Two Pathways of Sphingolipid Biosynthesis Are Separated in the Yeast Pichia pastoris

Although the yeast Saccharomyces cerevisiae has only one sphingolipid class with a head group based on phosphoinositol, the yeast Pichia pastoris as well as many other fungi have a second class, glucosylceramide, which has a glucose head group. These two sphingolipid classes are in addition distingu...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 286; no. 13; pp. 11401 - 11414
Main Authors Ternes, Philipp, Wobbe, Tobias, Schwarz, Marnie, Albrecht, Sandra, Feussner, Kirstin, Riezman, Isabelle, Cregg, James M., Heinz, Ernst, Riezman, Howard, Feussner, Ivo, Warnecke, Dirk
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2011
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although the yeast Saccharomyces cerevisiae has only one sphingolipid class with a head group based on phosphoinositol, the yeast Pichia pastoris as well as many other fungi have a second class, glucosylceramide, which has a glucose head group. These two sphingolipid classes are in addition distinguished by a characteristic structure of their ceramide backbones. Here, we investigate the mechanisms controlling substrate entry into the glucosylceramide branch of the pathway. By a combination of enzymatic in vitro studies and lipid analysis of genetically engineered yeast strains, we show that the ceramide synthase Bar1p occupies a key branching point in sphingolipid biosynthesis in P. pastoris. By preferring dihydroxy sphingoid bases and C16/C18 acyl-coenzyme A as substrates, Bar1p produces a structurally well defined group of ceramide species, which is the exclusive precursor for glucosylceramide biosynthesis. Correlating with the absence of glucosylceramide in this yeast, a gene encoding Bar1p is missing in S. cerevisiae. We could not successfully investigate the second ceramide synthase in P. pastoris that is orthologous to S. cerevisiae Lag1p/Lac1p. By analyzing the ceramide and glucosylceramide species in a collection of P. pastoris knock-out strains in which individual genes encoding enzymes involved in glucosylceramide biosynthesis were systematically deleted, we show that the ceramide species produced by Bar1p have to be modified by two additional enzymes, sphingolipid Δ4-desaturase and fatty acid α-hydroxylase, before the final addition of the glucose head group by the glucosylceramide synthase. Together, this set of four enzymes specifically defines the pathway leading to glucosylceramide biosynthesis.
AbstractList Although the yeast Saccharomyces cerevisiae has only one sphingolipid class with a head group based on phosphoinositol, the yeast Pichia pastoris as well as many other fungi have a second class, glucosylceramide, which has a glucose head group. These two sphingolipid classes are in addition distinguished by a characteristic structure of their ceramide backbones. Here, we investigate the mechanisms controlling substrate entry into the glucosylceramide branch of the pathway. By a combination of enzymatic in vitro studies and lipid analysis of genetically engineered yeast strains, we show that the ceramide synthase Bar1p occupies a key branching point in sphingolipid biosynthesis in P. pastoris. By preferring dihydroxy sphingoid bases and C16/C18 acyl-coenzyme A as substrates, Bar1p produces a structurally well defined group of ceramide species, which is the exclusive precursor for glucosylceramide biosynthesis. Correlating with the absence of glucosylceramide in this yeast, a gene encoding Bar1p is missing in S. cerevisiae. We could not successfully investigate the second ceramide synthase in P. pastoris that is orthologous to S. cerevisiae Lag1p/Lac1p. By analyzing the ceramide and glucosylceramide species in a collection of P. pastoris knock-out strains in which individual genes encoding enzymes involved in glucosylceramide biosynthesis were systematically deleted, we show that the ceramide species produced by Bar1p have to be modified by two additional enzymes, sphingolipid Δ4-desaturase and fatty acid α-hydroxylase, before the final addition of the glucose head group by the glucosylceramide synthase. Together, this set of four enzymes specifically defines the pathway leading to glucosylceramide biosynthesis.
Although the yeast Saccharomyces cerevisiae has only one sphingolipid class with a head group based on phosphoinositol, the yeast Pichia pastoris as well as many other fungi have a second class, glucosylceramide, which has a glucose head group. These two sphingolipid classes are in addition distinguished by a characteristic structure of their ceramide backbones. Here, we investigate the mechanisms controlling substrate entry into the glucosylceramide branch of the pathway. By a combination of enzymatic in vitro studies and lipid analysis of genetically engineered yeast strains, we show that the ceramide synthase Bar1p occupies a key branching point in sphingolipid biosynthesis in P. pastoris . By preferring dihydroxy sphingoid bases and C 16 /C 18 acyl-coenzyme A as substrates, Bar1p produces a structurally well defined group of ceramide species, which is the exclusive precursor for glucosylceramide biosynthesis. Correlating with the absence of glucosylceramide in this yeast, a gene encoding Bar1p is missing in S. cerevisiae . We could not successfully investigate the second ceramide synthase in P. pastoris that is orthologous to S. cerevisiae Lag1p/Lac1p. By analyzing the ceramide and glucosylceramide species in a collection of P. pastoris knock-out strains in which individual genes encoding enzymes involved in glucosylceramide biosynthesis were systematically deleted, we show that the ceramide species produced by Bar1p have to be modified by two additional enzymes, sphingolipid Δ4-desaturase and fatty acid α-hydroxylase, before the final addition of the glucose head group by the glucosylceramide synthase. Together, this set of four enzymes specifically defines the pathway leading to glucosylceramide biosynthesis.
Although the yeast Saccharomyces cerevisiae has only one sphingolipid class with a head group based on phosphoinositol, the yeast Pichia pastoris as well as many other fungi have a second class, glucosylceramide, which has a glucose head group. These two sphingolipid classes are in addition distinguished by a characteristic structure of their ceramide backbones. Here, we investigate the mechanisms controlling substrate entry into the glucosylceramide branch of the pathway. By a combination of enzymatic in vitro studies and lipid analysis of genetically engineered yeast strains, we show that the ceramide synthase Bar1p occupies a key branching point in sphingolipid biosynthesis in P. pastoris. By preferring dihydroxy sphingoid bases and C(16)/C(18) acyl-coenzyme A as substrates, Bar1p produces a structurally well defined group of ceramide species, which is the exclusive precursor for glucosylceramide biosynthesis. Correlating with the absence of glucosylceramide in this yeast, a gene encoding Bar1p is missing in S. cerevisiae. We could not successfully investigate the second ceramide synthase in P. pastoris that is orthologous to S. cerevisiae Lag1p/Lac1p. By analyzing the ceramide and glucosylceramide species in a collection of P. pastoris knock-out strains in which individual genes encoding enzymes involved in glucosylceramide biosynthesis were systematically deleted, we show that the ceramide species produced by Bar1p have to be modified by two additional enzymes, sphingolipid Δ4-desaturase and fatty acid α-hydroxylase, before the final addition of the glucose head group by the glucosylceramide synthase. Together, this set of four enzymes specifically defines the pathway leading to glucosylceramide biosynthesis.
Although the yeast Saccharomyces cerevisiae has only one sphingolipid class with a head group based on phosphoinositol, the yeast Pichia pastoris as well as many other fungi have a second class, glucosylceramide, which has a glucose head group. These two sphingolipid classes are in addition distinguished by a characteristic structure of their ceramide backbones. Here, we investigate the mechanisms controlling substrate entry into the glucosylceramide branch of the pathway. By a combination of enzymatic in vitro studies and lipid analysis of genetically engineered yeast strains, we show that the ceramide synthase Bar1p occupies a key branching point in sphingolipid biosynthesis in P. pastoris. By preferring dihydroxy sphingoid bases and C(16)/C(18) acyl-coenzyme A as substrates, Bar1p produces a structurally well defined group of ceramide species, which is the exclusive precursor for glucosylceramide biosynthesis. Correlating with the absence of glucosylceramide in this yeast, a gene encoding Bar1p is missing in S. cerevisiae. We could not successfully investigate the second ceramide synthase in P. pastoris that is orthologous to S. cerevisiae Lag1p/Lac1p. By analyzing the ceramide and glucosylceramide species in a collection of P. pastoris knock-out strains in which individual genes encoding enzymes involved in glucosylceramide biosynthesis were systematically deleted, we show that the ceramide species produced by Bar1p have to be modified by two additional enzymes, sphingolipid Δ4-desaturase and fatty acid α-hydroxylase, before the final addition of the glucose head group by the glucosylceramide synthase. Together, this set of four enzymes specifically defines the pathway leading to glucosylceramide biosynthesis.Although the yeast Saccharomyces cerevisiae has only one sphingolipid class with a head group based on phosphoinositol, the yeast Pichia pastoris as well as many other fungi have a second class, glucosylceramide, which has a glucose head group. These two sphingolipid classes are in addition distinguished by a characteristic structure of their ceramide backbones. Here, we investigate the mechanisms controlling substrate entry into the glucosylceramide branch of the pathway. By a combination of enzymatic in vitro studies and lipid analysis of genetically engineered yeast strains, we show that the ceramide synthase Bar1p occupies a key branching point in sphingolipid biosynthesis in P. pastoris. By preferring dihydroxy sphingoid bases and C(16)/C(18) acyl-coenzyme A as substrates, Bar1p produces a structurally well defined group of ceramide species, which is the exclusive precursor for glucosylceramide biosynthesis. Correlating with the absence of glucosylceramide in this yeast, a gene encoding Bar1p is missing in S. cerevisiae. We could not successfully investigate the second ceramide synthase in P. pastoris that is orthologous to S. cerevisiae Lag1p/Lac1p. By analyzing the ceramide and glucosylceramide species in a collection of P. pastoris knock-out strains in which individual genes encoding enzymes involved in glucosylceramide biosynthesis were systematically deleted, we show that the ceramide species produced by Bar1p have to be modified by two additional enzymes, sphingolipid Δ4-desaturase and fatty acid α-hydroxylase, before the final addition of the glucose head group by the glucosylceramide synthase. Together, this set of four enzymes specifically defines the pathway leading to glucosylceramide biosynthesis.
Author Heinz, Ernst
Warnecke, Dirk
Cregg, James M.
Riezman, Howard
Riezman, Isabelle
Wobbe, Tobias
Schwarz, Marnie
Ternes, Philipp
Feussner, Kirstin
Albrecht, Sandra
Feussner, Ivo
Author_xml – sequence: 1
  givenname: Philipp
  surname: Ternes
  fullname: Ternes, Philipp
  email: pternes@xlab-goettingen.de
  organization: Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Georg August University, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
– sequence: 2
  givenname: Tobias
  surname: Wobbe
  fullname: Wobbe, Tobias
  organization: Biozentrum Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
– sequence: 3
  givenname: Marnie
  surname: Schwarz
  fullname: Schwarz, Marnie
  organization: Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Georg August University, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
– sequence: 4
  givenname: Sandra
  surname: Albrecht
  fullname: Albrecht, Sandra
  organization: Biozentrum Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
– sequence: 5
  givenname: Kirstin
  surname: Feussner
  fullname: Feussner, Kirstin
  organization: Department of Molecular Microbiology and Genetics, Georg August University, Grisebachstrasse 8, 37077 Göttingen, Germany
– sequence: 6
  givenname: Isabelle
  surname: Riezman
  fullname: Riezman, Isabelle
  organization: Department of Biochemistry, University of Geneva, 30 quai Ernest-Ansermet, 1211 Genève 4, Switzerland
– sequence: 7
  givenname: James M.
  surname: Cregg
  fullname: Cregg, James M.
  organization: Keck Graduate Institute of Applied Life Sciences, Claremont, California 91711-4817
– sequence: 8
  givenname: Ernst
  surname: Heinz
  fullname: Heinz, Ernst
  organization: Biozentrum Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
– sequence: 9
  givenname: Howard
  surname: Riezman
  fullname: Riezman, Howard
  organization: Department of Biochemistry, University of Geneva, 30 quai Ernest-Ansermet, 1211 Genève 4, Switzerland
– sequence: 10
  givenname: Ivo
  surname: Feussner
  fullname: Feussner, Ivo
  organization: Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Georg August University, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
– sequence: 11
  givenname: Dirk
  surname: Warnecke
  fullname: Warnecke, Dirk
  email: warnecke@botanik.uni-hamburg.de
  organization: Biozentrum Klein Flottbek, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21303904$$D View this record in MEDLINE/PubMed
BookMark eNp1UU1v1DAQtVAR3RbO3JBvnNJ64mQTX5BKBbRSEZW6SHCyHHvSTJWNg-1ttf8er7ZFgFRfxjPzPqR5R-xg8hMy9hbECYimOr3r7MlX2HVKClW9YAsQrSxkDT8O2EKIEgpV1u0hO4rxTuRXKXjFDkuQQipRLdhq9eD5tUnDg9lG7nt-Mw803fqRZnL8I_m4ndKAkSI_C8hvcDbBJHScJp7n_CeamPg12YEMn_PfB4qv2cvejBHfPNZj9v3zp9X5RXH17cvl-dlVYWvRpqLunSs7hK6xTWmaRjhRW4WNlI0D13ZVVzZCggWAVsoSK1OKqu5LbCXmHuQx-7DXnTfdGp3FKQUz6jnQ2oSt9ob0v5uJBn3r77UUywrUMgu8fxQI_tcGY9JrihbH0UzoN1G3tWqWIEBk5Lu_rf54PF0yA-o9wAYfY8BeW0omkd8506hB6F1iOiemd4npfWKZd_of70n6eYbaMzCf9p4w6GgJJ4uOAtqknadnub8BeNOsLw
CitedBy_id crossref_primary_10_1111_j_1469_8137_2011_03852_x
crossref_primary_10_1016_j_pmpp_2012_11_005
crossref_primary_10_1007_s11046_020_00480_7
crossref_primary_10_1074_jbc_M111_311340
crossref_primary_10_1073_pnas_2415524122
crossref_primary_10_1111_j_1365_313X_2011_04829_x
crossref_primary_10_1016_j_celrep_2018_01_035
crossref_primary_10_1016_j_metabol_2016_09_004
crossref_primary_10_4052_tigg_1504_1E
crossref_primary_10_4052_tigg_1504_1J
crossref_primary_10_1016_j_bbalip_2013_10_014
crossref_primary_10_1007_s00232_017_9988_4
crossref_primary_10_1111_tpj_12566
crossref_primary_10_1016_j_bbalip_2013_11_005
crossref_primary_10_3390_microorganisms11082093
crossref_primary_10_1016_j_bbamem_2014_03_012
crossref_primary_10_1016_j_biochi_2017_06_012
crossref_primary_10_3390_ijms21082662
crossref_primary_10_1039_C8NP00019K
crossref_primary_10_1093_jxb_erab238
crossref_primary_10_1080_07924259_2013_774297
crossref_primary_10_3389_fmicb_2016_00501
crossref_primary_10_1016_j_ymben_2024_11_013
crossref_primary_10_1016_j_biochi_2016_05_009
crossref_primary_10_1128_mBio_00642_18
crossref_primary_10_3389_fmicb_2021_701041
crossref_primary_10_1038_srep38641
crossref_primary_10_3389_fmicb_2020_607028
crossref_primary_10_1016_j_febslet_2012_07_033
crossref_primary_10_1128_AEM_00454_15
crossref_primary_10_1016_j_fgb_2012_11_003
crossref_primary_10_1093_jxb_erab558
crossref_primary_10_1186_s12896_019_0532_8
crossref_primary_10_1016_j_foodres_2021_110142
crossref_primary_10_1039_C7AN00107J
crossref_primary_10_1080_14787210_2020_1792288
crossref_primary_10_1039_c1np00022e
crossref_primary_10_1016_j_bbrc_2014_10_142
crossref_primary_10_1093_femsyr_fox068
crossref_primary_10_1111_mmi_13474
crossref_primary_10_1016_j_bbalip_2013_06_006
crossref_primary_10_1038_s41477_020_00844_3
crossref_primary_10_1016_j_bbalip_2016_02_021
crossref_primary_10_1111_j_1365_2958_2011_07961_x
crossref_primary_10_1515_znc_2017_0059
crossref_primary_10_4155_fmc_2016_0053
crossref_primary_10_1016_j_pbi_2013_02_009
crossref_primary_10_1194_jlr_M078600
crossref_primary_10_1021_acs_jafc_6b04275
crossref_primary_10_1042_BST20110769
crossref_primary_10_3390_plants9010019
crossref_primary_10_1371_journal_pone_0148031
Cites_doi 10.1194/jlr.E400004-JLR200
10.1128/EC.00255-08
10.1093/jb/mvq090
10.1101/gad.856001
10.1042/bj2900751
10.1042/BJ20060697
10.1074/jbc.M104952200
10.1016/j.febslet.2007.10.018
10.1111/j.1469-8137.2009.03123.x
10.1186/1475-2859-8-29
10.1042/BJ20061128
10.1016/S0021-9258(17)40700-9
10.1074/jbc.M512864200
10.1111/j.1567-1364.2008.00407.x
10.1128/AAC.39.12.2765
10.1074/jbc.273.18.11062
10.1002/jms.997
10.1038/nrm2330
10.1093/bioinformatics/18.3.502
10.1042/bst0280638
10.1038/ng.605
10.1172/JCI27890
10.1007/978-1-4419-6741-1
10.1002/yea.720
10.1038/nrm2329
10.1002/yea.1362
10.1194/jlr.R800003-JLR200
10.1002/iub.314
10.1002/anie.200902620
10.1111/j.1365-2958.2009.06628.x
10.1139/y59-099
10.1104/pp.108.129411
10.1099/mic.0.2008/018788-0
10.1128/MCB.21.18.6198-6209.2001
10.1074/jbc.M202947200
10.1016/j.bbamem.2009.10.010
10.1093/emboj/20.11.2655
10.1111/j.1365-2958.2007.05955.x
10.1006/jmbi.2000.4042
10.1074/jbc.272.15.9809
10.1016/S0021-9258(18)64849-5
10.1099/mic.0.033985-0
10.1091/mbc.e05-06-0533
10.1074/jbc.273.44.28590
10.1016/S0014-5793(03)00163-7
10.1074/jbc.R600010200
10.1091/mbc.12.11.3417
10.1002/yea.320080805
10.1126/science.1168532
10.1016/S0304-4165(98)00135-4
10.1007/978-1-4419-6741-1_18
10.1038/nbt.1544
10.1007/s00018-003-2243-4
10.1074/jbc.272.47.29704
10.1534/genetics.106.068239
ContentType Journal Article
Copyright 2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
2011 by The American Society for Biochemistry and Molecular Biology, Inc.
Copyright_xml – notice: 2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.
– notice: 2011 by The American Society for Biochemistry and Molecular Biology, Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1074/jbc.M110.193094
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate The Sphingolipid Biosynthesis in Yeast P. pastoris
EISSN 1083-351X
EndPage 11414
ExternalDocumentID PMC3064196
21303904
10_1074_jbc_M110_193094
S0021925820537630
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-ET
-~X
0SF
18M
29J
2WC
34G
39C
4.4
53G
5BI
5GY
5RE
5VS
6I.
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
ABDNZ
ABOCM
ABPPZ
ABRJW
ACGFO
ACNCT
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFOSN
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
KQ8
L7B
N9A
OK1
P-O
P0W
P2P
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
VQA
W8F
WH7
WOQ
XFK
XSW
YQT
YSK
YWH
YZZ
ZA5
~02
~KM
.55
.7T
.GJ
0R~
186
3O-
41~
6TJ
AALRI
AAYJJ
AAYOK
AAYWO
AAYXX
ABFSI
ACSFO
ACVFH
ACYGS
ADCNI
ADVLN
ADXHL
AEUPX
AFFNX
AFPUW
AI.
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
E.L
FA8
H13
J5H
MVM
NHB
OHT
QZG
UQL
VH1
WHG
X7M
XJT
Y6R
YYP
ZE2
ZGI
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
Z5M
7X8
5PM
ID FETCH-LOGICAL-c508t-5fdd2be1b7c72a770d05c9e7337d1d8b4b27031c1118332e4a2045f2e83e33213
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 18:14:56 EDT 2025
Thu Jul 10 23:26:58 EDT 2025
Wed Feb 19 02:30:00 EST 2025
Tue Jul 01 01:53:56 EDT 2025
Thu Apr 24 22:58:14 EDT 2025
Fri Feb 23 02:46:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Glycolipid Structure
Glycolipids
Gene Knock-out
Mass Spectrometry (MS)
Ceramide
Sphingolipid
Biosynthetic Pathway
Ceramide Synthase
Glucosylceramide
Lipid
Language English
License This is an open access article under the CC BY license.
http://creativecommons.org/licenses/by/4.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c508t-5fdd2be1b7c72a770d05c9e7337d1d8b4b27031c1118332e4a2045f2e83e33213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Dept. of Biochemistry, University of Cambridge, Hopkins Bldg., Tennis Court Rd., Cambridge CB2 1QW, United Kingdom.
These authors contributed equally to this work.
Present address: Dept. of Plant Cell Biology, Albrecht von Haller Institute for Plant Sciences, Georg August University, Untere Karspüle 2, 37073 Göttingen, Germany.
OpenAccessLink https://dx.doi.org/10.1074/jbc.M110.193094
PMID 21303904
PQID 859761010
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3064196
proquest_miscellaneous_859761010
pubmed_primary_21303904
crossref_citationtrail_10_1074_jbc_M110_193094
crossref_primary_10_1074_jbc_M110_193094
elsevier_sciencedirect_doi_10_1074_jbc_M110_193094
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-04-01
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2011
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References D'mello, Childress, Franklin, Kale, Pinswasdi, Jazwinski (bib50) 1994; 269
Heidler, Radding (bib40) 1995; 39
Pata, Hannun, Ng (bib5) 2010; 185
Sperling, Blume, Zähringer, Heinz (bib30) 2000; 28
Haak, Gable, Beeler, Dunn (bib15) 1997; 272
Cerantola, Guillas, Roubaty, Vionnet, Uldry, Knudsen, Conzelmann (bib44) 2009; 71
Sakaki, Zähringer, Warnecke, Fahl, Knogge, Heinz (bib39) 2001; 18
Schmidt, Strimmer, Vingron, von Haeseler (bib53) 2002; 18
Warnecke, Heinz (bib4) 2003; 60
Grilley, Stock, Dickson, Lester, Takemoto (bib16) 1998; 273
Marsh (bib34) 2010; 1798
van Meer, Voelker, Feigenson (bib1) 2008; 9
Pewzner-Jung, Ben-Dor, Futerman (bib52) 2006; 281
Cheng, Park, Fischl, Ye (bib43) 2001; 21
Oura, Kajiwara (bib37) 2008; 154
Zäuner, Ternes, Warnecke (bib6) 2010; 688
Dickson (bib8) 2008; 49
Lahiri, Lee, Mesicek, Fuks, Haimovitz-Friedman, Kolesnick, Futerman (bib22) 2007; 581
Dickson, Lester (bib9) 1999; 1426
Guillas, Kirchman, Chuard, Pfefferli, Jiang, Jazwinski, Conzelmann (bib26) 2001; 20
Ternes, Sperling, Albrecht, Franke, Cregg, Warnecke, Heinz (bib14) 2006; 281
Nagiec, Nagiec, Baltisberger, Wells, Lester, Dickson (bib41) 1997; 272
Notredame, Higgins, Heringa (bib54) 2000; 302
Tani, Kuge (bib45) 2010; 148
Li, Du, Yuen, Harris (bib51) 2006; 17
Takakuwa, Ohnishi, Oda (bib25) 2008; 8
Sperling, Zähringer, Heinz (bib12) 1998; 273
Ejsing, Moehring, Bahr, Duchoslav, Karas, Simons, Shevchenko (bib55) 2006; 41
Wennekes, van den Berg, Boot, van der Marel, Overkleeft, Aerts (bib7) 2009; 48
Gould, McCollum, Spong, Heyman, Subramani (bib49) 1992; 8
Blight, Dyer (bib23) 1959; 37
Kageyama-Yahara, Riezman (bib48) 2006; 398
Guan, Wenk (bib20) 2006; 23
Rittershaus, Kechichian, Allegood, Merrill, Hennig, Luberto, Del Poeta (bib36) 2006; 116
Li, Bao, Yuen, Harris, Calvo (bib46) 2007; 176
Levy, Futerman (bib18) 2010; 62
Ramamoorthy, Cahoon, Thokala, Kaur, Li, Shah (bib38) 2009; 8
Noble, French, Kohn, Chen, Johnson (bib33) 2010; 42
Garton, Michaelson, Beaudoin, Beale, Napier (bib35) 2003; 538
Mattanovich, Graf, Stadlmann, Dragosits, Redl, Maurer, Kleinheinz, Sauer, Altmann, Gasser (bib10) 2009; 8
Chalfant, C., Del Poeta, M., (eds) (2010) Sphingolipids as Signaling and Regulatory Molecules, Landes Bioscience, Austin, TX.
Oura, Kajiwara (bib31) 2010; 156
Luberto, Toffaletti, Wills, Tucker, Casadevall, Perfect, Hannun, Del Poeta (bib42) 2001; 15
Folch, Lees, Sloane Stanley (bib19) 1957; 226
Schorling, Vallée, Barz, Riezman, Oesterhelt (bib27) 2001; 12
Hannun, Obeid (bib2) 2008; 9
Ramamoorthy, Cahoon, Li, Thokala, Minto, Shah (bib32) 2007; 66
Hirschberg, Rodger, Futerman (bib21) 1993; 290
Ternes, Franke, Zähringer, Sperling, Heinz (bib13) 2002; 277
Leipelt, Warnecke, Zähringer, Ott, Müller, Hube, Heinz (bib24) 2001; 276
Menuz, Howell, Gentina, Epstein, Riezman, Fornallaz-Mulhauser, Hengartner, Gomez, Riezman, Martinou (bib17) 2009; 324
De Schutter, Lin, Tiels, Van Hecke, Glinka, Weber-Lehmann, Rouzé, Van de Peer, Callewaert (bib11) 2009; 27
Cerantola, Vionnet, Aebischer, Jenny, Knudsen, Conzelmann (bib28) 2007; 401
Michaelson, Zäuner, Markham, Haslam, Desikan, Mugford, Albrecht, Warnecke, Sperling, Heinz, Napier (bib29) 2009; 149
Fahy, Subramaniam, Brown, Glass, Merrill, Murphy, Raetz, Russell, Seyama, Shaw, Shimizu, Spener, van Meer, VanNieuwenhze, White, Witztum, Dennis (bib47) 2005; 46
10.1074/jbc.M110.193094_bib3
van Meer (10.1074/jbc.M110.193094_bib1) 2008; 9
Mattanovich (10.1074/jbc.M110.193094_bib10) 2009; 8
Levy (10.1074/jbc.M110.193094_bib18) 2010; 62
Grilley (10.1074/jbc.M110.193094_bib16) 1998; 273
Heidler (10.1074/jbc.M110.193094_bib40) 1995; 39
Zäuner (10.1074/jbc.M110.193094_bib6) 2010; 688
Blight (10.1074/jbc.M110.193094_bib23) 1959; 37
Gould (10.1074/jbc.M110.193094_bib49) 1992; 8
Li (10.1074/jbc.M110.193094_bib51) 2006; 17
Cheng (10.1074/jbc.M110.193094_bib43) 2001; 21
Sperling (10.1074/jbc.M110.193094_bib30) 2000; 28
Takakuwa (10.1074/jbc.M110.193094_bib25) 2008; 8
Sakaki (10.1074/jbc.M110.193094_bib39) 2001; 18
Ternes (10.1074/jbc.M110.193094_bib13) 2002; 277
Pata (10.1074/jbc.M110.193094_bib5) 2010; 185
Cerantola (10.1074/jbc.M110.193094_bib44) 2009; 71
Warnecke (10.1074/jbc.M110.193094_bib4) 2003; 60
Hirschberg (10.1074/jbc.M110.193094_bib21) 1993; 290
Wennekes (10.1074/jbc.M110.193094_bib7) 2009; 48
Notredame (10.1074/jbc.M110.193094_bib54) 2000; 302
Ternes (10.1074/jbc.M110.193094_bib14) 2006; 281
Dickson (10.1074/jbc.M110.193094_bib9) 1999; 1426
Lahiri (10.1074/jbc.M110.193094_bib22) 2007; 581
Guan (10.1074/jbc.M110.193094_bib20) 2006; 23
Schmidt (10.1074/jbc.M110.193094_bib53) 2002; 18
Haak (10.1074/jbc.M110.193094_bib15) 1997; 272
Oura (10.1074/jbc.M110.193094_bib31) 2010; 156
Oura (10.1074/jbc.M110.193094_bib37) 2008; 154
Leipelt (10.1074/jbc.M110.193094_bib24) 2001; 276
Li (10.1074/jbc.M110.193094_bib46) 2007; 176
Garton (10.1074/jbc.M110.193094_bib35) 2003; 538
Folch (10.1074/jbc.M110.193094_bib19) 1957; 226
Tani (10.1074/jbc.M110.193094_bib45) 2010; 148
Menuz (10.1074/jbc.M110.193094_bib17) 2009; 324
Marsh (10.1074/jbc.M110.193094_bib34) 2010; 1798
Rittershaus (10.1074/jbc.M110.193094_bib36) 2006; 116
Luberto (10.1074/jbc.M110.193094_bib42) 2001; 15
Sperling (10.1074/jbc.M110.193094_bib12) 1998; 273
Cerantola (10.1074/jbc.M110.193094_bib28) 2007; 401
Fahy (10.1074/jbc.M110.193094_bib47) 2005; 46
Michaelson (10.1074/jbc.M110.193094_bib29) 2009; 149
De Schutter (10.1074/jbc.M110.193094_bib11) 2009; 27
Ramamoorthy (10.1074/jbc.M110.193094_bib38) 2009; 8
Kageyama-Yahara (10.1074/jbc.M110.193094_bib48) 2006; 398
D'mello (10.1074/jbc.M110.193094_bib50) 1994; 269
Ramamoorthy (10.1074/jbc.M110.193094_bib32) 2007; 66
Pewzner-Jung (10.1074/jbc.M110.193094_bib52) 2006; 281
Dickson (10.1074/jbc.M110.193094_bib8) 2008; 49
Nagiec (10.1074/jbc.M110.193094_bib41) 1997; 272
Hannun (10.1074/jbc.M110.193094_bib2) 2008; 9
Guillas (10.1074/jbc.M110.193094_bib26) 2001; 20
Noble (10.1074/jbc.M110.193094_bib33) 2010; 42
Ejsing (10.1074/jbc.M110.193094_bib55) 2006; 41
Schorling (10.1074/jbc.M110.193094_bib27) 2001; 12
References_xml – volume: 1798
  start-page: 40
  year: 2010
  end-page: 51
  ident: bib34
  publication-title: Biochim. Biophys. Acta
– volume: 20
  start-page: 2655
  year: 2001
  end-page: 2665
  ident: bib26
  publication-title: EMBO J.
– volume: 1426
  start-page: 347
  year: 1999
  end-page: 357
  ident: bib9
  publication-title: Biochim. Biophys. Acta
– volume: 185
  start-page: 611
  year: 2010
  end-page: 630
  ident: bib5
  publication-title: New Phytol.
– volume: 42
  start-page: 590
  year: 2010
  end-page: 598
  ident: bib33
  publication-title: Nat. Genet.
– volume: 688
  start-page: 249
  year: 2010
  end-page: 263
  ident: bib6
  publication-title: Adv. Exp. Med. Biol.
– volume: 581
  start-page: 5289
  year: 2007
  end-page: 5294
  ident: bib22
  publication-title: FEBS Lett.
– volume: 21
  start-page: 6198
  year: 2001
  end-page: 6209
  ident: bib43
  publication-title: Mol. Cell. Biol.
– volume: 12
  start-page: 3417
  year: 2001
  end-page: 3427
  ident: bib27
  publication-title: Mol. Biol. Cell
– volume: 116
  start-page: 1651
  year: 2006
  end-page: 1659
  ident: bib36
  publication-title: J. Clin. Investig.
– volume: 60
  start-page: 919
  year: 2003
  end-page: 941
  ident: bib4
  publication-title: Cell. Mol. Life Sci.
– volume: 276
  start-page: 33621
  year: 2001
  end-page: 33629
  ident: bib24
  publication-title: J. Biol. Chem.
– volume: 176
  start-page: 243
  year: 2007
  end-page: 253
  ident: bib46
  publication-title: Genetics
– volume: 48
  start-page: 8848
  year: 2009
  end-page: 8869
  ident: bib7
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 17
  start-page: 1218
  year: 2006
  end-page: 1227
  ident: bib51
  publication-title: Mol. Biol. Cell
– volume: 302
  start-page: 205
  year: 2000
  end-page: 217
  ident: bib54
  publication-title: J. Mol. Biol.
– volume: 156
  start-page: 1234
  year: 2010
  end-page: 1243
  ident: bib31
  publication-title: Microbiology
– volume: 15
  start-page: 201
  year: 2001
  end-page: 212
  ident: bib42
  publication-title: Genes Dev.
– volume: 8
  start-page: 217
  year: 2009
  end-page: 229
  ident: bib38
  publication-title: Eukaryot. Cell
– volume: 273
  start-page: 28590
  year: 1998
  end-page: 28596
  ident: bib12
  publication-title: J. Biol. Chem.
– volume: 23
  start-page: 465
  year: 2006
  end-page: 477
  ident: bib20
  publication-title: Yeast
– reference: Chalfant, C., Del Poeta, M., (eds) (2010) Sphingolipids as Signaling and Regulatory Molecules, Landes Bioscience, Austin, TX.
– volume: 281
  start-page: 5582
  year: 2006
  end-page: 5592
  ident: bib14
  publication-title: J. Biol. Chem.
– volume: 148
  start-page: 565
  year: 2010
  end-page: 571
  ident: bib45
  publication-title: J. Biochem.
– volume: 46
  start-page: 839
  year: 2005
  end-page: 861
  ident: bib47
  publication-title: J. Lipid Res.
– volume: 226
  start-page: 497
  year: 1957
  end-page: 509
  ident: bib19
  publication-title: J. Biol. Chem.
– volume: 398
  start-page: 585
  year: 2006
  end-page: 593
  ident: bib48
  publication-title: Biochem. J.
– volume: 149
  start-page: 487
  year: 2009
  end-page: 498
  ident: bib29
  publication-title: Plant Physiol.
– volume: 8
  start-page: 613
  year: 1992
  end-page: 628
  ident: bib49
  publication-title: Yeast
– volume: 269
  start-page: 15451
  year: 1994
  end-page: 15459
  ident: bib50
  publication-title: J. Biol. Chem.
– volume: 66
  start-page: 771
  year: 2007
  end-page: 786
  ident: bib32
  publication-title: Mol. Microbiol.
– volume: 273
  start-page: 11062
  year: 1998
  end-page: 11068
  ident: bib16
  publication-title: J. Biol. Chem.
– volume: 49
  start-page: 909
  year: 2008
  end-page: 921
  ident: bib8
  publication-title: J. Lipid Res.
– volume: 401
  start-page: 205
  year: 2007
  end-page: 216
  ident: bib28
  publication-title: Biochem. J.
– volume: 538
  start-page: 192
  year: 2003
  end-page: 196
  ident: bib35
  publication-title: FEBS Lett.
– volume: 18
  start-page: 502
  year: 2002
  end-page: 504
  ident: bib53
  publication-title: Bioinformatics
– volume: 272
  start-page: 29704
  year: 1997
  end-page: 29710
  ident: bib15
  publication-title: J. Biol. Chem.
– volume: 37
  start-page: 911
  year: 1959
  end-page: 917
  ident: bib23
  publication-title: Can. J. Biochem. Physiol.
– volume: 28
  start-page: 638
  year: 2000
  end-page: 641
  ident: bib30
  publication-title: Biochem. Soc. Trans.
– volume: 281
  start-page: 25001
  year: 2006
  end-page: 25005
  ident: bib52
  publication-title: J. Biol. Chem.
– volume: 154
  start-page: 3795
  year: 2008
  end-page: 3803
  ident: bib37
  publication-title: Microbiology
– volume: 324
  start-page: 381
  year: 2009
  end-page: 384
  ident: bib17
  publication-title: Science
– volume: 290
  start-page: 751
  year: 1993
  end-page: 757
  ident: bib21
  publication-title: Biochem. J.
– volume: 8
  start-page: 29
  year: 2009
  ident: bib10
  publication-title: Microb. Cell Fact.
– volume: 27
  start-page: 561
  year: 2009
  end-page: 566
  ident: bib11
  publication-title: Nat. Biotechnol.
– volume: 9
  start-page: 112
  year: 2008
  end-page: 124
  ident: bib1
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 39
  start-page: 2765
  year: 1995
  end-page: 2769
  ident: bib40
  publication-title: Antimicrob. Agents Chemother.
– volume: 272
  start-page: 9809
  year: 1997
  end-page: 9817
  ident: bib41
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 139
  year: 2008
  end-page: 150
  ident: bib2
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 277
  start-page: 25512
  year: 2002
  end-page: 25518
  ident: bib13
  publication-title: J. Biol. Chem.
– volume: 18
  start-page: 679
  year: 2001
  end-page: 695
  ident: bib39
  publication-title: Yeast
– volume: 41
  start-page: 372
  year: 2006
  end-page: 389
  ident: bib55
  publication-title: J. Mass Spectrom.
– volume: 71
  start-page: 1523
  year: 2009
  end-page: 1537
  ident: bib44
  publication-title: Mol. Microbiol.
– volume: 62
  start-page: 347
  year: 2010
  end-page: 356
  ident: bib18
  publication-title: IUBMB Life
– volume: 8
  start-page: 839
  year: 2008
  end-page: 845
  ident: bib25
  publication-title: FEMS Yeast Res.
– volume: 46
  start-page: 839
  year: 2005
  ident: 10.1074/jbc.M110.193094_bib47
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.E400004-JLR200
– volume: 8
  start-page: 217
  year: 2009
  ident: 10.1074/jbc.M110.193094_bib38
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00255-08
– volume: 148
  start-page: 565
  year: 2010
  ident: 10.1074/jbc.M110.193094_bib45
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvq090
– volume: 15
  start-page: 201
  year: 2001
  ident: 10.1074/jbc.M110.193094_bib42
  publication-title: Genes Dev.
  doi: 10.1101/gad.856001
– volume: 290
  start-page: 751
  year: 1993
  ident: 10.1074/jbc.M110.193094_bib21
  publication-title: Biochem. J.
  doi: 10.1042/bj2900751
– volume: 398
  start-page: 585
  year: 2006
  ident: 10.1074/jbc.M110.193094_bib48
  publication-title: Biochem. J.
  doi: 10.1042/BJ20060697
– volume: 276
  start-page: 33621
  year: 2001
  ident: 10.1074/jbc.M110.193094_bib24
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M104952200
– volume: 581
  start-page: 5289
  year: 2007
  ident: 10.1074/jbc.M110.193094_bib22
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.10.018
– volume: 185
  start-page: 611
  year: 2010
  ident: 10.1074/jbc.M110.193094_bib5
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2009.03123.x
– volume: 8
  start-page: 29
  year: 2009
  ident: 10.1074/jbc.M110.193094_bib10
  publication-title: Microb. Cell Fact.
  doi: 10.1186/1475-2859-8-29
– volume: 401
  start-page: 205
  year: 2007
  ident: 10.1074/jbc.M110.193094_bib28
  publication-title: Biochem. J.
  doi: 10.1042/BJ20061128
– volume: 269
  start-page: 15451
  year: 1994
  ident: 10.1074/jbc.M110.193094_bib50
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)40700-9
– volume: 281
  start-page: 5582
  year: 2006
  ident: 10.1074/jbc.M110.193094_bib14
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M512864200
– volume: 8
  start-page: 839
  year: 2008
  ident: 10.1074/jbc.M110.193094_bib25
  publication-title: FEMS Yeast Res.
  doi: 10.1111/j.1567-1364.2008.00407.x
– volume: 39
  start-page: 2765
  year: 1995
  ident: 10.1074/jbc.M110.193094_bib40
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.39.12.2765
– volume: 273
  start-page: 11062
  year: 1998
  ident: 10.1074/jbc.M110.193094_bib16
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.18.11062
– volume: 41
  start-page: 372
  year: 2006
  ident: 10.1074/jbc.M110.193094_bib55
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.997
– volume: 9
  start-page: 112
  year: 2008
  ident: 10.1074/jbc.M110.193094_bib1
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2330
– volume: 18
  start-page: 502
  year: 2002
  ident: 10.1074/jbc.M110.193094_bib53
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.3.502
– volume: 28
  start-page: 638
  year: 2000
  ident: 10.1074/jbc.M110.193094_bib30
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/bst0280638
– volume: 42
  start-page: 590
  year: 2010
  ident: 10.1074/jbc.M110.193094_bib33
  publication-title: Nat. Genet.
  doi: 10.1038/ng.605
– volume: 116
  start-page: 1651
  year: 2006
  ident: 10.1074/jbc.M110.193094_bib36
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI27890
– ident: 10.1074/jbc.M110.193094_bib3
  doi: 10.1007/978-1-4419-6741-1
– volume: 18
  start-page: 679
  year: 2001
  ident: 10.1074/jbc.M110.193094_bib39
  publication-title: Yeast
  doi: 10.1002/yea.720
– volume: 9
  start-page: 139
  year: 2008
  ident: 10.1074/jbc.M110.193094_bib2
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2329
– volume: 23
  start-page: 465
  year: 2006
  ident: 10.1074/jbc.M110.193094_bib20
  publication-title: Yeast
  doi: 10.1002/yea.1362
– volume: 49
  start-page: 909
  year: 2008
  ident: 10.1074/jbc.M110.193094_bib8
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R800003-JLR200
– volume: 62
  start-page: 347
  year: 2010
  ident: 10.1074/jbc.M110.193094_bib18
  publication-title: IUBMB Life
  doi: 10.1002/iub.314
– volume: 48
  start-page: 8848
  year: 2009
  ident: 10.1074/jbc.M110.193094_bib7
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.200902620
– volume: 71
  start-page: 1523
  year: 2009
  ident: 10.1074/jbc.M110.193094_bib44
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2009.06628.x
– volume: 37
  start-page: 911
  year: 1959
  ident: 10.1074/jbc.M110.193094_bib23
  publication-title: Can. J. Biochem. Physiol.
  doi: 10.1139/y59-099
– volume: 149
  start-page: 487
  year: 2009
  ident: 10.1074/jbc.M110.193094_bib29
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.129411
– volume: 154
  start-page: 3795
  year: 2008
  ident: 10.1074/jbc.M110.193094_bib37
  publication-title: Microbiology
  doi: 10.1099/mic.0.2008/018788-0
– volume: 21
  start-page: 6198
  year: 2001
  ident: 10.1074/jbc.M110.193094_bib43
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.21.18.6198-6209.2001
– volume: 277
  start-page: 25512
  year: 2002
  ident: 10.1074/jbc.M110.193094_bib13
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M202947200
– volume: 1798
  start-page: 40
  year: 2010
  ident: 10.1074/jbc.M110.193094_bib34
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2009.10.010
– volume: 20
  start-page: 2655
  year: 2001
  ident: 10.1074/jbc.M110.193094_bib26
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.11.2655
– volume: 66
  start-page: 771
  year: 2007
  ident: 10.1074/jbc.M110.193094_bib32
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2007.05955.x
– volume: 302
  start-page: 205
  year: 2000
  ident: 10.1074/jbc.M110.193094_bib54
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.4042
– volume: 272
  start-page: 9809
  year: 1997
  ident: 10.1074/jbc.M110.193094_bib41
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.15.9809
– volume: 226
  start-page: 497
  year: 1957
  ident: 10.1074/jbc.M110.193094_bib19
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)64849-5
– volume: 156
  start-page: 1234
  year: 2010
  ident: 10.1074/jbc.M110.193094_bib31
  publication-title: Microbiology
  doi: 10.1099/mic.0.033985-0
– volume: 17
  start-page: 1218
  year: 2006
  ident: 10.1074/jbc.M110.193094_bib51
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e05-06-0533
– volume: 273
  start-page: 28590
  year: 1998
  ident: 10.1074/jbc.M110.193094_bib12
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.44.28590
– volume: 538
  start-page: 192
  year: 2003
  ident: 10.1074/jbc.M110.193094_bib35
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(03)00163-7
– volume: 281
  start-page: 25001
  year: 2006
  ident: 10.1074/jbc.M110.193094_bib52
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R600010200
– volume: 12
  start-page: 3417
  year: 2001
  ident: 10.1074/jbc.M110.193094_bib27
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.12.11.3417
– volume: 8
  start-page: 613
  year: 1992
  ident: 10.1074/jbc.M110.193094_bib49
  publication-title: Yeast
  doi: 10.1002/yea.320080805
– volume: 324
  start-page: 381
  year: 2009
  ident: 10.1074/jbc.M110.193094_bib17
  publication-title: Science
  doi: 10.1126/science.1168532
– volume: 1426
  start-page: 347
  year: 1999
  ident: 10.1074/jbc.M110.193094_bib9
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4165(98)00135-4
– volume: 688
  start-page: 249
  year: 2010
  ident: 10.1074/jbc.M110.193094_bib6
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4419-6741-1_18
– volume: 27
  start-page: 561
  year: 2009
  ident: 10.1074/jbc.M110.193094_bib11
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1544
– volume: 60
  start-page: 919
  year: 2003
  ident: 10.1074/jbc.M110.193094_bib4
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-003-2243-4
– volume: 272
  start-page: 29704
  year: 1997
  ident: 10.1074/jbc.M110.193094_bib15
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.47.29704
– volume: 176
  start-page: 243
  year: 2007
  ident: 10.1074/jbc.M110.193094_bib46
  publication-title: Genetics
  doi: 10.1534/genetics.106.068239
SSID ssj0000491
Score 2.267876
Snippet Although the yeast Saccharomyces cerevisiae has only one sphingolipid class with a head group based on phosphoinositol, the yeast Pichia pastoris as well as...
Although the yeast Saccharomyces cerevisiae has only one sphingolipid class with a head group based on phosphoinositol, the yeast Pichia pastoris as well as...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11401
SubjectTerms Biosynthetic Pathway
Ceramide
Ceramide Synthase
Fungal Proteins - genetics
Fungal Proteins - metabolism
Gene Knock-out
Genes, Fungal - physiology
Glucosylceramide
Glycolipid Structure
Glycolipids
Lipid
Lipids
Mass Spectrometry (MS)
Oxidoreductases - genetics
Oxidoreductases - metabolism
Pichia - genetics
Pichia - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Species Specificity
Sphingolipid
Sphingolipids - biosynthesis
Sphingolipids - genetics
Title Two Pathways of Sphingolipid Biosynthesis Are Separated in the Yeast Pichia pastoris
URI https://dx.doi.org/10.1074/jbc.M110.193094
https://www.ncbi.nlm.nih.gov/pubmed/21303904
https://www.proquest.com/docview/859761010
https://pubmed.ncbi.nlm.nih.gov/PMC3064196
Volume 286
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoALgpZHeGkPCCFVDvZ6k3WOUQWqQCBQUimcrH1FtZTakZOoSv8Ef5mZXdtxUiJBL1Hs2M7G35fdmfHMN4S805prHsphoCOVBDziUSATYwIUP9ecCZVol23xfXB-wb9M-9NO53cra2m9Uj1989e6krugCvsAV6yS_Q9km4vCDngP-MIrIAyv_4bxdYEa-5fXcuMyMsYLjCcV82yRGewyudzkYN-h5MiotDAtOJ1va-rcxl_Yt-f0R4bpzqcL6fRClm1rdVs35ixWL9jkJUXqPnGN52_LWvTfhWgWzWxfKOWVfQuVycaCH2sYdXlTlQvl2ZZ5c3TSfcBgLHNTynZgAiOtvB2YaCpmdhI6fUoI83LtPesnXTADsaJg2p6VWaWQXdEvbk2yETqFrRUbtn0h6q3lAOwjXA6U7n2LXGVmHPqWynsa2_jIOsJRMSdvE4f3yH0Gfge2xPj6cys_D-6Ub8FY_YhaK0rwj3tfcsjMue3G7GfjtsybyWPyqEKZjjzJnpCOzY_JySiXq-JqQ99TlynsHsEckwdnNfonZAIcpDUHaTGjbQ7SNgfh2pY2HKRZTmE_dRyknoO05uBTcvH50-TsPKg6dQQaDPxV0J8Zw5SNlNCCSSFCE_b10Io4FiYyieKKYZ8EDQtrEsfMcoldEGbMJrGF7Sh-Ro7yIrcvCNVKCYu6hmYYcwlXwxr_eMa5HmgzsKJLevWNTXUlY4_dVOapS6cQPAUkUkQi9Uh0yYfmhIVXcDl8KKuRSisD1BuWKRDq8Em0xjSFe4_P22Rui_UyTcBZB-8kCrvkuYe4GQBD03EYwsliB_zmAFR93_0kzy6d-juGDGDZfHmXsb4iD7f_1NfkaFWu7RswqlfqrSP6HxtszQg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Pathways+of+Sphingolipid+Biosynthesis+Are+Separated+in+the+Yeast+Pichia+pastoris&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Ternes%2C+Philipp&rft.au=Wobbe%2C+Tobias&rft.au=Schwarz%2C+Marnie&rft.au=Albrecht%2C+Sandra&rft.date=2011-04-01&rft.pub=Elsevier+Inc&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=286&rft.issue=13&rft.spage=11401&rft.epage=11414&rft_id=info:doi/10.1074%2Fjbc.M110.193094&rft.externalDocID=S0021925820537630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon