Data-driven estimates of global nitrous oxide emissions from croplands

Abstract Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961–2014, usi...

Full description

Saved in:
Bibliographic Details
Published inNational Science Review Vol. 7; no. 2; pp. 441 - 452
Main Authors Wang, Qihui, Zhou, Feng, Shang, Ziyin, Ciais, Philippe, Winiwarter, Wilfried, Jackson, Robert B, Tubiello, Francesco N, Janssens-Maenhout, Greet, Tian, Hanqin, Cui, Xiaoqing, Canadell, Josep G, Piao, Shilong, Tao, Shu
Format Journal Article
LanguageEnglish
Published China Oxford University Press 01.02.2020
Oxford Academic
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961–2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990–2014, but give a ∼15% lower EF in 1961–1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr–1) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways.
AbstractList Croplands are the single largest anthropogenic source of nitrous oxide (N$_2$O) globally, yet their estimatesremain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on ClimateChange (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961–2014, usingN-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributedsites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrativeunits. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990–2014, but give a ∼15% lowerEF in 1961–1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ±0.34 Tg N yr$^{–1}$) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, therest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2Oemissions from site-level observations to global croplands provides a new benchmark for constrainingIPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to informadvancement towards more realistic and effective mitigation pathways.
Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961–2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990–2014, but give a ∼15% lower EF in 1961–1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr–1) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways.
Croplands are the single largest anthropogenic source of nitrous oxide (N 2 O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N 2 O emissions in 1961–2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990–2014, but give a ∼15% lower EF in 1961–1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr –1 ) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N 2 O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways.
Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961-2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990-2014, but give a ∼15% lower EF in 1961-1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr-1) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways.Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961-2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990-2014, but give a ∼15% lower EF in 1961-1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr-1) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways.
Croplands are the single largest anthropogenic source of nitrous oxide (N O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N O emissions in 1961-2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990-2014, but give a ∼15% lower EF in 1961-1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr ) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways.
Abstract Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961–2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990–2014, but give a ∼15% lower EF in 1961–1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr–1) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways.
Author Tubiello, Francesco N
Tian, Hanqin
Winiwarter, Wilfried
Wang, Qihui
Tao, Shu
Canadell, Josep G
Zhou, Feng
Ciais, Philippe
Cui, Xiaoqing
Janssens-Maenhout, Greet
Piao, Shilong
Shang, Ziyin
Jackson, Robert B
AuthorAffiliation 4 The Institute of Environmental Engineering , University of Zielona Góra, Zielona Góra 65-417, Poland
3 International Institute for Applied Systems Analysis (IIASA), Laxenburg A-2361, Austria
8 International Center for Climate and Global Change Research , School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama 36849, USA
7 European Commission , Joint Research Centre, Ispra 21027, Italy
6 Statistics Division, Food and Agricultural Organization of the United Nations, Via Terme di Caracalla , Rome 00153, Italy
9 Global Carbon Project , CSIRO Oceans and Atmosphere, Canberra ACT 2601, Australia
1 Sino-France Institute of Earth Systems Science , Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
5 Department of Earth System Science , Stanford University, Stanford 94305, USA
2 Laboratoire des Sciences du Climat et de l'Environnement , LSCE, CEA CNRS UVSQ, Gif sur Yvette 91191, France
AuthorAffiliation_xml – name: 6 Statistics Division, Food and Agricultural Organization of the United Nations, Via Terme di Caracalla , Rome 00153, Italy
– name: 9 Global Carbon Project , CSIRO Oceans and Atmosphere, Canberra ACT 2601, Australia
– name: 4 The Institute of Environmental Engineering , University of Zielona Góra, Zielona Góra 65-417, Poland
– name: 3 International Institute for Applied Systems Analysis (IIASA), Laxenburg A-2361, Austria
– name: 2 Laboratoire des Sciences du Climat et de l'Environnement , LSCE, CEA CNRS UVSQ, Gif sur Yvette 91191, France
– name: 7 European Commission , Joint Research Centre, Ispra 21027, Italy
– name: 1 Sino-France Institute of Earth Systems Science , Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
– name: 5 Department of Earth System Science , Stanford University, Stanford 94305, USA
– name: 8 International Center for Climate and Global Change Research , School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama 36849, USA
Author_xml – sequence: 1
  givenname: Qihui
  surname: Wang
  fullname: Wang, Qihui
  organization: Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
– sequence: 2
  givenname: Feng
  orcidid: 0000-0001-6122-0611
  surname: Zhou
  fullname: Zhou, Feng
  email: zhouf@pku.edu.cn
  organization: Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
– sequence: 3
  givenname: Ziyin
  surname: Shang
  fullname: Shang, Ziyin
  organization: Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
– sequence: 4
  givenname: Philippe
  surname: Ciais
  fullname: Ciais, Philippe
  organization: Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
– sequence: 5
  givenname: Wilfried
  surname: Winiwarter
  fullname: Winiwarter, Wilfried
  organization: International Institute for Applied Systems Analysis (IIASA), Laxenburg A-2361, Austria
– sequence: 6
  givenname: Robert B
  surname: Jackson
  fullname: Jackson, Robert B
  organization: Department of Earth System Science, Stanford University, Stanford 94305, USA
– sequence: 7
  givenname: Francesco N
  surname: Tubiello
  fullname: Tubiello, Francesco N
  organization: Statistics Division, Food and Agricultural Organization of the United Nations, Via Terme di Caracalla, Rome 00153, Italy
– sequence: 8
  givenname: Greet
  surname: Janssens-Maenhout
  fullname: Janssens-Maenhout, Greet
  organization: European Commission, Joint Research Centre, Ispra 21027, Italy
– sequence: 9
  givenname: Hanqin
  surname: Tian
  fullname: Tian, Hanqin
  organization: International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama 36849, USA
– sequence: 10
  givenname: Xiaoqing
  surname: Cui
  fullname: Cui, Xiaoqing
  organization: Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
– sequence: 11
  givenname: Josep G
  surname: Canadell
  fullname: Canadell, Josep G
  organization: Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra ACT 2601, Australia
– sequence: 12
  givenname: Shilong
  surname: Piao
  fullname: Piao, Shilong
  organization: Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
– sequence: 13
  givenname: Shu
  surname: Tao
  fullname: Tao, Shu
  organization: Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34692059$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02971355$$DView record in HAL
BookMark eNp9kU1r3DAQhkVJaNJtLv0BxZdAG3CjT1u6FEK-YaGXFnoTWnuUCLzSRvJuP359ZnEaklBykYbRM69m3nlHdmKKQMgHRr8wasRxLPk4_vpLdfuG7HOqRN0y-XNnGxtVKyb0HjkoJSwoxk3bSvaW7AnZGGTNPrk4c6Or-xw2ECsoY1i6EUqVfHUzpIUbqhjGnNaY-R16qGAZUCvFUvmcllWX02pwsS_vya53Q4GDh3tGflycfz-9quffLq9PT-Z1p6ge64Yy1WrpeKcEHl52vWtY2xivuWfGUMkb5zRoJ73iZgFAPSjeCymYow2IGfk66a7WiyX0HcQxu8GuMvad_9jkgn3-EsOtvUkbq7nWWjIU-DwJ3L4ouzqZ222OctMyodRmy356-CynuzWaY3H6DgacGNASy5VWhnONps_Ix6d9PSr_MxqBowlAy0rJ4B8RRu12kRYXaadFIkxfwF0Y3Yi-40xh-H_J4VSS1qvXpO8BO8OvxQ
CitedBy_id crossref_primary_10_1016_j_scitotenv_2025_178919
crossref_primary_10_1016_j_scitotenv_2021_152363
crossref_primary_10_1111_gcb_15975
crossref_primary_10_1016_j_agee_2021_107456
crossref_primary_10_5194_essd_13_3203_2021
crossref_primary_10_1038_s44264_024_00015_3
crossref_primary_10_1016_j_still_2021_105036
crossref_primary_10_1016_j_cosust_2020_06_003
crossref_primary_10_5194_essd_14_1639_2022
crossref_primary_10_1016_j_scitotenv_2022_157541
crossref_primary_10_1016_j_jclepro_2022_133186
crossref_primary_10_1016_j_spc_2024_08_013
crossref_primary_10_2139_ssrn_4074222
crossref_primary_10_1111_gcb_17472
crossref_primary_10_1038_s41467_024_46968_4
crossref_primary_10_1038_s41598_022_18773_w
crossref_primary_10_1002_agj2_21172
crossref_primary_10_1016_j_scitotenv_2023_169639
crossref_primary_10_1016_j_oneear_2024_01_005
crossref_primary_10_1038_s41586_020_2780_0
crossref_primary_10_1039_D2EA00033D
crossref_primary_10_1088_2752_5295_aca2d1
crossref_primary_10_1016_j_scitotenv_2022_156067
crossref_primary_10_1021_acs_est_0c03978
crossref_primary_10_1016_j_soilbio_2024_109577
crossref_primary_10_1029_2020GB006698
crossref_primary_10_1029_2021JD036379
crossref_primary_10_1016_j_scitotenv_2022_159738
crossref_primary_10_1016_j_scitotenv_2021_152406
crossref_primary_10_1111_gcb_16132
crossref_primary_10_5194_essd_13_5213_2021
crossref_primary_10_1016_j_earscirev_2023_104462
crossref_primary_10_5194_essd_16_525_2024
crossref_primary_10_3390_agronomy13112720
crossref_primary_10_1016_j_oneear_2020_06_015
crossref_primary_10_1021_acs_est_0c05149
crossref_primary_10_1016_j_apsoil_2024_105469
crossref_primary_10_5194_acp_22_6291_2022
crossref_primary_10_5194_essd_16_2543_2024
crossref_primary_10_2139_ssrn_3927691
crossref_primary_10_3390_agronomy14010222
crossref_primary_10_1038_s43016_021_00384_9
crossref_primary_10_1088_1748_9326_ac3177
crossref_primary_10_1016_j_pedsph_2022_05_003
crossref_primary_10_1016_j_scitotenv_2023_166472
crossref_primary_10_1088_1748_9326_ac17b7
crossref_primary_10_1021_acs_est_1c03612
crossref_primary_10_1016_j_agrformet_2024_110027
crossref_primary_10_1002_jeq2_20124
crossref_primary_10_1021_acs_est_0c08004
crossref_primary_10_1016_j_scitotenv_2024_175637
crossref_primary_10_1016_j_envint_2023_108245
crossref_primary_10_5194_essd_14_5179_2022
crossref_primary_10_1016_j_aeaoa_2023_100224
crossref_primary_10_2139_ssrn_4123167
crossref_primary_10_1007_s10533_020_00742_y
crossref_primary_10_1016_j_agrformet_2022_109108
crossref_primary_10_1177_00307270211031274
crossref_primary_10_1016_j_cosust_2020_04_005
crossref_primary_10_1007_s11356_021_14310_w
crossref_primary_10_1016_j_jhazmat_2023_130972
crossref_primary_10_1093_nsr_nwad285
crossref_primary_10_1038_s41467_025_58090_0
crossref_primary_10_1111_gcb_15860
crossref_primary_10_34133_ehs_0189
crossref_primary_10_1111_gcb_15342
crossref_primary_10_1016_j_jia_2023_05_033
crossref_primary_10_1002_cctc_202001784
crossref_primary_10_1016_j_scitotenv_2024_176532
crossref_primary_10_1016_j_spc_2024_09_022
crossref_primary_10_1071_FP23133
crossref_primary_10_1007_s40641_021_00178_y
crossref_primary_10_1016_j_apsoil_2024_105725
crossref_primary_10_1021_acs_est_1c07276
crossref_primary_10_1029_2021GL095264
crossref_primary_10_1016_j_cej_2024_150374
crossref_primary_10_5194_essd_14_4551_2022
crossref_primary_10_1016_j_soilbio_2021_108212
crossref_primary_10_1016_j_cogsc_2024_100897
crossref_primary_10_1360_N072024_0233
crossref_primary_10_1038_s43247_025_02001_0
crossref_primary_10_3389_fsufs_2022_736394
crossref_primary_10_5194_gmd_16_5783_2023
crossref_primary_10_1016_j_jenvman_2024_120752
crossref_primary_10_1016_j_jenvman_2024_120234
crossref_primary_10_1021_acs_est_4c06592
crossref_primary_10_1016_j_cej_2024_157442
crossref_primary_10_1186_s12284_023_00638_z
crossref_primary_10_1021_acs_est_9b03896
crossref_primary_10_47134_ijlj_v1i4_2792
crossref_primary_10_1038_s41597_023_02526_z
crossref_primary_10_1007_s00376_024_3234_7
crossref_primary_10_1139_cjps_2021_0107
crossref_primary_10_1016_j_scitotenv_2022_153514
crossref_primary_10_1111_febs_16160
crossref_primary_10_1016_j_scitotenv_2024_170014
crossref_primary_10_1111_gcb_15437
crossref_primary_10_1093_nsr_nwaf040
crossref_primary_10_1016_j_agee_2025_109498
crossref_primary_10_5194_bg_21_1867_2024
crossref_primary_10_1021_acs_est_4c04574
crossref_primary_10_1016_j_envpol_2021_118154
crossref_primary_10_1038_s41467_022_32001_z
crossref_primary_10_1016_j_resconrec_2022_106501
crossref_primary_10_1016_j_resconrec_2023_107071
crossref_primary_10_1016_j_agee_2023_108639
crossref_primary_10_1111_gcb_15796
crossref_primary_10_1016_j_fcr_2024_109621
crossref_primary_10_1038_s41597_023_02385_8
crossref_primary_10_1016_j_scitotenv_2024_172322
crossref_primary_10_1007_s11430_024_1522_4
crossref_primary_10_1088_2515_7620_ac1ce8
crossref_primary_10_3390_agronomy12030546
crossref_primary_10_1007_s44246_023_00042_8
crossref_primary_10_1016_j_scitotenv_2023_162984
crossref_primary_10_3390_plants11233323
crossref_primary_10_1029_2023GB007744
crossref_primary_10_1029_2023GB007865
crossref_primary_10_1049_enc2_12078
crossref_primary_10_5194_essd_17_1121_2025
crossref_primary_10_1111_gcb_17165
Cites_doi 10.1073/pnas.1305372110
10.1088/1748-9326/9/10/105011
10.5194/essd-9-181-2017
10.1088/1748-9326/aa9ec9
10.1021/es4055324
10.1098/rstb.2013.0122
10.1098/rstb.2013.0112
10.1029/2004JD004590
10.1111/j.1466-8238.2010.00551.x
10.1111/j.1469-8137.2012.04334.x
10.1038/nature11420
10.1111/gcb.13341
10.1111/j.1747-0765.2006.00097.x
10.1088/1748-9326/9/10/105012
10.1016/j.agsy.2015.08.003
10.1016/j.agee.2012.02.021
10.1038/nature17174
10.1007/s10705-006-9000-7
10.1007/s10705-005-0357-9
10.1016/j.envpol.2016.01.010
10.1029/2004GB002378
10.1002/joc.3711
10.1073/pnas.1322434111
10.1002/2017GL073454
10.1111/gcb.13965
10.1016/j.cosust.2014.07.010
10.1016/j.agrformet.2011.07.002
10.1038/nature09396
10.1021/acs.est.8b03931
10.1029/2003GB002060
10.1007/s11104-013-1762-5
10.1111/j.1365-2486.2011.02554.x
10.1890/EHS14-0015.1
10.5194/bg-11-6595-2014
10.1029/1999JD900949
10.1038/srep25088
10.1002/2017RG000574
10.1038/nclimate3158
10.1111/gcbb.12223
10.5194/essd-9-667-2017
10.1111/j.1365-2486.2004.00879.x
10.3354/cr002183
10.1029/2001GB001811
10.1088/1748-9326/9/9/095002
10.1175/BAMS-D-17-0212.1
10.1016/j.envpol.2017.11.052
10.1111/gcbb.12572
10.1111/j.1469-8137.2012.04269.x
10.1016/j.agee.2010.12.009
10.1111/gcb.14514
10.1079/SUM2004238
10.5194/bg-6-2001-2009
10.1002/2014GB005046
10.1111/gcb.13966
10.1007/s10705-004-7358-y
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. 2020
The Author(s) 2019. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.
Attribution
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. 2020
– notice: The Author(s) 2019. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.
– notice: Attribution
DBID TOX
AAYXX
CITATION
NPM
7X8
1XC
VOOES
5PM
DOI 10.1093/nsr/nwz087
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2053-714X
EndPage 452
ExternalDocumentID PMC8288841
oai_HAL_hal_02971355v1
34692059
10_1093_nsr_nwz087
10.1093/nsr/nwz087
Genre Journal Article
GrantInformation_xml – fundername: Austrian Science Fund FWF
  grantid: P 29130
– fundername: ;
  grantid: 2016YFD0800501; 2018YFC0213304
– fundername: ;
– fundername: ;
  grantid: 41671464; 7181101181
– fundername: ;
  grantid: 29130-G27
GroupedDBID -SA
-SC
-S~
0R~
5VR
AAFWJ
AAOGV
AAPXW
AAVAP
AAXDM
ABDBF
ABPTD
ABQLI
ABXVV
ACGFS
AENEX
AFPKN
AFUIB
AFULF
ALMA_UNASSIGNED_HOLDINGS
AVWKF
BAYMD
CAJEA
CAJEC
CCEZO
CCVFK
CEKLB
EBS
ESX
FA0
GROUPED_DOAJ
H13
KSI
O9-
OK1
Q--
ROX
RPM
RXO
TOX
U1G
U5K
U5M
AAYXX
ABEJV
ABGNP
ACUHS
ADMLS
AMNDL
CITATION
4.4
EJD
NPM
7X8
1XC
CDYEO
VOOES
5PM
ID FETCH-LOGICAL-c508t-6015784a2c53a2cf4cda61769f82f1990426aa8e8a4f529bee0fe52d3431a06e3
IEDL.DBID TOX
ISSN 2095-5138
2053-714X
IngestDate Thu Aug 21 13:40:08 EDT 2025
Sat Jun 28 06:31:28 EDT 2025
Fri Jul 11 05:44:58 EDT 2025
Mon Jul 21 06:03:16 EDT 2025
Tue Jul 01 00:53:11 EDT 2025
Thu Apr 24 23:00:12 EDT 2025
Wed Aug 28 03:18:41 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords emission inventories
flux upscaling
nitrous oxide
temporal trend
emission factor
agricultural soils
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
The Author(s) 2019. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-6015784a2c53a2cf4cda61769f82f1990426aa8e8a4f529bee0fe52d3431a06e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6122-0611
0000-0002-9335-0709
0000-0001-8057-2292
0000-0001-8560-4943
0000-0002-7374-7063
0000-0001-7131-1496
0000-0002-1806-4091
OpenAccessLink https://dx.doi.org/10.1093/nsr/nwz087
PMID 34692059
PQID 2585922805
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8288841
hal_primary_oai_HAL_hal_02971355v1
proquest_miscellaneous_2585922805
pubmed_primary_34692059
crossref_primary_10_1093_nsr_nwz087
crossref_citationtrail_10_1093_nsr_nwz087
oup_primary_10_1093_nsr_nwz087
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle National Science Review
PublicationTitleAlternate Natl Sci Rev
PublicationYear 2020
Publisher Oxford University Press
Oxford Academic
Publisher_xml – name: Oxford University Press
– name: Oxford Academic
References Stehfest (2021070718540900500_bib50) 2006; 74
Bouwman (2021070718540900500_bib54) 2013; 368
Tian (2021070718540900500_bib3) 2019; 25
Liu (2021070718540900500_bib34) 2011; 140
Paustian (2021070718540900500_bib5) 2016; 532
Sun (2021070718540900500_bib36) 2018; 56
2021070718540900500_bib6
Zhou (2021070718540900500_bib39) 2016; 6
Butterbach-Bahl (2021070718540900500_bib1) 2013; 368
2021070718540900500_bib57
Kim (2021070718540900500_bib32) 2013; 373
Thompson (2021070718540900500_bib15)
Jung (2021070718540900500_bib29) 2009; 6
Akiyama (2021070718540900500_bib41) 2006; 52
Schindlbacher (2021070718540900500_bib13) 2004; 109
Zhang (2021070718540900500_bib19) 2015; 140
Janssens-Maenhout (2021070718540900500_bib7) 2019; 2019
Lehuger (2021070718540900500_bib47) 2011; 151
Kim (2021070718540900500_bib46) 2013; 168
Gerber (2021070718540900500_bib26) 2016; 22
Van Drecht (2021070718540900500_bib52) 2003; 17
Mueller (2021070718540900500_bib21) 2012; 490
Goldewijk (2021070718540900500_bib59)
Decock (2021070718540900500_bib42) 2014; 48
Wang (2021070718540900500_bib14) 2018; 24
Leppelt (2021070718540900500_bib48) 2014; 11
Jung (2021070718540900500_bib28) 2010; 467
Helgason (2021070718540900500_bib43) 2005; 72
Lu (2021070718540900500_bib20) 2017; 9
Davidson (2021070718540900500_bib2) 2014; 9
Yan (2021070718540900500_bib38) 2014; 9
Zhang (2021070718540900500_bib23) 2017; 9
Gao (2021070718540900500_bib25) 2016; 211
Berdanier (2021070718540900500_bib9) 2012; 18
Bouwman (2021070718540900500_bib33) 2002; 16
Lassaletta (2021070718540900500_bib61) 2014; 9
Hénault (2021070718540900500_bib44) 2005; 11
Carlson (2021070718540900500_bib30) 2017; 7
Rosas (2021070718540900500_bib62) 2012
IRRI: World Rice Statistics. Distribution of rice crop area by environment (2021070718540900500_bib63) 2007
Xu- (2021070718540900500_bib17) 2012; 196
Rochette (2021070718540900500_bib49) 2005; 73
Harris (2021070718540900500_bib55) 2014; 34
Zheng (2021070718540900500_bib53) 1993; 2
Sacks (2021070718540900500_bib56) 2010; 19
Sebilo (2021070718540900500_bib37) 2013; 110
Duncan (2021070718540900500_bib12) 2019; 11
Walter (2021070718540900500_bib51) 2015; 7
Zhou (2021070718540900500_bib24) 2015; 29
Ehrhardt (2021070718540900500_bib18) 2018; 24
Heffer (2021070718540900500_bib60)
Tian (2021070718540900500_bib22) 2015; 1
Hou (2021070718540900500_bib27) 2018; 234
Akiyama (2021070718540900500_bib40) 2005; 19
Song (2021070718540900500_bib31) 2018; 52
Winiwarter (2021070718540900500_bib8) 2018; 13
Smith (2021070718540900500_bib35) 2004; 20
Li (2021070718540900500_bib16) 2000; 105
Tian (2021070718540900500_bib4) 2018; 99
Shcherbak (2021070718540900500_bib10) 2014; 111
Hickman (2021070718540900500_bib45) 2014; 9-10
Yang (2021070718540900500_bib58) 2017; 44
Del Grosso (2021070718540900500_bib11) 2012; 196
References_xml – year: 2007
  ident: 2021070718540900500_bib63
– volume: 110
  start-page: 18185
  year: 2013
  ident: 2021070718540900500_bib37
  article-title: Long-term fate of nitrate fertilizer in agricultural soils
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1305372110
– volume: 9
  start-page: 105011
  year: 2014
  ident: 2021070718540900500_bib61
  article-title: 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/9/10/105011
– volume: 9
  start-page: 181
  year: 2017
  ident: 2021070718540900500_bib20
  article-title: Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance
  publication-title: Earth Syst Sci Data
  doi: 10.5194/essd-9-181-2017
– volume: 13
  year: 2018
  ident: 2021070718540900500_bib8
  article-title: Technical opportunities to reduce global anthropogenic emissions of nitrous oxide
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/aa9ec9
– year: 2012
  ident: 2021070718540900500_bib62
– ident: 2021070718540900500_bib57
– volume: 48
  start-page: 4247
  year: 2014
  ident: 2021070718540900500_bib42
  article-title: Mitigating nitrous oxide emissions from corn cropping systems in the Midwestern US: potential and data gaps
  publication-title: Environ Sci Technol
  doi: 10.1021/es4055324
– volume: 368
  start-page: 20130122
  year: 2013
  ident: 2021070718540900500_bib1
  article-title: Nitrous oxide emissions from soils: how well do we understand the processes and their controls?
  publication-title: Philos Trans Royal Soc B-Biol Sci
  doi: 10.1098/rstb.2013.0122
– volume: 368
  start-page: 20130112
  year: 2013
  ident: 2021070718540900500_bib54
  article-title: Global trends and uncertainties in terrestrial denitrification and N2O emissions
  publication-title: Philos Trans Royal Soc B-Biol Sci
  doi: 10.1098/rstb.2013.0112
– volume: 109
  year: 2004
  ident: 2021070718540900500_bib13
  article-title: Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils
  publication-title: J Geophys Res Atmos
  doi: 10.1029/2004JD004590
– volume: 19
  start-page: 607
  year: 2010
  ident: 2021070718540900500_bib56
  article-title: Crop planting dates: an analysis of global patterns
  publication-title: Glob Ecol Biogeogr
  doi: 10.1111/j.1466-8238.2010.00551.x
– ident: 2021070718540900500_bib6
– volume: 196
  start-page: 327
  year: 2012
  ident: 2021070718540900500_bib11
  article-title: Climate change increases soil nitrous oxide emissions
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2012.04334.x
– volume: 490
  start-page: 254
  year: 2012
  ident: 2021070718540900500_bib21
  article-title: Closing yield gaps through nutrient and water management
  publication-title: Nature
  doi: 10.1038/nature11420
– volume: 22
  start-page: 3383
  year: 2016
  ident: 2021070718540900500_bib26
  article-title: Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.13341
– volume: 52
  start-page: 774
  year: 2006
  ident: 2021070718540900500_bib41
  article-title: Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: summary of available data
  publication-title: Soil Sci and Plant Nutr
  doi: 10.1111/j.1747-0765.2006.00097.x
– volume: 9
  start-page: 105012
  year: 2014
  ident: 2021070718540900500_bib2
  article-title: Inventories and scenarios of nitrous oxide emissions
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/9/10/105012
– volume: 140
  start-page: 1
  year: 2015
  ident: 2021070718540900500_bib19
  article-title: Comparison of the DNDC, LandscapeDNDC and IAP-N-GAS models for simulating nitrous oxide and nitric oxide emissions from the winter wheat-summer maize rotation system
  publication-title: Agric Syst
  doi: 10.1016/j.agsy.2015.08.003
– volume: 168
  start-page: 53
  year: 2013
  ident: 2021070718540900500_bib46
  article-title: Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: a meta-analysis
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2012.02.021
– volume: 532
  start-page: 49
  year: 2016
  ident: 2021070718540900500_bib5
  article-title: Climate-smart soils
  publication-title: Nature
  doi: 10.1038/nature17174
– volume: 74
  start-page: 207
  year: 2006
  ident: 2021070718540900500_bib50
  article-title: N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions
  publication-title: Nutr Cycling Agroecosyst
  doi: 10.1007/s10705-006-9000-7
– volume: 73
  start-page: 171
  year: 2005
  ident: 2021070718540900500_bib49
  article-title: Towards a revised coefficient for estimating N2O emissions from legumes
  publication-title: Nutr Cycling Agroecosyst
  doi: 10.1007/s10705-005-0357-9
– volume: 2019
  start-page: 1
  year: 2019
  ident: 2021070718540900500_bib7
  article-title: EDGAR v4.3.2 Global Atlas of the three major Greenhouse Gas Emissions for the period 1970-2012
  publication-title: Earth Syst Sci Data Discuss.
– volume: 211
  start-page: 241
  year: 2016
  ident: 2021070718540900500_bib25
  article-title: Quantifying nitrogen leaching response to fertilizer additions in China's cropland
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2016.01.010
– volume: 19
  year: 2005
  ident: 2021070718540900500_bib40
  article-title: Direct N2O emissions from rice paddy fields: summary of available data
  publication-title: Glob Biogeochem Cycles
  doi: 10.1029/2004GB002378
– volume: 34
  start-page: 623
  year: 2014
  ident: 2021070718540900500_bib55
  article-title: Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset
  publication-title: Int J Clim
  doi: 10.1002/joc.3711
– volume: 111
  start-page: 9199
  year: 2014
  ident: 2021070718540900500_bib10
  article-title: Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1322434111
– volume: 44
  start-page: 540
  year: 2017
  ident: 2021070718540900500_bib58
  article-title: Regional patterns of future runoff changes from Earth system models constrained by observation
  publication-title: Geophys Res Lett
  doi: 10.1002/2017GL073454
– volume: 24
  start-page: e603
  year: 2018
  ident: 2021070718540900500_bib18
  article-title: Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2O emissions
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.13965
– volume: 9-10
  start-page: 65
  year: 2014
  ident: 2021070718540900500_bib45
  article-title: Assessing non-CO2 climate-forcing emissions and mitigation in sub-Saharan Africa
  publication-title: Curr Opin Environ Sustain
  doi: 10.1016/j.cosust.2014.07.010
– volume: 151
  start-page: 1654
  year: 2011
  ident: 2021070718540900500_bib47
  article-title: Predicting and mitigating the net greenhouse gas emissions of crop rotations in Western Europe
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2011.07.002
– ident: 2021070718540900500_bib59
  article-title: (Utrecht University) (2017): Anthropogenic land-use estimates for the Holocene; HYDE 3.2 DANS
– volume: 467
  start-page: 951
  year: 2010
  ident: 2021070718540900500_bib28
  article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply
  publication-title: Nature
  doi: 10.1038/nature09396
– volume: 52
  start-page: 12504
  year: 2018
  ident: 2021070718540900500_bib31
  article-title: Nitrous oxide emissions increase exponentially when optimum nitrogen fertilizer rates are exceeded in the North China plain
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.8b03931
– volume: 17
  start-page: 1115
  year: 2003
  ident: 2021070718540900500_bib52
  article-title: Global modeling of the fate of nitrogen from point and nonpoint sources in soils, groundwater, and surface water
  publication-title: Glob Biogeochem Cycles
  doi: 10.1029/2003GB002060
– volume: 373
  start-page: 17
  year: 2013
  ident: 2021070718540900500_bib32
  article-title: Background nitrous oxide emissions in agricultural and natural lands: a meta-analysis
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1762-5
– volume: 18
  start-page: 928
  year: 2012
  ident: 2021070718540900500_bib9
  article-title: Regionally differentiated estimates of cropland N2O emissions reduce uncertainty in global calculations
  publication-title: Glob Chang Biol
  doi: 10.1111/j.1365-2486.2011.02554.x
– volume-title: Assessment of Fertilizer Use by Crop at the Global Level
  ident: 2021070718540900500_bib60
– ident: 2021070718540900500_bib15
  article-title: Top-down estimates of N2O emissions over the past two decades
– volume: 1
  start-page: 1
  year: 2015
  ident: 2021070718540900500_bib22
  article-title: Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes
  publication-title: Ecosyst Health Sustain
  doi: 10.1890/EHS14-0015.1
– volume: 11
  start-page: 6595
  year: 2014
  ident: 2021070718540900500_bib48
  article-title: Nitrous oxide emission budgets and land-use-driven hotspots for organic soils in Europe
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-6595-2014
– volume: 105
  start-page: 4369
  year: 2000
  ident: 2021070718540900500_bib16
  article-title: A process-oriented model of N2O and NO emissions from forest soils: 1. model development.
  publication-title: J Geophys Res Atmos
  doi: 10.1029/1999JD900949
– volume: 6
  start-page: 25088
  year: 2016
  ident: 2021070718540900500_bib39
  article-title: Significant accumulation of nitrate in Chinese semi-humid croplands
  publication-title: Sci Rep
  doi: 10.1038/srep25088
– volume: 56
  start-page: 79
  year: 2018
  ident: 2021070718540900500_bib36
  article-title: A review of global precipitation data sets: data sources, estimation, and intercomparisons
  publication-title: Rev Geophys
  doi: 10.1002/2017RG000574
– volume: 7
  start-page: 63
  year: 2017
  ident: 2021070718540900500_bib30
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate3158
– volume: 7
  start-page: 1260
  year: 2015
  ident: 2021070718540900500_bib51
  article-title: Direct nitrous oxide emissions from oilseed rape cropping—a meta-analysis
  publication-title: Glob Change Biol Bioenergy
  doi: 10.1111/gcbb.12223
– volume: 9
  start-page: 667
  year: 2017
  ident: 2021070718540900500_bib23
  article-title: Global manure nitrogen production and application in cropland during 1860–2014: a 5 arcmin gridded global dataset for Earth system modeling
  publication-title: Earth Syst Sci Data
  doi: 10.5194/essd-9-667-2017
– volume: 11
  start-page: 115
  year: 2005
  ident: 2021070718540900500_bib44
  article-title: Predicting in situ soil N2O emission using NOE algorithm and soil database
  publication-title: Glob Chang Biol
  doi: 10.1111/j.1365-2486.2004.00879.x
– volume: 2
  start-page: 183
  year: 1993
  ident: 2021070718540900500_bib53
  article-title: A daily soil temperature model based on air temperature and precipitation for continental applications
  publication-title: Clim Res
  doi: 10.3354/cr002183
– volume: 16
  start-page: 1058
  year: 2002
  ident: 2021070718540900500_bib33
  article-title: Emissions of N2O and NO from fertilized fields: summary of available measurement data
  publication-title: Glob Biogeochem Cycles
  doi: 10.1029/2001GB001811
– volume: 9
  year: 2014
  ident: 2021070718540900500_bib38
  article-title: Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/9/9/095002
– volume: 99
  start-page: 1231
  year: 2018
  ident: 2021070718540900500_bib4
  article-title: The Global N2O Model Intercomparison Project
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/BAMS-D-17-0212.1
– volume: 234
  start-page: 270
  year: 2018
  ident: 2021070718540900500_bib27
  article-title: Detection and attribution of nitrogen runoff trend in China's croplands
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2017.11.052
– volume: 11
  start-page: 416
  year: 2019
  ident: 2021070718540900500_bib12
  article-title: Environmental factors function as constraints on soil nitrous oxide fluxes in bioenergy feedstock cropping systems
  publication-title: Glob Change Biol Bioenergy
  doi: 10.1111/gcbb.12572
– volume: 196
  start-page: 472
  year: 2012
  ident: 2021070718540900500_bib17
  article-title: Modelling terrestrial nitrous oxide emissions and implications for climate feedback
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2012.04269.x
– volume: 140
  start-page: 226
  year: 2011
  ident: 2021070718540900500_bib34
  article-title: Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2010.12.009
– volume: 25
  start-page: 640
  year: 2019
  ident: 2021070718540900500_bib3
  article-title: Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: magnitude, attribution, and uncertainty
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.14514
– volume: 20
  start-page: 255
  year: 2004
  ident: 2021070718540900500_bib35
  article-title: Impacts of land management on fluxes of trace greenhouse gases
  publication-title: Soil Use Manag
  doi: 10.1079/SUM2004238
– volume: 6
  start-page: 2001
  year: 2009
  ident: 2021070718540900500_bib29
  article-title: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model
  publication-title: Biogeosciences
  doi: 10.5194/bg-6-2001-2009
– volume: 29
  start-page: 885
  year: 2015
  ident: 2021070718540900500_bib24
  article-title: New model for capturing the variations of fertilizer-induced emission factors of N2O
  publication-title: Glob Biogeochem Cycles
  doi: 10.1002/2014GB005046
– volume: 24
  start-page: e617
  year: 2018
  ident: 2021070718540900500_bib14
  article-title: Soil pH as the chief modifier for regional nitrous oxide emissions: new evidence and implications for global estimates and mitigation
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.13966
– volume: 72
  start-page: 87
  year: 2005
  ident: 2021070718540900500_bib43
  article-title: Toward improved coefficients for predicting direct N2O emissions from soil in canadian agroecosystems
  publication-title: Nutr Cycling Agroecosyst
  doi: 10.1007/s10705-004-7358-y
SSID ssib051367741
ssib050735980
ssj0001257732
Score 2.5169787
Snippet Abstract Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier...
Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3...
Croplands are the single largest anthropogenic source of nitrous oxide (N O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3...
Croplands are the single largest anthropogenic source of nitrous oxide (N$_2$O) globally, yet their estimatesremain difficult to verify when using Tier 1 and 3...
Croplands are the single largest anthropogenic source of nitrous oxide (N 2 O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 441
SubjectTerms Continental interfaces, environment
Ocean, Atmosphere
Sciences of the Universe
Title Data-driven estimates of global nitrous oxide emissions from croplands
URI https://www.ncbi.nlm.nih.gov/pubmed/34692059
https://www.proquest.com/docview/2585922805
https://hal.science/hal-02971355
https://pubmed.ncbi.nlm.nih.gov/PMC8288841
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELagEwsC8QqPyjwWBqtNbMfOWEGrCvFYWqlb5CSOWglS1IaHGPjt3CVN1aAKFg-xZVl3du473_k7Qq6UDGRsjM9U3NZMxC5nkVac-VZKFSUJWPwiy_fR7w_F3UiOFkk08zUh_IC3svmslX18tTW-GQfriwz5g6dRtWsA0CAL3XLXSSQhq-rJlDctUqmiUpkHeIJBv654Smuz1yzT5hjzImtv3lag5-8MyhWT1Nsh2wssSTul8nfJhs32SO_W5IYlM_yLUaTQeEE0SacpLbk_KJzhGbj7dPo5SSzFcm94YTan-NCEYkGv4vXvPhn2uoObPlsUS2AxYKycgWMFh08YL5YcmlTEiQF04gep9lIXbA6YYmO01Uak0gsia9uplV7CAUGYtm_5AWlk08weEer60hgR8ECksXAxzqeMSlyVKhEBIBcOua4EFcYLJnEsaPEclhFtHoJQw1KoDrlcjn0t-TPWjroAeS8HIOV1v3Mf4jcsruUCKHp3HdIEdfw5y3mlqRCEh5EPk1mQaOiBUxQg8Y90yGGpueU8XPiBByDTIaqm09pq6j3ZZFwQcYO3qrVwj_9b2AnZ8tBNL5K9T0kjn73ZM8AyedQs7gCgffjuNourpmaxuX8AFAzyug
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+estimates+of+global+nitrous+oxide+emissions+from+croplands&rft.jtitle=National+science+review&rft.au=Wang%2C+Qihui&rft.au=Zhou%2C+Feng&rft.au=Shang%2C+Ziyin&rft.au=Ciais%2C+Philippe&rft.date=2020-02-01&rft.pub=Oxford+University+Press&rft.issn=2095-5138&rft.eissn=2053-714X&rft.volume=7&rft.issue=2&rft.spage=441&rft.epage=452&rft_id=info:doi/10.1093%2Fnsr%2Fnwz087&rft_id=info%3Apmid%2F34692059&rft.externalDocID=PMC8288841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-5138&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-5138&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-5138&client=summon