A Novel High-Speed Resonant Frequency Tracking Method Using Transient Characteristics in a Piezoelectric Transducer

When driving the piezoelectric transducer (PT: piezo transducer), which is a key device, it is important for the ultrasonic system (using ultrasonic waves of 20 kHz or higher) to operate at a resonant frequency that can maximize the conversion of mechanical energy (vibration) from electrical energy....

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 17; p. 6378
Main Authors Moon, Jeonghoon, Park, Sungjun, Lim, Sangkil
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 24.08.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When driving the piezoelectric transducer (PT: piezo transducer), which is a key device, it is important for the ultrasonic system (using ultrasonic waves of 20 kHz or higher) to operate at a resonant frequency that can maximize the conversion of mechanical energy (vibration) from electrical energy. The resonant frequency of the PT changes during the actual operation according to the load fluctuations and environmental conditions. Therefore, to maintain a stable output in an ultrasonic system, it is essential to track the resonant frequency in a short time. In particular, fast resonant frequency tracking (RFT: resonant frequency tracking) is an important factor in the medical ultrasonic system, i.e., the system applied in this thesis. The reason is that in the case of a medical ultrasonic system, heat-induced skin necrosis, etc., may cause the procedure to be completed within a short period of time. Therefore, tracking the RFT time for maximum power transfer is an important factor; in this thesis, we propose a new high-speed RFT method. The proposed method finds the whole system resonance frequency by using the transient phenomenon (underdamped response characteristic) that appears in an impedance system, such as an ultrasonic generator, and uses this to derive the mechanical resonance frequency of the PT. To increase the accuracy of the proposed method, parameter fluctuations of the pressure of the PT, the equivalent circuit impedance analysis of the PT, and a MATLAB simulation were performed. Through this, the correlation between the resonance frequency of the ultrasonic system, including the LC filter with nonlinear characteristics and the mechanical resonance frequency of the PT, was analyzed. Based on the analyzed results, a method for tracking the mechanical resonance frequency that can transfer the maximum output to the PT is proposed in this thesis. Experiments show that using the proposed high-speed RFT method, the ultrasonic system can track the mechanical resonance frequency of the PT with high accuracy in a short time.
AbstractList When driving the piezoelectric transducer (PT: piezo transducer), which is a key device, it is important for the ultrasonic system (using ultrasonic waves of 20 kHz or higher) to operate at a resonant frequency that can maximize the conversion of mechanical energy (vibration) from electrical energy. The resonant frequency of the PT changes during the actual operation according to the load fluctuations and environmental conditions. Therefore, to maintain a stable output in an ultrasonic system, it is essential to track the resonant frequency in a short time. In particular, fast resonant frequency tracking (RFT: resonant frequency tracking) is an important factor in the medical ultrasonic system, i.e., the system applied in this thesis. The reason is that in the case of a medical ultrasonic system, heat-induced skin necrosis, etc., may cause the procedure to be completed within a short period of time. Therefore, tracking the RFT time for maximum power transfer is an important factor; in this thesis, we propose a new high-speed RFT method. The proposed method finds the whole system resonance frequency by using the transient phenomenon (underdamped response characteristic) that appears in an impedance system, such as an ultrasonic generator, and uses this to derive the mechanical resonance frequency of the PT. To increase the accuracy of the proposed method, parameter fluctuations of the pressure of the PT, the equivalent circuit impedance analysis of the PT, and a MATLAB simulation were performed. Through this, the correlation between the resonance frequency of the ultrasonic system, including the LC filter with nonlinear characteristics and the mechanical resonance frequency of the PT, was analyzed. Based on the analyzed results, a method for tracking the mechanical resonance frequency that can transfer the maximum output to the PT is proposed in this thesis. Experiments show that using the proposed high-speed RFT method, the ultrasonic system can track the mechanical resonance frequency of the PT with high accuracy in a short time.
When driving the piezoelectric transducer (PT: piezo transducer), which is a key device, it is important for the ultrasonic system (using ultrasonic waves of 20 kHz or higher) to operate at a resonant frequency that can maximize the conversion of mechanical energy (vibration) from electrical energy. The resonant frequency of the PT changes during the actual operation according to the load fluctuations and environmental conditions. Therefore, to maintain a stable output in an ultrasonic system, it is essential to track the resonant frequency in a short time. In particular, fast resonant frequency tracking (RFT: resonant frequency tracking) is an important factor in the medical ultrasonic system, i.e., the system applied in this thesis. The reason is that in the case of a medical ultrasonic system, heat-induced skin necrosis, etc., may cause the procedure to be completed within a short period of time. Therefore, tracking the RFT time for maximum power transfer is an important factor; in this thesis, we propose a new high-speed RFT method. The proposed method finds the whole system resonance frequency by using the transient phenomenon (underdamped response characteristic) that appears in an impedance system, such as an ultrasonic generator, and uses this to derive the mechanical resonance frequency of the PT. To increase the accuracy of the proposed method, parameter fluctuations of the pressure of the PT, the equivalent circuit impedance analysis of the PT, and a MATLAB simulation were performed. Through this, the correlation between the resonance frequency of the ultrasonic system, including the L C filter with nonlinear characteristics and the mechanical resonance frequency of the PT, was analyzed. Based on the analyzed results, a method for tracking the mechanical resonance frequency that can transfer the maximum output to the PT is proposed in this thesis. Experiments show that using the proposed high-speed RFT method, the ultrasonic system can track the mechanical resonance frequency of the PT with high accuracy in a short time.
When driving the piezoelectric transducer (PT: piezo transducer), which is a key device, it is important for the ultrasonic system (using ultrasonic waves of 20 kHz or higher) to operate at a resonant frequency that can maximize the conversion of mechanical energy (vibration) from electrical energy. The resonant frequency of the PT changes during the actual operation according to the load fluctuations and environmental conditions. Therefore, to maintain a stable output in an ultrasonic system, it is essential to track the resonant frequency in a short time. In particular, fast resonant frequency tracking (RFT: resonant frequency tracking) is an important factor in the medical ultrasonic system, i.e., the system applied in this thesis. The reason is that in the case of a medical ultrasonic system, heat-induced skin necrosis, etc., may cause the procedure to be completed within a short period of time. Therefore, tracking the RFT time for maximum power transfer is an important factor; in this thesis, we propose a new high-speed RFT method. The proposed method finds the whole system resonance frequency by using the transient phenomenon (underdamped response characteristic) that appears in an impedance system, such as an ultrasonic generator, and uses this to derive the mechanical resonance frequency of the PT. To increase the accuracy of the proposed method, parameter fluctuations of the pressure of the PT, the equivalent circuit impedance analysis of the PT, and a MATLAB simulation were performed. Through this, the correlation between the resonance frequency of the ultrasonic system, including the LC filter with nonlinear characteristics and the mechanical resonance frequency of the PT, was analyzed. Based on the analyzed results, a method for tracking the mechanical resonance frequency that can transfer the maximum output to the PT is proposed in this thesis. Experiments show that using the proposed high-speed RFT method, the ultrasonic system can track the mechanical resonance frequency of the PT with high accuracy in a short time.When driving the piezoelectric transducer (PT: piezo transducer), which is a key device, it is important for the ultrasonic system (using ultrasonic waves of 20 kHz or higher) to operate at a resonant frequency that can maximize the conversion of mechanical energy (vibration) from electrical energy. The resonant frequency of the PT changes during the actual operation according to the load fluctuations and environmental conditions. Therefore, to maintain a stable output in an ultrasonic system, it is essential to track the resonant frequency in a short time. In particular, fast resonant frequency tracking (RFT: resonant frequency tracking) is an important factor in the medical ultrasonic system, i.e., the system applied in this thesis. The reason is that in the case of a medical ultrasonic system, heat-induced skin necrosis, etc., may cause the procedure to be completed within a short period of time. Therefore, tracking the RFT time for maximum power transfer is an important factor; in this thesis, we propose a new high-speed RFT method. The proposed method finds the whole system resonance frequency by using the transient phenomenon (underdamped response characteristic) that appears in an impedance system, such as an ultrasonic generator, and uses this to derive the mechanical resonance frequency of the PT. To increase the accuracy of the proposed method, parameter fluctuations of the pressure of the PT, the equivalent circuit impedance analysis of the PT, and a MATLAB simulation were performed. Through this, the correlation between the resonance frequency of the ultrasonic system, including the LC filter with nonlinear characteristics and the mechanical resonance frequency of the PT, was analyzed. Based on the analyzed results, a method for tracking the mechanical resonance frequency that can transfer the maximum output to the PT is proposed in this thesis. Experiments show that using the proposed high-speed RFT method, the ultrasonic system can track the mechanical resonance frequency of the PT with high accuracy in a short time.
Audience Academic
Author Moon, Jeonghoon
Lim, Sangkil
Park, Sungjun
AuthorAffiliation 1 DH Innovation Co., Ltd., Gwangju 61209, Korea
3 Department of Automotive Engineering, University of Honam, Gwangju 62399, Korea
2 Department of Electrical Engineering, University of Chonnam National, Gwangju 61186, Korea
AuthorAffiliation_xml – name: 3 Department of Automotive Engineering, University of Honam, Gwangju 62399, Korea
– name: 2 Department of Electrical Engineering, University of Chonnam National, Gwangju 61186, Korea
– name: 1 DH Innovation Co., Ltd., Gwangju 61209, Korea
Author_xml – sequence: 1
  givenname: Jeonghoon
  orcidid: 0000-0002-1941-4022
  surname: Moon
  fullname: Moon, Jeonghoon
  organization: DH Innovation Co., Ltd., Gwangju 61209, Korea
– sequence: 2
  givenname: Sungjun
  surname: Park
  fullname: Park, Sungjun
  organization: Department of Electrical Engineering, University of Chonnam National, Gwangju 61186, Korea
– sequence: 3
  givenname: Sangkil
  orcidid: 0000-0002-4515-3284
  surname: Lim
  fullname: Lim, Sangkil
  organization: Department of Automotive Engineering, University of Honam, Gwangju 62399, Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36080839$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1v1DAQhi1URNuFA38AReIChy2OJ7GdC9JqRWml8iFoz5bjjHe9ZO2tnVQqvx4vKasW-WB7_MzrmdF7So588EjI65KeATT0Q2KsFByEfEZOyopVc8kYPXp0PianKW0oZQAgX5Bj4FRSCc0JSYvia7jDvrhwq_X85w6xK35gCl77oTiPeDuiN_fFddTml_Or4gsO69AVN2l_yVGfHGZyudaZGDC6NDiTCucLXXx3-Dtgj2aIzkxwNxqML8lzq_uErx72Gbk5_3S9vJhffft8uVxczU1N5TDnVcs73TWika3BrrENtACGSS0kCODWILWlobxitRCc0kq2aOwe6XiFEmbkctLtgt6oXXRbHe9V0E79DYS4UjrmcntUDbcWac0FoKxq3rTagqCsYRosy4JZ6-OktRvbLXYmNx11_0T06Yt3a7UKd6qpOGWcZ4F3DwIx5KGmQW1dMtj32mMYk2KiZLIGVpcZffsfuglj9HlUe6qsKZX1vqKziVrp3IDzNuR_TV4dbp3JBrEuxxei4jWUkAc2I--nBBNDShHtofqSqr2P1MFHmX3zuN0D-c848Adr2MRQ
CitedBy_id crossref_primary_10_1038_s41378_023_00620_1
crossref_primary_10_3390_s23125745
crossref_primary_10_3390_mi14081641
crossref_primary_10_1016_j_ultras_2023_107195
crossref_primary_10_1016_j_ultsonch_2023_106438
crossref_primary_10_1016_j_ultras_2024_107318
Cites_doi 10.1115/1.2202157
10.3390/s140203323
10.1142/S2010135X15500320
10.1038/srep09309
10.1016/j.jsv.2008.04.052
10.1109/TIE.2016.2582460
10.1109/9780470546284
10.3390/s121217343
10.1186/1687-1847-2012-215
10.1063/1.4932107
10.1109/TIE.2015.2436874
10.1109/TPEL.2005.861125
10.1016/j.nanoen.2011.09.001
10.1109/JSEN.2019.2963214
10.1016/S0041-624X(01)00060-9
10.1109/APPEEC.2012.6307722
10.1016/j.ultsonch.2009.06.005
10.1109/VLSICircuits18222.2020.9162908
10.1109/TPEL.2014.2328337
10.1109/58.883527
10.1016/j.sna.2009.08.007
10.3390/electronics8020169
10.1177/1045389X09351757
10.1016/S0019-0578(07)60142-6
10.1109/CoDIT.2016.7593655
10.1016/j.enconman.2009.02.020
10.1109/TIE.2018.2840503
10.1016/j.sna.2017.05.021
10.1049/iet-pel.2012.0031
10.1109/SPEC.2016.7846083
10.1016/j.ijleo.2015.11.170
10.1109/JSEN.2020.3008762
10.1109/UkrMiCo.2017.8095384
10.3390/sym12040643
10.1021/acsami.0c11913
10.1109/TIE.2017.2674612
10.1109/ICSMA.2008.4505584
10.1109/ECCE.2018.8558125
10.1109/ICEFEET49149.2020.9186960
10.1093/oso/9780195171792.001.0001
10.3390/mi12070779
10.1080/02286203.1998.11760397
10.1109/TIE.2017.2740827
10.1109/TVLSI.2013.2290083
10.1054/bjps.1999.3266
10.1016/j.jsv.2003.05.012
10.1109/TIE.2014.2308156
10.1109/ICCPCT.2013.6528936
10.1049/iet-pel.2015.0365
10.1109/TPWRD.2015.2437199
10.1016/j.pmatsci.2014.06.001
10.1146/annurev-food-030212-182537
10.1016/j.ultras.2013.07.001
10.1109/ISSCC.2017.7870409
10.1080/00207217.2020.1793419
10.3390/s17020329
10.1109/APEC39645.2020.9124475
10.1250/ast.30.180
10.1186/s10033-022-00767-4
10.1109/TPEL.2019.2921384
10.1109/ICInfA.2014.6932721
10.1109/TUFFC.2021.3093867
10.1109/TIE.2017.2784350
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22176378
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_96ffe05673e84569baf370292a3f23c2
A746531337
10_3390_s22176378
36080839
Genre Journal Article
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GrantInformation_xml – fundername: Honam University
  grantid: S2965440
– fundername: Ministry of SMEs and Startups(MSS, Korea)
  grantid: S2965440
– fundername: Honam University
GroupedDBID ---
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BPHCQ
BVXVI
CCPQU
CGR
CS3
CUY
CVF
D1I
DU5
E3Z
EBD
ECM
EIF
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
ITC
KB.
KQ8
L6V
M1P
M48
M7S
MODMG
M~E
NPM
OK1
P2P
P62
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
AAYXX
CITATION
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c508t-64b6dad9798bced9f93b33c28a783736fce0f1c064257760048becf33c2d64e83
IEDL.DBID RPM
ISSN 1424-8220
IngestDate Tue Oct 22 15:13:13 EDT 2024
Tue Sep 17 21:22:54 EDT 2024
Sat Oct 26 04:08:39 EDT 2024
Sun Oct 27 16:24:33 EDT 2024
Tue Nov 12 23:17:25 EST 2024
Thu Sep 26 20:47:30 EDT 2024
Sat Nov 02 12:27:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords resonant frequency tracking
curve fitting
ultrasonic
piezoelectric transducer
underdamped response characteristics
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-64b6dad9798bced9f93b33c28a783736fce0f1c064257760048becf33c2d64e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4515-3284
0000-0002-1941-4022
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460266/
PMID 36080839
PQID 2711500852
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_96ffe05673e84569baf370292a3f23c2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9460266
proquest_miscellaneous_2712853251
proquest_journals_2711500852
gale_infotracacademiconefile_A746531337
crossref_primary_10_3390_s22176378
pubmed_primary_36080839
PublicationCentury 2000
PublicationDate 20220824
PublicationDateYYYYMMDD 2022-08-24
PublicationDate_xml – month: 8
  year: 2022
  text: 20220824
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References (ref_37) 2015; 5
Yuan (ref_34) 2017; 261
Asumi (ref_7) 2009; 30
Chung (ref_21) 2000; 53
Liu (ref_20) 2015; 62
ref_14
ref_58
ref_57
ref_56
Zhou (ref_8) 2014; 66
Ghenna (ref_26) 2017; 65
Sonmezoglu (ref_19) 2021; 68
Gu (ref_47) 2014; 30
Sathyan (ref_46) 2016; 63
Wang (ref_11) 2012; 1
ref_16
Boontaklang (ref_42) 2019; 12
Howells (ref_5) 2009; 50
Jiang (ref_25) 2017; 65
Kentish (ref_2) 2014; 5
Park (ref_36) 2006; 128
ref_61
ref_60
Ismail (ref_59) 1998; 18
Liu (ref_1) 2022; 35
Karthigeyan (ref_50) 2021; 108
Lueders (ref_65) 2013; 22
Shi (ref_24) 2017; 64
ref_69
ref_68
Kuang (ref_17) 2014; 54
BuchAcz (ref_40) 2014; 16
ref_66
ref_64
Din (ref_54) 2012; 2012
Barr (ref_63) 2001; 14
ref_62
Thangavelu (ref_31) 2016; 9
Lee (ref_55) 2003; 42
ref_28
Brown (ref_67) 2000; 47
Jiang (ref_18) 2020; 12
Yu (ref_13) 2014; 14
Muravskii (ref_52) 2004; 274
ref_71
Jordi (ref_53) 2015; 27
ref_70
Riera (ref_48) 2010; 17
Jiang (ref_12) 2018; 66
ref_35
Wang (ref_51) 2008; 318
ref_30
Kuczek (ref_49) 2015; 31
ref_39
ref_38
Yang (ref_29) 2019; 20
Cheng (ref_9) 2014; 61
Weis (ref_3) 2012; 12
Li (ref_32) 2012; 5
Jung (ref_10) 2015; 5
Zhou (ref_33) 2020; 20
Chen (ref_15) 2016; 127
ref_45
ref_44
Mortimer (ref_23) 2001; 39
ref_43
Wang (ref_27) 2019; 35
Lineykin (ref_22) 2006; 21
Harada (ref_6) 2009; 155
ref_4
Yang (ref_41) 2009; 20
References_xml – volume: 128
  start-page: 469
  year: 2006
  ident: ref_36
  article-title: Piezoelectric active sensor self-diagnostics using electrical admittance measurements
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.2202157
  contributor:
    fullname: Park
– volume: 14
  start-page: 3323
  year: 2014
  ident: ref_13
  article-title: A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit
  publication-title: Sensors
  doi: 10.3390/s140203323
  contributor:
    fullname: Yu
– volume: 5
  start-page: 1550032
  year: 2015
  ident: ref_37
  article-title: Equivalent circuit for the characterization of the resonance mode in piezoelectric systems
  publication-title: J. Adv. Dielectr.
  doi: 10.1142/S2010135X15500320
– volume: 5
  start-page: 1
  year: 2015
  ident: ref_10
  article-title: High output piezo/triboelectric hybrid generator
  publication-title: Sci. Rep.
  doi: 10.1038/srep09309
  contributor:
    fullname: Jung
– volume: 16
  start-page: 301
  year: 2014
  ident: ref_40
  article-title: Modelling of passive vibration damping using piezoelectric transducers—The mathematical model
  publication-title: Eksploat. I Niezawodn.
  contributor:
    fullname: BuchAcz
– volume: 318
  start-page: 757
  year: 2008
  ident: ref_51
  article-title: Calculation of the rightmost characteristic root of retarded time-delay systems via Lambert W function
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2008.04.052
  contributor:
    fullname: Wang
– volume: 63
  start-page: 6898
  year: 2016
  ident: ref_46
  article-title: ZVS–ZCS high voltage gain integrated boost converter for DC microgrid
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2582460
  contributor:
    fullname: Sathyan
– ident: ref_62
  doi: 10.1109/9780470546284
– volume: 12
  start-page: 17343
  year: 2012
  ident: ref_3
  article-title: An ultrasonic system for weed detection in cereal crops
  publication-title: Sensors
  doi: 10.3390/s121217343
  contributor:
    fullname: Weis
– volume: 2012
  start-page: 1
  year: 2012
  ident: ref_54
  article-title: Dynamics of a fourth-order system of rational difference equations
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/1687-1847-2012-215
  contributor:
    fullname: Din
– volume: 12
  start-page: 14
  year: 2019
  ident: ref_42
  article-title: Automatic Resonance-Frequency Tuning and Tracking Technique for a 1 MHz Ultrasonic-Piezoelectric-Transducer Driving Circuit in Medical Therapeutic Applications Using dsPIC Microcontroller and PLL Techniques
  publication-title: Int. J. Intell. Eng. Syst
  contributor:
    fullname: Boontaklang
– volume: 27
  start-page: 094104
  year: 2015
  ident: ref_53
  article-title: An adaptive selective frequency damping method
  publication-title: Phys. Fluids
  doi: 10.1063/1.4932107
  contributor:
    fullname: Jordi
– volume: 62
  start-page: 7136
  year: 2015
  ident: ref_20
  article-title: An automatic resonance tracking scheme with maximum power transfer for piezoelectric transducers
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2436874
  contributor:
    fullname: Liu
– volume: 21
  start-page: 73
  year: 2006
  ident: ref_22
  article-title: Maximum power tracking of piezoelectric transformer HV converters under load variations
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2005.861125
  contributor:
    fullname: Lineykin
– ident: ref_4
– volume: 1
  start-page: 13
  year: 2012
  ident: ref_11
  article-title: Piezoelectric nanogenerators-Harvesting ambient mechanical energy at the nanometer scale
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2011.09.001
  contributor:
    fullname: Wang
– volume: 20
  start-page: 4290
  year: 2019
  ident: ref_29
  article-title: A Broadband Resonant Noise Matching Technique for Piezoelectric Ultrasound Transducers
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2963214
  contributor:
    fullname: Yang
– ident: ref_56
– volume: 39
  start-page: 257
  year: 2001
  ident: ref_23
  article-title: High power resonant tracking amplifier using admittance locking
  publication-title: Ultrasonics
  doi: 10.1016/S0041-624X(01)00060-9
  contributor:
    fullname: Mortimer
– ident: ref_68
  doi: 10.1109/APPEEC.2012.6307722
– volume: 17
  start-page: 234
  year: 2010
  ident: ref_48
  article-title: Ultrasonic system for continuous washing of textiles in liquid layers
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2009.06.005
  contributor:
    fullname: Riera
– ident: ref_69
  doi: 10.1109/VLSICircuits18222.2020.9162908
– volume: 30
  start-page: 2127
  year: 2014
  ident: ref_47
  article-title: Hybrid transformer ZVS/ZCS DC–DC converter with optimized magnetics and improved power devices utilization for photovoltaic module applications
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2014.2328337
  contributor:
    fullname: Gu
– volume: 47
  start-page: 1377
  year: 2000
  ident: ref_67
  article-title: Design considerations for piezoelectric polymer ultrasound transducers
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.883527
  contributor:
    fullname: Brown
– volume: 155
  start-page: 168
  year: 2009
  ident: ref_6
  article-title: Droplet generation using a torsional Langevin-type transducer and a micropore plate
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2009.08.007
  contributor:
    fullname: Harada
– ident: ref_30
  doi: 10.3390/electronics8020169
– volume: 20
  start-page: 2223
  year: 2009
  ident: ref_41
  article-title: Equivalent circuit modeling of piezoelectric energy harvesters
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X09351757
  contributor:
    fullname: Yang
– ident: ref_38
– volume: 42
  start-page: 391
  year: 2003
  ident: ref_55
  article-title: Calculation of PID controller parameters by using a fuzzy neural network
  publication-title: ISA Trans.
  doi: 10.1016/S0019-0578(07)60142-6
  contributor:
    fullname: Lee
– ident: ref_45
– ident: ref_57
  doi: 10.1109/CoDIT.2016.7593655
– volume: 50
  start-page: 1847
  year: 2009
  ident: ref_5
  article-title: Piezoelectric energy harvesting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2009.02.020
  contributor:
    fullname: Howells
– volume: 66
  start-page: 3019
  year: 2018
  ident: ref_12
  article-title: Theory of series inductance matching to transducer at premechanical resonance zone in ultrasonic vibration cutting
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2840503
  contributor:
    fullname: Jiang
– volume: 261
  start-page: 219
  year: 2017
  ident: ref_34
  article-title: Driving an inductive piezoelectric transducer with class E inverter
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2017.05.021
  contributor:
    fullname: Yuan
– volume: 14
  start-page: 103
  year: 2001
  ident: ref_63
  article-title: Pulse width modulation
  publication-title: Embed. Syst. Program.
  contributor:
    fullname: Barr
– volume: 5
  start-page: 969
  year: 2012
  ident: ref_32
  article-title: Zero-voltage-switching dual-boost converter with multi-functional inductors and improved symmetrical rectifier for distributed generation systems
  publication-title: IET Power Electron.
  doi: 10.1049/iet-pel.2012.0031
  contributor:
    fullname: Li
– ident: ref_44
  doi: 10.1109/SPEC.2016.7846083
– volume: 127
  start-page: 2983
  year: 2016
  ident: ref_15
  article-title: Piezo-based wireless sensor network for early-age concrete strength monitoring
  publication-title: Optik
  doi: 10.1016/j.ijleo.2015.11.170
  contributor:
    fullname: Chen
– volume: 20
  start-page: 14273
  year: 2020
  ident: ref_33
  article-title: Electrical impedance matching between piezoelectric transducer and power amplifier
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3008762
  contributor:
    fullname: Zhou
– ident: ref_39
  doi: 10.1109/UkrMiCo.2017.8095384
– ident: ref_14
  doi: 10.3390/sym12040643
– volume: 12
  start-page: 41991
  year: 2020
  ident: ref_18
  article-title: Single-layer MoS2 mechanical resonant piezo-sensors with high mass sensitivity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c11913
  contributor:
    fullname: Jiang
– volume: 64
  start-page: 4413
  year: 2017
  ident: ref_24
  article-title: An optimum-frequency tracking scheme for ultrasonic motor
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2674612
  contributor:
    fullname: Shi
– ident: ref_16
  doi: 10.1109/ICSMA.2008.4505584
– ident: ref_58
  doi: 10.1109/ECCE.2018.8558125
– ident: ref_60
  doi: 10.1109/ICEFEET49149.2020.9186960
– ident: ref_64
  doi: 10.1093/oso/9780195171792.001.0001
– ident: ref_66
  doi: 10.3390/mi12070779
– volume: 18
  start-page: 341
  year: 1998
  ident: ref_59
  article-title: Interval system reduction using Padé approximation to allow retention of dominant poles
  publication-title: Int. J. Model. Simul.
  doi: 10.1080/02286203.1998.11760397
  contributor:
    fullname: Ismail
– volume: 65
  start-page: 2467
  year: 2017
  ident: ref_25
  article-title: Study of phase shift control in high-speed ultrasonic vibration cutting
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2740827
  contributor:
    fullname: Jiang
– volume: 22
  start-page: 2287
  year: 2013
  ident: ref_65
  article-title: Architectural and circuit design techniques for power management of ultra-low-power MCU systems
  publication-title: IEEE Trans. Very Large Scale Integr. VLSI Syst.
  doi: 10.1109/TVLSI.2013.2290083
  contributor:
    fullname: Lueders
– volume: 53
  start-page: 212
  year: 2000
  ident: ref_21
  article-title: Ultrasonic surgical aspiration with endoscopic confirmation for osmidrosis
  publication-title: Br. J. Plast. Surg.
  doi: 10.1054/bjps.1999.3266
  contributor:
    fullname: Chung
– volume: 274
  start-page: 653
  year: 2004
  ident: ref_52
  article-title: On frequency independent damping
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2003.05.012
  contributor:
    fullname: Muravskii
– volume: 61
  start-page: 6031
  year: 2014
  ident: ref_9
  article-title: A resonance-frequency-tracing method for a current-fed piezoelectric transducer
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2308156
  contributor:
    fullname: Cheng
– ident: ref_61
  doi: 10.1109/ICCPCT.2013.6528936
– volume: 9
  start-page: 1381
  year: 2016
  ident: ref_31
  article-title: Zero voltage switching-pulse width modulation technique-based interleaved flyback converter for remote power solutions
  publication-title: IET Power Electron.
  doi: 10.1049/iet-pel.2015.0365
  contributor:
    fullname: Thangavelu
– volume: 31
  start-page: 44
  year: 2015
  ident: ref_49
  article-title: Transformer switching with vacuum circuit breaker: Case study of PV inverter LC filters impact on transient overvoltages
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2015.2437199
  contributor:
    fullname: Kuczek
– volume: 66
  start-page: 87
  year: 2014
  ident: ref_8
  article-title: Piezoelectric single crystal ultrasonic transducers for biomedical applications
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2014.06.001
  contributor:
    fullname: Zhou
– volume: 5
  start-page: 263
  year: 2014
  ident: ref_2
  article-title: Applications of power ultrasound in food processing
  publication-title: Annu. Rev. Food Sci. Technol.
  doi: 10.1146/annurev-food-030212-182537
  contributor:
    fullname: Kentish
– volume: 54
  start-page: 187
  year: 2014
  ident: ref_17
  article-title: Resonance tracking and vibration stablilization for high power ultrasonic transducers
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2013.07.001
  contributor:
    fullname: Kuang
– ident: ref_43
  doi: 10.1109/ISSCC.2017.7870409
– volume: 108
  start-page: 378
  year: 2021
  ident: ref_50
  article-title: Single event transient study on PMOS-NMOS cross-coupled LC-VCO using PLL
  publication-title: Int. J. Electron.
  doi: 10.1080/00207217.2020.1793419
  contributor:
    fullname: Karthigeyan
– ident: ref_35
  doi: 10.3390/s17020329
– ident: ref_71
  doi: 10.1109/APEC39645.2020.9124475
– volume: 30
  start-page: 180
  year: 2009
  ident: ref_7
  article-title: High speed, high resolution ultrasonic linear motor using V-shape two bolt-clamped Langevin-type transducers
  publication-title: Acoust. Sci. Technol.
  doi: 10.1250/ast.30.180
  contributor:
    fullname: Asumi
– ident: ref_70
– volume: 35
  start-page: 1
  year: 2022
  ident: ref_1
  article-title: Recent Advances in Soft Biological Tissue Manipulating Technologies
  publication-title: Chin. J. Mech. Eng.
  doi: 10.1186/s10033-022-00767-4
  contributor:
    fullname: Liu
– volume: 35
  start-page: 1147
  year: 2019
  ident: ref_27
  article-title: A high-tolerance matching method against load fluctuation for ultrasonic transducers
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2019.2921384
  contributor:
    fullname: Wang
– ident: ref_28
  doi: 10.1109/ICInfA.2014.6932721
– volume: 68
  start-page: 3362
  year: 2021
  ident: ref_19
  article-title: A Method and Analysis to Enable Efficient Piezoelectric Transducer-Based Ultrasonic Power and Data Links for Miniaturized Implantable Medical Devices
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2021.3093867
  contributor:
    fullname: Sonmezoglu
– volume: 65
  start-page: 4880
  year: 2017
  ident: ref_26
  article-title: Vector control of piezoelectric transducers and ultrasonic actuators
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2784350
  contributor:
    fullname: Ghenna
SSID ssj0023338
Score 2.455976
Snippet When driving the piezoelectric transducer (PT: piezo transducer), which is a key device, it is important for the ultrasonic system (using ultrasonic waves of...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 6378
SubjectTerms Computer Simulation
curve fitting
Energy
Equipment Design
Equivalent circuits
Heat
High speed
Impedance
Load fluctuation
Maximum power transfer
Methods
Necrosis
piezoelectric transducer
Piezoelectric transducers
Resonant frequencies
resonant frequency tracking
Stress concentration
Transducers
ultrasonic
Ultrasonics
underdamped response characteristics
Vibration
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KTu2h9F2naVFLoCcTr6XocdyGLqGQUGgCuQk96ULxLrubQvvrO2N5F5seeunVFkaeT6P5xh59A3Cqs0fagGmqjs7XQrmm9oocz0nfJmda7eiA89W1vLwVX-7O70atvqgmrMgDF8OdGZlzwiiteNIY7I13mePDTOt4bnkou29j9snUkGpxzLyKjhDHpP5s2yLzlpx6qY2iTy_S__dWPIpF0zrJUeBZPIHHA2Nk8zLTp_Agdc_g0UhH8Dls5-x69TP9YFS1UX9bY0Ri9F2eilzYYlOqpX8xjEuBvoyzq75tNOvLBVgfrehUJLuYijezZccc-7pMv1elWc4ylMERl8PmBdwuPt9cXNZDN4U6IAnb1VJ4GV00ymgfUjTZcM_RgNopTFK5zCE1eRYoITlX9LtOaMQ305AoRdL8JRx1qy69BmZ400Sh5Sw2QcjGuBh0VFp6OUtUSlPBh72V7bqIZlhMNggKe4Cigk9k_8MA0rnuLyD6dkDf_gv9Cj4Sepa8ESEKbjhUgPMkXSs7V6Qfh3m4quBkD7Ad3HRrW0WEGFknPuj94TY6GP01cV1a3fdjWuQ0yAMreFXWw2HOXCLhRopZgZqslMlLTe90y--9iLcR1PxLHv8PK7yBhy2dymhw0xMncLTb3Ke3yJV2_l3vFn8Ai7QStA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Li9RAEC50vehBfBtdpRXBU9hMd28_TjIujouwi6ALewv9dAckGWdmBf31ViWZOEHwmvShk6rq-r7u6q8A3pjsETYgTTXR-VJqV5VeU-A55XlylhtHF5zPztXphfx0eXw5bLhthrLK3ZrYLdSxDbRHfsQ1YRcECPzd6kdJXaPodHVooXETbs241kS-zOLjSLgE8q9eTUggtT_acMTfSlBHtb0c1En1_7sg72WkabXkXvpZ3IO7A25k897Q9-FGah7AnT01wYewmbPz9mf6zqh2o_yywrzEaHeeSl3YYt3XTP9imJ0C7Y-zs655NOuKBliXs-huJDuZSjizZcMc-7xMv9u-Zc4y9IMjOsX6EVwsPnw9OS2HngplQCi2LZX0KrpotTU-pGizFV6IgCbRSFWFyiFVeRaIlhxrOrSTBq2caUhUMhnxGA6atklPgVlRVVEaNYtVkKqyLgYTtVFezRIV1BTweveX61UvnVEj5SBT1KMpCnhP_38cQGrX3YN2_a0egqe2KueESE2LZBDwWe-yQIey3InMcWYFvCXr1RSTaKLghqsFOE9St6rnmlTkkI3rAg53Bq6HYN3Uf12rgFfjawwzOjtxTWqvuzEckQ2iwQKe9P4wzlkohN0INAvQE0-ZfNT0TbO86qS8raQWYOrZ_6f1HG5zunVR4aImD-Fgu75OLxALbf3LzuH_ACwDCq8
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3da9RAEB9qBakP4rfRKqsIPkVzu9v9eBA5i0cRWgQ96FvYzW7qQUna3LVY_3pn8sUF9TUZwmZnNvP7ZWd_A_DWlB5hA9JUE5xPpXZZ6jUtPKc8j85y4-iA8_GJOlrKr6cHpzsw9NjsJ3D9T2pH_aSWzfn7X5c3n3DBfyTGiZT9w5ojrlZCm1twm0sk6FTBJ8fNBC6QhnWiQlPzPbgjFCImQ53Ct7JSK97_9yd6K0dN6ye3EtLiPtzrkSSbd65_ADuxegh3t_QFH8F6zk7q63jOqJoj_X6BmYrR_3oqfmGLpquivmGYrwr6Y86O23bSrC0jYG0Wo9OS7HAq6sxWFXPs2yr-rrsmOquiMw4YJs1jWC6-_Dg8SvsuC2mB4GyTKulVcMFqa3wRgy2t8EIU6CSN5FWosohZOSuIqBxo2saTBv1ekklQMhrxBHaruorPgFmRZUEaNQtZIVVmXShM0EZ5NYtUYpPAm2GW84tOTCNHEkJeyUevJPCZ5n80IP3r9kLdnOX9csqtKsuI2E2LaBACWu9KgSFmuRMlx5El8I68l1PcoIsK1x82wHGS3lU-16Qrh_xcJ7A_ODgfoi_nmoAyolF80OvxNi482k1xVayvWhuOWAfxYQJPu3gYxzyEVQJ6EimTl5reqVY_W3FvK6kpmHr-32e-gD1ORzAy_MLJfdjdNFfxJQKjjX_Vhv0fQG0MDg
  priority: 102
  providerName: Scholars Portal
Title A Novel High-Speed Resonant Frequency Tracking Method Using Transient Characteristics in a Piezoelectric Transducer
URI https://www.ncbi.nlm.nih.gov/pubmed/36080839
https://www.proquest.com/docview/2711500852
https://www.proquest.com/docview/2712853251
https://pubmed.ncbi.nlm.nih.gov/PMC9460266
https://doaj.org/article/96ffe05673e84569baf370292a3f23c2
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tLhc4IN4ElsogJE7ZpnHqx7FbbVkhtaqAlXqLbMeBSLtJ1XaR4Ncz4yRVK25cckicyMnMZL7PngfAR1VahA1IU1VhbJxJk8RWkuEZYVNvdKoMJTjPF-L6JvuyGq9OYNznwoSgfWeri_r27qKufobYyvWdG_ZxYsPlfKozapwkhqdwigraU_SOZXEkXW0JIY58frhNEXQLLqkxHxeIjxT1BT_wQaFU_78_5AOPdBwteeB-Zk_gcYcb2aSd31M48fUzeHRQTfA5bCds0fzyt4xiN-Jva_RLjFbnKdSFzTZtzPRvht7J0fo4m4fm0SwEDbDgsyg3kk2PSzizqmaGLSv_p2lb5lSuHVygUmxewM3s6vv0Ou56KsQOodguFpkVhSm01Mo6X-hSc8u5Q5FIpKpclM4n5cgRLRlL2rTLFEq5pCGFyLziL-Gsbmr_GpjmSVJkSoyKxKFAtCmcKqQSVow8BdRE8KH_yvm6LZ2RI-UgqeR7qURwSd9_P4CqXYcTzeZH3sk816IsPSI1yb1CwKetKTkqlE4NL1OcWQSfSHo52SSKyJkutQDnSdWt8omkKnLIxmUE572A885Yt3kqCRYj9sQHvd9fRjOjvRNT--Y-jEkR2SAajOBVqw_7OfdqFYE80pSjlzq-gpodSnl3mvzmv-98Cw9TSshI8H-XncPZbnPv3yFM2tkBGsdK4lHNPg_gweXVYvl1EJYc8DjP1CCYzV8Jfhjy
link.rule.ids 230,315,730,783,787,867,888,2109,2228,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,53804,53806,74073,74363,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BcgAOiDeBBQxC4hRtGnv9OKGyohTYVkjsSnuz_ApUQklpu0jw65lJ0tIIiWvsg-OZ8Xxjz3wD8EpXHmEDhqk6Op8L5YrcKzI8J32ZnCm1owLn2VxOz8XHi-OL_sJt3adVbs_E9qCOTaA78qNSEXZBgFC-Wf7IqWsUva72LTSuwjXB0VdTpfjk_S7g4hh_dWxCHEP7o3WJ-Fty6qi254Naqv5_D-Q9jzTMltxzP5PbcKvHjWzcCfoOXEn1Xbi5xyZ4D9ZjNm9-pu-McjfyL0v0S4xu5ynVhU1WXc70L4beKdD9OJu1zaNZmzTAWp9FtZHsZEjhzBY1c-zzIv1uupY5i9BNjqgUq_twPnl3djLN-54KeUAotsml8DK6aJTRPqRoKsM95wFFojBU5bIKqahGgcKSY0WPdkKjlCuaEqVImj-Ag7qp0yNghhdFFFqOYhGELIyLQUelpZejRAk1Gbzc7rJddtQZFkMOEoXdiSKDt7T_uwnEdt1-aFZfbW881siqSojUFE8aAZ_xruKoUKZ0vCpxZRm8JulZskkUUXB9aQGuk9it7FgRixxG4yqDw62AbW-sa_tXtTJ4sRtGM6O3E1en5rKdUyKyQTSYwcNOH3Zr5hJhNwLNDNRAUwY_NRypF99aKm8jqAWYfPz_ZT2H69Oz2ak9_TD_9ARulFSBUeABJw7hYLO6TE8RF238s1b5_wC11A2R
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9BJyF4mPgcGQMMQuIpahp7dvyEurFqfKyqgEl7s_wVqISS0nZI8Ndzl6SlERKviR-c3J3vd_bPvwN4VZQOYQOWqUWwLhXKZqlTFHhWujxanReWLjhfTOX5pXh_dXzV8Z9WHa1ysyY2C3WoPe2RD3NF2AUBQj4sO1rE7O3kzeJHSh2k6KS1a6dxE_aUkDwbwN7J2XT2aVt-cazGWm0hjoX-cJUjGpec-qvtZKRGuP_f5XknP_W5kzvJaHIX9jsUycat2e_BjVjdhzs72oIPYDVm0_pn_M6IyZF-XmCWYrRXT8QXNlm2DOpfDHOVp91ydtG0kmYNhYA1GYxuSrLTvqAzm1fMstk8_q7bBjpz3w4O6CLLh3A5Oftyep52HRZSj8BsnUrhZLBBK104H4MuNXecezSQwsKVy9LHrBx5KlKOFR3hiQJtXtKQIEUs-CMYVHUVHwPTPMuCKOQoZF7ITNvgi6AK6eQoEr0mgZebv2wWrZCGwQKETGG2pkjghP7_dgBpXzcP6uVX04WS0bIsI-I2xWOB8E87W3J0L51bXuY4swRek_UMRSiayNvuogHOk7SuzFiRphzW5iqBo42BTRe6K_PX0RJ4sX2NQUcnKbaK9XUzJkecg9gwgYPWH7Zz5hJBOMLOBFTPU3of1X9Tzb81wt5aUEMwefj_aT2HW-j55uO76YcncDun6xgZrnbiCAbr5XV8iiBp7Z513v8H2GkTLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+High-Speed+Resonant+Frequency+Tracking+Method+Using+Transient+Characteristics+in+a+Piezoelectric+Transducer&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Moon%2C+Jeonghoon&rft.au=Park%2C+Sungjun&rft.au=Lim%2C+Sangkil&rft.date=2022-08-24&rft.eissn=1424-8220&rft.volume=22&rft.issue=17&rft_id=info:doi/10.3390%2Fs22176378&rft_id=info%3Apmid%2F36080839&rft.externalDocID=36080839
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon