (except tap root length) recovered to control values. Up to 21 days, the main traits associated with waterlogging tolerance (shoot and root growth) were high petiole length, less petiole anthocyanin pigmentation and high leaf chlorophyll content, but by 35 days these were a high proportion of leaf biomass, high stomatal conductance and enhanced root porosity. Average root diameter and nodulation rates were unrelated to waterlogging tolerance. Conclusions Subspecies yanninicum had superior waterlogging tolerance. Priority traits for easily-assessed indicators of waterlogging tolerance are less reduction of leaf size and high stomatal conductance. |
Audience | Academic |
Author | Enkhbat, Gereltsetseg Nichols, Phillip G. H. Kotula, Lukasz Ryan, Megan H. Inukai, Yoshiaki Hamblin, Ann Foster, Kevin J. Erskine, William |
Author_xml | – sequence: 1 givenname: Gereltsetseg surname: Enkhbat fullname: Enkhbat, Gereltsetseg – sequence: 2 givenname: Megan H. surname: Ryan fullname: Ryan, Megan H. – sequence: 3 givenname: Kevin J. surname: Foster fullname: Foster, Kevin J. – sequence: 4 givenname: Phillip G. H. surname: Nichols fullname: Nichols, Phillip G. H. – sequence: 5 givenname: Lukasz surname: Kotula fullname: Kotula, Lukasz – sequence: 6 givenname: Ann surname: Hamblin fullname: Hamblin, Ann – sequence: 7 givenname: Yoshiaki surname: Inukai fullname: Inukai, Yoshiaki – sequence: 8 givenname: William surname: Erskine fullname: Erskine, William |
BackLink | https://cir.nii.ac.jp/crid/1871709542971982720$$DView record in CiNii |
BookMark | eNp9Uctq3DAUNSWFTtL-QKEgaBfdeHol2ZK9DKEvGOgmhe6ELF87GjzSVPKk5EP6v70elxayCELv89DVuSwuQgxYFK85bDmA_pA551CVIHgJVVu3JTwrNrzWsqxBqotiAyBFCbr98aK4zHkPy56rTfF7Z9OI7N4mb2cfA_OB_bIzpimOow8jm-OEyQaHzIaeJXTxHtMDs4e4XN4h9YTI8qnLR3QeM4sDu01-iJM_HZZzEiMBtIHttsxn0pjIoCdllmKcz7r5blklzMcYMuaXxfPBThlf_Z2viu-fPt7efCl33z5_vbnela6GZi5Vix23nA_AdaPrTqGTjXat1KLC3gJa1TUWZAdCd30tqqqvGhia2slBQ4fyqni_6h5T_HnCPJuDzw6nid4bT9kIpZbv5bUg6NtH0H08pUCvM6KuNNet0JpQ2xU12gmND0Ock3XUejx4R5kNns6vlSJCo6QiglgJLsWcEw7mmPzBpgfDwSzeZo3WULTmHK0BIjWPSM7P5_jIzU9PU-VKzeQTRkz_y3iS9W5lBe_Jaxl5QyVAW1ei1bxthBYL7M0K2-c5pn-V0F0raxDyD6rLz8I |
CitedBy_id | crossref_primary_10_3390_agronomy11122487 crossref_primary_10_1111_aab_12856 crossref_primary_10_1071_CP21226 crossref_primary_10_1071_FP22151 crossref_primary_10_3390_plants12234033 crossref_primary_10_1007_s11104_022_05404_6 crossref_primary_10_4081_nhs_2023_641 |
Cites_doi | 10.1104/pp.17.01157 10.1007/s11284-009-0583-8 10.1007/s10681-006-4723-8 10.1046/j.0028-646X.2001.00318.x 10.3389/fpls.2015.01165 10.1016/j.ympev.2006.01.004 10.1071/FP09144 10.1111/plb.12014 10.1146/annurev.arplant.59.032607.092752 10.1007/s11284-012-0978-9 10.1016/S0168-9452(03)00128-6 10.1071/EA9720614 10.1111/j.1469-8137.1987.tb00153.x 10.1016/j.envexpbot.2011.11.020 10.1016/S0065-2296(08)60089-0 10.1071/PP9740009 10.1046/j.1365-3040.2003.00846.x 10.1071/SR11266 10.1007/s10722-003-4449-6 10.1111/pce.12676 10.1071/AR9640231 10.1007/BF00011133 10.1093/jxb/46.3.285 10.1007/s10722-005-0777-z 10.1093/aobpla/plv040 10.1071/CP19491 10.1111/j.1469-8137.1987.tb00894.x 10.1080/00087114.1987.10797816 10.1093/jxb/erq271 10.1071/CP13071 10.1111/j.1751-1097.1999.tb01944.x 10.1046/j.1365-3040.1999.00472.x 10.1071/EA07110 10.1007/BF00012313 10.1071/AR9690819 10.1016/j.fcr.2007.03.016 10.1071/CP11303 10.1111/j.1365-3040.1990.tb02144.x 10.1071/CP13118 10.4141/cjps2013-175 10.1371/journal.pone.0223699 10.1111/j.1469-8137.1983.tb04864.x 10.1071/A96074 10.1071/AR03097 10.1071/AR9840399 10.1006/anbo.2001.1506 10.1007/978-3-642-10305-6_8 10.1071/CP08123 10.1071/FP02192 10.1071/EA00086_CU 10.1071/AR9941063 10.1111/gfs.12212 10.1071/CP10270 10.1071/EA9920611 10.1016/B978-0-12-424120-6.50007-9 10.1071/FP05043 10.1006/anbo.1993.1137 10.1023/A:1024573305997 10.1007/s11104-019-04254-z 10.1016/S0065-2113(06)94001-2 10.1071/EA02141 10.1071/EA9730711 10.1071/EA9670367 10.1093/jxb/45.2.193 10.1093/aob/mcx202 10.1017/S0021859614000793 10.1071/EA9850351 10.21273/HORTSCI.18.5.698 10.1007/s11104-005-5084-0 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 COPYRIGHT 2021 Springer The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 – notice: COPYRIGHT 2021 Springer – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
DBID | RYH AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-021-04959-0 |
DatabaseName | CiNii Complete CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany Ecology |
EISSN | 1573-5036 |
EndPage | 487 |
ExternalDocumentID | A667178636 10_1007_s11104_021_04959_0 27293502 |
GeographicLocations | Australia |
GeographicLocations_xml | – name: Australia |
GroupedDBID | -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2XV 2~F 2~H 30V 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYZH ABAKF ABBBX ABBHK ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN B-. B0M BA0 BBNVY BENPR BGNMA BHPHI BPHCQ BSONS CCPQU CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EMK EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KPH LAK LK8 LLZTM M0K M4Y M7P MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3A S3B SA0 SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX VC2 W23 W48 WH7 WJK WK8 Y6R YLTOR Z45 ZMTXR ZOVNA ~02 ~8M ~EX ~KM RYH -4W -56 -5G -BR -EM -Y2 1SB 2.D 28- 2P1 2VQ 3SX 3V. 53G 5QI 88A AANXM AARHV AAYTO ABQSL ABULA ABXSQ ACBXY ACHIC ACKIV ADINQ ADULT ADYPR AEBTG AEFIE AEKMD AFEXP AFFNX AFGCZ AGGDS AIDBO AJBLW AQVQM BBWZM BDATZ CAG COF EJD EN4 FINBP FSGXE GQ6 H13 JSODD KOW M0L N2Q NDZJH O9- OVD P0- R4E RNI RZC RZE RZK S1Z S26 S28 SBY SCLPG T16 TEORI UZXMN VFIZW WK6 XOL Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG AAYXX ADHKG AGQPQ CITATION AEIIB PMFND 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI PRINS RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c508t-69eb1a11f017875b6ec387c93724eda0ea6b8a03b027bd5244d480f85c3f70be3 |
IEDL.DBID | BENPR |
ISSN | 0032-079X |
IngestDate | Fri Jul 11 07:20:19 EDT 2025 Fri Jul 25 19:00:19 EDT 2025 Tue Jun 10 20:31:53 EDT 2025 Tue Jul 01 01:47:13 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Fri Feb 21 02:48:11 EST 2025 Fri Jun 27 01:13:15 EDT 2025 Thu Jul 03 21:36:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1/2 |
Keywords | Leaf size Root porosity Pasture legumes Stomatal conductance Anthocyanin pigmentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-69eb1a11f017875b6ec387c93724eda0ea6b8a03b027bd5244d480f85c3f70be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8760-7099 0000-0002-9716-5252 0000-0003-0749-0199 0000-0001-6778-5525 0000-0002-2074-4299 |
PQID | 2547179277 |
PQPubID | 54098 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2661007152 proquest_journals_2547179277 gale_infotracacademiconefile_A667178636 crossref_primary_10_1007_s11104_021_04959_0 crossref_citationtrail_10_1007_s11104_021_04959_0 springer_journals_10_1007_s11104_021_04959_0 nii_cinii_1871709542971982720 jstor_primary_27293502 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and Soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2021 |
Publisher | Springer Science + Business Media Springer Science and Business Media LLC Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer Science + Business Media – name: Springer Science and Business Media LLC – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | ThomsonCJArmstrongWWatersIGreenwayHAerenchyma formation and associated oxygen movement in seminal and nodal roots of wheatPlant Cell Environ199013395403 PonnamperumaFNKozlowskiTTEffects of flooding on soilsFlooding and plant growth1984San DiegoAcademic Press945 PianoEPreliminary observations on the structure and variability of Sardinian populations of subterranean cloverGenet Agr1984387590 Fiedler S, Vepraskas MJ, Richardson JL (2007) Soil redox potential: importance, field measurements, and observations. In: Advances in Agronomy, vol 94. Elsevier Science & Technology, San Diego, pp 1–54 SiddiqueKHMErskineWHobsonKKnightsEJLeonforteAKhanTNPaullJGReddenRMaterneMCool-season grain legume improvement in Australia -use of genetic resourcesCrop Pasture Sci2013643473601:CAS:528:DC%2BC3sXht12jt7bM YamauchiTColmerTDPedersenONakazonoMRegulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stressPlant Physiol2018176111811301:CAS:528:DC%2BC1cXhs1eqsbjE29118247 Falistocco E, Piccirilli M, Falcinelli M (1987) Cytotaxonomy of Trifolium Subterraneum L. Caryologia 40:123–130 FrancisCMObservations on the ecology of subterranean clover in Greece and Crete : a report based on a seed collection tour 19761976Perth, WAWestern Australian Dept. of Agriculture Chalker-ScottLEnvironmental significance of anthocyanins in plant stress responsesPhotochem Photobiol199970191:CAS:528:DyaK1MXksFOktr0%3D SetterTLWatersIReview of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oatsPlant Soil20032531341:CAS:528:DC%2BD3sXltVemsb4%3D GibberdMRCocksPSEffect of waterlogging and soil pH on the micro-distribution of naturalised annual legumesAust J Agric Res199748223230 ChapmanSCChakrabortySMDreccerMFHowdenSMPlant adaptation to climate change-opportunities and priorities in breedingCrop Pasture Sci201263251268 Huang Bingru B, Johnson JW, Nesmith S, Bridges DC (1994) Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply. J Exp Bot 45:193-202 TalbotRJEtheringtonJRBryantJAComparative studies of plant growth and distribution in relation to waterlogging. XII. Growth, photosynthetic capacity and metal ion uptake in Salix caprea and S. cinerea ssp. OleifoliaNew Phytol19871055635741:CAS:528:DyaL2sXktlKrtrk%3D BramleyHTyermanSRoot water transport under waterlogged conditions and the roles of aquaporinsWaterlogging signalling and tolerance in plants2010Berlin Heidelberg, Berlin, HeidelbergSpringer151180 FrancisCDevittAThe effect of waterlogging on the growth and isoflavone concentration of Trifolium subterraneum LAust J Agric Res196920819825 NicholsPGHFosterKJPianoEPecettiLKaurPGhamkharKCollinsWJGenetic improvement of subterranean clover (Trifolium subterraneum L.). 1. Germplasm, traits and future prospectsCrop Pasture Sci2013643123461:CAS:528:DC%2BC3sXht12jt7nE GibberdMRColmerTDCocksPSRoot porosity and oxygen movement in waterlogging-tolerant Trifolium tomentosum and -intolerant Trifolium glomeratumPlant Cell Environ19992211611168 MarshallTMillingtonAFlooding tolerance of some Western Australian pasture legumesAust J Exp Agric19677367371 AshrafMMehmoodSEffects of waterlogging on growth and some physiological parameters of four Brassica speciesPlant Soil19901212032091:CAS:528:DyaK3cXhsFGntbs%3D CocksPColonization of a south Australian grassland by invading Mediterranean annual and perennial pasture speciesAust J Agric Res19944510631076 Stoddard FL, Balko C, Erskine W, Khan HR, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:167–186 PorquedduCAtesSLouhaichiMKyriazopoulosAPMorenoGPozoAOvalleCEwingMANicholsPGHGrasslands in 'Old World' and 'New World' Mediterranean-climate zones: past trends, current status and future research prioritiesGrass Forage Sci201671135 RenBZhangJLiXFanXDongSLiuPZhaoBEffects of waterlogging on the yield and growth of summer maize under field conditionsCan J Plant Sci2013942331 Short R, McConnell C (2001) Extent and impacts of dryland salinity. Report 202. Department of Agriculture and Food, Western Australia, Perth MalikAIColmerTDLambersHSetterTLSchortemeyerMShort-term waterlogging has long-term effects on the growth and physiology of wheatNew Phytol2002153225236 KiddDRDi BellaCEKotulaLColmerTDRyanMHStrikerGGDefining the waterlogging tolerance of Ornithopus spp. for the temperate pasture zone of southern AustraliaCrop Pasture Sci2020715065161:CAS:528:DC%2BB3cXpslygt7Y%3D ReedKSchroderPEalesJMcDonaldRChinJComparative productivity of Trifolium subterraneum and T. yanninicum in South-Western VictoriaAust J Exp Agric198525351361 Nichols PGH, Collins WJ, Barbetti MJ (1996) Registered cultivars of subterranean clover -their characteristics, origin and identification. Bulletin no. 4327. Chief executive officer, Agriculture Western Australia SmethurstCFShabalaSScreening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll contentFunct Plant Biol20033033534332689016 Malik AI, Ailewe TI, Erskine W (2015) Tolerance of three grain legume species to transient waterlogging. AoB Plants 7:plv040 JustinSHFWArmstrongWThe anatomical characteristics of roots and plant response to soil floodingNew Phytol1987106465495 RogersMEColmerTDNicholsPGHHughesSJFrostKCornwallDChandraSMillerSMCraigADSalinity and waterlogging tolerance amongst accessions of Messina (Melilotus siculus)Crop Pasture Sci201162225235 Williams R, Evans L, Ludwig L (1964) Estimation of leaf area for clover and lucerne. Aust J Agric Res 15:231-233 SandralGAPeoplesMBWilsonBCDTaylorJNRodhamCAGrowth, seed set and nitrogen fixation of 28 annual legume species on 3 Vertosol soils in southern New South WalesAnim Prod Sci20034311011115 Ewing MA, Poole C, Skinner P, Bennett A (2001) Sulla and other forage species for southern Australia. RIRDC publication no 01/41. Rural industries research and development corporation, Barton WA Minchin FR, Summerfield RJ (1976) Symbiotic nitrogen fixation and vegetative growth of cowpea (Vigna Unguiculata (L.) Walp.) in waterlogged condition. Plant Soil 45:113-127 HoMDRosasJCBrownKMLynchJPRoot architectural tradeoffs for water and phosphorus acquisitionFunct Plant Biol2005327377481:CAS:528:DC%2BD2MXmvVOgsLw%3D32689171 RealDWardenJSandralGAColmerTDWaterlogging tolerance and recovery of 10 Lotus speciesAust J Exp Agric200848480487 RogersMEColmerTEFrostKHenryDCornwallDHulmEHughesSSnowballRNicholsPGHCraigADThe influence of NaCl salinity and hypoxia on aspects of growth in Trifolium speciesCrop Pasture Sci20096071821:CAS:528:DC%2BD1MXhtVegs78%3D YaduvanshiNPSSetterTLSharmaSKSinghKNKulshreshthaNInfluence of waterlogging on yield of wheat (Triticum aestivum), redox potentials, and concentrations of microelements in different soils in India and AustraliaSoil Res2012504894991:CAS:528:DC%2BC38Xhtl2lsL%2FE PughRWittyJFMyttonLRMinchinFRThe effect of waterlogging on nitrogen fixation and nodule morphology in soil-grown white clover (Trifolium repens L.)J Exp Bot1995462852901:CAS:528:DyaK2MXks1Cltb8%3D NicholsPGHNuttBJEvansPMCraigADPengellyBCDearBSLloydDLRevellCKNairRMEwingMAHowiesonJGAurichtGAHowieJHSandralGACarrSJDe KoningCTHackneyBFCrockerGJSnowballRHughesSJHallEJFosterKJSkinnerPWBarbettiMJYouMPNew annual and short-lived perennial pasture legumes for Australian agriculture −15 years of revolutionField Crops Res20071041023 RogersMEWestDWThe effects of rootzone salinity and hypoxia on shoot and root growth in Trifolium speciesAnn Bot199372503509 Peak JW, Morley FHW (1973) Comparison of introduced lines of Trifolium subterraneum subsp. yanninicum with cultivars of T. subterraneum. 3 Irrigated and dryland sward trials at Canberra, Australian Capital Territory. Field station record 12. Division of plant industry, CSIRO (Australia) Bailey-SerresJVoesenekLACJFlooding stress: acclimations and genetic diversityAnnu Rev Plant Biol2008593133391:CAS:528:DC%2BD1cXntFaqsLc%3D18444902 ColmerTDVoesenekLACJFlooding tolerance: suites of plant traits in variable environmentsFunct Plant Biol2009366656811:STN:280:DC%2BB38jkvVCrtw%3D%3D32688679 CollinsWJRossiterRCHaynesYBrownAHDMarshallDRIdentification of subterranean clover cultivars and their genetic relationships by isozyme analysisCrop Pasture Sci198435399411 Hamilton G, Bakker D, Houlebrook D, Spann C (2000) Raised beds prevent waterlogging and increase productivity. Journal of the Department of Agriculture, Western Australia 41 Armstrong W (1980) Aeration in higher plants. In: Woolhouse HW (ed) Advances in botanical research, vol 7. Elsevier Science & Technology, pp 225-332 FrancisCMDevittACSteelePInfluence of flooding on the alcohol dehydrogenase activity of roots of Trifolium subterraneum LFunct Plant Biol197419131:CAS:528:DyaE2cXhtlSltb8%3D StrikerGMworiaJKFlooding stress on plants: anatomical, morphological and physiological responsesBotany2012IntechOpen TeakleNLBowmanSBarrett-LennardEGRealDColmerTDComparisons of annual pasture legumes in growth, ion regulation and root porosity demonstrate that Melilotus siculus has exceptional tolerance to combinations of salinity and waterloggingEnviron Exp Bot2012771751841:CAS:528:DC%2BC38Xht1Ontbg%3D YatesRJAbaidooRHowiesonJHowiesonJDilworthMField experiments with rhizobiaWorking with rhizobia2016CanberraAustralian Centre for International Agricultural Centre HerzogMStrikerGGColmerTDPedersenOMechanisms of waterlogging tolerance in wheat -a review of root and shoot physiologyPlant Cell Environ201639106810861:CAS:528:DC%2BC28XlvVaitLg%3D26565998 KonnerupDToroGPedersenOColmerTDWaterlogging tolerance, tissue nitrogen and oxygen transport in the forage legume Melilotus siculus: a comparison of nodulated and nitrate-fed plantsAnn Bot20181216997091:CAS:528:DC%2BC1MXmt1Sru7c%3D293515755853006 VoesenekLACJSasidharanREthylene- and oxygen signalling-drive plant survival during floodingPlant Biol2013154264351:CAS:528:DC%2BC3sXosVKks7w%3D23574304 ColmerTDLong-dist WJ Collins (4959_CR13) 1984; 35 TD Colmer (4959_CR15) 2011; 62 SC Chapman (4959_CR11) 2012; 63 MR Gibberd (4959_CR31) 2001; 88 4959_CR1 I Raskin (4959_CR60) 1983; 18 G Striker (4959_CR77) 2005; 276 4959_CR3 D Konnerup (4959_CR41) 2018; 121 TL Setter (4959_CR69) 2003; 253 ME Rogers (4959_CR65) 2009; 60 KHM Siddique (4959_CR71) 2013; 64 A Nakai (4959_CR48) 2009; 24 T Marshall (4959_CR45) 1967; 7 LACJ Voesenek (4959_CR81) 2013; 15 A Craig (4959_CR17) 1992; 32 4959_CR46 MR Gibberd (4959_CR30) 1999; 22 4959_CR44 4959_CR49 4959_CR47 B Ren (4959_CR63) 2013; 94 AI Malik (4959_CR43) 2002; 153 CF Smethurst (4959_CR72) 2003; 30 M Herzog (4959_CR33) 2016; 39 C Francis (4959_CR26) 1973; 13 M Ashraf (4959_CR6) 1993; 70 MD Ho (4959_CR34) 2005; 32 GA Sandral (4959_CR68) 2003; 43 GG Striker (4959_CR75) 2012; 27 ME Rogers (4959_CR64) 1993; 72 NL Teakle (4959_CR79) 2012; 77 TD Colmer (4959_CR16) 2009; 36 NPS Yaduvanshi (4959_CR83) 2012; 50 RJ Talbot (4959_CR78) 1987; 105 G Piluzza (4959_CR56) 2005; 52 P Cocks (4959_CR12) 1994; 45 4959_CR54 A Jarvis (4959_CR37) 2010 C Porqueddu (4959_CR58) 2016; 71 DR Kidd (4959_CR40) 2020; 71 GG Striker (4959_CR76) 2017; 68 MR Gibberd (4959_CR29) 1997; 48 J Bailey-Serres (4959_CR8) 2008; 59 ME Rogers (4959_CR66) 2011; 62 PGH Nichols (4959_CR50) 2007; 104 SHFW Justin (4959_CR38) 1987; 106 AD Craig (4959_CR18) 2000; 40 J Katznelson (4959_CR39) 1965; 14 BS Rosso (4959_CR67) 2005; 52 4959_CR70 L Chalker-Scott (4959_CR10) 1999; 70 4959_CR20 C Francis (4959_CR25) 1969; 20 4959_CR23 4959_CR21 4959_CR22 R Pugh (4959_CR59) 1995; 46 M Ashraf (4959_CR7) 1990; 121 G Striker (4959_CR74) 2012 T Yamauchi (4959_CR84) 2018; 176 L Kotula (4959_CR42) 2019; 444 M Ashraf (4959_CR5) 2003; 165 FN Ponnamperuma (4959_CR57) 1984 W Patrick (4959_CR53) 1996 D Real (4959_CR61) 2008; 48 TD Colmer (4959_CR14) 2003; 26 CM Francis (4959_CR27) 1974; 1 4959_CR82 RJ Yates (4959_CR85) 2016 4959_CR73 PGH Nichols (4959_CR51) 2013; 64 E Piano (4959_CR55) 1984; 38 4959_CR35 4959_CR32 R Hunt (4959_CR36) 1982 NW Albert (4959_CR2) 2015; 6 H Bramley (4959_CR9) 2010 W Armstrong (4959_CR4) 1983; 94 CJ Thomson (4959_CR80) 1990; 13 A Devitt (4959_CR19) 1972; 12 K Reed (4959_CR62) 1985; 25 CM Francis (4959_CR24) 1976 K Ghamkhar (4959_CR28) 2015; 153 J Pang (4959_CR52) 2004; 55 |
References_xml | – reference: YaduvanshiNPSSetterTLSharmaSKSinghKNKulshreshthaNInfluence of waterlogging on yield of wheat (Triticum aestivum), redox potentials, and concentrations of microelements in different soils in India and AustraliaSoil Res2012504894991:CAS:528:DC%2BC38Xhtl2lsL%2FE – reference: ColmerTDVoesenekLACJFlooding tolerance: suites of plant traits in variable environmentsFunct Plant Biol2009366656811:STN:280:DC%2BB38jkvVCrtw%3D%3D32688679 – reference: JustinSHFWArmstrongWThe anatomical characteristics of roots and plant response to soil floodingNew Phytol1987106465495 – reference: DevittAFrancisCThe effect of waterlogging on the mineral nutrient content of "Trifolium subterraneum"Aust J Exp Agric1972126141:CAS:528:DyaE3sXot1WrtA%3D%3D – reference: StrikerGMworiaJKFlooding stress on plants: anatomical, morphological and physiological responsesBotany2012IntechOpen – reference: Minchin FR, Summerfield RJ (1976) Symbiotic nitrogen fixation and vegetative growth of cowpea (Vigna Unguiculata (L.) Walp.) in waterlogged condition. Plant Soil 45:113-127 – reference: CraigADSandralGADearBSLattaRAEvansPMHillNLRegister of Australian herbage plant cultivars, B: legumes, 1: clover: Trifolium michelianum Savi (balansa clover) cv. FrontierAust J Exp Agric20004012011202 – reference: Chalker-ScottLEnvironmental significance of anthocyanins in plant stress responsesPhotochem Photobiol199970191:CAS:528:DyaK1MXksFOktr0%3D – reference: AshrafMMehmoodSEffects of waterlogging on growth and some physiological parameters of four Brassica speciesPlant Soil19901212032091:CAS:528:DyaK3cXhsFGntbs%3D – reference: KiddDRDi BellaCEKotulaLColmerTDRyanMHStrikerGGDefining the waterlogging tolerance of Ornithopus spp. for the temperate pasture zone of southern AustraliaCrop Pasture Sci2020715065161:CAS:528:DC%2BB3cXpslygt7Y%3D – reference: KatznelsonJMorleyFHWA taxonomic revison of sect. Calycomorphum of the genus Trifolium. I. the geocarpic speciesIsr J Bot196514112134 – reference: MarshallTMillingtonAFlooding tolerance of some Western Australian pasture legumesAust J Exp Agric19677367371 – reference: RealDWardenJSandralGAColmerTDWaterlogging tolerance and recovery of 10 Lotus speciesAust J Exp Agric200848480487 – reference: Bailey-SerresJVoesenekLACJFlooding stress: acclimations and genetic diversityAnnu Rev Plant Biol2008593133391:CAS:528:DC%2BD1cXntFaqsLc%3D18444902 – reference: MalikAIColmerTDLambersHSetterTLSchortemeyerMShort-term waterlogging has long-term effects on the growth and physiology of wheatNew Phytol2002153225236 – reference: SmethurstCFShabalaSScreening methods for waterlogging tolerance in lucerne: comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll contentFunct Plant Biol20033033534332689016 – reference: Falistocco E, Piccirilli M, Falcinelli M (1987) Cytotaxonomy of Trifolium Subterraneum L. Caryologia 40:123–130 – reference: GibberdMRCocksPSEffect of waterlogging and soil pH on the micro-distribution of naturalised annual legumesAust J Agric Res199748223230 – reference: AshrafMRelationships between leaf gas exchange characteristics and growth of differently adapted populations of blue panicgrass (Panicum antidotale Retz.) under salinity or waterloggingPlant Sci200316569751:CAS:528:DC%2BD3sXks1Wlsbg%3D – reference: NicholsPGHNuttBJEvansPMCraigADPengellyBCDearBSLloydDLRevellCKNairRMEwingMAHowiesonJGAurichtGAHowieJHSandralGACarrSJDe KoningCTHackneyBFCrockerGJSnowballRHughesSJHallEJFosterKJSkinnerPWBarbettiMJYouMPNew annual and short-lived perennial pasture legumes for Australian agriculture −15 years of revolutionField Crops Res20071041023 – reference: PorquedduCAtesSLouhaichiMKyriazopoulosAPMorenoGPozoAOvalleCEwingMANicholsPGHGrasslands in 'Old World' and 'New World' Mediterranean-climate zones: past trends, current status and future research prioritiesGrass Forage Sci201671135 – reference: RossoBSPaganoEMEvaluation of introduced and naturalised populations of red clover (Trifolium pratense L.) at Pergamino EEA-INTA, ArgentinaGenet Resour Crop Evol200552507511 – reference: NicholsPGHFosterKJPianoEPecettiLKaurPGhamkharKCollinsWJGenetic improvement of subterranean clover (Trifolium subterraneum L.). 1. Germplasm, traits and future prospectsCrop Pasture Sci2013643123461:CAS:528:DC%2BC3sXht12jt7nE – reference: RaskinIA method for measuring leaf volume, density, thickness, and internal gas volumeHortScience198318698699 – reference: Huang Bingru B, Johnson JW, Nesmith S, Bridges DC (1994) Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply. J Exp Bot 45:193-202 – reference: PatrickWGambrellRPFaulknerSPSparksDPageAHelmkePLoeppertRSoltanpourPNTabatabaiMAJohnstonCTSumnerMERedox measurements of soilsMethods of soil analysis part 3 -chemical methods1996American Society of Agronomy, Madison, WISoil Science Society of America – reference: FrancisCMObservations on the ecology of subterranean clover in Greece and Crete : a report based on a seed collection tour 19761976Perth, WAWestern Australian Dept. of Agriculture – reference: PonnamperumaFNKozlowskiTTEffects of flooding on soilsFlooding and plant growth1984San DiegoAcademic Press945 – reference: RenBZhangJLiXFanXDongSLiuPZhaoBEffects of waterlogging on the yield and growth of summer maize under field conditionsCan J Plant Sci2013942331 – reference: CocksPColonization of a south Australian grassland by invading Mediterranean annual and perennial pasture speciesAust J Agric Res19944510631076 – reference: Nichols PGH, Collins WJ, Barbetti MJ (1996) Registered cultivars of subterranean clover -their characteristics, origin and identification. Bulletin no. 4327. Chief executive officer, Agriculture Western Australia – reference: SiddiqueKHMErskineWHobsonKKnightsEJLeonforteAKhanTNPaullJGReddenRMaterneMCool-season grain legume improvement in Australia -use of genetic resourcesCrop Pasture Sci2013643473601:CAS:528:DC%2BC3sXht12jt7bM – reference: NakaiAYurugiYKisanukiHGrowth responses of Salix gracilistyla cuttings to a range of substrate moisture and oxygen availabilityEcol Res20092410571065 – reference: StrikerGGTime is on our side: the importance of considering a recovery period when assessing flooding tolerance in plantsEcol Res201227983987 – reference: HoMDRosasJCBrownKMLynchJPRoot architectural tradeoffs for water and phosphorus acquisitionFunct Plant Biol2005327377481:CAS:528:DC%2BD2MXmvVOgsLw%3D32689171 – reference: PangJZhouMMendhamNShaballaSGrowth and physiological responses of six barley genotypes to waterlogging and subsequent recoveryAust J Agric Res200455895895 – reference: FrancisCDevittAThe effect of waterlogging on the growth and isoflavone concentration of Trifolium subterraneum LAust J Agric Res196920819825 – reference: YamauchiTColmerTDPedersenONakazonoMRegulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stressPlant Physiol2018176111811301:CAS:528:DC%2BC1cXhs1eqsbjE29118247 – reference: Short R, McConnell C (2001) Extent and impacts of dryland salinity. Report 202. Department of Agriculture and Food, Western Australia, Perth – reference: Ellison NW, Liston A, Steiner JJ, Williams WM, Taylor NL (2006) Molecular phylogenetics of the clover genus (Trifolium-Leguminosae). Mol Phylogen Evol 39:688–705 – reference: StrikerGInsaustiPGrimoldiAPloschukEVasellatiVPhysiological and anatomical basis of differential tolerance to soil flooding of Lotus corniculatus L. and Lotus glaber millPlant Soil20052763013111:CAS:528:DC%2BD2MXht1KnsL3N – reference: RogersMEColmerTEFrostKHenryDCornwallDHulmEHughesSSnowballRNicholsPGHCraigADThe influence of NaCl salinity and hypoxia on aspects of growth in Trifolium speciesCrop Pasture Sci20096071821:CAS:528:DC%2BD1MXhtVegs78%3D – reference: HuntRPlant growth curves: the functional approach to plant growth analysis1982LondonEdward Arnold – reference: PughRWittyJFMyttonLRMinchinFRThe effect of waterlogging on nitrogen fixation and nodule morphology in soil-grown white clover (Trifolium repens L.)J Exp Bot1995462852901:CAS:528:DyaK2MXks1Cltb8%3D – reference: Abdi AI, Nichols PGH, Kaur P, Wintle BJ, Erskine W (2020) Morphological diversity within a core collection of subterranean clover (Trifolium subterraneum L.): lessons in pasture adaptation from the wild. PloS One 15:e0223699–e0223699 – reference: BramleyHTyermanSRoot water transport under waterlogged conditions and the roles of aquaporinsWaterlogging signalling and tolerance in plants2010Berlin Heidelberg, Berlin, HeidelbergSpringer151180 – reference: Ewing MA, Poole C, Skinner P, Bennett A (2001) Sulla and other forage species for southern Australia. RIRDC publication no 01/41. Rural industries research and development corporation, Barton WA – reference: ColmerTDLong-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from rootsPlant Cell Environ20032617361:CAS:528:DC%2BD3sXhtlKrtLs%3D – reference: GhamkharKNicholsPGHErskineWSnowballRMurilloMAppelsRRyanMHHotspots and gaps in the world collection of subterranean clover (Trifolium subterraneum L.)J Agric Sci201515310691083 – reference: GibberdMRColmerTDCocksPSRoot porosity and oxygen movement in waterlogging-tolerant Trifolium tomentosum and -intolerant Trifolium glomeratumPlant Cell Environ19992211611168 – reference: PiluzzaGPecettiLBullittaSPianoEDiscrimination among subterranean clover (Trifolium subterraneum L. complex) genotypes using RAPD markersGenet Resour Crop Evol2005521931991:CAS:528:DC%2BD2MXltlWnt7k%3D – reference: CollinsWJRossiterRCHaynesYBrownAHDMarshallDRIdentification of subterranean clover cultivars and their genetic relationships by isozyme analysisCrop Pasture Sci198435399411 – reference: FrancisCPooleMEffect of waterlogging on the growth of annual Medicago speciesAust J Exp Agric197313711713 – reference: KonnerupDToroGPedersenOColmerTDWaterlogging tolerance, tissue nitrogen and oxygen transport in the forage legume Melilotus siculus: a comparison of nodulated and nitrate-fed plantsAnn Bot20181216997091:CAS:528:DC%2BC1MXmt1Sru7c%3D293515755853006 – reference: FrancisCMDevittACSteelePInfluence of flooding on the alcohol dehydrogenase activity of roots of Trifolium subterraneum LFunct Plant Biol197419131:CAS:528:DyaE2cXhtlSltb8%3D – reference: Fiedler S, Vepraskas MJ, Richardson JL (2007) Soil redox potential: importance, field measurements, and observations. In: Advances in Agronomy, vol 94. Elsevier Science & Technology, San Diego, pp 1–54 – reference: CraigAPasture production of two cultivars of Trifolium subterraneum at Kybybolite, South AustraliaAust J Exp Agric199232611617 – reference: StrikerGGColmerTDFlooding tolerance of forage legumesJ Exp Bot201768185118721:CAS:528:DC%2BC1cXhsV2qtrfO27325893 – reference: PianoEPreliminary observations on the structure and variability of Sardinian populations of subterranean cloverGenet Agr1984387590 – reference: RogersMEWestDWThe effects of rootzone salinity and hypoxia on shoot and root growth in Trifolium speciesAnn Bot199372503509 – reference: TeakleNLBowmanSBarrett-LennardEGRealDColmerTDComparisons of annual pasture legumes in growth, ion regulation and root porosity demonstrate that Melilotus siculus has exceptional tolerance to combinations of salinity and waterloggingEnviron Exp Bot2012771751841:CAS:528:DC%2BC38Xht1Ontbg%3D – reference: ChapmanSCChakrabortySMDreccerMFHowdenSMPlant adaptation to climate change-opportunities and priorities in breedingCrop Pasture Sci201263251268 – reference: ThomsonCJArmstrongWWatersIGreenwayHAerenchyma formation and associated oxygen movement in seminal and nodal roots of wheatPlant Cell Environ199013395403 – reference: AlbertNWSubspecialization of R2R3-MYB repressors for anthocyanin and proanthocyanidin regulation in forage legumesFront Plant Sci2015611651165267791944689181 – reference: Malik AI, Ailewe TI, Erskine W (2015) Tolerance of three grain legume species to transient waterlogging. AoB Plants 7:plv040 – reference: RogersMEColmerTDNicholsPGHHughesSJFrostKCornwallDChandraSMillerSMCraigADSalinity and waterlogging tolerance amongst accessions of Messina (Melilotus siculus)Crop Pasture Sci201162225235 – reference: TalbotRJEtheringtonJRBryantJAComparative studies of plant growth and distribution in relation to waterlogging. XII. Growth, photosynthetic capacity and metal ion uptake in Salix caprea and S. cinerea ssp. OleifoliaNew Phytol19871055635741:CAS:528:DyaL2sXktlKrtrk%3D – reference: SetterTLWatersIReview of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oatsPlant Soil20032531341:CAS:528:DC%2BD3sXltVemsb4%3D – reference: ArmstrongWHealyMTLytheSOxygen diffusion in pea. II. Oxygen concentrations in the primary pea root apex as affected by growth, the production of laterals and radial oxygen lossNew Phytol198394549559 – reference: Peak JW, Morley FHW (1973) Comparison of introduced lines of Trifolium subterraneum subsp. yanninicum with cultivars of T. subterraneum. 3 Irrigated and dryland sward trials at Canberra, Australian Capital Territory. Field station record 12. Division of plant industry, CSIRO (Australia) – reference: ColmerTDGreenwayHIon transport in seminal and adventitious roots of cereals during O2 deficiencyJ Exp Bot20116239571:CAS:528:DC%2BC3cXhsFamurnE20847100 – reference: Stoddard FL, Balko C, Erskine W, Khan HR, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:167–186 – reference: Hamilton G, Bakker D, Houlebrook D, Spann C (2000) Raised beds prevent waterlogging and increase productivity. Journal of the Department of Agriculture, Western Australia 41 – reference: ReedKSchroderPEalesJMcDonaldRChinJComparative productivity of Trifolium subterraneum and T. yanninicum in South-Western VictoriaAust J Exp Agric198525351361 – reference: YatesRJAbaidooRHowiesonJHowiesonJDilworthMField experiments with rhizobiaWorking with rhizobia2016CanberraAustralian Centre for International Agricultural Centre – reference: McFarlane D, Barrett-Lennard E, Setter T (1989) Waterlogging: a hidden constraint to crop and pasture production in southern regions of Australia. In: Proceedings of the 5th Australian agronomy conference, pp 74–83 – reference: VoesenekLACJSasidharanREthylene- and oxygen signalling-drive plant survival during floodingPlant Biol2013154264351:CAS:528:DC%2BC3sXosVKks7w%3D23574304 – reference: Williams R, Evans L, Ludwig L (1964) Estimation of leaf area for clover and lucerne. Aust J Agric Res 15:231-233 – reference: JarvisARamirezJAndersonBLeibingCAggarwalPReynoldsMPScenarios of climate change within the context of agricultureClimate change and crop production2010WallingfordCABI – reference: GibberdMRGrayJDCocksPSColmerTDWaterlogging tolerance among a diverse range of Trifolium accessions is related to root porosity, lateral root formation and 'aerotropic rooting'Ann Bot200188579589 – reference: HerzogMStrikerGGColmerTDPedersenOMechanisms of waterlogging tolerance in wheat -a review of root and shoot physiologyPlant Cell Environ201639106810861:CAS:528:DC%2BC28XlvVaitLg%3D26565998 – reference: AshrafMChishtiSNWaterlogging tolerance of some accessions of lentil (Lens culinaris medic.)Trop Agric1993706067 – reference: SandralGAPeoplesMBWilsonBCDTaylorJNRodhamCAGrowth, seed set and nitrogen fixation of 28 annual legume species on 3 Vertosol soils in southern New South WalesAnim Prod Sci20034311011115 – reference: KotulaLKwaHYNicholsPGHColmerTDTolerance and recovery of the annual pasture legumes Melilotus siculus, Trifolium michelianum and Medicago polymorpha to soil salinity, soil waterlogging and the combination of these stressesPlant Soil20194442672801:CAS:528:DC%2BC1MXhs1Oht7jP – reference: Armstrong W (1980) Aeration in higher plants. In: Woolhouse HW (ed) Advances in botanical research, vol 7. Elsevier Science & Technology, pp 225-332 – volume: 176 start-page: 1118 year: 2018 ident: 4959_CR84 publication-title: Plant Physiol doi: 10.1104/pp.17.01157 – volume: 24 start-page: 1057 year: 2009 ident: 4959_CR48 publication-title: Ecol Res doi: 10.1007/s11284-009-0583-8 – ident: 4959_CR73 doi: 10.1007/s10681-006-4723-8 – volume: 153 start-page: 225 year: 2002 ident: 4959_CR43 publication-title: New Phytol doi: 10.1046/j.0028-646X.2001.00318.x – volume: 6 start-page: 1165 year: 2015 ident: 4959_CR2 publication-title: Front Plant Sci doi: 10.3389/fpls.2015.01165 – ident: 4959_CR20 doi: 10.1016/j.ympev.2006.01.004 – volume-title: Climate change and crop production year: 2010 ident: 4959_CR37 – volume: 36 start-page: 665 year: 2009 ident: 4959_CR16 publication-title: Funct Plant Biol doi: 10.1071/FP09144 – volume: 15 start-page: 426 year: 2013 ident: 4959_CR81 publication-title: Plant Biol doi: 10.1111/plb.12014 – volume: 59 start-page: 313 year: 2008 ident: 4959_CR8 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.59.032607.092752 – volume: 27 start-page: 983 year: 2012 ident: 4959_CR75 publication-title: Ecol Res doi: 10.1007/s11284-012-0978-9 – volume: 165 start-page: 69 year: 2003 ident: 4959_CR5 publication-title: Plant Sci doi: 10.1016/S0168-9452(03)00128-6 – volume: 38 start-page: 75 year: 1984 ident: 4959_CR55 publication-title: Genet Agr – volume-title: Working with rhizobia year: 2016 ident: 4959_CR85 – volume: 12 start-page: 614 year: 1972 ident: 4959_CR19 publication-title: Aust J Exp Agric doi: 10.1071/EA9720614 – volume: 106 start-page: 465 year: 1987 ident: 4959_CR38 publication-title: New Phytol doi: 10.1111/j.1469-8137.1987.tb00153.x – volume: 77 start-page: 175 year: 2012 ident: 4959_CR79 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2011.11.020 – ident: 4959_CR3 doi: 10.1016/S0065-2296(08)60089-0 – volume: 1 start-page: 9 year: 1974 ident: 4959_CR27 publication-title: Funct Plant Biol doi: 10.1071/PP9740009 – volume: 26 start-page: 17 year: 2003 ident: 4959_CR14 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.2003.00846.x – volume: 50 start-page: 489 year: 2012 ident: 4959_CR83 publication-title: Soil Res doi: 10.1071/SR11266 – volume: 52 start-page: 193 year: 2005 ident: 4959_CR56 publication-title: Genet Resour Crop Evol doi: 10.1007/s10722-003-4449-6 – volume: 39 start-page: 1068 year: 2016 ident: 4959_CR33 publication-title: Plant Cell Environ doi: 10.1111/pce.12676 – ident: 4959_CR82 doi: 10.1071/AR9640231 – ident: 4959_CR47 doi: 10.1007/BF00011133 – volume: 46 start-page: 285 year: 1995 ident: 4959_CR59 publication-title: J Exp Bot doi: 10.1093/jxb/46.3.285 – volume: 52 start-page: 507 year: 2005 ident: 4959_CR67 publication-title: Genet Resour Crop Evol doi: 10.1007/s10722-005-0777-z – ident: 4959_CR44 doi: 10.1093/aobpla/plv040 – ident: 4959_CR54 – volume: 68 start-page: 1851 year: 2017 ident: 4959_CR76 publication-title: J Exp Bot – volume: 71 start-page: 506 year: 2020 ident: 4959_CR40 publication-title: Crop Pasture Sci doi: 10.1071/CP19491 – volume: 105 start-page: 563 year: 1987 ident: 4959_CR78 publication-title: New Phytol doi: 10.1111/j.1469-8137.1987.tb00894.x – ident: 4959_CR22 doi: 10.1080/00087114.1987.10797816 – volume: 62 start-page: 39 year: 2011 ident: 4959_CR15 publication-title: J Exp Bot doi: 10.1093/jxb/erq271 – volume: 64 start-page: 347 year: 2013 ident: 4959_CR71 publication-title: Crop Pasture Sci doi: 10.1071/CP13071 – volume: 70 start-page: 1 year: 1999 ident: 4959_CR10 publication-title: Photochem Photobiol doi: 10.1111/j.1751-1097.1999.tb01944.x – volume: 22 start-page: 1161 year: 1999 ident: 4959_CR30 publication-title: Plant Cell Environ doi: 10.1046/j.1365-3040.1999.00472.x – volume: 70 start-page: 60 year: 1993 ident: 4959_CR6 publication-title: Trop Agric – volume: 48 start-page: 480 year: 2008 ident: 4959_CR61 publication-title: Aust J Exp Agric doi: 10.1071/EA07110 – volume: 121 start-page: 203 year: 1990 ident: 4959_CR7 publication-title: Plant Soil doi: 10.1007/BF00012313 – volume: 20 start-page: 819 year: 1969 ident: 4959_CR25 publication-title: Aust J Agric Res doi: 10.1071/AR9690819 – volume: 104 start-page: 10 year: 2007 ident: 4959_CR50 publication-title: Field Crops Res doi: 10.1016/j.fcr.2007.03.016 – volume: 63 start-page: 251 year: 2012 ident: 4959_CR11 publication-title: Crop Pasture Sci doi: 10.1071/CP11303 – volume: 13 start-page: 395 year: 1990 ident: 4959_CR80 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.1990.tb02144.x – volume: 64 start-page: 312 year: 2013 ident: 4959_CR51 publication-title: Crop Pasture Sci doi: 10.1071/CP13118 – volume: 94 start-page: 23 year: 2013 ident: 4959_CR63 publication-title: Can J Plant Sci doi: 10.4141/cjps2013-175 – ident: 4959_CR70 – ident: 4959_CR1 doi: 10.1371/journal.pone.0223699 – volume: 94 start-page: 549 year: 1983 ident: 4959_CR4 publication-title: New Phytol doi: 10.1111/j.1469-8137.1983.tb04864.x – ident: 4959_CR49 – volume: 48 start-page: 223 year: 1997 ident: 4959_CR29 publication-title: Aust J Agric Res doi: 10.1071/A96074 – volume-title: Plant growth curves: the functional approach to plant growth analysis year: 1982 ident: 4959_CR36 – volume: 14 start-page: 112 year: 1965 ident: 4959_CR39 publication-title: Isr J Bot – ident: 4959_CR32 – volume: 55 start-page: 895 year: 2004 ident: 4959_CR52 publication-title: Aust J Agric Res doi: 10.1071/AR03097 – volume: 35 start-page: 399 year: 1984 ident: 4959_CR13 publication-title: Crop Pasture Sci doi: 10.1071/AR9840399 – volume: 88 start-page: 579 year: 2001 ident: 4959_CR31 publication-title: Ann Bot doi: 10.1006/anbo.2001.1506 – start-page: 151 volume-title: Waterlogging signalling and tolerance in plants year: 2010 ident: 4959_CR9 doi: 10.1007/978-3-642-10305-6_8 – volume: 60 start-page: 71 year: 2009 ident: 4959_CR65 publication-title: Crop Pasture Sci doi: 10.1071/CP08123 – volume-title: Methods of soil analysis part 3 -chemical methods year: 1996 ident: 4959_CR53 – volume: 30 start-page: 335 year: 2003 ident: 4959_CR72 publication-title: Funct Plant Biol doi: 10.1071/FP02192 – volume: 40 start-page: 1201 year: 2000 ident: 4959_CR18 publication-title: Aust J Exp Agric doi: 10.1071/EA00086_CU – volume: 45 start-page: 1063 year: 1994 ident: 4959_CR12 publication-title: Aust J Agric Res doi: 10.1071/AR9941063 – volume: 71 start-page: 1 year: 2016 ident: 4959_CR58 publication-title: Grass Forage Sci doi: 10.1111/gfs.12212 – volume: 62 start-page: 225 year: 2011 ident: 4959_CR66 publication-title: Crop Pasture Sci doi: 10.1071/CP10270 – volume-title: Botany year: 2012 ident: 4959_CR74 – volume: 32 start-page: 611 year: 1992 ident: 4959_CR17 publication-title: Aust J Exp Agric doi: 10.1071/EA9920611 – volume-title: Observations on the ecology of subterranean clover in Greece and Crete : a report based on a seed collection tour 1976 year: 1976 ident: 4959_CR24 – start-page: 9 volume-title: Flooding and plant growth year: 1984 ident: 4959_CR57 doi: 10.1016/B978-0-12-424120-6.50007-9 – volume: 32 start-page: 737 year: 2005 ident: 4959_CR34 publication-title: Funct Plant Biol doi: 10.1071/FP05043 – ident: 4959_CR46 – volume: 72 start-page: 503 year: 1993 ident: 4959_CR64 publication-title: Ann Bot doi: 10.1006/anbo.1993.1137 – volume: 253 start-page: 1 year: 2003 ident: 4959_CR69 publication-title: Plant Soil doi: 10.1023/A:1024573305997 – volume: 444 start-page: 267 year: 2019 ident: 4959_CR42 publication-title: Plant Soil doi: 10.1007/s11104-019-04254-z – ident: 4959_CR23 doi: 10.1016/S0065-2113(06)94001-2 – volume: 43 start-page: 1101 year: 2003 ident: 4959_CR68 publication-title: Anim Prod Sci doi: 10.1071/EA02141 – volume: 13 start-page: 711 year: 1973 ident: 4959_CR26 publication-title: Aust J Exp Agric doi: 10.1071/EA9730711 – volume: 7 start-page: 367 year: 1967 ident: 4959_CR45 publication-title: Aust J Exp Agric doi: 10.1071/EA9670367 – ident: 4959_CR35 doi: 10.1093/jxb/45.2.193 – volume: 121 start-page: 699 year: 2018 ident: 4959_CR41 publication-title: Ann Bot doi: 10.1093/aob/mcx202 – volume: 153 start-page: 1069 year: 2015 ident: 4959_CR28 publication-title: J Agric Sci doi: 10.1017/S0021859614000793 – volume: 25 start-page: 351 year: 1985 ident: 4959_CR62 publication-title: Aust J Exp Agric doi: 10.1071/EA9850351 – ident: 4959_CR21 – volume: 18 start-page: 698 year: 1983 ident: 4959_CR60 publication-title: HortScience doi: 10.21273/HORTSCI.18.5.698 – volume: 276 start-page: 301 year: 2005 ident: 4959_CR77 publication-title: Plant Soil doi: 10.1007/s11104-005-5084-0 |
SSID | ssj0003216 ssib004299087 |
Score | 2.3942654 |
Snippet | Aims
Tolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover (
Trifolium subterraneum
L.) to identify... Aims Tolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover (Trifolium subterraneum L.) to identify... AimsTolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover (Trifolium subterraneum L.) to identify... AIMS: Tolerance to waterlogging and recovery ability was compared among the three subspecies of subterranean clover (Trifolium subterraneum L.) to identify... |
SourceID | proquest gale crossref springer nii jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 467 |
SubjectTerms | Anthocyanins biomass Biomedical and Life Sciences Chlorophyll Clover Conductance Cultivars Drainage Ecology Environmental aspects Greenhouses Growth rate Hardiness leaf area leaf chlorophyll content Leaves Life Sciences Nodulation petioles Physiological aspects Pigmentation Plant breeding Plant growth Plant Physiology Plant Sciences Plants Porosity Recovery Regular Article REGULAR ARTICLES Resistance root growth Roots (Botany) Shoots (Botany) soil Soil moisture Soil Science & Conservation Stomata Stomatal conductance tap roots Trifolium subterraneum Waterlogging |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1di9NAFB1kVdAH0epidFdGEHzQSL5mJnmssssiq09b6FuYSWbWQE0kSZX-EP-v507TlhUVfGgIzfQm5d65c07mfjD2KjamSHRiQuGUCeHwNPygKcJM1XmqlRPKUb7zp8_yYpF9XIrllBQ27KLdd1uS3lMfkt2wUmUhhRQA1YoiBFG_LYi7w4oXyXzvf9PENzylkzBSxXJKlfmzjBvL0eSUt4GJWGzaprkBPH_bK_VL0PlD9mDCjny-VfYjdsu2M3Z_ft1P9TPsjN153wHtbWbs7pkvR715zH5eUrA3_w5S7LXAm5b_0BTI2dHb5ms-ditL7TUs123NiSHDvDfctyHiwIf49NbyAS6GmtXbgXeOX_WN61bN-it9D2EQYHXLL9_xZuA-QcbWkMwBzEcvd_hCZ_02JNcOT9ji_Ozqw0U4NWMIK2C4MZQFvLqOY4cpDI5jpK3SXFVAN0lmax1ZLU2uo9RAIaYWQA11lkcuF1XqVGRsesyO2q61TxmXdSFFrayrK5dZHef0IkpKF2kliAEGLN7ppKymSuXUMGNVHmoskx5L6LH0eiyjgL3Z_-bbtk7HP0e_JlWXNIkhudJTLgKej8phlXMpQXNzmcqAHXtr2AtNwEZSESUBO4V54PnoGIN2KoBV2LqKi5z2tgN2sjOccnILQwk2joFFolTAXu4vY0LTLg301K0xBoiJgJ_ALd7uDO4g4u9_6tn_DX_O7iV-IlDo8Qk7Gvu1PQXAGs0LP59-Aa8YGFQ priority: 102 providerName: Springer Nature |
Title | Large variation in waterlogging tolerance and recovery among the three subspecies of Trifolium subterranean L. is related to root and shoot responses |
URI | https://www.jstor.org/stable/27293502 https://cir.nii.ac.jp/crid/1871709542971982720 https://link.springer.com/article/10.1007/s11104-021-04959-0 https://www.proquest.com/docview/2547179277 https://www.proquest.com/docview/2661007152 |
Volume | 464 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7RhgMcEBSqmrbRIiFxAIOfu_YJOSihghIh1EjhZO3au8VSsNs4AfWH8H-ZsTeJikQPSazEHjua2dnv250HwEtfqTSQgXJjI5SLDk-iH1SpG4kyCaUwsTCU7_xlys9m0ad5PLcLbq0Nq9z4xM5Rl01Ba-TvkMgg80gDId5fXbvUNYp2V20LjT0YoAtOkHwNRuPp129bXxwGXfNTOnA9kc5t2kyfPIczX-RSiAKi5Dh1vVtTk3XQfZAiTjx1Vd0Cof_sm3bT0eQxPLI4kmW94p_APV0fwMPscmlraegDuD9qEPndPIU_5xTuzX4hLe70wKqa_ZYUytnQevMlWzULTQ02NJN1yYgjo4HfsK4REUOEiK-l1qxFJ0Pt6nXLGsMulpVpFtX6J32PwlCAljU7f8uqlnUpMrpEyQyh-aqT2_6go2UflKvbZzCbjC8-nLm2HYNbIIpbuTxFvy593-AgRpajuC7CRBSIb4JIl9LTkqtEeqFCpqvKGHFDGSWeSeIiNMJTOjyE_bqp9REwXqY8LoU2ZWEiLf2ElqI4N54UMXFAB_yNJvLC1iqnlhmLfFdlmbSXo_byTnu558Dr7TVXfaWOO89-RQrOaRij5ELabAR8PiqIlWeco7klPOQOHHY2sBUaIB8JYy9w4BSNAp-P3n0kngLhKlq78NOEdrcdONmYS24dQ5vvzNiBF9ufcUjTPg3qqVnjOYiZCPrFeIs3GzPbifj_n3p-9x2P4UHQmTsFG5_A_mq51qcIqVZqCINsMhpN6fPj98_joR1HQ9ibBdlfffsd_g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VFAk4IChUGFpYJBAHMPh31z4glEKrlKYRQqmUm9m1d4ulYIc4ocqD8Bo8IzP-SVQkeushlhU7Y0cz-818uzM7AC9cpWJPesoOjVA2Ap5EHFSxHYgs8qUwoTBU73w64oOz4PMknGzBn64WhtIqO0ysgTorU5ojf4dEBplH7AnxYfbTpq5RtLratdBozOJEry6QslXvjz-hfl963tHh-OPAbrsK2CkGIwubxwhP0nUNNaYXoeI69SORopv2Ap1JR0uuIun4CgmbykJ0f1kQOSYKU98IR2kf5d6A7cBHKtOD7YPD0Zeva-z3vbrZKp3YjognbZlOU6yHnjawKSUCo_Iwtp1LrrB1CE1SJDq6Is8vBb3_rNPW7u_oHtxt41bWbwztPmzpYgfu9M_n7d4degduHpQYaa4ewO8hpZezX0jDa72zvGAXklJHS5rfPmeLcqqpoYdmssgYcXIcUCtWNz5iGJHiZ641qxDUZhrBp2KlYeN5bsppvvxB36MwFKBlwYZvWV6xuiRHZyiZIRVY1HKr73Q2b5KAdfUQzq5FUbvQK8pCPwLGs5iHmdAmS02gpRvR1BfnxpEiJM5pgdtpIknbvdGpRcc02ezqTNpLUHtJrb3EseD1-jezZmeQK-9-RQpOCDZQcirb6gd8P9qAK-lzjuYdcZ9bsFvbwFqoh_zHDx3Pgn00Cnw_OrpIdAWGxzi6hBtHtJpuwV5nLkkLRFWyGTYWPF9fRgihdSHUU7nEezBGo1AzxEe86cxsI-L_f-rx1U98BrcG49NhMjwenTyB215t-pTovAe9xXyp9zGcW6in7Rhi8O26h-1f9yZWlg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VFCE4IChUGFpYJBAHMPVz1z4glNJGLQ1RhVopN7Nr7xZLwQ5xQpUfwp_h1zHjR6Ii0VsPsazYGTua57c7D4BXrlKxJz1lh0YoGw2eRDuoYjsQWeRLYUJhqN75y4gfnQefx-F4A_50tTCUVtnZxNpQZ2VKa-R7CGQQecSeEHumTYs4PRh8nP60aYIU7bR24zQaETnRy0uEb9WH4wPk9WvPGxyefTqy2wkDdoqBydzmMZoq6bqGhtSLUHGd-pFI0WV7gc6koyVXkXR8heBNZSG6wiyIHBOFqW-Eo7SPdG_BpkBU5PRgc_9wdPp15Qd8rx68Sie2I-JxW7LTFO6h1w1sSo_ACD2MbeeKW2ydQ5MgiU6vyPMrAfA_e7a1Kxw8gPttDMv6jdA9hA1dbMG9_sWs7eOht-D2folR5_IR_B5Sqjn7hZC8lgGWF-xSUhppSWvdF2xeTjQN99BMFhkjfI7KtWT1ECSG0Sl-ZlqzCg3cVKMhqlhp2NksN-UkX_yg75EYEtCyYMP3LK9YXZ6jM6TMEBbMa7rVdzqbNQnBunoM5zfCqG3oFWWhnwDjWczDTGiTpSbQ0o1oGYxz40gREv60wO04kaRtn3Qa1zFJ1h2eiXsJci-puZc4Frxd_WbadAm59u43xOCETAhSTmVbCYHvR824kj7nKOoR97kF27UMrIh6iIX80PEs2EWhwPejo4ugV2CojJom3DiinXULdjpxSVqjVCVrFbLg5eoymhPaI0I-lQu8B-M1CjtDfMS7TszWJP7_p55e_8QXcAfVNRkej06ewV2vlnzKed6B3ny20LsY2c3V81aFGHy7aa39C0mnWss |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+variation+in+waterlogging+tolerance+and+recovery+among+the+three+subspecies+of+Trifolium+subterranean+L.+is+related+to+root+and+shoot+responses&rft.jtitle=Plant+and+soil&rft.au=Enkhbat%2C+Gereltsetseg&rft.au=Ryan%2C+Megan+H.&rft.au=Foster%2C+Kevin+J.&rft.au=Nichols%2C+Phillip+G.+H.&rft.date=2021-07-01&rft.pub=Springer+Science+%2B+Business+Media&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=464&rft.issue=1%2F2&rft.spage=467&rft.epage=487&rft_id=info:doi/10.1007%2Fs11104-021-04959-0&rft.externalDocID=27293502 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |