Data-driven estimates of global nitrous oxide emissions from croplands
Abstract Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961–2014, usi...
Saved in:
Published in | National Science Review Vol. 7; no. 2; pp. 441 - 452 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
China
Oxford University Press
01.02.2020
Oxford Academic |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961–2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990–2014, but give a ∼15% lower EF in 1961–1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr–1) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways. |
---|---|
AbstractList | Croplands are the single largest anthropogenic source of nitrous oxide (N$_2$O) globally, yet their estimatesremain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on ClimateChange (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961–2014, usingN-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributedsites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrativeunits. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990–2014, but give a ∼15% lowerEF in 1961–1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ±0.34 Tg N yr$^{–1}$) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, therest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2Oemissions from site-level observations to global croplands provides a new benchmark for constrainingIPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to informadvancement towards more realistic and effective mitigation pathways. Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961–2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990–2014, but give a ∼15% lower EF in 1961–1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr–1) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways. Croplands are the single largest anthropogenic source of nitrous oxide (N 2 O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N 2 O emissions in 1961–2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990–2014, but give a ∼15% lower EF in 1961–1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr –1 ) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N 2 O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways. Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961-2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990-2014, but give a ∼15% lower EF in 1961-1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr-1) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways.Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961-2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990-2014, but give a ∼15% lower EF in 1961-1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr-1) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways. Croplands are the single largest anthropogenic source of nitrous oxide (N O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N O emissions in 1961-2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990-2014, but give a ∼15% lower EF in 1961-1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr ) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways. Abstract Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961–2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990–2014, but give a ∼15% lower EF in 1961–1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr–1) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways. |
Author | Tubiello, Francesco N Tian, Hanqin Winiwarter, Wilfried Wang, Qihui Tao, Shu Canadell, Josep G Zhou, Feng Ciais, Philippe Cui, Xiaoqing Janssens-Maenhout, Greet Piao, Shilong Shang, Ziyin Jackson, Robert B |
AuthorAffiliation | 4 The Institute of Environmental Engineering , University of Zielona Góra, Zielona Góra 65-417, Poland 3 International Institute for Applied Systems Analysis (IIASA), Laxenburg A-2361, Austria 8 International Center for Climate and Global Change Research , School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama 36849, USA 7 European Commission , Joint Research Centre, Ispra 21027, Italy 6 Statistics Division, Food and Agricultural Organization of the United Nations, Via Terme di Caracalla , Rome 00153, Italy 9 Global Carbon Project , CSIRO Oceans and Atmosphere, Canberra ACT 2601, Australia 1 Sino-France Institute of Earth Systems Science , Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China 5 Department of Earth System Science , Stanford University, Stanford 94305, USA 2 Laboratoire des Sciences du Climat et de l'Environnement , LSCE, CEA CNRS UVSQ, Gif sur Yvette 91191, France |
AuthorAffiliation_xml | – name: 6 Statistics Division, Food and Agricultural Organization of the United Nations, Via Terme di Caracalla , Rome 00153, Italy – name: 9 Global Carbon Project , CSIRO Oceans and Atmosphere, Canberra ACT 2601, Australia – name: 4 The Institute of Environmental Engineering , University of Zielona Góra, Zielona Góra 65-417, Poland – name: 3 International Institute for Applied Systems Analysis (IIASA), Laxenburg A-2361, Austria – name: 2 Laboratoire des Sciences du Climat et de l'Environnement , LSCE, CEA CNRS UVSQ, Gif sur Yvette 91191, France – name: 7 European Commission , Joint Research Centre, Ispra 21027, Italy – name: 1 Sino-France Institute of Earth Systems Science , Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China – name: 5 Department of Earth System Science , Stanford University, Stanford 94305, USA – name: 8 International Center for Climate and Global Change Research , School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama 36849, USA |
Author_xml | – sequence: 1 givenname: Qihui surname: Wang fullname: Wang, Qihui organization: Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China – sequence: 2 givenname: Feng orcidid: 0000-0001-6122-0611 surname: Zhou fullname: Zhou, Feng email: zhouf@pku.edu.cn organization: Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China – sequence: 3 givenname: Ziyin surname: Shang fullname: Shang, Ziyin organization: Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China – sequence: 4 givenname: Philippe surname: Ciais fullname: Ciais, Philippe organization: Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China – sequence: 5 givenname: Wilfried surname: Winiwarter fullname: Winiwarter, Wilfried organization: International Institute for Applied Systems Analysis (IIASA), Laxenburg A-2361, Austria – sequence: 6 givenname: Robert B surname: Jackson fullname: Jackson, Robert B organization: Department of Earth System Science, Stanford University, Stanford 94305, USA – sequence: 7 givenname: Francesco N surname: Tubiello fullname: Tubiello, Francesco N organization: Statistics Division, Food and Agricultural Organization of the United Nations, Via Terme di Caracalla, Rome 00153, Italy – sequence: 8 givenname: Greet surname: Janssens-Maenhout fullname: Janssens-Maenhout, Greet organization: European Commission, Joint Research Centre, Ispra 21027, Italy – sequence: 9 givenname: Hanqin surname: Tian fullname: Tian, Hanqin organization: International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama 36849, USA – sequence: 10 givenname: Xiaoqing surname: Cui fullname: Cui, Xiaoqing organization: Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China – sequence: 11 givenname: Josep G surname: Canadell fullname: Canadell, Josep G organization: Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra ACT 2601, Australia – sequence: 12 givenname: Shilong surname: Piao fullname: Piao, Shilong organization: Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China – sequence: 13 givenname: Shu surname: Tao fullname: Tao, Shu organization: Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34692059$$D View this record in MEDLINE/PubMed https://hal.science/hal-02971355$$DView record in HAL |
BookMark | eNp9kU1r3DAQhkVJaNJtLv0BxZdAG3CjT1u6FEK-YaGXFnoTWnuUCLzSRvJuP359ZnEaklBykYbRM69m3nlHdmKKQMgHRr8wasRxLPk4_vpLdfuG7HOqRN0y-XNnGxtVKyb0HjkoJSwoxk3bSvaW7AnZGGTNPrk4c6Or-xw2ECsoY1i6EUqVfHUzpIUbqhjGnNaY-R16qGAZUCvFUvmcllWX02pwsS_vya53Q4GDh3tGflycfz-9quffLq9PT-Z1p6ge64Yy1WrpeKcEHl52vWtY2xivuWfGUMkb5zRoJ73iZgFAPSjeCymYow2IGfk66a7WiyX0HcQxu8GuMvad_9jkgn3-EsOtvUkbq7nWWjIU-DwJ3L4ouzqZ222OctMyodRmy356-CynuzWaY3H6DgacGNASy5VWhnONps_Ix6d9PSr_MxqBowlAy0rJ4B8RRu12kRYXaadFIkxfwF0Y3Yi-40xh-H_J4VSS1qvXpO8BO8OvxQ |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2025_178919 crossref_primary_10_1016_j_scitotenv_2021_152363 crossref_primary_10_1111_gcb_15975 crossref_primary_10_1016_j_agee_2021_107456 crossref_primary_10_5194_essd_13_3203_2021 crossref_primary_10_1038_s44264_024_00015_3 crossref_primary_10_1016_j_still_2021_105036 crossref_primary_10_1016_j_cosust_2020_06_003 crossref_primary_10_5194_essd_14_1639_2022 crossref_primary_10_1016_j_scitotenv_2022_157541 crossref_primary_10_1016_j_jclepro_2022_133186 crossref_primary_10_1016_j_spc_2024_08_013 crossref_primary_10_2139_ssrn_4074222 crossref_primary_10_1111_gcb_17472 crossref_primary_10_1038_s41467_024_46968_4 crossref_primary_10_1038_s41598_022_18773_w crossref_primary_10_1002_agj2_21172 crossref_primary_10_1016_j_scitotenv_2023_169639 crossref_primary_10_1016_j_oneear_2024_01_005 crossref_primary_10_1038_s41586_020_2780_0 crossref_primary_10_1039_D2EA00033D crossref_primary_10_1088_2752_5295_aca2d1 crossref_primary_10_1016_j_scitotenv_2022_156067 crossref_primary_10_1021_acs_est_0c03978 crossref_primary_10_1016_j_soilbio_2024_109577 crossref_primary_10_1029_2020GB006698 crossref_primary_10_1029_2021JD036379 crossref_primary_10_1016_j_scitotenv_2022_159738 crossref_primary_10_1016_j_scitotenv_2021_152406 crossref_primary_10_1111_gcb_16132 crossref_primary_10_5194_essd_13_5213_2021 crossref_primary_10_1016_j_earscirev_2023_104462 crossref_primary_10_5194_essd_16_525_2024 crossref_primary_10_3390_agronomy13112720 crossref_primary_10_1016_j_oneear_2020_06_015 crossref_primary_10_1021_acs_est_0c05149 crossref_primary_10_1016_j_apsoil_2024_105469 crossref_primary_10_5194_acp_22_6291_2022 crossref_primary_10_5194_essd_16_2543_2024 crossref_primary_10_2139_ssrn_3927691 crossref_primary_10_3390_agronomy14010222 crossref_primary_10_1038_s43016_021_00384_9 crossref_primary_10_1088_1748_9326_ac3177 crossref_primary_10_1016_j_pedsph_2022_05_003 crossref_primary_10_1016_j_scitotenv_2023_166472 crossref_primary_10_1088_1748_9326_ac17b7 crossref_primary_10_1021_acs_est_1c03612 crossref_primary_10_1016_j_agrformet_2024_110027 crossref_primary_10_1002_jeq2_20124 crossref_primary_10_1021_acs_est_0c08004 crossref_primary_10_1016_j_scitotenv_2024_175637 crossref_primary_10_1016_j_envint_2023_108245 crossref_primary_10_5194_essd_14_5179_2022 crossref_primary_10_1016_j_aeaoa_2023_100224 crossref_primary_10_2139_ssrn_4123167 crossref_primary_10_1007_s10533_020_00742_y crossref_primary_10_1016_j_agrformet_2022_109108 crossref_primary_10_1177_00307270211031274 crossref_primary_10_1016_j_cosust_2020_04_005 crossref_primary_10_1007_s11356_021_14310_w crossref_primary_10_1016_j_jhazmat_2023_130972 crossref_primary_10_1093_nsr_nwad285 crossref_primary_10_1038_s41467_025_58090_0 crossref_primary_10_1111_gcb_15860 crossref_primary_10_34133_ehs_0189 crossref_primary_10_1111_gcb_15342 crossref_primary_10_1016_j_jia_2023_05_033 crossref_primary_10_1002_cctc_202001784 crossref_primary_10_1016_j_scitotenv_2024_176532 crossref_primary_10_1016_j_spc_2024_09_022 crossref_primary_10_1071_FP23133 crossref_primary_10_1007_s40641_021_00178_y crossref_primary_10_1016_j_apsoil_2024_105725 crossref_primary_10_1021_acs_est_1c07276 crossref_primary_10_1029_2021GL095264 crossref_primary_10_1016_j_cej_2024_150374 crossref_primary_10_5194_essd_14_4551_2022 crossref_primary_10_1016_j_soilbio_2021_108212 crossref_primary_10_1016_j_cogsc_2024_100897 crossref_primary_10_1360_N072024_0233 crossref_primary_10_1038_s43247_025_02001_0 crossref_primary_10_3389_fsufs_2022_736394 crossref_primary_10_5194_gmd_16_5783_2023 crossref_primary_10_1016_j_jenvman_2024_120752 crossref_primary_10_1016_j_jenvman_2024_120234 crossref_primary_10_1021_acs_est_4c06592 crossref_primary_10_1016_j_cej_2024_157442 crossref_primary_10_1186_s12284_023_00638_z crossref_primary_10_1021_acs_est_9b03896 crossref_primary_10_47134_ijlj_v1i4_2792 crossref_primary_10_1038_s41597_023_02526_z crossref_primary_10_1007_s00376_024_3234_7 crossref_primary_10_1139_cjps_2021_0107 crossref_primary_10_1016_j_scitotenv_2022_153514 crossref_primary_10_1111_febs_16160 crossref_primary_10_1016_j_scitotenv_2024_170014 crossref_primary_10_1111_gcb_15437 crossref_primary_10_1093_nsr_nwaf040 crossref_primary_10_1016_j_agee_2025_109498 crossref_primary_10_5194_bg_21_1867_2024 crossref_primary_10_1021_acs_est_4c04574 crossref_primary_10_1016_j_envpol_2021_118154 crossref_primary_10_1038_s41467_022_32001_z crossref_primary_10_1016_j_resconrec_2022_106501 crossref_primary_10_1016_j_resconrec_2023_107071 crossref_primary_10_1016_j_agee_2023_108639 crossref_primary_10_1111_gcb_15796 crossref_primary_10_1016_j_fcr_2024_109621 crossref_primary_10_1038_s41597_023_02385_8 crossref_primary_10_1016_j_scitotenv_2024_172322 crossref_primary_10_1007_s11430_024_1522_4 crossref_primary_10_1088_2515_7620_ac1ce8 crossref_primary_10_3390_agronomy12030546 crossref_primary_10_1007_s44246_023_00042_8 crossref_primary_10_1016_j_scitotenv_2023_162984 crossref_primary_10_3390_plants11233323 crossref_primary_10_1029_2023GB007744 crossref_primary_10_1029_2023GB007865 crossref_primary_10_1049_enc2_12078 crossref_primary_10_5194_essd_17_1121_2025 crossref_primary_10_1111_gcb_17165 |
Cites_doi | 10.1073/pnas.1305372110 10.1088/1748-9326/9/10/105011 10.5194/essd-9-181-2017 10.1088/1748-9326/aa9ec9 10.1021/es4055324 10.1098/rstb.2013.0122 10.1098/rstb.2013.0112 10.1029/2004JD004590 10.1111/j.1466-8238.2010.00551.x 10.1111/j.1469-8137.2012.04334.x 10.1038/nature11420 10.1111/gcb.13341 10.1111/j.1747-0765.2006.00097.x 10.1088/1748-9326/9/10/105012 10.1016/j.agsy.2015.08.003 10.1016/j.agee.2012.02.021 10.1038/nature17174 10.1007/s10705-006-9000-7 10.1007/s10705-005-0357-9 10.1016/j.envpol.2016.01.010 10.1029/2004GB002378 10.1002/joc.3711 10.1073/pnas.1322434111 10.1002/2017GL073454 10.1111/gcb.13965 10.1016/j.cosust.2014.07.010 10.1016/j.agrformet.2011.07.002 10.1038/nature09396 10.1021/acs.est.8b03931 10.1029/2003GB002060 10.1007/s11104-013-1762-5 10.1111/j.1365-2486.2011.02554.x 10.1890/EHS14-0015.1 10.5194/bg-11-6595-2014 10.1029/1999JD900949 10.1038/srep25088 10.1002/2017RG000574 10.1038/nclimate3158 10.1111/gcbb.12223 10.5194/essd-9-667-2017 10.1111/j.1365-2486.2004.00879.x 10.3354/cr002183 10.1029/2001GB001811 10.1088/1748-9326/9/9/095002 10.1175/BAMS-D-17-0212.1 10.1016/j.envpol.2017.11.052 10.1111/gcbb.12572 10.1111/j.1469-8137.2012.04269.x 10.1016/j.agee.2010.12.009 10.1111/gcb.14514 10.1079/SUM2004238 10.5194/bg-6-2001-2009 10.1002/2014GB005046 10.1111/gcb.13966 10.1007/s10705-004-7358-y |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. 2020 The Author(s) 2019. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. Attribution |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. 2020 – notice: The Author(s) 2019. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. – notice: Attribution |
DBID | TOX AAYXX CITATION NPM 7X8 1XC VOOES 5PM |
DOI | 10.1093/nsr/nwz087 |
DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2053-714X |
EndPage | 452 |
ExternalDocumentID | PMC8288841 oai_HAL_hal_02971355v1 34692059 10_1093_nsr_nwz087 10.1093/nsr/nwz087 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Austrian Science Fund FWF grantid: P 29130 – fundername: ; grantid: 2016YFD0800501; 2018YFC0213304 – fundername: ; – fundername: ; grantid: 41671464; 7181101181 – fundername: ; grantid: 29130-G27 |
GroupedDBID | -SA -SC -S~ 0R~ 5VR AAFWJ AAOGV AAPXW AAVAP AAXDM ABDBF ABPTD ABQLI ABXVV ACGFS AENEX AFPKN AFUIB AFULF ALMA_UNASSIGNED_HOLDINGS AVWKF BAYMD CAJEA CAJEC CCEZO CCVFK CEKLB EBS ESX FA0 GROUPED_DOAJ H13 KSI O9- OK1 Q-- ROX RPM RXO TOX U1G U5K U5M AAYXX ABEJV ABGNP ACUHS ADMLS AMNDL CITATION 4.4 EJD NPM 7X8 1XC CDYEO VOOES 5PM |
ID | FETCH-LOGICAL-c508t-6015784a2c53a2cf4cda61769f82f1990426aa8e8a4f529bee0fe52d3431a06e3 |
IEDL.DBID | TOX |
ISSN | 2095-5138 2053-714X |
IngestDate | Thu Aug 21 13:40:08 EDT 2025 Sat Jun 28 06:31:28 EDT 2025 Fri Jul 11 05:44:58 EDT 2025 Mon Jul 21 06:03:16 EDT 2025 Tue Jul 01 00:53:11 EDT 2025 Thu Apr 24 23:00:12 EDT 2025 Wed Aug 28 03:18:41 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | emission inventories flux upscaling nitrous oxide temporal trend emission factor agricultural soils |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 The Author(s) 2019. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-6015784a2c53a2cf4cda61769f82f1990426aa8e8a4f529bee0fe52d3431a06e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6122-0611 0000-0002-9335-0709 0000-0001-8057-2292 0000-0001-8560-4943 0000-0002-7374-7063 0000-0001-7131-1496 0000-0002-1806-4091 |
OpenAccessLink | https://dx.doi.org/10.1093/nsr/nwz087 |
PMID | 34692059 |
PQID | 2585922805 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8288841 hal_primary_oai_HAL_hal_02971355v1 proquest_miscellaneous_2585922805 pubmed_primary_34692059 crossref_primary_10_1093_nsr_nwz087 crossref_citationtrail_10_1093_nsr_nwz087 oup_primary_10_1093_nsr_nwz087 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | National Science Review |
PublicationTitleAlternate | Natl Sci Rev |
PublicationYear | 2020 |
Publisher | Oxford University Press Oxford Academic |
Publisher_xml | – name: Oxford University Press – name: Oxford Academic |
References | Stehfest (2021070718540900500_bib50) 2006; 74 Bouwman (2021070718540900500_bib54) 2013; 368 Tian (2021070718540900500_bib3) 2019; 25 Liu (2021070718540900500_bib34) 2011; 140 Paustian (2021070718540900500_bib5) 2016; 532 Sun (2021070718540900500_bib36) 2018; 56 2021070718540900500_bib6 Zhou (2021070718540900500_bib39) 2016; 6 Butterbach-Bahl (2021070718540900500_bib1) 2013; 368 2021070718540900500_bib57 Kim (2021070718540900500_bib32) 2013; 373 Thompson (2021070718540900500_bib15) Jung (2021070718540900500_bib29) 2009; 6 Akiyama (2021070718540900500_bib41) 2006; 52 Schindlbacher (2021070718540900500_bib13) 2004; 109 Zhang (2021070718540900500_bib19) 2015; 140 Janssens-Maenhout (2021070718540900500_bib7) 2019; 2019 Lehuger (2021070718540900500_bib47) 2011; 151 Kim (2021070718540900500_bib46) 2013; 168 Gerber (2021070718540900500_bib26) 2016; 22 Van Drecht (2021070718540900500_bib52) 2003; 17 Mueller (2021070718540900500_bib21) 2012; 490 Goldewijk (2021070718540900500_bib59) Decock (2021070718540900500_bib42) 2014; 48 Wang (2021070718540900500_bib14) 2018; 24 Leppelt (2021070718540900500_bib48) 2014; 11 Jung (2021070718540900500_bib28) 2010; 467 Helgason (2021070718540900500_bib43) 2005; 72 Lu (2021070718540900500_bib20) 2017; 9 Davidson (2021070718540900500_bib2) 2014; 9 Yan (2021070718540900500_bib38) 2014; 9 Zhang (2021070718540900500_bib23) 2017; 9 Gao (2021070718540900500_bib25) 2016; 211 Berdanier (2021070718540900500_bib9) 2012; 18 Bouwman (2021070718540900500_bib33) 2002; 16 Lassaletta (2021070718540900500_bib61) 2014; 9 Hénault (2021070718540900500_bib44) 2005; 11 Carlson (2021070718540900500_bib30) 2017; 7 Rosas (2021070718540900500_bib62) 2012 IRRI: World Rice Statistics. Distribution of rice crop area by environment (2021070718540900500_bib63) 2007 Xu- (2021070718540900500_bib17) 2012; 196 Rochette (2021070718540900500_bib49) 2005; 73 Harris (2021070718540900500_bib55) 2014; 34 Zheng (2021070718540900500_bib53) 1993; 2 Sacks (2021070718540900500_bib56) 2010; 19 Sebilo (2021070718540900500_bib37) 2013; 110 Duncan (2021070718540900500_bib12) 2019; 11 Walter (2021070718540900500_bib51) 2015; 7 Zhou (2021070718540900500_bib24) 2015; 29 Ehrhardt (2021070718540900500_bib18) 2018; 24 Heffer (2021070718540900500_bib60) Tian (2021070718540900500_bib22) 2015; 1 Hou (2021070718540900500_bib27) 2018; 234 Akiyama (2021070718540900500_bib40) 2005; 19 Song (2021070718540900500_bib31) 2018; 52 Winiwarter (2021070718540900500_bib8) 2018; 13 Smith (2021070718540900500_bib35) 2004; 20 Li (2021070718540900500_bib16) 2000; 105 Tian (2021070718540900500_bib4) 2018; 99 Shcherbak (2021070718540900500_bib10) 2014; 111 Hickman (2021070718540900500_bib45) 2014; 9-10 Yang (2021070718540900500_bib58) 2017; 44 Del Grosso (2021070718540900500_bib11) 2012; 196 |
References_xml | – year: 2007 ident: 2021070718540900500_bib63 – volume: 110 start-page: 18185 year: 2013 ident: 2021070718540900500_bib37 article-title: Long-term fate of nitrate fertilizer in agricultural soils publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1305372110 – volume: 9 start-page: 105011 year: 2014 ident: 2021070718540900500_bib61 article-title: 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland publication-title: Environ Res Lett doi: 10.1088/1748-9326/9/10/105011 – volume: 9 start-page: 181 year: 2017 ident: 2021070718540900500_bib20 article-title: Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance publication-title: Earth Syst Sci Data doi: 10.5194/essd-9-181-2017 – volume: 13 year: 2018 ident: 2021070718540900500_bib8 article-title: Technical opportunities to reduce global anthropogenic emissions of nitrous oxide publication-title: Environ Res Lett doi: 10.1088/1748-9326/aa9ec9 – year: 2012 ident: 2021070718540900500_bib62 – ident: 2021070718540900500_bib57 – volume: 48 start-page: 4247 year: 2014 ident: 2021070718540900500_bib42 article-title: Mitigating nitrous oxide emissions from corn cropping systems in the Midwestern US: potential and data gaps publication-title: Environ Sci Technol doi: 10.1021/es4055324 – volume: 368 start-page: 20130122 year: 2013 ident: 2021070718540900500_bib1 article-title: Nitrous oxide emissions from soils: how well do we understand the processes and their controls? publication-title: Philos Trans Royal Soc B-Biol Sci doi: 10.1098/rstb.2013.0122 – volume: 368 start-page: 20130112 year: 2013 ident: 2021070718540900500_bib54 article-title: Global trends and uncertainties in terrestrial denitrification and N2O emissions publication-title: Philos Trans Royal Soc B-Biol Sci doi: 10.1098/rstb.2013.0112 – volume: 109 year: 2004 ident: 2021070718540900500_bib13 article-title: Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils publication-title: J Geophys Res Atmos doi: 10.1029/2004JD004590 – volume: 19 start-page: 607 year: 2010 ident: 2021070718540900500_bib56 article-title: Crop planting dates: an analysis of global patterns publication-title: Glob Ecol Biogeogr doi: 10.1111/j.1466-8238.2010.00551.x – ident: 2021070718540900500_bib6 – volume: 196 start-page: 327 year: 2012 ident: 2021070718540900500_bib11 article-title: Climate change increases soil nitrous oxide emissions publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04334.x – volume: 490 start-page: 254 year: 2012 ident: 2021070718540900500_bib21 article-title: Closing yield gaps through nutrient and water management publication-title: Nature doi: 10.1038/nature11420 – volume: 22 start-page: 3383 year: 2016 ident: 2021070718540900500_bib26 article-title: Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management publication-title: Glob Chang Biol doi: 10.1111/gcb.13341 – volume: 52 start-page: 774 year: 2006 ident: 2021070718540900500_bib41 article-title: Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: summary of available data publication-title: Soil Sci and Plant Nutr doi: 10.1111/j.1747-0765.2006.00097.x – volume: 9 start-page: 105012 year: 2014 ident: 2021070718540900500_bib2 article-title: Inventories and scenarios of nitrous oxide emissions publication-title: Environ Res Lett doi: 10.1088/1748-9326/9/10/105012 – volume: 140 start-page: 1 year: 2015 ident: 2021070718540900500_bib19 article-title: Comparison of the DNDC, LandscapeDNDC and IAP-N-GAS models for simulating nitrous oxide and nitric oxide emissions from the winter wheat-summer maize rotation system publication-title: Agric Syst doi: 10.1016/j.agsy.2015.08.003 – volume: 168 start-page: 53 year: 2013 ident: 2021070718540900500_bib46 article-title: Linear and nonlinear dependency of direct nitrous oxide emissions on fertilizer nitrogen input: a meta-analysis publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2012.02.021 – volume: 532 start-page: 49 year: 2016 ident: 2021070718540900500_bib5 article-title: Climate-smart soils publication-title: Nature doi: 10.1038/nature17174 – volume: 74 start-page: 207 year: 2006 ident: 2021070718540900500_bib50 article-title: N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions publication-title: Nutr Cycling Agroecosyst doi: 10.1007/s10705-006-9000-7 – volume: 73 start-page: 171 year: 2005 ident: 2021070718540900500_bib49 article-title: Towards a revised coefficient for estimating N2O emissions from legumes publication-title: Nutr Cycling Agroecosyst doi: 10.1007/s10705-005-0357-9 – volume: 2019 start-page: 1 year: 2019 ident: 2021070718540900500_bib7 article-title: EDGAR v4.3.2 Global Atlas of the three major Greenhouse Gas Emissions for the period 1970-2012 publication-title: Earth Syst Sci Data Discuss. – volume: 211 start-page: 241 year: 2016 ident: 2021070718540900500_bib25 article-title: Quantifying nitrogen leaching response to fertilizer additions in China's cropland publication-title: Environ Pollut doi: 10.1016/j.envpol.2016.01.010 – volume: 19 year: 2005 ident: 2021070718540900500_bib40 article-title: Direct N2O emissions from rice paddy fields: summary of available data publication-title: Glob Biogeochem Cycles doi: 10.1029/2004GB002378 – volume: 34 start-page: 623 year: 2014 ident: 2021070718540900500_bib55 article-title: Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset publication-title: Int J Clim doi: 10.1002/joc.3711 – volume: 111 start-page: 9199 year: 2014 ident: 2021070718540900500_bib10 article-title: Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1322434111 – volume: 44 start-page: 540 year: 2017 ident: 2021070718540900500_bib58 article-title: Regional patterns of future runoff changes from Earth system models constrained by observation publication-title: Geophys Res Lett doi: 10.1002/2017GL073454 – volume: 24 start-page: e603 year: 2018 ident: 2021070718540900500_bib18 article-title: Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2O emissions publication-title: Glob Chang Biol doi: 10.1111/gcb.13965 – volume: 9-10 start-page: 65 year: 2014 ident: 2021070718540900500_bib45 article-title: Assessing non-CO2 climate-forcing emissions and mitigation in sub-Saharan Africa publication-title: Curr Opin Environ Sustain doi: 10.1016/j.cosust.2014.07.010 – volume: 151 start-page: 1654 year: 2011 ident: 2021070718540900500_bib47 article-title: Predicting and mitigating the net greenhouse gas emissions of crop rotations in Western Europe publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2011.07.002 – ident: 2021070718540900500_bib59 article-title: (Utrecht University) (2017): Anthropogenic land-use estimates for the Holocene; HYDE 3.2 DANS – volume: 467 start-page: 951 year: 2010 ident: 2021070718540900500_bib28 article-title: Recent decline in the global land evapotranspiration trend due to limited moisture supply publication-title: Nature doi: 10.1038/nature09396 – volume: 52 start-page: 12504 year: 2018 ident: 2021070718540900500_bib31 article-title: Nitrous oxide emissions increase exponentially when optimum nitrogen fertilizer rates are exceeded in the North China plain publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b03931 – volume: 17 start-page: 1115 year: 2003 ident: 2021070718540900500_bib52 article-title: Global modeling of the fate of nitrogen from point and nonpoint sources in soils, groundwater, and surface water publication-title: Glob Biogeochem Cycles doi: 10.1029/2003GB002060 – volume: 373 start-page: 17 year: 2013 ident: 2021070718540900500_bib32 article-title: Background nitrous oxide emissions in agricultural and natural lands: a meta-analysis publication-title: Plant Soil doi: 10.1007/s11104-013-1762-5 – volume: 18 start-page: 928 year: 2012 ident: 2021070718540900500_bib9 article-title: Regionally differentiated estimates of cropland N2O emissions reduce uncertainty in global calculations publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2011.02554.x – volume-title: Assessment of Fertilizer Use by Crop at the Global Level ident: 2021070718540900500_bib60 – ident: 2021070718540900500_bib15 article-title: Top-down estimates of N2O emissions over the past two decades – volume: 1 start-page: 1 year: 2015 ident: 2021070718540900500_bib22 article-title: Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes publication-title: Ecosyst Health Sustain doi: 10.1890/EHS14-0015.1 – volume: 11 start-page: 6595 year: 2014 ident: 2021070718540900500_bib48 article-title: Nitrous oxide emission budgets and land-use-driven hotspots for organic soils in Europe publication-title: Biogeosciences doi: 10.5194/bg-11-6595-2014 – volume: 105 start-page: 4369 year: 2000 ident: 2021070718540900500_bib16 article-title: A process-oriented model of N2O and NO emissions from forest soils: 1. model development. publication-title: J Geophys Res Atmos doi: 10.1029/1999JD900949 – volume: 6 start-page: 25088 year: 2016 ident: 2021070718540900500_bib39 article-title: Significant accumulation of nitrate in Chinese semi-humid croplands publication-title: Sci Rep doi: 10.1038/srep25088 – volume: 56 start-page: 79 year: 2018 ident: 2021070718540900500_bib36 article-title: A review of global precipitation data sets: data sources, estimation, and intercomparisons publication-title: Rev Geophys doi: 10.1002/2017RG000574 – volume: 7 start-page: 63 year: 2017 ident: 2021070718540900500_bib30 publication-title: Nat Clim Chang doi: 10.1038/nclimate3158 – volume: 7 start-page: 1260 year: 2015 ident: 2021070718540900500_bib51 article-title: Direct nitrous oxide emissions from oilseed rape cropping—a meta-analysis publication-title: Glob Change Biol Bioenergy doi: 10.1111/gcbb.12223 – volume: 9 start-page: 667 year: 2017 ident: 2021070718540900500_bib23 article-title: Global manure nitrogen production and application in cropland during 1860–2014: a 5 arcmin gridded global dataset for Earth system modeling publication-title: Earth Syst Sci Data doi: 10.5194/essd-9-667-2017 – volume: 11 start-page: 115 year: 2005 ident: 2021070718540900500_bib44 article-title: Predicting in situ soil N2O emission using NOE algorithm and soil database publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2004.00879.x – volume: 2 start-page: 183 year: 1993 ident: 2021070718540900500_bib53 article-title: A daily soil temperature model based on air temperature and precipitation for continental applications publication-title: Clim Res doi: 10.3354/cr002183 – volume: 16 start-page: 1058 year: 2002 ident: 2021070718540900500_bib33 article-title: Emissions of N2O and NO from fertilized fields: summary of available measurement data publication-title: Glob Biogeochem Cycles doi: 10.1029/2001GB001811 – volume: 9 year: 2014 ident: 2021070718540900500_bib38 article-title: Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen publication-title: Environ Res Lett doi: 10.1088/1748-9326/9/9/095002 – volume: 99 start-page: 1231 year: 2018 ident: 2021070718540900500_bib4 article-title: The Global N2O Model Intercomparison Project publication-title: Bull Am Meteorol Soc doi: 10.1175/BAMS-D-17-0212.1 – volume: 234 start-page: 270 year: 2018 ident: 2021070718540900500_bib27 article-title: Detection and attribution of nitrogen runoff trend in China's croplands publication-title: Environ Pollut doi: 10.1016/j.envpol.2017.11.052 – volume: 11 start-page: 416 year: 2019 ident: 2021070718540900500_bib12 article-title: Environmental factors function as constraints on soil nitrous oxide fluxes in bioenergy feedstock cropping systems publication-title: Glob Change Biol Bioenergy doi: 10.1111/gcbb.12572 – volume: 196 start-page: 472 year: 2012 ident: 2021070718540900500_bib17 article-title: Modelling terrestrial nitrous oxide emissions and implications for climate feedback publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04269.x – volume: 140 start-page: 226 year: 2011 ident: 2021070718540900500_bib34 article-title: Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2010.12.009 – volume: 25 start-page: 640 year: 2019 ident: 2021070718540900500_bib3 article-title: Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: magnitude, attribution, and uncertainty publication-title: Glob Chang Biol doi: 10.1111/gcb.14514 – volume: 20 start-page: 255 year: 2004 ident: 2021070718540900500_bib35 article-title: Impacts of land management on fluxes of trace greenhouse gases publication-title: Soil Use Manag doi: 10.1079/SUM2004238 – volume: 6 start-page: 2001 year: 2009 ident: 2021070718540900500_bib29 article-title: Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model publication-title: Biogeosciences doi: 10.5194/bg-6-2001-2009 – volume: 29 start-page: 885 year: 2015 ident: 2021070718540900500_bib24 article-title: New model for capturing the variations of fertilizer-induced emission factors of N2O publication-title: Glob Biogeochem Cycles doi: 10.1002/2014GB005046 – volume: 24 start-page: e617 year: 2018 ident: 2021070718540900500_bib14 article-title: Soil pH as the chief modifier for regional nitrous oxide emissions: new evidence and implications for global estimates and mitigation publication-title: Glob Chang Biol doi: 10.1111/gcb.13966 – volume: 72 start-page: 87 year: 2005 ident: 2021070718540900500_bib43 article-title: Toward improved coefficients for predicting direct N2O emissions from soil in canadian agroecosystems publication-title: Nutr Cycling Agroecosyst doi: 10.1007/s10705-004-7358-y |
SSID | ssib051367741 ssib050735980 ssj0001257732 |
Score | 2.5169787 |
Snippet | Abstract
Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier... Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3... Croplands are the single largest anthropogenic source of nitrous oxide (N O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3... Croplands are the single largest anthropogenic source of nitrous oxide (N$_2$O) globally, yet their estimatesremain difficult to verify when using Tier 1 and 3... Croplands are the single largest anthropogenic source of nitrous oxide (N 2 O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3... |
SourceID | pubmedcentral hal proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 441 |
SubjectTerms | Continental interfaces, environment Ocean, Atmosphere Sciences of the Universe |
Title | Data-driven estimates of global nitrous oxide emissions from croplands |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34692059 https://www.proquest.com/docview/2585922805 https://hal.science/hal-02971355 https://pubmed.ncbi.nlm.nih.gov/PMC8288841 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELagEwsC8QqPyjwWBqtNbMfOWEGrCvFYWqlb5CSOWglS1IaHGPjt3CVN1aAKFg-xZVl3du473_k7Qq6UDGRsjM9U3NZMxC5nkVac-VZKFSUJWPwiy_fR7w_F3UiOFkk08zUh_IC3svmslX18tTW-GQfriwz5g6dRtWsA0CAL3XLXSSQhq-rJlDctUqmiUpkHeIJBv654Smuz1yzT5hjzImtv3lag5-8MyhWT1Nsh2wssSTul8nfJhs32SO_W5IYlM_yLUaTQeEE0SacpLbk_KJzhGbj7dPo5SSzFcm94YTan-NCEYkGv4vXvPhn2uoObPlsUS2AxYKycgWMFh08YL5YcmlTEiQF04gep9lIXbA6YYmO01Uak0gsia9uplV7CAUGYtm_5AWlk08weEer60hgR8ECksXAxzqeMSlyVKhEBIBcOua4EFcYLJnEsaPEclhFtHoJQw1KoDrlcjn0t-TPWjroAeS8HIOV1v3Mf4jcsruUCKHp3HdIEdfw5y3mlqRCEh5EPk1mQaOiBUxQg8Y90yGGpueU8XPiBByDTIaqm09pq6j3ZZFwQcYO3qrVwj_9b2AnZ8tBNL5K9T0kjn73ZM8AyedQs7gCgffjuNourpmaxuX8AFAzyug |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+estimates+of+global+nitrous+oxide+emissions+from+croplands&rft.jtitle=National+science+review&rft.au=Wang%2C+Qihui&rft.au=Zhou%2C+Feng&rft.au=Shang%2C+Ziyin&rft.au=Ciais%2C+Philippe&rft.date=2020-02-01&rft.pub=Oxford+University+Press&rft.issn=2095-5138&rft.eissn=2053-714X&rft.volume=7&rft.issue=2&rft.spage=441&rft.epage=452&rft_id=info:doi/10.1093%2Fnsr%2Fnwz087&rft_id=info%3Apmid%2F34692059&rft.externalDocID=PMC8288841 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-5138&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-5138&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-5138&client=summon |