Exploring atomic defects in molybdenum disulphide monolayers

Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment–theory investiga...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 6; no. 1; p. 6293
Main Authors Hong, Jinhua, Hu, Zhixin, Probert, Matt, Li, Kun, Lv, Danhui, Yang, Xinan, Gu, Lin, Mao, Nannan, Feng, Qingliang, Xie, Liming, Zhang, Jin, Wu, Dianzhong, Zhang, Zhiyong, Jin, Chuanhong, Ji, Wei, Zhang, Xixiang, Yuan, Jun, Zhang, Ze
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.02.2015
Nature Publishing Group
Nature Pub. Group
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/ncomms7293

Cover

Loading…
Abstract Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment–theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13  cm −2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices. Imperfections can greatly alter a material’s properties. Here, the authors investigate the influence of point defects on the electronic structure, charge-carrier mobility and optical absorption of molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition.
AbstractList Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment–theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13  cm −2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices. Imperfections can greatly alter a material’s properties. Here, the authors investigate the influence of point defects on the electronic structure, charge-carrier mobility and optical absorption of molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition.
Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10(13) cm(-2) is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10(13) cm(-2) is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.
Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment–theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13  cm −2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.
Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 1013 cm-2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.
Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10(13) cm(-2) is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.
ArticleNumber 6293
Author Wu, Dianzhong
Zhang, Xixiang
Mao, Nannan
Yuan, Jun
Hu, Zhixin
Zhang, Zhiyong
Hong, Jinhua
Lv, Danhui
Li, Kun
Zhang, Ze
Gu, Lin
Zhang, Jin
Probert, Matt
Jin, Chuanhong
Yang, Xinan
Xie, Liming
Feng, Qingliang
Ji, Wei
Author_xml – sequence: 1
  givenname: Jinhua
  surname: Hong
  fullname: Hong, Jinhua
  organization: State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University
– sequence: 2
  givenname: Zhixin
  surname: Hu
  fullname: Hu, Zhixin
  organization: Department of Physics, Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China
– sequence: 3
  givenname: Matt
  surname: Probert
  fullname: Probert, Matt
  organization: Department of Physics, University of York, Heslington, York YO10 5DD, UK
– sequence: 4
  givenname: Kun
  surname: Li
  fullname: Li, Kun
  organization: Advanced Nanofabrication, Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Danhui
  surname: Lv
  fullname: Lv, Danhui
  organization: State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University
– sequence: 6
  givenname: Xinan
  surname: Yang
  fullname: Yang, Xinan
  organization: Instituteof Physics, Chinese Academy of Sciences, c/o Collaborative Innovation Center of Quantum Matter
– sequence: 7
  givenname: Lin
  surname: Gu
  fullname: Gu, Lin
  organization: Instituteof Physics, Chinese Academy of Sciences, c/o Collaborative Innovation Center of Quantum Matter
– sequence: 8
  givenname: Nannan
  surname: Mao
  fullname: Mao, Nannan
  organization: CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University
– sequence: 9
  givenname: Qingliang
  surname: Feng
  fullname: Feng, Qingliang
  organization: CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology
– sequence: 10
  givenname: Liming
  surname: Xie
  fullname: Xie, Liming
  organization: CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology
– sequence: 11
  givenname: Jin
  surname: Zhang
  fullname: Zhang, Jin
  organization: Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University
– sequence: 12
  givenname: Dianzhong
  surname: Wu
  fullname: Wu, Dianzhong
  organization: Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University
– sequence: 13
  givenname: Zhiyong
  surname: Zhang
  fullname: Zhang, Zhiyong
  organization: Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University
– sequence: 14
  givenname: Chuanhong
  surname: Jin
  fullname: Jin, Chuanhong
  email: chhjin@zju.edu.cn
  organization: State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University
– sequence: 15
  givenname: Wei
  surname: Ji
  fullname: Ji, Wei
  email: wji@ruc.edu.cn
  organization: Department of Physics, Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China, Department of Physics and Astronomy, Collaborative Innovation Center of Advanced Microstructures, Shanghai Jiao Tong University
– sequence: 16
  givenname: Xixiang
  surname: Zhang
  fullname: Zhang, Xixiang
  organization: Advanced Nanofabrication, Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST)
– sequence: 17
  givenname: Jun
  surname: Yuan
  fullname: Yuan, Jun
  email: jun.yuan@york.ac.uk
  organization: State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Department of Physics, University of York, Heslington, York YO10 5DD, UK
– sequence: 18
  givenname: Ze
  surname: Zhang
  fullname: Zhang, Ze
  organization: State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25695374$$D View this record in MEDLINE/PubMed
BookMark eNptkVtL5TAUhYM4eH_xB0jBF1HOmJzcWpABEXUGhHnR55AmuxpJk5q0Muff23K8nFHzskP2txcre22j9RADILRP8E-CaXkaTGzbLOcVXUNbc8zIjMg5XV-5b6K9nB_xeGhFSsY20Oaci4pTybbQ2eW_zsfkwn2h-9g6U1howPS5cKFoo1_UFsLQFtblwXcPzsL4GqLXC0h5F_1otM-w91p30N3V5e3F79nN3-s_F-c3M8Nx2c84t6W0FBqKSV0ZayyrsK4aWRlOJK3HHiUUMyqhMWBqBrWWIDQuG6OJZXQH_VrqdkPdgjUQ-qS96pJrdVqoqJ36vxPcg7qPz4pRJgSdBI5eBVJ8GiD3qnXZgPc6QByyIoJLSkpcyhE9_IQ-xiGF8XsTJTAXQvCROlh19G7lbbEjgJeASTHnBI0yrte9i5NB5xXBaopPfcQ3jhx_GnlT_RY-WcK5m8KDtGLzK_0CbVKslA
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_157885
crossref_primary_10_1088_1361_6463_abe331
crossref_primary_10_1016_j_ijhydene_2019_10_167
crossref_primary_10_1021_acs_nanolett_4c04252
crossref_primary_10_1103_PhysRevMaterials_1_074408
crossref_primary_10_1002_adts_201900052
crossref_primary_10_1039_D4NH00441H
crossref_primary_10_1002_smll_201901899
crossref_primary_10_1016_j_physe_2020_113968
crossref_primary_10_1088_1674_1056_ab9438
crossref_primary_10_1021_acsnano_1c00171
crossref_primary_10_1021_acs_chemrev_4c00631
crossref_primary_10_1116_1_5111727
crossref_primary_10_1021_acsnano_3c03996
crossref_primary_10_1021_acs_nanolett_8b01501
crossref_primary_10_1002_smll_202203281
crossref_primary_10_1126_sciadv_abm0100
crossref_primary_10_1063_1_5043208
crossref_primary_10_1021_acsami_3c18533
crossref_primary_10_1021_acs_nanolett_9b02005
crossref_primary_10_1088_1361_6528_ac357c
crossref_primary_10_1007_s00894_025_06306_x
crossref_primary_10_1021_acs_nanolett_7b04374
crossref_primary_10_1039_C7CC01560G
crossref_primary_10_1016_j_scib_2018_01_010
crossref_primary_10_1038_s41598_022_22913_7
crossref_primary_10_1063_1_4975064
crossref_primary_10_1038_s41598_017_07615_9
crossref_primary_10_1038_s41467_022_29447_6
crossref_primary_10_1039_C8CP05665J
crossref_primary_10_1021_acs_inorgchem_4c04505
crossref_primary_10_1007_s11705_023_2382_0
crossref_primary_10_1088_2053_1583_ad690f
crossref_primary_10_1002_adma_202108258
crossref_primary_10_1021_acsami_9b19224
crossref_primary_10_1002_adma_201605043
crossref_primary_10_1021_acsami_1c21419
crossref_primary_10_1021_jacs_9b12113
crossref_primary_10_1039_C6TA06534A
crossref_primary_10_3390_nano12111929
crossref_primary_10_1021_acsami_1c01806
crossref_primary_10_1039_C7TA07241D
crossref_primary_10_1103_PhysRevB_108_245421
crossref_primary_10_3390_cryst13101474
crossref_primary_10_1021_acsnano_5b05173
crossref_primary_10_1177_0021998320922601
crossref_primary_10_1002_smll_201700098
crossref_primary_10_1016_j_nanoen_2017_10_038
crossref_primary_10_1016_j_ultramic_2019_04_007
crossref_primary_10_1038_s42254_021_00408_0
crossref_primary_10_1021_acsomega_3c03881
crossref_primary_10_1021_acsphotonics_8b00129
crossref_primary_10_1039_D0NR03871G
crossref_primary_10_1016_j_mtcomm_2020_101334
crossref_primary_10_1016_j_tsf_2019_137500
crossref_primary_10_1103_PhysRevMaterials_2_124003
crossref_primary_10_1007_s41918_019_00045_3
crossref_primary_10_1016_j_chempr_2016_10_007
crossref_primary_10_1021_acsami_9b00856
crossref_primary_10_1021_acsnano_3c02626
crossref_primary_10_1103_PhysRevB_97_115445
crossref_primary_10_1038_s41467_022_35048_0
crossref_primary_10_1103_PhysRevB_108_245411
crossref_primary_10_1002_admi_202100599
crossref_primary_10_1039_D3NR01321A
crossref_primary_10_1021_acs_nanolett_8b01714
crossref_primary_10_1021_acsami_4c13963
crossref_primary_10_1016_j_apsusc_2021_149013
crossref_primary_10_1038_s41598_018_25796_9
crossref_primary_10_1016_j_actamat_2022_118655
crossref_primary_10_1021_acs_jpcc_3c07112
crossref_primary_10_1021_acs_jpcc_2c00051
crossref_primary_10_1063_5_0185604
crossref_primary_10_1103_PhysRevB_108_165428
crossref_primary_10_1021_acs_est_9b00088
crossref_primary_10_1103_PhysRevB_103_235433
crossref_primary_10_1038_s41467_022_28876_7
crossref_primary_10_1016_j_impact_2023_100485
crossref_primary_10_1021_acsnano_1c00373
crossref_primary_10_1021_acsanm_8b01085
crossref_primary_10_1016_j_solmat_2016_12_024
crossref_primary_10_1021_acsnano_1c01220
crossref_primary_10_1038_s41467_024_51501_8
crossref_primary_10_1038_s41467_021_21158_8
crossref_primary_10_1038_s41699_022_00350_4
crossref_primary_10_1002_pssb_202300270
crossref_primary_10_1016_j_apcatb_2020_119288
crossref_primary_10_3390_cryst6090113
crossref_primary_10_1002_advs_202408640
crossref_primary_10_1515_nanoph_2016_0151
crossref_primary_10_1002_cphc_202400866
crossref_primary_10_1016_j_susc_2020_121759
crossref_primary_10_1021_acsnano_7b04162
crossref_primary_10_3390_nano11102509
crossref_primary_10_1103_PhysRevB_101_045433
crossref_primary_10_1038_s41928_018_0129_6
crossref_primary_10_1002_adfm_202410447
crossref_primary_10_1021_acsami_3c18332
crossref_primary_10_1021_acsami_7b02739
crossref_primary_10_1039_D4CP00301B
crossref_primary_10_1038_nnano_2017_161
crossref_primary_10_1016_j_apcatb_2019_04_080
crossref_primary_10_1021_acs_nanolett_9b01599
crossref_primary_10_1038_s41467_024_54900_z
crossref_primary_10_3390_app10144758
crossref_primary_10_1021_acs_jpcc_6b11987
crossref_primary_10_1103_PhysRevMaterials_4_064004
crossref_primary_10_1021_acs_jpcc_1c03961
crossref_primary_10_1088_1361_6528_ab2c3a
crossref_primary_10_1021_acs_jpcc_8b10971
crossref_primary_10_1063_1_5048099
crossref_primary_10_1021_acs_jpcc_7b00036
crossref_primary_10_1103_PhysRevMaterials_7_124001
crossref_primary_10_1002_anie_202316306
crossref_primary_10_1038_s42254_021_00389_0
crossref_primary_10_1063_1674_0068_cjcp2007123
crossref_primary_10_1063_5_0114012
crossref_primary_10_1103_PhysRevB_96_245402
crossref_primary_10_1002_smll_201601556
crossref_primary_10_1016_j_susc_2016_05_003
crossref_primary_10_1016_j_physb_2021_413269
crossref_primary_10_1002_adma_201504572
crossref_primary_10_1007_s11664_020_07957_7
crossref_primary_10_1021_jacs_4c10810
crossref_primary_10_1088_2053_1583_ad341c
crossref_primary_10_1016_j_spmi_2019_04_045
crossref_primary_10_1063_1_4963290
crossref_primary_10_1002_advs_202101099
crossref_primary_10_1038_srep25788
crossref_primary_10_1016_j_apsusc_2021_150270
crossref_primary_10_1021_acs_nanolett_0c03810
crossref_primary_10_1021_acs_accounts_4c00495
crossref_primary_10_1021_acsphotonics_3c01470
crossref_primary_10_12677_AAC_2022_123030
crossref_primary_10_1021_acs_nanolett_3c03328
crossref_primary_10_3390_nano10061032
crossref_primary_10_1021_acsami_1c20536
crossref_primary_10_1021_acsnano_0c08460
crossref_primary_10_1021_acs_nanolett_3c02479
crossref_primary_10_1016_j_cej_2020_127013
crossref_primary_10_1021_acsnano_8b03977
crossref_primary_10_1021_acs_nanolett_9b01577
crossref_primary_10_1021_acsaelm_4c01808
crossref_primary_10_1021_acsami_9b10688
crossref_primary_10_1038_s41467_022_33940_3
crossref_primary_10_1021_acsomega_3c03200
crossref_primary_10_1039_D0EE00450B
crossref_primary_10_1088_2053_1583_aba4ed
crossref_primary_10_1088_2516_1075_ad2090
crossref_primary_10_1063_5_0024652
crossref_primary_10_1103_PhysRevLett_119_016101
crossref_primary_10_1364_OME_437434
crossref_primary_10_1039_C8NR07501H
crossref_primary_10_1039_D2NR00391K
crossref_primary_10_1016_j_jallcom_2018_06_358
crossref_primary_10_1038_s41467_022_35651_1
crossref_primary_10_1557_s43578_022_00720_0
crossref_primary_10_1038_s41598_017_07178_9
crossref_primary_10_1002_adts_201900213
crossref_primary_10_1016_j_physleta_2020_126575
crossref_primary_10_1016_j_apsusc_2017_07_004
crossref_primary_10_1088_2516_1075_acc55d
crossref_primary_10_1021_acsanm_9b00200
crossref_primary_10_1088_1361_6528_ace1f7
crossref_primary_10_1063_1_4971775
crossref_primary_10_1063_5_0057165
crossref_primary_10_1002_adfm_202109598
crossref_primary_10_1103_PhysRevMaterials_1_074001
crossref_primary_10_1364_AO_416441
crossref_primary_10_1088_1361_6528_abedf0
crossref_primary_10_1016_j_chemphys_2020_111054
crossref_primary_10_1021_acsnano_2c08394
crossref_primary_10_1103_PhysRevB_100_235440
crossref_primary_10_1016_j_apsusc_2021_149862
crossref_primary_10_1016_j_ijhydene_2024_12_516
crossref_primary_10_1021_acs_jpcc_2c08622
crossref_primary_10_1002_adma_201802402
crossref_primary_10_3390_nano12101706
crossref_primary_10_1016_j_jmmm_2018_08_076
crossref_primary_10_1021_acs_nanolett_9b02888
crossref_primary_10_1021_acsami_3c07806
crossref_primary_10_1021_acsnano_5b05556
crossref_primary_10_1109_TED_2023_3294363
crossref_primary_10_1002_celc_201801003
crossref_primary_10_1021_acsnano_6b03443
crossref_primary_10_1039_C9CP01030K
crossref_primary_10_1002_qua_26871
crossref_primary_10_1021_acs_jpcc_6b00647
crossref_primary_10_1007_s12274_018_2026_8
crossref_primary_10_1088_1367_2630_ad0259
crossref_primary_10_1021_acsnano_8b09054
crossref_primary_10_1103_PhysRevB_105_094111
crossref_primary_10_1002_adom_202302326
crossref_primary_10_1007_s11465_023_0755_1
crossref_primary_10_1021_acs_cgd_9b00785
crossref_primary_10_1557_s43577_023_00598_1
crossref_primary_10_3390_polym13203507
crossref_primary_10_1007_s12274_020_3047_7
crossref_primary_10_1038_s41563_021_00927_2
crossref_primary_10_1103_PhysRevLett_116_046803
crossref_primary_10_1039_C9NR03077H
crossref_primary_10_1002_adma_202104942
crossref_primary_10_1016_j_jmmm_2017_11_074
crossref_primary_10_1039_C8NR09446B
crossref_primary_10_1016_j_elspec_2023_147318
crossref_primary_10_1021_acs_jpcc_1c05473
crossref_primary_10_1021_acsenergylett_0c00485
crossref_primary_10_1002_pssr_201600320
crossref_primary_10_1039_C8CS00094H
crossref_primary_10_1038_s41467_022_33617_x
crossref_primary_10_1021_acsami_8b17476
crossref_primary_10_1021_acsanm_2c00995
crossref_primary_10_1021_acs_nanolett_1c02177
crossref_primary_10_1002_smll_201604259
crossref_primary_10_1016_j_nanoen_2022_107888
crossref_primary_10_1063_1_4983789
crossref_primary_10_1021_acsaelm_0c00105
crossref_primary_10_1039_D1TC01973B
crossref_primary_10_1016_j_jtice_2019_04_035
crossref_primary_10_1088_0256_307X_34_12_127101
crossref_primary_10_1021_acs_jpcc_1c09603
crossref_primary_10_1002_adom_201900689
crossref_primary_10_1038_s41524_022_00733_7
crossref_primary_10_1021_acsami_1c08850
crossref_primary_10_1088_1361_6463_aaa58c
crossref_primary_10_1039_C7NR05289H
crossref_primary_10_1039_D0CP00857E
crossref_primary_10_1016_j_apsusc_2023_158563
crossref_primary_10_1021_acs_chemrev_3c00851
crossref_primary_10_1016_j_jmst_2024_06_058
crossref_primary_10_1021_acs_nanolett_6b00536
crossref_primary_10_1021_acs_nanolett_1c02192
crossref_primary_10_1016_j_apsusc_2021_150633
crossref_primary_10_1002_aelm_202100781
crossref_primary_10_1016_j_nanoen_2021_106007
crossref_primary_10_1021_acs_jpcc_3c04243
crossref_primary_10_1103_PhysRevB_106_235414
crossref_primary_10_1038_srep23583
crossref_primary_10_1103_PhysRevMaterials_5_044002
crossref_primary_10_1063_1_5030737
crossref_primary_10_1016_j_jhazmat_2022_128215
crossref_primary_10_1073_pnas_2105468118
crossref_primary_10_1021_acsnano_0c02983
crossref_primary_10_3390_ma15082812
crossref_primary_10_1038_s41565_021_00963_8
crossref_primary_10_1109_JSEN_2019_2932106
crossref_primary_10_1109_TNANO_2020_2965986
crossref_primary_10_9729_AM_2015_45_3_107
crossref_primary_10_1103_PhysRevB_104_125438
crossref_primary_10_1002_smll_201601168
crossref_primary_10_1038_s41467_019_10632_z
crossref_primary_10_1021_acs_nanolett_7b01735
crossref_primary_10_1021_acs_jpclett_0c00868
crossref_primary_10_1364_OE_469797
crossref_primary_10_1002_adma_201601104
crossref_primary_10_1021_accountsmr_1c00097
crossref_primary_10_1021_acsnano_2c09209
crossref_primary_10_1021_acsnano_9b01583
crossref_primary_10_1155_2017_2565703
crossref_primary_10_3390_s20247340
crossref_primary_10_1021_acsnano_9b04611
crossref_primary_10_1021_acs_jpcc_9b09396
crossref_primary_10_1021_acs_jpcc_9b10120
crossref_primary_10_1039_D4NR02518K
crossref_primary_10_1088_2053_1583_ab6267
crossref_primary_10_1103_PhysRevB_108_195430
crossref_primary_10_1063_5_0078054
crossref_primary_10_1002_adma_201906646
crossref_primary_10_1063_5_0118697
crossref_primary_10_1021_acsanm_3c00804
crossref_primary_10_1021_acsnano_6b05674
crossref_primary_10_1103_PhysRevB_103_045423
crossref_primary_10_1002_advs_202412060
crossref_primary_10_1088_2053_1583_aa7364
crossref_primary_10_1021_acsnano_5b07942
crossref_primary_10_1002_ange_202422953
crossref_primary_10_1021_acs_jpcc_0c09666
crossref_primary_10_1038_s41699_020_00182_0
crossref_primary_10_1021_acsami_1c07956
crossref_primary_10_1039_D3NA00045A
crossref_primary_10_1016_j_nanoen_2019_03_093
crossref_primary_10_1002_adfm_201807398
crossref_primary_10_1088_1361_648X_abbdb9
crossref_primary_10_1021_acs_nanolett_7b02600
crossref_primary_10_1021_acsami_2c14341
crossref_primary_10_1002_cey2_296
crossref_primary_10_1016_j_apsusc_2021_149448
crossref_primary_10_1039_D0RA03372C
crossref_primary_10_1103_PhysRevB_103_045412
crossref_primary_10_1016_j_mtcomm_2019_03_005
crossref_primary_10_1039_C5CS00275C
crossref_primary_10_1063_5_0038874
crossref_primary_10_1126_science_ado1744
crossref_primary_10_1021_acsnano_1c04902
crossref_primary_10_1021_acsami_1c04200
crossref_primary_10_1063_1_5028404
crossref_primary_10_1021_acsnano_1c01879
crossref_primary_10_1016_j_isci_2023_107275
crossref_primary_10_1016_j_mtadv_2020_100076
crossref_primary_10_1021_acs_nanolett_5b02769
crossref_primary_10_1038_s41565_021_01004_0
crossref_primary_10_1021_acsmaterialslett_2c00266
crossref_primary_10_1088_1402_4896_ad4524
crossref_primary_10_1021_acs_jpcc_9b02739
crossref_primary_10_1021_acs_jpcc_4c08755
crossref_primary_10_1016_j_surfin_2022_102627
crossref_primary_10_1021_acsnano_1c09131
crossref_primary_10_1016_j_trechm_2022_02_006
crossref_primary_10_1021_acs_jpcc_1c01918
crossref_primary_10_1088_0957_4484_27_44_445202
crossref_primary_10_1016_j_jmmm_2016_02_014
crossref_primary_10_1021_acsnano_8b07920
crossref_primary_10_1021_acs_nanolett_7b03948
crossref_primary_10_59400_n_c_v2i1_299
crossref_primary_10_1016_j_comptc_2021_113445
crossref_primary_10_1186_s11671_016_1731_z
crossref_primary_10_1021_acs_chemrev_3c00302
crossref_primary_10_1039_C8RA08981G
crossref_primary_10_1021_acsnano_5b05823
crossref_primary_10_1002_admi_202300135
crossref_primary_10_1038_s41563_019_0321_8
crossref_primary_10_1007_s12598_021_01758_5
crossref_primary_10_1002_pssa_202300180
crossref_primary_10_1016_j_apsusc_2023_158175
crossref_primary_10_1021_acs_chemmater_9b02157
crossref_primary_10_1038_s41928_021_00685_8
crossref_primary_10_1080_21663831_2022_2145921
crossref_primary_10_1103_PhysRevB_111_045416
crossref_primary_10_1021_acs_nanolett_7b02621
crossref_primary_10_1021_acs_jpclett_0c03414
crossref_primary_10_1016_j_physe_2020_114383
crossref_primary_10_1021_acsami_9b00390
crossref_primary_10_1016_j_cclet_2017_09_022
crossref_primary_10_1016_j_cplett_2017_11_044
crossref_primary_10_1021_acsaelm_3c00671
crossref_primary_10_1021_acs_jpclett_2c00329
crossref_primary_10_1039_C6CP01967F
crossref_primary_10_1002_adfm_202314439
crossref_primary_10_1021_acsami_9b01486
crossref_primary_10_1039_C9CC01577A
crossref_primary_10_1063_5_0169961
crossref_primary_10_1039_C5NR07336G
crossref_primary_10_1021_acsami_4c03379
crossref_primary_10_1021_acsami_8b09797
crossref_primary_10_1021_acs_nanolett_9b00985
crossref_primary_10_1021_acsami_6b13619
crossref_primary_10_1016_j_mtelec_2024_100132
crossref_primary_10_1016_j_scib_2020_03_031
crossref_primary_10_1039_D0RA07405E
crossref_primary_10_1002_aenm_201903870
crossref_primary_10_1002_smll_202105194
crossref_primary_10_1038_s44287_024_00108_8
crossref_primary_10_1021_acsami_7b15478
crossref_primary_10_1038_srep19945
crossref_primary_10_1002_adma_202209968
crossref_primary_10_1088_2515_7639_ac1ab8
crossref_primary_10_1515_nanoph_2024_0702
crossref_primary_10_1021_acsami_1c00159
crossref_primary_10_1088_2053_1583_aafd9a
crossref_primary_10_1038_s41524_020_0320_y
crossref_primary_10_1016_j_matlet_2024_136175
crossref_primary_10_1021_acsami_7b08945
crossref_primary_10_1021_acs_inorgchem_1c03255
crossref_primary_10_1016_j_xinn_2024_100764
crossref_primary_10_1002_adom_202101963
crossref_primary_10_1021_acsami_9b13484
crossref_primary_10_1039_D1NR00384D
crossref_primary_10_1021_acs_jpcc_4c06240
crossref_primary_10_1007_s40843_021_1782_y
crossref_primary_10_1007_s12274_020_3019_y
crossref_primary_10_1039_D3NA00862B
crossref_primary_10_1109_TMAG_2018_2829267
crossref_primary_10_1016_j_apsusc_2020_148556
crossref_primary_10_1088_2053_1583_ab771f
crossref_primary_10_1364_AO_425337
crossref_primary_10_1039_D2NR01358D
crossref_primary_10_1063_5_0095013
crossref_primary_10_1103_PhysRevMaterials_4_114002
crossref_primary_10_1038_s41467_019_11342_2
crossref_primary_10_1088_2632_959X_ac3635
crossref_primary_10_1002_aelm_202300842
crossref_primary_10_1007_s12274_018_2156_z
crossref_primary_10_34133_2019_4641739
crossref_primary_10_1002_andp_201900318
crossref_primary_10_1002_sstr_202000067
crossref_primary_10_1002_wcms_1441
crossref_primary_10_1021_acsnano_2c01388
crossref_primary_10_1021_acs_nanolett_2c04886
crossref_primary_10_1063_1_5096413
crossref_primary_10_1002_adma_201801729
crossref_primary_10_1021_acsnano_5b05854
crossref_primary_10_1039_C7TC02831H
crossref_primary_10_1016_j_commatsci_2023_112400
crossref_primary_10_1002_cssc_202200191
crossref_primary_10_1021_acs_cgd_9b01131
crossref_primary_10_1002_adfm_201904465
crossref_primary_10_1002_aelm_201600468
crossref_primary_10_1002_smll_201601930
crossref_primary_10_1016_j_apsusc_2020_147213
crossref_primary_10_1103_PhysRevB_110_104108
crossref_primary_10_1002_smll_201503348
crossref_primary_10_1038_s41928_022_00746_6
crossref_primary_10_1016_j_apsusc_2018_07_210
crossref_primary_10_1088_1361_6528_abb8a6
crossref_primary_10_1088_2053_1583_aab80e
crossref_primary_10_1088_1674_1056_ad641f
crossref_primary_10_1016_j_apmt_2020_100734
crossref_primary_10_1021_acsmaterialslett_3c00507
crossref_primary_10_1021_acsnano_1c10739
crossref_primary_10_1016_j_cplett_2019_136946
crossref_primary_10_1002_adma_202304808
crossref_primary_10_1016_j_mtcomm_2020_100939
crossref_primary_10_1109_LED_2017_2752424
crossref_primary_10_1002_cssc_201702262
crossref_primary_10_1021_acs_jpcc_0c00350
crossref_primary_10_1016_j_vacuum_2021_110585
crossref_primary_10_1088_1361_6463_ac6e11
crossref_primary_10_1021_acs_chemrev_0c00620
crossref_primary_10_1109_TED_2019_2934186
crossref_primary_10_1038_s41467_021_26340_6
crossref_primary_10_1103_PhysRevLett_123_217003
crossref_primary_10_1088_1361_6641_aba287
crossref_primary_10_1103_PhysRevB_97_125401
crossref_primary_10_1002_adfm_201604093
crossref_primary_10_1109_TED_2022_3208804
crossref_primary_10_1021_acs_jpclett_2c00367
crossref_primary_10_1016_j_jallcom_2022_164898
crossref_primary_10_1063_5_0248810
crossref_primary_10_1109_TNS_2023_3315936
crossref_primary_10_3390_nano14121009
crossref_primary_10_1016_j_micrna_2022_207205
crossref_primary_10_1038_s41699_019_0107_5
crossref_primary_10_1039_C8CS00664D
crossref_primary_10_1039_C5CS00517E
crossref_primary_10_1007_s11664_016_5060_x
crossref_primary_10_1007_s12274_018_2089_6
crossref_primary_10_1038_s41467_022_31886_0
crossref_primary_10_1021_acsami_7b14189
crossref_primary_10_1021_acs_jpclett_0c03608
crossref_primary_10_1364_OME_435902
crossref_primary_10_1016_j_sna_2023_114817
crossref_primary_10_1038_s41467_024_46170_6
crossref_primary_10_1039_D2RA07363C
crossref_primary_10_1039_C8CP03052A
crossref_primary_10_1002_adma_202312429
crossref_primary_10_1002_admi_201700303
crossref_primary_10_1021_acsami_9b16552
crossref_primary_10_1109_TNS_2018_2886180
crossref_primary_10_1016_j_ijhydene_2021_03_202
crossref_primary_10_1039_D4RA08374A
crossref_primary_10_1088_2053_1583_aba564
crossref_primary_10_1002_cssc_202200169
crossref_primary_10_1016_j_jhazmat_2022_128953
crossref_primary_10_1021_acs_inorgchem_8b02329
crossref_primary_10_1016_j_efmat_2024_04_001
crossref_primary_10_1038_s41467_024_53481_1
crossref_primary_10_1093_oxfmat_itab012
crossref_primary_10_1016_j_ijhydene_2023_07_220
crossref_primary_10_1063_5_0008850
crossref_primary_10_1103_PhysRevB_95_245435
crossref_primary_10_1016_j_apmt_2022_101379
crossref_primary_10_1016_j_mtnano_2024_100565
crossref_primary_10_1021_acsaem_1c00252
crossref_primary_10_1088_2632_959X_ac87c2
crossref_primary_10_1103_PhysRevB_97_075106
crossref_primary_10_1021_acs_jpclett_2c02768
crossref_primary_10_1021_acs_jpcc_0c04922
crossref_primary_10_1039_D0CP01193B
crossref_primary_10_1002_smll_202400737
crossref_primary_10_1016_j_physe_2019_113783
crossref_primary_10_1002_adma_202205381
crossref_primary_10_1002_aelm_202101161
crossref_primary_10_1021_acsphotonics_2c00942
crossref_primary_10_1021_acsami_8b13620
crossref_primary_10_1038_s41467_020_14753_8
crossref_primary_10_1021_acsami_4c04495
crossref_primary_10_1103_PhysRevB_98_075417
crossref_primary_10_1007_s12541_019_00207_9
crossref_primary_10_1021_acsami_0c06489
crossref_primary_10_1063_1_4961441
crossref_primary_10_1021_acs_jpcc_9b01485
crossref_primary_10_1038_s41467_019_08468_8
crossref_primary_10_1016_j_mseb_2021_115047
crossref_primary_10_1021_acsmaterialsau_1c00006
crossref_primary_10_1002_adma_201606434
crossref_primary_10_1002_ange_201508828
crossref_primary_10_1002_celc_202001190
crossref_primary_10_1021_acs_chemrev_3c00147
crossref_primary_10_1016_j_apsusc_2020_145412
crossref_primary_10_1103_PhysRevB_97_155412
crossref_primary_10_1016_j_matchemphys_2020_123588
crossref_primary_10_1038_s41467_020_19247_1
crossref_primary_10_1016_j_apsusc_2021_151377
crossref_primary_10_1063_1_5034460
crossref_primary_10_1002_adfm_202410402
crossref_primary_10_1021_acsnano_9b07763
crossref_primary_10_1016_j_matchemphys_2024_129444
crossref_primary_10_1038_s41578_019_0136_x
crossref_primary_10_1088_1361_6528_ad134b
crossref_primary_10_1021_acs_jpcc_0c01477
crossref_primary_10_1103_PhysRevB_99_195415
crossref_primary_10_1039_C7NH00137A
crossref_primary_10_1002_pssb_202100214
crossref_primary_10_1016_j_finel_2023_103919
crossref_primary_10_12677_JAPC_2023_123022
crossref_primary_10_1103_PhysRevB_103_014106
crossref_primary_10_1021_acs_chemmater_8b00173
crossref_primary_10_1002_cphc_201601143
crossref_primary_10_1021_acsnano_0c08668
crossref_primary_10_1007_s12274_022_4449_5
crossref_primary_10_3390_ma16237372
crossref_primary_10_1103_PhysRevB_106_L081401
crossref_primary_10_1088_1674_1056_26_3_036803
crossref_primary_10_1002_adma_201604230
crossref_primary_10_1088_2053_1583_ad3135
crossref_primary_10_1021_acs_nanolett_7b04426
crossref_primary_10_1088_2053_1583_aa91a7
crossref_primary_10_1016_j_jallcom_2016_12_238
crossref_primary_10_1021_acsomega_7b00734
crossref_primary_10_1088_2053_1591_ac021d
crossref_primary_10_1016_j_apcatb_2023_123174
crossref_primary_10_1039_D1NR06285A
crossref_primary_10_1088_1361_648X_ac4dbf
crossref_primary_10_1016_j_scitotenv_2024_171937
crossref_primary_10_1007_s00339_025_08360_x
crossref_primary_10_1021_acs_jpcc_1c03605
crossref_primary_10_1088_2053_1583_ac0297
crossref_primary_10_7567_JJAP_57_125202
crossref_primary_10_1021_acs_nanolett_6b02263
crossref_primary_10_1039_C9TC05337A
crossref_primary_10_1021_acs_jpcc_1c01667
crossref_primary_10_1073_pnas_2007495117
crossref_primary_10_1038_s41467_019_11751_3
crossref_primary_10_1063_5_0189378
crossref_primary_10_1016_j_mtchem_2024_102077
crossref_primary_10_1088_1402_4896_acaa0e
crossref_primary_10_1364_AO_58_008390
crossref_primary_10_1039_C8TA06783J
crossref_primary_10_1016_j_mser_2025_100946
crossref_primary_10_1039_D0NR01339K
crossref_primary_10_1039_D4RA03362K
crossref_primary_10_1038_srep21601
crossref_primary_10_1186_s40580_017_0112_3
crossref_primary_10_1039_D0CP01239D
crossref_primary_10_1002_aelm_202200480
crossref_primary_10_1021_acs_jpclett_2c02796
crossref_primary_10_1103_PhysRevResearch_2_012029
crossref_primary_10_1021_acsanm_4c01561
crossref_primary_10_1021_acs_cgd_1c00688
crossref_primary_10_1038_srep29726
crossref_primary_10_3390_nano13020229
crossref_primary_10_1088_1361_6528_ac4879
crossref_primary_10_1002_ntls_20220059
crossref_primary_10_1016_j_mtadv_2024_100488
crossref_primary_10_1103_PhysRevLett_119_077402
crossref_primary_10_1016_j_fuproc_2024_108130
crossref_primary_10_1016_j_apsusc_2019_05_311
crossref_primary_10_1016_j_comptc_2023_114102
crossref_primary_10_1021_acs_jpcc_9b04128
crossref_primary_10_1021_acsnano_3c07752
crossref_primary_10_1021_jacs_4c11075
crossref_primary_10_1088_1361_6528_aac27d
crossref_primary_10_1088_1361_6528_ac1d79
crossref_primary_10_1515_nanoph_2018_0041
crossref_primary_10_1021_acs_jpcc_6b10812
crossref_primary_10_1021_acsami_9b14502
crossref_primary_10_3390_surfaces6040025
crossref_primary_10_1021_acs_jpcc_9b03277
crossref_primary_10_1021_acsnano_0c08835
crossref_primary_10_1021_acs_nanolett_9b05323
crossref_primary_10_1103_PhysRevB_107_075419
crossref_primary_10_1002_anie_202422953
crossref_primary_10_1007_s43207_020_00103_3
crossref_primary_10_1021_acsnano_8b07595
crossref_primary_10_1021_acsnano_0c07982
crossref_primary_10_1007_s11051_024_06144_7
crossref_primary_10_1021_acsomega_7b01619
crossref_primary_10_1021_acs_nanolett_3c01779
crossref_primary_10_1021_acs_jpcc_6b03284
crossref_primary_10_1021_acs_jpclett_4c01263
crossref_primary_10_1039_C8CS00159F
crossref_primary_10_1016_j_pmatsci_2022_100921
crossref_primary_10_1021_acsnano_5b07388
crossref_primary_10_1039_C6RA26264C
crossref_primary_10_1016_j_vacuum_2019_03_020
crossref_primary_10_1021_acsnano_5b00554
crossref_primary_10_1038_s41467_023_37500_1
crossref_primary_10_1002_adom_202101561
crossref_primary_10_1063_1_5045531
crossref_primary_10_1103_PhysRevB_107_075429
crossref_primary_10_1021_acs_nanolett_9b03596
crossref_primary_10_1103_PhysRevLett_121_167402
crossref_primary_10_7498_aps_66_217303
crossref_primary_10_1007_s12274_021_3710_7
crossref_primary_10_1016_j_mtphys_2020_100225
crossref_primary_10_1063_5_0157597
crossref_primary_10_1021_acsanm_3c00045
crossref_primary_10_1088_1361_6463_ad5f3e
crossref_primary_10_1016_j_scib_2019_05_021
crossref_primary_10_1038_s41699_022_00306_8
crossref_primary_10_1021_acs_jpcc_2c05815
crossref_primary_10_1016_j_apsusc_2022_154783
crossref_primary_10_1016_j_fuel_2021_121547
crossref_primary_10_1039_D3NR01839C
crossref_primary_10_1016_j_cej_2021_130433
crossref_primary_10_1021_acsami_7b01262
crossref_primary_10_1038_s41598_017_03594_z
crossref_primary_10_1021_acs_jpclett_0c01056
crossref_primary_10_1063_1_5057723
crossref_primary_10_1364_OE_25_014565
crossref_primary_10_1039_C8CS00024G
crossref_primary_10_1021_acsnano_6b07159
crossref_primary_10_1063_1_4964797
crossref_primary_10_1021_acsami_0c09358
crossref_primary_10_1039_C7NR07522G
crossref_primary_10_1039_C7CP00544J
crossref_primary_10_3390_ma14205979
crossref_primary_10_1103_PhysRevB_94_195425
crossref_primary_10_1021_acsami_9b19561
crossref_primary_10_1088_1402_4896_adb4ac
crossref_primary_10_1002_smll_202102461
crossref_primary_10_1002_smll_202311635
crossref_primary_10_1002_admi_202400305
crossref_primary_10_1016_j_physb_2017_07_026
crossref_primary_10_1016_j_compstruct_2023_117451
crossref_primary_10_1088_1361_6528_aa52e4
crossref_primary_10_1016_j_apsusc_2019_06_049
crossref_primary_10_1039_C8NR02134A
crossref_primary_10_1007_s00542_024_05683_2
crossref_primary_10_1088_1361_648X_ad7568
crossref_primary_10_1016_j_nantod_2017_07_001
crossref_primary_10_1063_1_4946840
crossref_primary_10_1016_j_mtcomm_2024_110491
crossref_primary_10_1021_acsanm_3c02076
crossref_primary_10_1149_2162_8777_ab8363
crossref_primary_10_1557_jmr_2019_404
crossref_primary_10_1021_acsaelm_0c00277
crossref_primary_10_1021_acsnano_3c10393
crossref_primary_10_5802_crphys_72
crossref_primary_10_1002_smll_201902612
crossref_primary_10_1021_acs_jpcc_0c02042
crossref_primary_10_1016_j_cej_2022_135757
crossref_primary_10_1016_j_coco_2025_102373
crossref_primary_10_1038_s41557_018_0136_2
crossref_primary_10_1021_acsnano_3c10389
crossref_primary_10_1039_D3TA03020B
crossref_primary_10_1088_1361_6528_aa5aab
crossref_primary_10_1021_acs_chemrev_2c00455
crossref_primary_10_1021_acs_jpcc_1c01612
crossref_primary_10_1021_acsami_6b03242
crossref_primary_10_1002_adma_202004129
crossref_primary_10_1016_j_eml_2020_100946
crossref_primary_10_1073_pnas_2004106117
crossref_primary_10_1021_acsami_9b17160
crossref_primary_10_1021_acsnano_4c17660
crossref_primary_10_1016_j_jpcs_2019_03_028
crossref_primary_10_1088_1361_6528_abeeb2
crossref_primary_10_1109_JSTQE_2017_2757145
crossref_primary_10_1038_s41699_022_00286_9
crossref_primary_10_1039_D1CP02976B
crossref_primary_10_1021_acsnano_3c02758
crossref_primary_10_1007_s12274_016_1232_5
crossref_primary_10_1063_5_0048505
crossref_primary_10_1002_adma_201505597
crossref_primary_10_1021_acsami_6b15239
crossref_primary_10_1021_acs_nanolett_1c02458
crossref_primary_10_1021_acsnano_9b04312
crossref_primary_10_1088_1361_6528_acb947
crossref_primary_10_1103_PhysRevB_92_121401
crossref_primary_10_1016_j_apsusc_2017_03_281
crossref_primary_10_1016_j_cclet_2024_110379
crossref_primary_10_1021_acs_jpcc_1c08239
crossref_primary_10_1021_acs_iecr_1c01311
crossref_primary_10_1088_1361_6528_acf29b
crossref_primary_10_1002_anie_201508828
crossref_primary_10_1021_acs_jpcc_0c04203
crossref_primary_10_1021_acs_jpcc_5b06811
crossref_primary_10_1063_5_0195116
crossref_primary_10_1039_D2QM01166B
crossref_primary_10_1039_C5NR06293D
crossref_primary_10_1002_adfm_201903929
crossref_primary_10_1039_D2NA00636G
crossref_primary_10_1021_acsnano_7b08831
crossref_primary_10_1021_jacs_6b04926
crossref_primary_10_1021_acsami_8b14227
crossref_primary_10_1088_1361_6463_aa5c6a
crossref_primary_10_1039_D3NA01148H
crossref_primary_10_1002_adma_201804559
crossref_primary_10_1088_1361_6528_aab5fc
crossref_primary_10_1021_acs_jpcc_2c03201
crossref_primary_10_3390_ma14247590
crossref_primary_10_1021_acsnano_0c06148
crossref_primary_10_1016_j_ceramint_2020_12_296
crossref_primary_10_1016_j_jmmm_2023_170683
crossref_primary_10_1002_advs_202409855
crossref_primary_10_1038_s41524_018_0145_0
crossref_primary_10_1063_5_0197944
crossref_primary_10_1103_PhysRevB_101_205302
crossref_primary_10_1126_sciadv_1602813
crossref_primary_10_1002_pssb_201600645
crossref_primary_10_1016_j_commatsci_2019_109201
crossref_primary_10_1016_j_matt_2022_06_014
crossref_primary_10_1021_acsnano_6b05958
crossref_primary_10_1039_C6NR01569G
crossref_primary_10_1016_j_matpr_2021_01_016
crossref_primary_10_1021_acsnano_3c02103
crossref_primary_10_1002_adma_202206828
crossref_primary_10_1088_1361_6528_acd1f5
crossref_primary_10_1016_j_nanoen_2017_09_017
crossref_primary_10_1016_j_commatsci_2019_02_043
crossref_primary_10_1021_acsami_9b21436
crossref_primary_10_1515_nanoph_2020_0331
crossref_primary_10_1021_acsnano_0c10897
crossref_primary_10_1103_PhysRevMaterials_5_084001
crossref_primary_10_1088_1674_1056_ad498b
crossref_primary_10_1021_acsnano_4c07212
crossref_primary_10_1103_PhysRevB_97_115307
crossref_primary_10_1016_j_mseb_2024_117673
crossref_primary_10_1016_j_carbon_2019_06_009
crossref_primary_10_1021_acsami_1c18797
crossref_primary_10_1021_acs_jpcc_4c05982
crossref_primary_10_1016_j_nanoen_2021_105898
crossref_primary_10_1016_j_renene_2024_121814
crossref_primary_10_1039_D0TC04715E
crossref_primary_10_1021_acs_jpclett_1c00322
crossref_primary_10_1021_acsnano_8b01646
crossref_primary_10_1021_acsanm_1c04151
crossref_primary_10_1007_s40242_020_0185_0
crossref_primary_10_1088_1361_6633_abf1d4
crossref_primary_10_1103_PhysRevMaterials_4_014004
crossref_primary_10_1002_smll_202310562
crossref_primary_10_1038_s41565_024_01704_3
crossref_primary_10_1016_j_apsusc_2017_10_204
crossref_primary_10_1007_s10853_025_10679_y
crossref_primary_10_1021_acsnano_8b08079
crossref_primary_10_1103_PhysRevMaterials_9_014001
crossref_primary_10_1016_j_jallcom_2022_168663
crossref_primary_10_1039_C7NR01712J
crossref_primary_10_1007_s12274_017_1682_4
crossref_primary_10_1557_mrs_2018_7
crossref_primary_10_1002_adfm_202005045
crossref_primary_10_1021_acsnano_2c12900
crossref_primary_10_1088_1361_648X_abeff9
crossref_primary_10_1021_acsnano_5b05250
crossref_primary_10_1016_j_apsusc_2018_03_165
crossref_primary_10_1002_adma_202211157
crossref_primary_10_1021_acsnano_8b04945
crossref_primary_10_1021_acs_nanolett_3c03681
crossref_primary_10_1103_PhysRevB_100_235303
crossref_primary_10_1116_6_0003845
crossref_primary_10_1039_D0NA00147C
crossref_primary_10_1039_D0TA08802A
crossref_primary_10_1002_adma_202109894
crossref_primary_10_1103_PhysRevB_109_195430
crossref_primary_10_1016_j_mtphys_2020_100294
crossref_primary_10_3390_app14031205
crossref_primary_10_1038_s41578_023_00609_2
crossref_primary_10_1007_s11249_021_01453_7
crossref_primary_10_1021_acs_chemrev_3c00937
crossref_primary_10_1021_acs_jpclett_1c00112
crossref_primary_10_1002_admi_202100428
crossref_primary_10_3390_cryst14060551
crossref_primary_10_1038_s41598_019_39970_0
crossref_primary_10_1021_acsnano_7b03186
crossref_primary_10_1016_j_scib_2019_02_011
crossref_primary_10_3390_ma13061307
crossref_primary_10_1016_j_watres_2021_117708
crossref_primary_10_1021_acsaelm_4c00609
crossref_primary_10_1103_PhysRevB_93_195301
crossref_primary_10_1002_adfm_202213348
crossref_primary_10_1002_apxr_202300009
crossref_primary_10_3390_nano14242043
crossref_primary_10_1002_adfm_201704177
crossref_primary_10_1016_j_physe_2018_11_011
crossref_primary_10_1002_smll_201801771
crossref_primary_10_1063_5_0021093
crossref_primary_10_1039_C8RA00635K
crossref_primary_10_1016_j_apcatb_2018_05_080
crossref_primary_10_1038_s41467_017_00427_5
crossref_primary_10_1016_j_physb_2018_11_005
crossref_primary_10_1007_s11082_023_04973_9
crossref_primary_10_1103_PhysRevB_95_165447
crossref_primary_10_1016_j_cap_2024_11_013
crossref_primary_10_1088_0953_8984_29_1_015003
crossref_primary_10_1016_j_ensm_2024_103442
crossref_primary_10_1088_2516_1075_ace86c
crossref_primary_10_1002_adma_201904306
crossref_primary_10_1038_srep24920
crossref_primary_10_1038_s41467_019_09219_5
crossref_primary_10_1002_smll_202403225
crossref_primary_10_1039_D0TA03943H
crossref_primary_10_1002_admi_201800641
crossref_primary_10_1021_acsami_1c18991
crossref_primary_10_1038_s41598_017_09739_4
crossref_primary_10_1002_aelm_202100644
crossref_primary_10_1039_D0CP06502A
crossref_primary_10_1039_D2SD00208F
crossref_primary_10_1126_sciadv_abo4021
crossref_primary_10_1002_adma_201907818
crossref_primary_10_1002_adfm_201900040
crossref_primary_10_1021_acs_jpcc_5b09034
crossref_primary_10_1021_acs_nanolett_4c01040
crossref_primary_10_1002_ange_202316306
crossref_primary_10_1088_0256_307X_40_5_058503
crossref_primary_10_1002_adma_202403583
crossref_primary_10_1039_C7NR05385A
crossref_primary_10_1103_PhysRevB_97_201414
crossref_primary_10_1088_2053_1583_aca7d4
crossref_primary_10_1016_j_physe_2024_116148
crossref_primary_10_1002_adom_202302229
crossref_primary_10_1007_s12274_022_5203_8
crossref_primary_10_1186_s11671_017_2008_x
crossref_primary_10_1002_admt_202201993
crossref_primary_10_1002_adfm_202108174
crossref_primary_10_1021_acsaem_2c02921
crossref_primary_10_1038_s41699_020_00196_8
crossref_primary_10_1039_C9TA10050D
crossref_primary_10_1016_j_matchemphys_2022_126051
crossref_primary_10_1039_D0TA02549F
crossref_primary_10_1038_s41545_023_00228_y
crossref_primary_10_1021_acsphotonics_8b00645
crossref_primary_10_1002_adfm_201707433
crossref_primary_10_1002_cctc_201900341
crossref_primary_10_1016_j_desal_2018_08_024
crossref_primary_10_1002_pssr_201600210
crossref_primary_10_1021_acs_inorgchem_9b01930
crossref_primary_10_1038_s43246_024_00632_y
crossref_primary_10_1126_sciadv_1701186
crossref_primary_10_1021_acsenergylett_8b01922
crossref_primary_10_1080_09500340_2020_1733691
crossref_primary_10_1016_j_apmate_2024_100180
crossref_primary_10_1109_JSEN_2024_3422972
crossref_primary_10_3390_molecules28031059
crossref_primary_10_1063_5_0061556
crossref_primary_10_1021_acsami_3c17934
crossref_primary_10_1021_acs_jpcc_9b05921
crossref_primary_10_1039_D1CP02313F
crossref_primary_10_1016_j_jcis_2023_04_157
crossref_primary_10_1038_s41535_017_0018_7
crossref_primary_10_1103_PhysRevLett_123_076801
crossref_primary_10_1364_OE_23_027509
crossref_primary_10_1103_PhysRevMaterials_2_084002
crossref_primary_10_1109_TED_2020_3009083
crossref_primary_10_1021_acsami_3c14421
crossref_primary_10_1515_nanoph_2019_0574
crossref_primary_10_1002_pssb_201900541
crossref_primary_10_1039_D1CP01242H
crossref_primary_10_1002_adfm_202110428
crossref_primary_10_3390_nano10071389
crossref_primary_10_1038_s41699_019_0093_7
crossref_primary_10_1360_TB_2024_0230
crossref_primary_10_1002_adfm_201904668
crossref_primary_10_1038_s41467_017_02297_3
crossref_primary_10_1007_s12274_023_6104_1
crossref_primary_10_1021_acsnano_1c08375
crossref_primary_10_1016_j_apsusc_2021_149545
crossref_primary_10_1007_s12274_020_3035_y
crossref_primary_10_1002_adfm_201907945
crossref_primary_10_1007_s10853_020_04803_3
crossref_primary_10_3390_nano14050410
crossref_primary_10_1063_1_4993639
crossref_primary_10_1021_acsnano_9b03645
crossref_primary_10_1039_C9NR10144F
crossref_primary_10_3390_nano9101363
crossref_primary_10_1016_j_electacta_2022_141130
crossref_primary_10_3103_S0027134924700668
crossref_primary_10_1002_jccs_201900001
crossref_primary_10_1039_C7CP06593K
crossref_primary_10_1088_2053_1583_aa8d42
crossref_primary_10_1021_acsnano_0c03940
crossref_primary_10_1088_2053_1583_ab33ab
crossref_primary_10_1063_5_0223490
crossref_primary_10_1021_acs_jpcc_3c08500
crossref_primary_10_1038_s41467_022_35278_2
crossref_primary_10_1021_acs_jpcc_0c00733
crossref_primary_10_1021_acsnano_2c06062
crossref_primary_10_1016_j_jmmm_2021_168863
crossref_primary_10_1002_aelm_202300635
crossref_primary_10_1039_C7CP03062B
crossref_primary_10_1103_PhysRevB_95_214105
crossref_primary_10_1088_1674_1056_ac6738
crossref_primary_10_1103_PhysRevLett_119_046101
crossref_primary_10_1116_1_5043621
crossref_primary_10_1016_j_chemphys_2016_01_009
crossref_primary_10_1021_acsanm_3c06263
crossref_primary_10_1002_aelm_201800591
crossref_primary_10_1016_j_ijhydene_2022_05_050
crossref_primary_10_1016_j_heliyon_2025_e42443
crossref_primary_10_1016_j_jechem_2022_06_031
crossref_primary_10_1016_j_jhazmat_2023_133195
crossref_primary_10_1088_2053_1583_aaf1d4
crossref_primary_10_1021_acs_jpcc_8b02991
crossref_primary_10_3788_AOS240849
crossref_primary_10_1016_j_isci_2021_103456
crossref_primary_10_1021_acs_nanolett_1c04275
crossref_primary_10_1088_1674_4926_24090027
crossref_primary_10_1088_1674_1056_abfa05
crossref_primary_10_1016_j_commatsci_2016_04_036
crossref_primary_10_1016_j_mser_2021_100627
crossref_primary_10_1103_PhysRevB_101_224438
crossref_primary_10_1103_PhysRevMaterials_2_094003
crossref_primary_10_1017_S1431927621005912
crossref_primary_10_1021_acsnano_4c08366
crossref_primary_10_1021_acsnano_7b07933
crossref_primary_10_1073_pnas_2403497121
crossref_primary_10_1209_0295_5075_129_47003
crossref_primary_10_1038_s41598_025_88290_z
crossref_primary_10_1039_D1CP00156F
crossref_primary_10_1016_j_colsurfa_2017_12_060
crossref_primary_10_1088_2053_1583_aa9642
crossref_primary_10_1021_jacs_9b00047
crossref_primary_10_1088_1361_6528_aac853
crossref_primary_10_1002_adfm_201902483
crossref_primary_10_1021_acs_jpcc_6b11239
crossref_primary_10_1039_D1NR01483H
crossref_primary_10_1021_acsnano_0c06745
crossref_primary_10_1002_cssc_202100457
crossref_primary_10_1016_j_matdes_2021_110006
crossref_primary_10_1002_adma_201900237
crossref_primary_10_1016_j_coelec_2022_101008
crossref_primary_10_1016_j_mtphys_2020_100324
crossref_primary_10_1103_PhysRevB_96_241411
crossref_primary_10_1021_acsnano_6b05240
crossref_primary_10_1039_D1CS01016F
crossref_primary_10_1088_1674_1056_aba606
crossref_primary_10_1038_s43246_021_00185_4
crossref_primary_10_1088_0022_3727_48_37_375502
crossref_primary_10_1007_s11705_019_1805_4
crossref_primary_10_1088_2053_1583_aa9ea5
crossref_primary_10_1021_acsnano_9b09684
crossref_primary_10_3390_nano12193451
crossref_primary_10_1021_acs_jpcc_1c06632
crossref_primary_10_1002_advs_202000788
crossref_primary_10_1038_s41467_023_43689_y
crossref_primary_10_1038_s41598_018_24913_y
crossref_primary_10_1016_j_apsusc_2019_03_188
crossref_primary_10_3389_fchem_2019_00442
crossref_primary_10_1002_eem2_12171
crossref_primary_10_1038_s44160_024_00501_z
crossref_primary_10_1002_adfm_202108440
crossref_primary_10_1557_mrs_2017_184
crossref_primary_10_1039_C9NR08390A
crossref_primary_10_1021_acs_jpcc_9b03120
crossref_primary_10_1016_j_sna_2025_116236
crossref_primary_10_1021_acsami_4c14152
crossref_primary_10_1088_0957_4484_27_18_185701
crossref_primary_10_1016_j_isci_2023_107982
crossref_primary_10_1088_1674_4926_39_10_104002
crossref_primary_10_1016_j_apcata_2023_119304
crossref_primary_10_1021_acs_chemrev_6b00558
crossref_primary_10_1021_jacs_1c07795
crossref_primary_10_1038_s41598_018_34209_w
crossref_primary_10_1088_1361_6463_ac6f98
crossref_primary_10_1063_1_4935028
crossref_primary_10_1039_D3NR01978K
crossref_primary_10_1002_pssr_201700371
crossref_primary_10_1007_s11432_024_4033_8
crossref_primary_10_1021_acsaom_4c00276
crossref_primary_10_1007_s12274_017_1601_8
crossref_primary_10_1038_s41598_024_78229_1
crossref_primary_10_1021_acs_nanolett_4c02787
crossref_primary_10_1021_acsami_9b05507
crossref_primary_10_1021_jacs_5c00033
crossref_primary_10_1002_advs_201600033
crossref_primary_10_1039_C6RA01836J
crossref_primary_10_1088_1361_6463_aa61d9
crossref_primary_10_1063_1_4962209
crossref_primary_10_1002_adfm_202414062
crossref_primary_10_1038_srep18712
crossref_primary_10_1038_s41699_022_00334_4
crossref_primary_10_1021_acs_jpcc_3c06820
crossref_primary_10_1038_s41563_018_0134_1
crossref_primary_10_1002_inf2_12002
crossref_primary_10_1088_1361_6641_ab9d34
crossref_primary_10_1149_2_0101611jss
crossref_primary_10_1002_smtd_202500038
crossref_primary_10_1016_j_sna_2022_113573
crossref_primary_10_1021_acsnano_5b01301
crossref_primary_10_1007_s12274_021_3500_2
crossref_primary_10_1021_acsami_8b01506
crossref_primary_10_1088_2053_1583_ab7628
crossref_primary_10_1039_C9QM00060G
crossref_primary_10_1021_acsanm_1c00122
crossref_primary_10_1021_acsnano_3c05056
crossref_primary_10_1021_acs_jpclett_3c02093
crossref_primary_10_1016_j_isci_2022_105098
crossref_primary_10_1063_5_0167225
crossref_primary_10_1021_acs_jpcc_6b07917
crossref_primary_10_1021_acsami_4c18552
crossref_primary_10_1021_acs_est_1c08534
crossref_primary_10_1021_acsphotonics_1c01584
crossref_primary_10_1088_2053_1583_ab6781
crossref_primary_10_1039_D2SC01398C
crossref_primary_10_1002_adma_201606760
crossref_primary_10_1038_s41377_022_00814_8
crossref_primary_10_1039_C8RA07205A
crossref_primary_10_1021_acsnano_0c03665
crossref_primary_10_1007_s10854_018_9551_9
crossref_primary_10_1007_s10948_016_3626_8
crossref_primary_10_1002_inf2_12026
crossref_primary_10_1103_PhysRevB_102_094206
crossref_primary_10_1039_D3NR00207A
crossref_primary_10_1038_s41598_017_16970_6
crossref_primary_10_1002_smll_202300098
crossref_primary_10_1021_acs_nanolett_6b05045
crossref_primary_10_1016_j_comptc_2020_113089
crossref_primary_10_1016_j_physe_2020_114292
crossref_primary_10_1038_s41427_018_0078_6
crossref_primary_10_1021_acsanm_4c06999
crossref_primary_10_1088_0957_4484_27_10_105702
crossref_primary_10_1103_PhysRevB_101_085425
crossref_primary_10_3390_bios12111048
crossref_primary_10_1038_s41467_020_16111_0
crossref_primary_10_1039_C8TC00507A
crossref_primary_10_3390_app13010304
crossref_primary_10_1002_smll_201604298
crossref_primary_10_1016_j_cclet_2022_05_003
crossref_primary_10_1126_sciadv_abd9061
crossref_primary_10_1038_ncomms10426
crossref_primary_10_1039_D2CS00205A
crossref_primary_10_1016_j_scib_2023_08_014
crossref_primary_10_1021_acs_jpcc_0c08170
crossref_primary_10_1038_s41524_019_0161_8
crossref_primary_10_1002_jrs_5476
crossref_primary_10_1002_wcms_1361
crossref_primary_10_1002_admi_202200754
crossref_primary_10_1063_1_5094153
crossref_primary_10_1021_acsnano_4c14988
crossref_primary_10_1021_acsnano_4c12342
crossref_primary_10_1186_s11671_019_3110_z
crossref_primary_10_1016_j_apsusc_2023_158244
crossref_primary_10_1088_1361_648X_aab113
crossref_primary_10_1016_j_apsusc_2024_159630
crossref_primary_10_1021_acsaelm_0c00533
crossref_primary_10_1016_j_apsusc_2018_08_166
crossref_primary_10_1063_5_0096441
crossref_primary_10_1088_1361_6463_aaccc8
crossref_primary_10_1039_C9MH01365B
crossref_primary_10_1088_2053_1583_ada045
crossref_primary_10_1021_acs_jpcc_6b05998
crossref_primary_10_1021_acs_langmuir_4c02324
crossref_primary_10_1016_j_cej_2024_153463
crossref_primary_10_1038_s41467_022_28628_7
crossref_primary_10_1088_1361_6528_ad0126
crossref_primary_10_1063_1_5096584
crossref_primary_10_3938_jkps_76_93
crossref_primary_10_1021_acsnano_2c04503
crossref_primary_10_1021_acs_nanolett_2c04795
crossref_primary_10_1016_j_apmt_2020_100812
crossref_primary_10_1088_1555_6611_aab24f
crossref_primary_10_1002_celc_202400328
crossref_primary_10_1021_acs_chemrev_8b00311
crossref_primary_10_1038_s41699_021_00263_8
crossref_primary_10_1016_j_apsusc_2024_161104
crossref_primary_10_1021_acsnano_3c11099
crossref_primary_10_1088_1361_648X_aa5212
crossref_primary_10_1021_acsnano_7b08566
crossref_primary_10_1016_j_mtnano_2023_100382
crossref_primary_10_1039_D1RA06010D
crossref_primary_10_3390_cryst8020070
crossref_primary_10_1002_adfm_202307625
crossref_primary_10_1038_s41467_019_12200_x
crossref_primary_10_1039_D0TA08679G
crossref_primary_10_1016_j_jsg_2019_04_010
crossref_primary_10_1021_acsami_4c08549
crossref_primary_10_1038_s41699_017_0019_1
crossref_primary_10_1021_acs_chemrev_2c00048
crossref_primary_10_1021_acs_jpclett_3c00032
crossref_primary_10_1088_2053_1583_ab2d00
crossref_primary_10_1016_j_cej_2020_127028
crossref_primary_10_1002_adts_202100182
crossref_primary_10_1021_acs_jpclett_2c03796
crossref_primary_10_1063_1_4941551
crossref_primary_10_1016_j_pnsc_2024_02_016
crossref_primary_10_1021_acs_jpcc_7b03106
crossref_primary_10_1103_PhysRevB_108_075436
crossref_primary_10_1088_2053_1591_abdc3a
crossref_primary_10_1016_j_apsusc_2024_161598
crossref_primary_10_1021_acs_jpcc_7b03585
crossref_primary_10_1016_j_molliq_2021_115733
crossref_primary_10_1021_acsnano_4c01033
crossref_primary_10_1103_PhysRevB_97_075414
crossref_primary_10_1002_smll_201602967
crossref_primary_10_1002_adma_202312348
crossref_primary_10_1039_C8CS00236C
crossref_primary_10_1021_acs_jpclett_2c03306
crossref_primary_10_1016_j_jpcs_2023_111695
crossref_primary_10_1039_C8NR08821G
crossref_primary_10_1016_j_pmatsci_2017_06_002
crossref_primary_10_1016_j_apsusc_2023_156713
crossref_primary_10_1002_adfm_202105339
crossref_primary_10_1021_acs_jpcc_1c01550
crossref_primary_10_1557_adv_2018_110
crossref_primary_10_1021_acsanm_4c06955
crossref_primary_10_1063_1_5022339
crossref_primary_10_1016_j_desal_2023_117270
crossref_primary_10_1021_acs_jpclett_3c03512
crossref_primary_10_1016_j_apsusc_2024_159287
crossref_primary_10_1103_PhysRevB_100_115409
crossref_primary_10_1103_PhysRevLett_128_176801
crossref_primary_10_1002_adma_201700396
crossref_primary_10_1016_j_apsusc_2021_150188
crossref_primary_10_1088_1361_6528_abb5d2
crossref_primary_10_1002_smll_202411307
crossref_primary_10_1149_2162_8777_ac2f61
crossref_primary_10_1021_acsnano_2c06317
crossref_primary_10_1103_PhysRevB_99_184428
crossref_primary_10_1063_1_4963133
crossref_primary_10_1021_acsanm_4c04769
crossref_primary_10_1021_acsanm_4c04529
crossref_primary_10_1063_5_0244991
crossref_primary_10_1021_acs_jpclett_4c01319
crossref_primary_10_25205_2541_9447_2023_18_4_94_103
crossref_primary_10_1016_j_cej_2016_12_025
crossref_primary_10_1088_0022_3727_49_24_245304
crossref_primary_10_1002_smsc_202100033
crossref_primary_10_1021_acs_nanolett_4c02702
crossref_primary_10_1038_s41565_020_00789_w
crossref_primary_10_1016_j_jtice_2017_11_015
crossref_primary_10_1021_acsami_0c22476
crossref_primary_10_1126_science_abm5734
crossref_primary_10_1021_acs_jpcc_0c02657
crossref_primary_10_1021_acs_jpcc_6b04473
crossref_primary_10_1021_acsami_3c00824
crossref_primary_10_1039_D3NR03453D
crossref_primary_10_1021_acsami_8b21391
crossref_primary_10_1021_jacsau_2c00536
crossref_primary_10_3390_app10175840
crossref_primary_10_1002_adma_201503342
crossref_primary_10_1021_acs_jpcc_2c02872
crossref_primary_10_1039_C6CP01362G
crossref_primary_10_1016_j_apsusc_2017_04_249
crossref_primary_10_1063_5_0092955
crossref_primary_10_1103_PhysRevB_99_245419
crossref_primary_10_1021_acsnano_1c04331
crossref_primary_10_1016_j_fmre_2024_01_019
crossref_primary_10_1038_s41578_021_00408_7
crossref_primary_10_1021_acs_chemmater_6b01395
crossref_primary_10_1039_D1CP04069C
crossref_primary_10_1093_jmicro_dfv134
crossref_primary_10_1016_j_apmt_2018_01_006
crossref_primary_10_1016_j_molliq_2021_115927
crossref_primary_10_1021_acs_jpclett_4c02221
crossref_primary_10_1016_j_nanoen_2021_105922
crossref_primary_10_1016_j_commatsci_2017_01_009
crossref_primary_10_1002_smll_201702256
crossref_primary_10_1007_s40820_017_0152_6
crossref_primary_10_3390_nano8100851
crossref_primary_10_1021_acsami_0c21597
crossref_primary_10_1109_JQE_2015_2470549
crossref_primary_10_1039_C6RA06486H
crossref_primary_10_1016_j_cclet_2020_04_024
crossref_primary_10_1002_pssr_202000381
crossref_primary_10_1002_adfm_202206163
crossref_primary_10_1016_j_commatsci_2023_112740
crossref_primary_10_1002_admi_202300686
crossref_primary_10_1002_smll_202305143
crossref_primary_10_1038_s41467_022_28926_0
crossref_primary_10_1088_1361_6528_ad72fb
crossref_primary_10_1088_1361_6528_aac397
crossref_primary_10_1038_s41467_021_27834_z
crossref_primary_10_1088_2053_1583_ab4f1f
crossref_primary_10_1016_j_apsusc_2024_159693
crossref_primary_10_1021_acsphotonics_3c00670
crossref_primary_10_1063_5_0189072
crossref_primary_10_1038_nmat4660
crossref_primary_10_1021_acssuschemeng_8b01412
crossref_primary_10_1016_j_fuel_2023_127779
crossref_primary_10_1007_s12274_016_1319_z
crossref_primary_10_1103_PhysRevB_102_020402
crossref_primary_10_1016_j_carbon_2016_06_072
crossref_primary_10_1002_adfm_202304302
crossref_primary_10_1038_s41467_020_17241_1
crossref_primary_10_1016_j_mtcomm_2023_107710
crossref_primary_10_1039_C6TA07904K
crossref_primary_10_1021_acs_jpcc_6b02073
crossref_primary_10_1021_acs_nanolett_1c04987
crossref_primary_10_1186_s11671_016_1377_x
crossref_primary_10_1021_acsami_4c00836
crossref_primary_10_1038_s41524_024_01315_5
crossref_primary_10_1021_acsnano_2c05895
crossref_primary_10_1016_j_apsusc_2017_10_167
crossref_primary_10_1063_1_4999524
crossref_primary_10_1002_adma_202106674
crossref_primary_10_1038_s41566_024_01390_6
crossref_primary_10_1002_pssb_202400185
crossref_primary_10_1063_1_4971192
crossref_primary_10_1016_j_physe_2023_115846
crossref_primary_10_1039_D1NJ05368J
crossref_primary_10_1088_2053_1583_3_3_031002
crossref_primary_10_1016_j_ijhydene_2024_10_287
crossref_primary_10_34133_adi_0022
crossref_primary_10_1021_acs_jpcc_1c04632
crossref_primary_10_1021_acs_nanolett_0c00138
crossref_primary_10_1039_C7CP00155J
crossref_primary_10_1016_j_surfin_2024_104966
crossref_primary_10_1002_celc_202100790
crossref_primary_10_1007_s11433_019_9641_y
crossref_primary_10_1021_acs_nanolett_0c01222
crossref_primary_10_1021_acs_nanolett_0c03884
crossref_primary_10_1021_acssuschemeng_0c00736
crossref_primary_10_1002_celc_202300614
crossref_primary_10_1021_acs_chemmater_2c01967
crossref_primary_10_1080_08927022_2016_1233549
crossref_primary_10_1021_acsnano_3c05667
crossref_primary_10_1088_1361_6528_aa87cd
crossref_primary_10_1021_acsami_9b03531
crossref_primary_10_1038_srep40669
crossref_primary_10_1116_6_0000068
crossref_primary_10_1016_j_physe_2023_115860
crossref_primary_10_1016_j_jpowsour_2022_232208
crossref_primary_10_1039_C8CS00169C
crossref_primary_10_1016_j_mtchem_2022_100850
crossref_primary_10_1116_1_4986195
crossref_primary_10_1149_1945_7111_adba15
crossref_primary_10_1021_acs_nanolett_2c02777
crossref_primary_10_1039_D2TC02672D
Cites_doi 10.1021/nl4046922
10.1021/nl4007479
10.1038/nnano.2013.31
10.1063/1.4789365
10.1021/nl204562j
10.1038/ncomms5475
10.1038/nature04233
10.1109/16.337449
10.1021/jp212558p
10.1002/pssb.200776208
10.1038/ncomms6290
10.1021/nl4010783
10.1038/nnano.2012.95
10.1038/nmat3687
10.1021/nl2043612
10.1038/ncomms1882
10.1021/nn4002038
10.1038/nnano.2013.30
10.1103/PhysRevB.85.115317
10.1103/PhysRevLett.105.136805
10.1103/PhysRevB.50.17953
10.1038/nnano.2012.96
10.1021/nl2021575
10.1103/PhysRevLett.109.035503
10.1021/nl400778q
10.1038/ncomms4087
10.1021/ja4013485
10.1038/nmat1849
10.1109/JPROC.2013.2259451
10.1103/PhysRevB.54.11169
10.1002/adma.201402008
10.1038/nmat3633
10.1021/nn401053g
10.1103/PhysRevLett.92.246401
10.1038/nmat3673
10.1021/nn202852j
10.1103/PhysRevB.82.081101
10.1002/adma.201306095
10.1002/jcc.20495
10.1038/ncomms2018
10.1126/science.1171245
10.1038/ncomms3642
10.1038/nature04235
10.1021/nl903868w
10.1038/nnano.2012.193
10.1002/adma.201104798
10.1103/PhysRevB.88.035301
10.1103/PhysRevB.83.195131
10.1038/nnano.2010.279
10.1103/PhysRevLett.77.3865
10.1021/nl401916s
10.1524/zkri.220.5.567.65075
10.1002/0470068329
10.1007/978-1-4419-7200-2
ContentType Journal Article
Copyright The Author(s) 2015
Copyright Nature Publishing Group Feb 2015
Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
Copyright_xml – notice: The Author(s) 2015
– notice: Copyright Nature Publishing Group Feb 2015
– notice: Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOI 10.1038/ncomms7293
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Publicly Available Content Database

PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
ExternalDocumentID PMC4346634
3595655951
25695374
10_1038_ncomms7293
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
4.4
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABAWZ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EJD
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c508t-55d87d3ef301b9cdcd490a9f79c5173b7d33130437efcecb4eba7e6a08fca1d43
IEDL.DBID M48
ISSN 2041-1723
IngestDate Thu Aug 21 14:01:30 EDT 2025
Thu Jul 10 16:47:12 EDT 2025
Wed Aug 13 04:09:28 EDT 2025
Mon Jul 21 05:58:54 EDT 2025
Thu Apr 24 23:06:43 EDT 2025
Tue Jul 01 02:30:52 EDT 2025
Fri Feb 21 02:39:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-55d87d3ef301b9cdcd490a9f79c5173b7d33130437efcecb4eba7e6a08fca1d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://www.proquest.com/docview/1656056665?pq-origsite=%requestingapplication%
PMID 25695374
PQID 1656056665
PQPubID 546298
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4346634
proquest_miscellaneous_1657318087
proquest_journals_1656056665
pubmed_primary_25695374
crossref_citationtrail_10_1038_ncomms7293
crossref_primary_10_1038_ncomms7293
springer_journals_10_1038_ncomms7293
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150219
PublicationDateYYYYMMDD 2015-02-19
PublicationDate_xml – month: 2
  year: 2015
  text: 20150219
  day: 19
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2015
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Pub. Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Pub. Group
References Perdew, Burke, Ernzerhof (CR50) 1996; 77
Qiao (CR46) 2014; 5
Schmidt (CR17) 2014; 14
Lee (CR21) 2012; 24
Najmaei (CR32) 2013; 12
Mak, Lee, Hone, Shan, Heinz (CR8) 2010; 105
Li (CR34) 2013; 13
CR38
CR37
Bao, Cai, Kim, Sridhara, Fuhrer (CR44) 2013; 102
Klimes, Bowler, Michaelides (CR53) 2011; 83
Li (CR5) 2009; 324
Zhang, Tan, Stormer, Kim (CR3) 2005; 438
Wu (CR24) 2013; 7
Ghatak, Pal, Ghosh (CR33) 2011; 5
Zeng, Dai, Yao, Xiao, Cui (CR10) 2012; 7
Radisavljevic, Radenovic, Brivio, Giacometti, Kis (CR13) 2011; 6
Liu (CR29) 2013; 13
Wang, Feng, Wu, Jiao (CR20) 2013; 135
Qiu (CR30) 2013; 4
Liu (CR22) 2012; 12
CR49
Perera (CR15) 2013; 7
Takagi, Toriumi, Iwase, Tango (CR45) 1994; 41
Clark (CR41) 2005; 220
Feng (CR25) 2014; 26
Baugher, Churchill, Yang, Jarillo-Herrero (CR43) 2013; 13
Fuhrer, Hone (CR26) 2013; 8
van der Zande (CR36) 2013; 12
Grimme (CR51) 2006; 27
Zou (CR18) 2014; 26
Radisavljevic, Kis (CR19) 2013; 12
Zhang, Ye, Matsuhashi, Iwasa (CR16) 2012; 12
Zhu (CR40) 2014; 5
Dion, Rydberg, Schroder, Langreth, Lundqvist (CR54) 2004; 92
Mak, He, Shan, Heinz (CR11) 2012; 7
Lee, Murray, Kong, Lundqvist, Langreth (CR55) 2010; 82
Novoselov (CR4) 2007; 244
Shi (CR23) 2012; 12
Fiori, Iannaccone (CR47) 2013; 101
Kaasbjerg, Thygesen, Jacobsen (CR48) 2012; 85
Cao (CR12) 2012; 3
Wang, Kalantar-Zadeh, Kis, Coleman, Strano (CR6) 2012; 7
Kresse, Furthmuller (CR42) 1996; 54
Geim, Novoselov (CR2) 2007; 6
Splendiani (CR9) 2010; 10
Kim (CR14) 2012; 3
Zhou (CR35) 2013; 13
Radisavljevic, Kis (CR27) 2013; 8
Komsa, Kurasch, Lehtinen, Kaiser, Krasheninnikov (CR39) 2013; 88
Blochl (CR52) 1994; 50
Novoselov (CR1) 2005; 438
Ataca, Sahin, Ciraci (CR7) 2012; 116
Komsa (CR31) 2012; 109
Yu (CR28) 2014; 5
K-K Liu (BFncomms7293_CR22) 2012; 12
Y-H Lee (BFncomms7293_CR21) 2012; 24
Z Yu (BFncomms7293_CR28) 2014; 5
S Najmaei (BFncomms7293_CR32) 2013; 12
PE Blochl (BFncomms7293_CR52) 1994; 50
JS Qiao (BFncomms7293_CR46) 2014; 5
SJ Clark (BFncomms7293_CR41) 2005; 220
AM van der Zande (BFncomms7293_CR36) 2013; 12
A Splendiani (BFncomms7293_CR9) 2010; 10
J Klimes (BFncomms7293_CR53) 2011; 83
X Li (BFncomms7293_CR5) 2009; 324
MS Fuhrer (BFncomms7293_CR26) 2013; 8
H Zeng (BFncomms7293_CR10) 2012; 7
KS Novoselov (BFncomms7293_CR4) 2007; 244
KS Novoselov (BFncomms7293_CR1) 2005; 438
H Liu (BFncomms7293_CR29) 2013; 13
S Ghatak (BFncomms7293_CR33) 2011; 5
S-L Li (BFncomms7293_CR34) 2013; 13
HP Komsa (BFncomms7293_CR39) 2013; 88
XM Zou (BFncomms7293_CR18) 2014; 26
YJ Zhang (BFncomms7293_CR16) 2012; 12
MM Perera (BFncomms7293_CR15) 2013; 7
H Qiu (BFncomms7293_CR30) 2013; 4
H-P Komsa (BFncomms7293_CR31) 2012; 109
QH Wang (BFncomms7293_CR6) 2012; 7
WZ Bao (BFncomms7293_CR44) 2013; 102
JP Perdew (BFncomms7293_CR50) 1996; 77
Y Shi (BFncomms7293_CR23) 2012; 12
YB Zhang (BFncomms7293_CR3) 2005; 438
B Radisavljevic (BFncomms7293_CR13) 2011; 6
G Kresse (BFncomms7293_CR42) 1996; 54
B Radisavljevic (BFncomms7293_CR27) 2013; 8
W Zhu (BFncomms7293_CR40) 2014; 5
S-i Takagi (BFncomms7293_CR45) 1994; 41
C Ataca (BFncomms7293_CR7) 2012; 116
Q Feng (BFncomms7293_CR25) 2014; 26
BFncomms7293_CR38
KF Mak (BFncomms7293_CR8) 2010; 105
BFncomms7293_CR37
S Wu (BFncomms7293_CR24) 2013; 7
BWH Baugher (BFncomms7293_CR43) 2013; 13
G Fiori (BFncomms7293_CR47) 2013; 101
K Kaasbjerg (BFncomms7293_CR48) 2012; 85
M Dion (BFncomms7293_CR54) 2004; 92
T Cao (BFncomms7293_CR12) 2012; 3
KF Mak (BFncomms7293_CR11) 2012; 7
B Radisavljevic (BFncomms7293_CR19) 2013; 12
K Lee (BFncomms7293_CR55) 2010; 82
AK Geim (BFncomms7293_CR2) 2007; 6
W Zhou (BFncomms7293_CR35) 2013; 13
H Schmidt (BFncomms7293_CR17) 2014; 14
S Kim (BFncomms7293_CR14) 2012; 3
X Wang (BFncomms7293_CR20) 2013; 135
S Grimme (BFncomms7293_CR51) 2006; 27
BFncomms7293_CR49
22706698 - Nat Nanotechnol. 2012 Aug;7(8):494-8
22706701 - Nat Nanotechnol. 2012 Aug;7(8):490-3
24677312 - Adv Mater. 2014 May;26(17):2648-53, 2613
22673914 - Nat Commun. 2012;3:887
23679044 - Nano Lett. 2013 Jun 12;13(6):2640-6
21902203 - ACS Nano. 2011 Oct 25;5(10):7707-12
23793161 - Nat Mater. 2013 Sep;12(9):815-20
23132225 - Nat Nanotechnol. 2012 Nov;7(11):699-712
9976227 - Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979
24149969 - Nat Commun. 2013;4:2642
20229981 - Nano Lett. 2010 Apr 14;10(4):1271-5
23590723 - ACS Nano. 2013 May 28;7(5):4449-58
23427810 - ACS Nano. 2013 Mar 26;7(3):2768-72
22276648 - Nano Lett. 2012 Mar 14;12(3):1136-40
10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
23659662 - Nano Lett. 2013 Jun 12;13(6):2615-22
23489053 - J Am Chem Soc. 2013 Apr 10;135(14):5304-7
22910357 - Nat Commun. 2012;3:1011
21278752 - Nat Nanotechnol. 2011 Mar;6(3):147-50
16281031 - Nature. 2005 Nov 10;438(7065):201-4
22861869 - Phys Rev Lett. 2012 Jul 20;109(3):035503
22642717 - Nano Lett. 2012 Jun 13;12(6):2784-91
22467187 - Adv Mater. 2012 May 2;24(17):2320-5
17330084 - Nat Mater. 2007 Mar;6(3):183-91
23862641 - Nano Lett. 2013 Aug 14;13(8):3546-52
25327957 - Nat Commun. 2014 Oct 20;5:5290
21230799 - Phys Rev Lett. 2010 Sep 24;105(13):136805
9984901 - Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186
24640984 - Nano Lett. 2014;14(4):1909-13
23749265 - Nat Mater. 2013 Aug;12(8):754-9
22369470 - Nano Lett. 2012 Mar 14;12(3):1538-44
25070646 - Adv Mater. 2014 Sep;26(36):6255-61
16281030 - Nature. 2005 Nov 10;438(7065):197-200
19423775 - Science. 2009 Jun 5;324(5932):1312-4
23459545 - Nat Nanotechnol. 2013 Mar;8(3):146-7
23644523 - Nat Mater. 2013 Jun;12(6):554-61
15245113 - Phys Rev Lett. 2004 Jun 18;92(24):246401
16955487 - J Comput Chem. 2006 Nov 30;27(15):1787-99
25042376 - Nat Commun. 2014 Jul 21;5:4475
23459546 - Nat Nanotechnol. 2013 Mar;8(3):147-8
24435154 - Nat Commun. 2014;5:3087
23930826 - Nano Lett. 2013 Sep 11;13(9):4212-6
References_xml – volume: 14
  start-page: 1909
  year: 2014
  end-page: 1913
  ident: CR17
  article-title: Transport properties of monolayer MoS grown by chemical vapor deposition
  publication-title: Nano Lett.
  doi: 10.1021/nl4046922
– volume: 13
  start-page: 2615
  year: 2013
  end-page: 2622
  ident: CR35
  article-title: Intrinsic structural defects in monolayer molybdenum disulfide
  publication-title: Nano Lett.
  doi: 10.1021/nl4007479
– ident: CR49
– volume: 8
  start-page: 147
  year: 2013
  end-page: 148
  ident: CR27
  article-title: Measurement of mobility in dual-gated MoS transistors
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.31
– volume: 102
  start-page: 042104
  year: 2013
  ident: CR44
  article-title: High mobility ambipolar MoS field-effect transistors: substrate and dielectric effects
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4789365
– volume: 12
  start-page: 2784
  year: 2012
  end-page: 2791
  ident: CR23
  article-title: van der Waals epitaxy of MoS layers using graphene as growth templates
  publication-title: Nano Lett.
  doi: 10.1021/nl204562j
– volume: 5
  start-page: 4475
  year: 2014
  ident: CR46
  article-title: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5475
– volume: 438
  start-page: 197
  year: 2005
  end-page: 200
  ident: CR1
  article-title: Two-dimensional gas of massless Dirac fermions in graphene
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 41
  start-page: 2357
  year: 1994
  end-page: 2362
  ident: CR45
  article-title: On the universality of inversion layer mobility in Si MOSFET's: part I-effects of substrate impurity concentration
  publication-title: IEEE Trans. Electr. Dev.
  doi: 10.1109/16.337449
– volume: 116
  start-page: 8983
  year: 2012
  end-page: 8999
  ident: CR7
  article-title: Stable single-layer MX transition-metal oxides and dichalcogenides in a honeycomb-like structure
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp212558p
– volume: 244
  start-page: 4106
  year: 2007
  end-page: 4111
  ident: CR4
  article-title: Electronic properties of graphene
  publication-title: Phys. Stat. Sol. B
  doi: 10.1002/pssb.200776208
– volume: 5
  start-page: 5290
  year: 2014
  ident: CR28
  article-title: Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6290
– volume: 13
  start-page: 3546
  year: 2013
  end-page: 3552
  ident: CR34
  article-title: Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors
  publication-title: Nano Lett.
  doi: 10.1021/nl4010783
– volume: 7
  start-page: 490
  year: 2012
  end-page: 493
  ident: CR10
  article-title: Valley polarization in MoS monolayers by optical pumping
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.95
– volume: 12
  start-page: 815
  year: 2013
  end-page: 820
  ident: CR19
  article-title: Mobility engineering and a metal-insulator transition in monolayer MoS
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3687
– volume: 12
  start-page: 1538
  year: 2012
  end-page: 1544
  ident: CR22
  article-title: Growth of large-area and highly crystalline MoS thin layers on insulating substrates
  publication-title: Nano Lett.
  doi: 10.1021/nl2043612
– volume: 3
  start-page: 887
  year: 2012
  ident: CR12
  article-title: Valley-selective circular dichroism of monolayer molybdenum disulphide
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1882
– volume: 7
  start-page: 2768
  year: 2013
  end-page: 2772
  ident: CR24
  article-title: Vapor-solid growth of high optical quality MoS monolayers with near-unity valley polarization
  publication-title: ACS Nano
  doi: 10.1021/nn4002038
– volume: 8
  start-page: 146
  year: 2013
  end-page: 147
  ident: CR26
  article-title: Measurement of mobility in dual-gated MoS transistors
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.30
– volume: 85
  start-page: 115317
  year: 2012
  ident: CR48
  article-title: Phonon-limited mobility in n-type single-layer MoS from first principles
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.115317
– volume: 105
  start-page: 136805
  year: 2010
  ident: CR8
  article-title: Atomically thin MoS : a new direct-gap semiconductor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR52
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 7
  start-page: 494
  year: 2012
  end-page: 498
  ident: CR11
  article-title: Control of valley polarization in monolayer MoS by optical helicity
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.96
– volume: 12
  start-page: 1136
  year: 2012
  end-page: 1140
  ident: CR16
  article-title: Ambipolar MoS thin flake transistors
  publication-title: Nano Lett.
  doi: 10.1021/nl2021575
– volume: 109
  start-page: 035503
  year: 2012
  ident: CR31
  article-title: Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.035503
– volume: 13
  start-page: 2640
  year: 2013
  end-page: 2646
  ident: CR29
  article-title: Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films
  publication-title: Nano Lett.
  doi: 10.1021/nl400778q
– volume: 5
  start-page: 3087
  year: 2014
  ident: CR40
  article-title: Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4087
– volume: 135
  start-page: 5304
  year: 2013
  end-page: 5307
  ident: CR20
  article-title: Controlled synthesis of highly crystalline MoS flakes by chemical vapor deposition
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4013485
– volume: 6
  start-page: 183
  year: 2007
  end-page: 191
  ident: CR2
  article-title: The rise of graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 101
  start-page: 1653
  year: 2013
  end-page: 1669
  ident: CR47
  article-title: Multiscale modeling for graphene-based nanoscale transistors
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2013.2259451
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR42
  article-title: Efficient iterative schemes for total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 26
  start-page: 6255
  year: 2014
  end-page: 6261
  ident: CR18
  article-title: Interface engineering for high-performance top-gated MoS field-effect transistors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402008
– ident: CR37
– volume: 12
  start-page: 554
  year: 2013
  end-page: 561
  ident: CR36
  article-title: Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3633
– volume: 7
  start-page: 4449
  year: 2013
  end-page: 4458
  ident: CR15
  article-title: Improved carrier mobility in few-layer MoS field-effect transistors with ionic-liquid gating
  publication-title: ACS Nano
  doi: 10.1021/nn401053g
– volume: 92
  start-page: 246401
  year: 2004
  ident: CR54
  article-title: Van der Waals density functional for general geometries
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.246401
– volume: 12
  start-page: 754
  year: 2013
  end-page: 759
  ident: CR32
  article-title: Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3673
– volume: 5
  start-page: 7707
  year: 2011
  end-page: 7712
  ident: CR33
  article-title: Nature of electronic states in atomically thin MoS field-effect transistors
  publication-title: ACS Nano
  doi: 10.1021/nn202852j
– volume: 82
  start-page: 081101
  year: 2010
  ident: CR55
  article-title: Higher-accuracy van der waals density functional
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.081101
– volume: 26
  start-page: 2648
  year: 2014
  end-page: 2653
  ident: CR25
  article-title: Growth of large-area 2D MoS Se semiconductor alloys
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201306095
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: CR51
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 220
  start-page: 567
  year: 2005
  end-page: 570
  ident: CR41
  article-title: First principles methods using CASTEP
  publication-title: Z. Kristallogr.
– volume: 3
  start-page: 1011
  year: 2012
  ident: CR14
  article-title: High-mobility and low-power thin-film transistors based on multilayer MoS crystals
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2018
– volume: 324
  start-page: 1312
  year: 2009
  end-page: 1314
  ident: CR5
  article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils
  publication-title: Science
  doi: 10.1126/science.1171245
– ident: CR38
– volume: 4
  start-page: 2642
  year: 2013
  ident: CR30
  article-title: Hopping transport through defect-induced localized states in molybdenum disulphide
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3642
– volume: 438
  start-page: 201
  year: 2005
  end-page: 204
  ident: CR3
  article-title: Experimental observation of the quantum Hall effect and Berry’s phase in graphene
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 10
  start-page: 1271
  year: 2010
  end-page: 1275
  ident: CR9
  article-title: Emerging photoluminesence in monolayer MoS
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 7
  start-page: 699
  year: 2012
  end-page: 712
  ident: CR6
  article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 24
  start-page: 2320
  year: 2012
  end-page: 2325
  ident: CR21
  article-title: Synthesis of large-area MoS atomic layers with chemical vapor deposition
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104798
– volume: 88
  start-page: 035301
  year: 2013
  ident: CR39
  article-title: From point to extended defects in two-dimensional MoS : evolution of atomic structure under electron irradiation
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.035301
– volume: 83
  start-page: 195131
  year: 2011
  ident: CR53
  article-title: Van der waals density functionals applied to solids
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.195131
– volume: 6
  start-page: 147
  year: 2011
  end-page: 150
  ident: CR13
  article-title: Single-layer MoS transistors
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.279
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR50
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 13
  start-page: 4212
  year: 2013
  end-page: 4216
  ident: CR43
  article-title: Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS
  publication-title: Nano Lett.
  doi: 10.1021/nl401916s
– volume: 5
  start-page: 4475
  year: 2014
  ident: BFncomms7293_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5475
– volume: 244
  start-page: 4106
  year: 2007
  ident: BFncomms7293_CR4
  publication-title: Phys. Stat. Sol. B
  doi: 10.1002/pssb.200776208
– volume: 12
  start-page: 754
  year: 2013
  ident: BFncomms7293_CR32
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3673
– volume: 6
  start-page: 183
  year: 2007
  ident: BFncomms7293_CR2
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 82
  start-page: 081101
  year: 2010
  ident: BFncomms7293_CR55
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.081101
– volume: 14
  start-page: 1909
  year: 2014
  ident: BFncomms7293_CR17
  publication-title: Nano Lett.
  doi: 10.1021/nl4046922
– volume: 5
  start-page: 7707
  year: 2011
  ident: BFncomms7293_CR33
  publication-title: ACS Nano
  doi: 10.1021/nn202852j
– volume: 220
  start-page: 567
  year: 2005
  ident: BFncomms7293_CR41
  publication-title: Z. Kristallogr.
  doi: 10.1524/zkri.220.5.567.65075
– volume: 102
  start-page: 042104
  year: 2013
  ident: BFncomms7293_CR44
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4789365
– volume: 10
  start-page: 1271
  year: 2010
  ident: BFncomms7293_CR9
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 88
  start-page: 035301
  year: 2013
  ident: BFncomms7293_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.035301
– volume: 7
  start-page: 699
  year: 2012
  ident: BFncomms7293_CR6
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 5
  start-page: 5290
  year: 2014
  ident: BFncomms7293_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6290
– volume: 116
  start-page: 8983
  year: 2012
  ident: BFncomms7293_CR7
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp212558p
– ident: BFncomms7293_CR49
– volume: 4
  start-page: 2642
  year: 2013
  ident: BFncomms7293_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3642
– volume: 105
  start-page: 136805
  year: 2010
  ident: BFncomms7293_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 12
  start-page: 2784
  year: 2012
  ident: BFncomms7293_CR23
  publication-title: Nano Lett.
  doi: 10.1021/nl204562j
– volume: 77
  start-page: 3865
  year: 1996
  ident: BFncomms7293_CR50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 26
  start-page: 6255
  year: 2014
  ident: BFncomms7293_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402008
– volume: 6
  start-page: 147
  year: 2011
  ident: BFncomms7293_CR13
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.279
– volume: 13
  start-page: 4212
  year: 2013
  ident: BFncomms7293_CR43
  publication-title: Nano Lett.
  doi: 10.1021/nl401916s
– volume: 50
  start-page: 17953
  year: 1994
  ident: BFncomms7293_CR52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 3
  start-page: 1011
  year: 2012
  ident: BFncomms7293_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2018
– volume: 7
  start-page: 2768
  year: 2013
  ident: BFncomms7293_CR24
  publication-title: ACS Nano
  doi: 10.1021/nn4002038
– ident: BFncomms7293_CR38
  doi: 10.1002/0470068329
– volume: 3
  start-page: 887
  year: 2012
  ident: BFncomms7293_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1882
– volume: 54
  start-page: 11169
  year: 1996
  ident: BFncomms7293_CR42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 7
  start-page: 490
  year: 2012
  ident: BFncomms7293_CR10
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.95
– volume: 12
  start-page: 554
  year: 2013
  ident: BFncomms7293_CR36
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3633
– volume: 13
  start-page: 3546
  year: 2013
  ident: BFncomms7293_CR34
  publication-title: Nano Lett.
  doi: 10.1021/nl4010783
– volume: 41
  start-page: 2357
  year: 1994
  ident: BFncomms7293_CR45
  publication-title: IEEE Trans. Electr. Dev.
  doi: 10.1109/16.337449
– volume: 438
  start-page: 197
  year: 2005
  ident: BFncomms7293_CR1
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 8
  start-page: 147
  year: 2013
  ident: BFncomms7293_CR27
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.31
– volume: 92
  start-page: 246401
  year: 2004
  ident: BFncomms7293_CR54
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.246401
– volume: 12
  start-page: 1136
  year: 2012
  ident: BFncomms7293_CR16
  publication-title: Nano Lett.
  doi: 10.1021/nl2021575
– volume: 135
  start-page: 5304
  year: 2013
  ident: BFncomms7293_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4013485
– volume: 7
  start-page: 4449
  year: 2013
  ident: BFncomms7293_CR15
  publication-title: ACS Nano
  doi: 10.1021/nn401053g
– volume: 26
  start-page: 2648
  year: 2014
  ident: BFncomms7293_CR25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201306095
– volume: 109
  start-page: 035503
  year: 2012
  ident: BFncomms7293_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.035503
– volume: 85
  start-page: 115317
  year: 2012
  ident: BFncomms7293_CR48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.115317
– volume: 24
  start-page: 2320
  year: 2012
  ident: BFncomms7293_CR21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104798
– volume: 101
  start-page: 1653
  year: 2013
  ident: BFncomms7293_CR47
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2013.2259451
– volume: 438
  start-page: 201
  year: 2005
  ident: BFncomms7293_CR3
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 7
  start-page: 494
  year: 2012
  ident: BFncomms7293_CR11
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.96
– volume: 8
  start-page: 146
  year: 2013
  ident: BFncomms7293_CR26
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.30
– volume: 324
  start-page: 1312
  year: 2009
  ident: BFncomms7293_CR5
  publication-title: Science
  doi: 10.1126/science.1171245
– volume: 27
  start-page: 1787
  year: 2006
  ident: BFncomms7293_CR51
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 12
  start-page: 815
  year: 2013
  ident: BFncomms7293_CR19
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3687
– volume: 13
  start-page: 2640
  year: 2013
  ident: BFncomms7293_CR29
  publication-title: Nano Lett.
  doi: 10.1021/nl400778q
– volume: 13
  start-page: 2615
  year: 2013
  ident: BFncomms7293_CR35
  publication-title: Nano Lett.
  doi: 10.1021/nl4007479
– volume: 5
  start-page: 3087
  year: 2014
  ident: BFncomms7293_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4087
– ident: BFncomms7293_CR37
  doi: 10.1007/978-1-4419-7200-2
– volume: 83
  start-page: 195131
  year: 2011
  ident: BFncomms7293_CR53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.195131
– volume: 12
  start-page: 1538
  year: 2012
  ident: BFncomms7293_CR22
  publication-title: Nano Lett.
  doi: 10.1021/nl2043612
– reference: 25070646 - Adv Mater. 2014 Sep;26(36):6255-61
– reference: 23644523 - Nat Mater. 2013 Jun;12(6):554-61
– reference: 23930826 - Nano Lett. 2013 Sep 11;13(9):4212-6
– reference: 23489053 - J Am Chem Soc. 2013 Apr 10;135(14):5304-7
– reference: 23459546 - Nat Nanotechnol. 2013 Mar;8(3):147-8
– reference: 20229981 - Nano Lett. 2010 Apr 14;10(4):1271-5
– reference: 21230799 - Phys Rev Lett. 2010 Sep 24;105(13):136805
– reference: 16281030 - Nature. 2005 Nov 10;438(7065):197-200
– reference: 16955487 - J Comput Chem. 2006 Nov 30;27(15):1787-99
– reference: 22861869 - Phys Rev Lett. 2012 Jul 20;109(3):035503
– reference: 9984901 - Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186
– reference: 17330084 - Nat Mater. 2007 Mar;6(3):183-91
– reference: 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
– reference: 22910357 - Nat Commun. 2012;3:1011
– reference: 25327957 - Nat Commun. 2014 Oct 20;5:5290
– reference: 15245113 - Phys Rev Lett. 2004 Jun 18;92(24):246401
– reference: 9976227 - Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979
– reference: 24640984 - Nano Lett. 2014;14(4):1909-13
– reference: 25042376 - Nat Commun. 2014 Jul 21;5:4475
– reference: 21278752 - Nat Nanotechnol. 2011 Mar;6(3):147-50
– reference: 22706701 - Nat Nanotechnol. 2012 Aug;7(8):490-3
– reference: 24435154 - Nat Commun. 2014;5:3087
– reference: 23659662 - Nano Lett. 2013 Jun 12;13(6):2615-22
– reference: 23862641 - Nano Lett. 2013 Aug 14;13(8):3546-52
– reference: 22642717 - Nano Lett. 2012 Jun 13;12(6):2784-91
– reference: 19423775 - Science. 2009 Jun 5;324(5932):1312-4
– reference: 22276648 - Nano Lett. 2012 Mar 14;12(3):1136-40
– reference: 16281031 - Nature. 2005 Nov 10;438(7065):201-4
– reference: 23793161 - Nat Mater. 2013 Sep;12(9):815-20
– reference: 22706698 - Nat Nanotechnol. 2012 Aug;7(8):494-8
– reference: 23749265 - Nat Mater. 2013 Aug;12(8):754-9
– reference: 22369470 - Nano Lett. 2012 Mar 14;12(3):1538-44
– reference: 22467187 - Adv Mater. 2012 May 2;24(17):2320-5
– reference: 23427810 - ACS Nano. 2013 Mar 26;7(3):2768-72
– reference: 23459545 - Nat Nanotechnol. 2013 Mar;8(3):146-7
– reference: 22673914 - Nat Commun. 2012;3:887
– reference: 24677312 - Adv Mater. 2014 May;26(17):2648-53, 2613
– reference: 21902203 - ACS Nano. 2011 Oct 25;5(10):7707-12
– reference: 23679044 - Nano Lett. 2013 Jun 12;13(6):2640-6
– reference: 23590723 - ACS Nano. 2013 May 28;7(5):4449-58
– reference: 24149969 - Nat Commun. 2013;4:2642
– reference: 23132225 - Nat Nanotechnol. 2012 Nov;7(11):699-712
SSID ssj0000391844
Score 2.6567023
Snippet Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6293
SubjectTerms 119/118
639/301/1005/1007
639/301/119/1000/1018
639/638/563/979
639/766/36
Humanities and Social Sciences
Molybdenum
multidisciplinary
Optical properties
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60IngR30arROzFQ2jT3XQ3IIiIpQh6stBb2Fcx0CbVtof-e2e3SWqteM1OkmFnH9_sfDsD0FCx4Fx3wgA9Lx1QBMgBgnodMGkMl6FgbWXvDr--dXp9-jKIBsWB27SgVZZroluoda7sGXnTZYlB7NGJHiafga0aZaOrRQmNbdixqcsspYsNWHXGYrOfc0rLrKSENzP85HiKgJKs70Mb4HKTI_krUOr2n-4B7BfA0X9cWvoQtkx2BLvLUpKLY7ivyHQ-utHjVPnaOKaGn2b-OB8tpLakd1-njo-eaoNPM_RrLeQ-gX73-f2pFxSVEQKFgGoWRJHmTBMzxOkpY6WVpnFLxEMWqyhkRGIbwc2JEmaGyihJjRTMdESLD5UINSWnUMvyzJyD37YITJgYHVVNIyqFRh9HGPT7uLbUUw_uyn5KVJE23FavGCUufE14supTD24r2ckyWcafUvWyu5NiwkyTlXk9uKmacajb-IXITD53MgyXoBZnHpwtrVP9BpEbasuoB2zNbpWATaO93pKlHy6dNiU4RAm-2Sgt_EOtDe0v_tf-EvYQUrlL72Fch9rsa26uELbM5LUbm987QvGK
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_oRPAifludUnEXD8V1SZsUvMhwDEFPDnYr-SoWXCduO-y_9yX9cHMePLZ5oY_kJfm95pdfADoqEZzrOAww89IBRYAcIKjXAZPGcBkK1lP27PDLazwc0edxNK5kcmYVrbKUtHTTdM0Ouy_waTJDJEi2YcdKttto7sf95n-KVTrnlNYKpISvVFlfczaA5CYf8temqFtrBgewX4FE_7F06xC2THEEu-W1kctjeGiIcz6mzJNc-do4VoafF_5k-rGU2hLcfZ077nmuDb4tMIe18PoERoOnt_4wqG5BCBSCp3kQRZozTUyGQ1EmSitNk65IMpaoKGREYhnBhYgSZjJllKRGCmZi0eWZEqGm5BRaxbQw5-D3LNoSJsGkVNOISqExnxEGczyuLc3Ug7u6nVJVSYTbmyo-UrdVTXj606Ye3Da2n6Uwxp9W7bq502pwzFIn-IMwMo48uGmKMaztXoUozHThbBhON13OPDgre6f5DKI09JZRD9havzUGVjJ7vaTI3510NiUYjgRrduoeXnFrw_uL_5ldwh7CKHfQPUza0Jp_LcwVQpW5vHYx-g0SFO3M
  priority: 102
  providerName: Springer Nature
Title Exploring atomic defects in molybdenum disulphide monolayers
URI https://link.springer.com/article/10.1038/ncomms7293
https://www.ncbi.nlm.nih.gov/pubmed/25695374
https://www.proquest.com/docview/1656056665
https://www.proquest.com/docview/1657318087
https://pubmed.ncbi.nlm.nih.gov/PMC4346634
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9BEdJeEBtsBLoqCF54CGtqJ3akTVNXUVAlEAIq9S3yV0WkNuWjSPS_39n5gK487CWR4rPi3Nm-3-XOdwDHKhGc6zgM0PLSAUWAHCCo1wGTxnAZCtZR9uzw5VV8MaSDUTRag6p-Z8nA5w9NO1tPavg0OX19XPzGBf-rODLOf-Qom-kzokSyDhuokZhdoJclzHc7MknQkLEO5k6bhgHqbFJlKl3qvqybVgDnatzkP85Tp5P627BVgkm_W0j_M6yZ_AtsFuUlFzvwsw6w89G0nmbK18ZFb_hZ7k9nk4XUNhDe15mLUc-0wac5MsTC8F0Y9s_uehdBWS0hUAiy5kEUac40MWNcsjJRWmmatEUyZomKQkYkthFUWJQwM1ZGSWqkYCYWbT5WItSUfIVGPsvNHvgdi8qESdB41TSiUmi0e4RBW5BrG47qwUnFp1SVqcRtRYtJ6lzahKdvPPXgqKZ9KBJofEjVrNidVnMgdYmBEG7GkQeHdTNOf-vTELmZvTgahttSmzMPvhXSqV-DaA5Hy6gHbEluNYFNrb3ckmf3LsU2JThtCfY8riT8blgro9__r288gE-Ittx5-DBpQmP-9GK-I6KZyxassxHDK--ft2Cj2x3cDvD-5-zq-gaf9uJey_0raLlp_Rfsof-R
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4CMEF8aY8i4ADh4p1SZdUAiHEQ-N5Amm3ktdEJdYBG0L7U_xGnHQtjCFuXBu3dRPb-Vw7NsCOigXnuhYG6HnpgCJADhDU64BJY7gMBasqe3b45rZWv6eXjagxAh_FWRibVlnYRGeodVvZf-T7rkoMYo9adPT8EtiuUTa6WrTQyMXiyvTe0WXrHF6c4vruVqvnZ3cn9aDfVSBQCEa6QRRpzjQxTRRtGSutNI0rIm6yWEUhIxLHCBp2SphpKqMkNVIwUxMV3lQi1JTgc0dhHDfeitUo1mDlPx1bbZ1TWlRBJXw_w09odRDAksF9bwjMDudk_gjMuv3ufAam-0DVP84laxZGTDYHE3nryt48HJTJez667a1U-dq4zBA_zfxW-6kntU2y93Xq8t9TbfBqhn60hfgLcP8vc7YIY1k7M8vgVy3iEyZGx1jTiEqh0acSBv1Mrm2qqwd7xTwlql-m3HbLeEpcuJzw5GtOPdguaZ_z4hy_Uq0V0530FbSTfImTB1vlMKqWjZeIzLTfHA1Dk1fhzIOlfHXK1yBSRG4Z9YANrFtJYMt2D45k6aMr300JqgTBO3eKFf7G1hD3K39zvwmT9bub6-T64vZqFaYQzrkD92G8BmPd1zezjpCpKzecnPrw8N-K8QkC6zAW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tQ0y8IBjbCBQWRPewh6hN7NSOBEKIUm0MKh42qW-ZvyIircmgnVD_Nf46zs5HKZ321tf4kjj23eV39s93AF2VCM71IAww8tIBRYAcIKjXAZPGcBkKFil7dvjbeHB6Sb9M4skW_GnOwlhaZeMTnaPWpbJr5D2XJQaxxyDuZTUt4vtw9OHmZ2ArSNmd1qacRqUi52bxG8O32fuzIc71cRSNPl98Og3qCgOBQmAyD-JYc6aJyVDNZaK00jTpiyRjiYpDRiS2EXTylDCTKaMkNVIwMxB9nikRakrwudvwgJE4tDbGJqxd37GZ1zmlTUZUwnsFfs50hmCWrP4D14DtOj_zv01a9-8bPYHHNWj1P1Za9hS2TLEHD6sylotn8K4l8vkYwk9z5WvjWCJ-XvjT8nohtSXc-zp3XPhcG7xaYExt4f4-XG5kzA5gpygL8xz8yKI_YRIMkjWNqRQa4ythMObk2tJePThpxilVdcpyWznjOnVb54SnyzH14G0re1Ml6rhTqtMMd1ob6yxdqpYHb9pmNDO7dyIKU946GYbur8-ZB4fV7LSvQdSIvWXUA7Yyb62ATeG92lLkP1wqb0rQPAje2W1m-J9urfX-xf29P4JdNIn069n4_CU8QmTnzt6HSQd25r9uzStET3P52qmpD1ebtou_rKI0TA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+atomic+defects+in+molybdenum+disulphide+monolayers&rft.jtitle=Nature+communications&rft.au=Hong%2C+Jinhua&rft.au=Hu%2C+Zhixin&rft.au=Probert%2C+Matt&rft.au=Li%2C+Kun&rft.date=2015-02-19&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1038%2Fncomms7293&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_ncomms7293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon