Exploring atomic defects in molybdenum disulphide monolayers
Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment–theory investiga...
Saved in:
Published in | Nature communications Vol. 6; no. 1; p. 6293 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.02.2015
Nature Publishing Group Nature Pub. Group |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/ncomms7293 |
Cover
Loading…
Abstract | Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment–theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by
ab-initio
calculation. Defect density up to 3.5 × 10
13
cm
−2
is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.
Imperfections can greatly alter a material’s properties. Here, the authors investigate the influence of point defects on the electronic structure, charge-carrier mobility and optical absorption of molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. |
---|---|
AbstractList | Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment–theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by
ab-initio
calculation. Defect density up to 3.5 × 10
13
cm
−2
is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.
Imperfections can greatly alter a material’s properties. Here, the authors investigate the influence of point defects on the electronic structure, charge-carrier mobility and optical absorption of molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10(13) cm(-2) is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10(13) cm(-2) is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices. Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment–theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm −2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices. Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 1013 cm-2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices. Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10(13) cm(-2) is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices. |
ArticleNumber | 6293 |
Author | Wu, Dianzhong Zhang, Xixiang Mao, Nannan Yuan, Jun Hu, Zhixin Zhang, Zhiyong Hong, Jinhua Lv, Danhui Li, Kun Zhang, Ze Gu, Lin Zhang, Jin Probert, Matt Jin, Chuanhong Yang, Xinan Xie, Liming Feng, Qingliang Ji, Wei |
Author_xml | – sequence: 1 givenname: Jinhua surname: Hong fullname: Hong, Jinhua organization: State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University – sequence: 2 givenname: Zhixin surname: Hu fullname: Hu, Zhixin organization: Department of Physics, Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China – sequence: 3 givenname: Matt surname: Probert fullname: Probert, Matt organization: Department of Physics, University of York, Heslington, York YO10 5DD, UK – sequence: 4 givenname: Kun surname: Li fullname: Li, Kun organization: Advanced Nanofabrication, Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Danhui surname: Lv fullname: Lv, Danhui organization: State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University – sequence: 6 givenname: Xinan surname: Yang fullname: Yang, Xinan organization: Instituteof Physics, Chinese Academy of Sciences, c/o Collaborative Innovation Center of Quantum Matter – sequence: 7 givenname: Lin surname: Gu fullname: Gu, Lin organization: Instituteof Physics, Chinese Academy of Sciences, c/o Collaborative Innovation Center of Quantum Matter – sequence: 8 givenname: Nannan surname: Mao fullname: Mao, Nannan organization: CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University – sequence: 9 givenname: Qingliang surname: Feng fullname: Feng, Qingliang organization: CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology – sequence: 10 givenname: Liming surname: Xie fullname: Xie, Liming organization: CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology – sequence: 11 givenname: Jin surname: Zhang fullname: Zhang, Jin organization: Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University – sequence: 12 givenname: Dianzhong surname: Wu fullname: Wu, Dianzhong organization: Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University – sequence: 13 givenname: Zhiyong surname: Zhang fullname: Zhang, Zhiyong organization: Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University – sequence: 14 givenname: Chuanhong surname: Jin fullname: Jin, Chuanhong email: chhjin@zju.edu.cn organization: State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University – sequence: 15 givenname: Wei surname: Ji fullname: Ji, Wei email: wji@ruc.edu.cn organization: Department of Physics, Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China, Department of Physics and Astronomy, Collaborative Innovation Center of Advanced Microstructures, Shanghai Jiao Tong University – sequence: 16 givenname: Xixiang surname: Zhang fullname: Zhang, Xixiang organization: Advanced Nanofabrication, Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST) – sequence: 17 givenname: Jun surname: Yuan fullname: Yuan, Jun email: jun.yuan@york.ac.uk organization: State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University, Department of Physics, University of York, Heslington, York YO10 5DD, UK – sequence: 18 givenname: Ze surname: Zhang fullname: Zhang, Ze organization: State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, School of Materials Science and Engineering, Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25695374$$D View this record in MEDLINE/PubMed |
BookMark | eNptkVtL5TAUhYM4eH_xB0jBF1HOmJzcWpABEXUGhHnR55AmuxpJk5q0Muff23K8nFHzskP2txcre22j9RADILRP8E-CaXkaTGzbLOcVXUNbc8zIjMg5XV-5b6K9nB_xeGhFSsY20Oaci4pTybbQ2eW_zsfkwn2h-9g6U1howPS5cKFoo1_UFsLQFtblwXcPzsL4GqLXC0h5F_1otM-w91p30N3V5e3F79nN3-s_F-c3M8Nx2c84t6W0FBqKSV0ZayyrsK4aWRlOJK3HHiUUMyqhMWBqBrWWIDQuG6OJZXQH_VrqdkPdgjUQ-qS96pJrdVqoqJ36vxPcg7qPz4pRJgSdBI5eBVJ8GiD3qnXZgPc6QByyIoJLSkpcyhE9_IQ-xiGF8XsTJTAXQvCROlh19G7lbbEjgJeASTHnBI0yrte9i5NB5xXBaopPfcQ3jhx_GnlT_RY-WcK5m8KDtGLzK_0CbVKslA |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_157885 crossref_primary_10_1088_1361_6463_abe331 crossref_primary_10_1016_j_ijhydene_2019_10_167 crossref_primary_10_1021_acs_nanolett_4c04252 crossref_primary_10_1103_PhysRevMaterials_1_074408 crossref_primary_10_1002_adts_201900052 crossref_primary_10_1039_D4NH00441H crossref_primary_10_1002_smll_201901899 crossref_primary_10_1016_j_physe_2020_113968 crossref_primary_10_1088_1674_1056_ab9438 crossref_primary_10_1021_acsnano_1c00171 crossref_primary_10_1021_acs_chemrev_4c00631 crossref_primary_10_1116_1_5111727 crossref_primary_10_1021_acsnano_3c03996 crossref_primary_10_1021_acs_nanolett_8b01501 crossref_primary_10_1002_smll_202203281 crossref_primary_10_1126_sciadv_abm0100 crossref_primary_10_1063_1_5043208 crossref_primary_10_1021_acsami_3c18533 crossref_primary_10_1021_acs_nanolett_9b02005 crossref_primary_10_1088_1361_6528_ac357c crossref_primary_10_1007_s00894_025_06306_x crossref_primary_10_1021_acs_nanolett_7b04374 crossref_primary_10_1039_C7CC01560G crossref_primary_10_1016_j_scib_2018_01_010 crossref_primary_10_1038_s41598_022_22913_7 crossref_primary_10_1063_1_4975064 crossref_primary_10_1038_s41598_017_07615_9 crossref_primary_10_1038_s41467_022_29447_6 crossref_primary_10_1039_C8CP05665J crossref_primary_10_1021_acs_inorgchem_4c04505 crossref_primary_10_1007_s11705_023_2382_0 crossref_primary_10_1088_2053_1583_ad690f crossref_primary_10_1002_adma_202108258 crossref_primary_10_1021_acsami_9b19224 crossref_primary_10_1002_adma_201605043 crossref_primary_10_1021_acsami_1c21419 crossref_primary_10_1021_jacs_9b12113 crossref_primary_10_1039_C6TA06534A crossref_primary_10_3390_nano12111929 crossref_primary_10_1021_acsami_1c01806 crossref_primary_10_1039_C7TA07241D crossref_primary_10_1103_PhysRevB_108_245421 crossref_primary_10_3390_cryst13101474 crossref_primary_10_1021_acsnano_5b05173 crossref_primary_10_1177_0021998320922601 crossref_primary_10_1002_smll_201700098 crossref_primary_10_1016_j_nanoen_2017_10_038 crossref_primary_10_1016_j_ultramic_2019_04_007 crossref_primary_10_1038_s42254_021_00408_0 crossref_primary_10_1021_acsomega_3c03881 crossref_primary_10_1021_acsphotonics_8b00129 crossref_primary_10_1039_D0NR03871G crossref_primary_10_1016_j_mtcomm_2020_101334 crossref_primary_10_1016_j_tsf_2019_137500 crossref_primary_10_1103_PhysRevMaterials_2_124003 crossref_primary_10_1007_s41918_019_00045_3 crossref_primary_10_1016_j_chempr_2016_10_007 crossref_primary_10_1021_acsami_9b00856 crossref_primary_10_1021_acsnano_3c02626 crossref_primary_10_1103_PhysRevB_97_115445 crossref_primary_10_1038_s41467_022_35048_0 crossref_primary_10_1103_PhysRevB_108_245411 crossref_primary_10_1002_admi_202100599 crossref_primary_10_1039_D3NR01321A crossref_primary_10_1021_acs_nanolett_8b01714 crossref_primary_10_1021_acsami_4c13963 crossref_primary_10_1016_j_apsusc_2021_149013 crossref_primary_10_1038_s41598_018_25796_9 crossref_primary_10_1016_j_actamat_2022_118655 crossref_primary_10_1021_acs_jpcc_3c07112 crossref_primary_10_1021_acs_jpcc_2c00051 crossref_primary_10_1063_5_0185604 crossref_primary_10_1103_PhysRevB_108_165428 crossref_primary_10_1021_acs_est_9b00088 crossref_primary_10_1103_PhysRevB_103_235433 crossref_primary_10_1038_s41467_022_28876_7 crossref_primary_10_1016_j_impact_2023_100485 crossref_primary_10_1021_acsnano_1c00373 crossref_primary_10_1021_acsanm_8b01085 crossref_primary_10_1016_j_solmat_2016_12_024 crossref_primary_10_1021_acsnano_1c01220 crossref_primary_10_1038_s41467_024_51501_8 crossref_primary_10_1038_s41467_021_21158_8 crossref_primary_10_1038_s41699_022_00350_4 crossref_primary_10_1002_pssb_202300270 crossref_primary_10_1016_j_apcatb_2020_119288 crossref_primary_10_3390_cryst6090113 crossref_primary_10_1002_advs_202408640 crossref_primary_10_1515_nanoph_2016_0151 crossref_primary_10_1002_cphc_202400866 crossref_primary_10_1016_j_susc_2020_121759 crossref_primary_10_1021_acsnano_7b04162 crossref_primary_10_3390_nano11102509 crossref_primary_10_1103_PhysRevB_101_045433 crossref_primary_10_1038_s41928_018_0129_6 crossref_primary_10_1002_adfm_202410447 crossref_primary_10_1021_acsami_3c18332 crossref_primary_10_1021_acsami_7b02739 crossref_primary_10_1039_D4CP00301B crossref_primary_10_1038_nnano_2017_161 crossref_primary_10_1016_j_apcatb_2019_04_080 crossref_primary_10_1021_acs_nanolett_9b01599 crossref_primary_10_1038_s41467_024_54900_z crossref_primary_10_3390_app10144758 crossref_primary_10_1021_acs_jpcc_6b11987 crossref_primary_10_1103_PhysRevMaterials_4_064004 crossref_primary_10_1021_acs_jpcc_1c03961 crossref_primary_10_1088_1361_6528_ab2c3a crossref_primary_10_1021_acs_jpcc_8b10971 crossref_primary_10_1063_1_5048099 crossref_primary_10_1021_acs_jpcc_7b00036 crossref_primary_10_1103_PhysRevMaterials_7_124001 crossref_primary_10_1002_anie_202316306 crossref_primary_10_1038_s42254_021_00389_0 crossref_primary_10_1063_1674_0068_cjcp2007123 crossref_primary_10_1063_5_0114012 crossref_primary_10_1103_PhysRevB_96_245402 crossref_primary_10_1002_smll_201601556 crossref_primary_10_1016_j_susc_2016_05_003 crossref_primary_10_1016_j_physb_2021_413269 crossref_primary_10_1002_adma_201504572 crossref_primary_10_1007_s11664_020_07957_7 crossref_primary_10_1021_jacs_4c10810 crossref_primary_10_1088_2053_1583_ad341c crossref_primary_10_1016_j_spmi_2019_04_045 crossref_primary_10_1063_1_4963290 crossref_primary_10_1002_advs_202101099 crossref_primary_10_1038_srep25788 crossref_primary_10_1016_j_apsusc_2021_150270 crossref_primary_10_1021_acs_nanolett_0c03810 crossref_primary_10_1021_acs_accounts_4c00495 crossref_primary_10_1021_acsphotonics_3c01470 crossref_primary_10_12677_AAC_2022_123030 crossref_primary_10_1021_acs_nanolett_3c03328 crossref_primary_10_3390_nano10061032 crossref_primary_10_1021_acsami_1c20536 crossref_primary_10_1021_acsnano_0c08460 crossref_primary_10_1021_acs_nanolett_3c02479 crossref_primary_10_1016_j_cej_2020_127013 crossref_primary_10_1021_acsnano_8b03977 crossref_primary_10_1021_acs_nanolett_9b01577 crossref_primary_10_1021_acsaelm_4c01808 crossref_primary_10_1021_acsami_9b10688 crossref_primary_10_1038_s41467_022_33940_3 crossref_primary_10_1021_acsomega_3c03200 crossref_primary_10_1039_D0EE00450B crossref_primary_10_1088_2053_1583_aba4ed crossref_primary_10_1088_2516_1075_ad2090 crossref_primary_10_1063_5_0024652 crossref_primary_10_1103_PhysRevLett_119_016101 crossref_primary_10_1364_OME_437434 crossref_primary_10_1039_C8NR07501H crossref_primary_10_1039_D2NR00391K crossref_primary_10_1016_j_jallcom_2018_06_358 crossref_primary_10_1038_s41467_022_35651_1 crossref_primary_10_1557_s43578_022_00720_0 crossref_primary_10_1038_s41598_017_07178_9 crossref_primary_10_1002_adts_201900213 crossref_primary_10_1016_j_physleta_2020_126575 crossref_primary_10_1016_j_apsusc_2017_07_004 crossref_primary_10_1088_2516_1075_acc55d crossref_primary_10_1021_acsanm_9b00200 crossref_primary_10_1088_1361_6528_ace1f7 crossref_primary_10_1063_1_4971775 crossref_primary_10_1063_5_0057165 crossref_primary_10_1002_adfm_202109598 crossref_primary_10_1103_PhysRevMaterials_1_074001 crossref_primary_10_1364_AO_416441 crossref_primary_10_1088_1361_6528_abedf0 crossref_primary_10_1016_j_chemphys_2020_111054 crossref_primary_10_1021_acsnano_2c08394 crossref_primary_10_1103_PhysRevB_100_235440 crossref_primary_10_1016_j_apsusc_2021_149862 crossref_primary_10_1016_j_ijhydene_2024_12_516 crossref_primary_10_1021_acs_jpcc_2c08622 crossref_primary_10_1002_adma_201802402 crossref_primary_10_3390_nano12101706 crossref_primary_10_1016_j_jmmm_2018_08_076 crossref_primary_10_1021_acs_nanolett_9b02888 crossref_primary_10_1021_acsami_3c07806 crossref_primary_10_1021_acsnano_5b05556 crossref_primary_10_1109_TED_2023_3294363 crossref_primary_10_1002_celc_201801003 crossref_primary_10_1021_acsnano_6b03443 crossref_primary_10_1039_C9CP01030K crossref_primary_10_1002_qua_26871 crossref_primary_10_1021_acs_jpcc_6b00647 crossref_primary_10_1007_s12274_018_2026_8 crossref_primary_10_1088_1367_2630_ad0259 crossref_primary_10_1021_acsnano_8b09054 crossref_primary_10_1103_PhysRevB_105_094111 crossref_primary_10_1002_adom_202302326 crossref_primary_10_1007_s11465_023_0755_1 crossref_primary_10_1021_acs_cgd_9b00785 crossref_primary_10_1557_s43577_023_00598_1 crossref_primary_10_3390_polym13203507 crossref_primary_10_1007_s12274_020_3047_7 crossref_primary_10_1038_s41563_021_00927_2 crossref_primary_10_1103_PhysRevLett_116_046803 crossref_primary_10_1039_C9NR03077H crossref_primary_10_1002_adma_202104942 crossref_primary_10_1016_j_jmmm_2017_11_074 crossref_primary_10_1039_C8NR09446B crossref_primary_10_1016_j_elspec_2023_147318 crossref_primary_10_1021_acs_jpcc_1c05473 crossref_primary_10_1021_acsenergylett_0c00485 crossref_primary_10_1002_pssr_201600320 crossref_primary_10_1039_C8CS00094H crossref_primary_10_1038_s41467_022_33617_x crossref_primary_10_1021_acsami_8b17476 crossref_primary_10_1021_acsanm_2c00995 crossref_primary_10_1021_acs_nanolett_1c02177 crossref_primary_10_1002_smll_201604259 crossref_primary_10_1016_j_nanoen_2022_107888 crossref_primary_10_1063_1_4983789 crossref_primary_10_1021_acsaelm_0c00105 crossref_primary_10_1039_D1TC01973B crossref_primary_10_1016_j_jtice_2019_04_035 crossref_primary_10_1088_0256_307X_34_12_127101 crossref_primary_10_1021_acs_jpcc_1c09603 crossref_primary_10_1002_adom_201900689 crossref_primary_10_1038_s41524_022_00733_7 crossref_primary_10_1021_acsami_1c08850 crossref_primary_10_1088_1361_6463_aaa58c crossref_primary_10_1039_C7NR05289H crossref_primary_10_1039_D0CP00857E crossref_primary_10_1016_j_apsusc_2023_158563 crossref_primary_10_1021_acs_chemrev_3c00851 crossref_primary_10_1016_j_jmst_2024_06_058 crossref_primary_10_1021_acs_nanolett_6b00536 crossref_primary_10_1021_acs_nanolett_1c02192 crossref_primary_10_1016_j_apsusc_2021_150633 crossref_primary_10_1002_aelm_202100781 crossref_primary_10_1016_j_nanoen_2021_106007 crossref_primary_10_1021_acs_jpcc_3c04243 crossref_primary_10_1103_PhysRevB_106_235414 crossref_primary_10_1038_srep23583 crossref_primary_10_1103_PhysRevMaterials_5_044002 crossref_primary_10_1063_1_5030737 crossref_primary_10_1016_j_jhazmat_2022_128215 crossref_primary_10_1073_pnas_2105468118 crossref_primary_10_1021_acsnano_0c02983 crossref_primary_10_3390_ma15082812 crossref_primary_10_1038_s41565_021_00963_8 crossref_primary_10_1109_JSEN_2019_2932106 crossref_primary_10_1109_TNANO_2020_2965986 crossref_primary_10_9729_AM_2015_45_3_107 crossref_primary_10_1103_PhysRevB_104_125438 crossref_primary_10_1002_smll_201601168 crossref_primary_10_1038_s41467_019_10632_z crossref_primary_10_1021_acs_nanolett_7b01735 crossref_primary_10_1021_acs_jpclett_0c00868 crossref_primary_10_1364_OE_469797 crossref_primary_10_1002_adma_201601104 crossref_primary_10_1021_accountsmr_1c00097 crossref_primary_10_1021_acsnano_2c09209 crossref_primary_10_1021_acsnano_9b01583 crossref_primary_10_1155_2017_2565703 crossref_primary_10_3390_s20247340 crossref_primary_10_1021_acsnano_9b04611 crossref_primary_10_1021_acs_jpcc_9b09396 crossref_primary_10_1021_acs_jpcc_9b10120 crossref_primary_10_1039_D4NR02518K crossref_primary_10_1088_2053_1583_ab6267 crossref_primary_10_1103_PhysRevB_108_195430 crossref_primary_10_1063_5_0078054 crossref_primary_10_1002_adma_201906646 crossref_primary_10_1063_5_0118697 crossref_primary_10_1021_acsanm_3c00804 crossref_primary_10_1021_acsnano_6b05674 crossref_primary_10_1103_PhysRevB_103_045423 crossref_primary_10_1002_advs_202412060 crossref_primary_10_1088_2053_1583_aa7364 crossref_primary_10_1021_acsnano_5b07942 crossref_primary_10_1002_ange_202422953 crossref_primary_10_1021_acs_jpcc_0c09666 crossref_primary_10_1038_s41699_020_00182_0 crossref_primary_10_1021_acsami_1c07956 crossref_primary_10_1039_D3NA00045A crossref_primary_10_1016_j_nanoen_2019_03_093 crossref_primary_10_1002_adfm_201807398 crossref_primary_10_1088_1361_648X_abbdb9 crossref_primary_10_1021_acs_nanolett_7b02600 crossref_primary_10_1021_acsami_2c14341 crossref_primary_10_1002_cey2_296 crossref_primary_10_1016_j_apsusc_2021_149448 crossref_primary_10_1039_D0RA03372C crossref_primary_10_1103_PhysRevB_103_045412 crossref_primary_10_1016_j_mtcomm_2019_03_005 crossref_primary_10_1039_C5CS00275C crossref_primary_10_1063_5_0038874 crossref_primary_10_1126_science_ado1744 crossref_primary_10_1021_acsnano_1c04902 crossref_primary_10_1021_acsami_1c04200 crossref_primary_10_1063_1_5028404 crossref_primary_10_1021_acsnano_1c01879 crossref_primary_10_1016_j_isci_2023_107275 crossref_primary_10_1016_j_mtadv_2020_100076 crossref_primary_10_1021_acs_nanolett_5b02769 crossref_primary_10_1038_s41565_021_01004_0 crossref_primary_10_1021_acsmaterialslett_2c00266 crossref_primary_10_1088_1402_4896_ad4524 crossref_primary_10_1021_acs_jpcc_9b02739 crossref_primary_10_1021_acs_jpcc_4c08755 crossref_primary_10_1016_j_surfin_2022_102627 crossref_primary_10_1021_acsnano_1c09131 crossref_primary_10_1016_j_trechm_2022_02_006 crossref_primary_10_1021_acs_jpcc_1c01918 crossref_primary_10_1088_0957_4484_27_44_445202 crossref_primary_10_1016_j_jmmm_2016_02_014 crossref_primary_10_1021_acsnano_8b07920 crossref_primary_10_1021_acs_nanolett_7b03948 crossref_primary_10_59400_n_c_v2i1_299 crossref_primary_10_1016_j_comptc_2021_113445 crossref_primary_10_1186_s11671_016_1731_z crossref_primary_10_1021_acs_chemrev_3c00302 crossref_primary_10_1039_C8RA08981G crossref_primary_10_1021_acsnano_5b05823 crossref_primary_10_1002_admi_202300135 crossref_primary_10_1038_s41563_019_0321_8 crossref_primary_10_1007_s12598_021_01758_5 crossref_primary_10_1002_pssa_202300180 crossref_primary_10_1016_j_apsusc_2023_158175 crossref_primary_10_1021_acs_chemmater_9b02157 crossref_primary_10_1038_s41928_021_00685_8 crossref_primary_10_1080_21663831_2022_2145921 crossref_primary_10_1103_PhysRevB_111_045416 crossref_primary_10_1021_acs_nanolett_7b02621 crossref_primary_10_1021_acs_jpclett_0c03414 crossref_primary_10_1016_j_physe_2020_114383 crossref_primary_10_1021_acsami_9b00390 crossref_primary_10_1016_j_cclet_2017_09_022 crossref_primary_10_1016_j_cplett_2017_11_044 crossref_primary_10_1021_acsaelm_3c00671 crossref_primary_10_1021_acs_jpclett_2c00329 crossref_primary_10_1039_C6CP01967F crossref_primary_10_1002_adfm_202314439 crossref_primary_10_1021_acsami_9b01486 crossref_primary_10_1039_C9CC01577A crossref_primary_10_1063_5_0169961 crossref_primary_10_1039_C5NR07336G crossref_primary_10_1021_acsami_4c03379 crossref_primary_10_1021_acsami_8b09797 crossref_primary_10_1021_acs_nanolett_9b00985 crossref_primary_10_1021_acsami_6b13619 crossref_primary_10_1016_j_mtelec_2024_100132 crossref_primary_10_1016_j_scib_2020_03_031 crossref_primary_10_1039_D0RA07405E crossref_primary_10_1002_aenm_201903870 crossref_primary_10_1002_smll_202105194 crossref_primary_10_1038_s44287_024_00108_8 crossref_primary_10_1021_acsami_7b15478 crossref_primary_10_1038_srep19945 crossref_primary_10_1002_adma_202209968 crossref_primary_10_1088_2515_7639_ac1ab8 crossref_primary_10_1515_nanoph_2024_0702 crossref_primary_10_1021_acsami_1c00159 crossref_primary_10_1088_2053_1583_aafd9a crossref_primary_10_1038_s41524_020_0320_y crossref_primary_10_1016_j_matlet_2024_136175 crossref_primary_10_1021_acsami_7b08945 crossref_primary_10_1021_acs_inorgchem_1c03255 crossref_primary_10_1016_j_xinn_2024_100764 crossref_primary_10_1002_adom_202101963 crossref_primary_10_1021_acsami_9b13484 crossref_primary_10_1039_D1NR00384D crossref_primary_10_1021_acs_jpcc_4c06240 crossref_primary_10_1007_s40843_021_1782_y crossref_primary_10_1007_s12274_020_3019_y crossref_primary_10_1039_D3NA00862B crossref_primary_10_1109_TMAG_2018_2829267 crossref_primary_10_1016_j_apsusc_2020_148556 crossref_primary_10_1088_2053_1583_ab771f crossref_primary_10_1364_AO_425337 crossref_primary_10_1039_D2NR01358D crossref_primary_10_1063_5_0095013 crossref_primary_10_1103_PhysRevMaterials_4_114002 crossref_primary_10_1038_s41467_019_11342_2 crossref_primary_10_1088_2632_959X_ac3635 crossref_primary_10_1002_aelm_202300842 crossref_primary_10_1007_s12274_018_2156_z crossref_primary_10_34133_2019_4641739 crossref_primary_10_1002_andp_201900318 crossref_primary_10_1002_sstr_202000067 crossref_primary_10_1002_wcms_1441 crossref_primary_10_1021_acsnano_2c01388 crossref_primary_10_1021_acs_nanolett_2c04886 crossref_primary_10_1063_1_5096413 crossref_primary_10_1002_adma_201801729 crossref_primary_10_1021_acsnano_5b05854 crossref_primary_10_1039_C7TC02831H crossref_primary_10_1016_j_commatsci_2023_112400 crossref_primary_10_1002_cssc_202200191 crossref_primary_10_1021_acs_cgd_9b01131 crossref_primary_10_1002_adfm_201904465 crossref_primary_10_1002_aelm_201600468 crossref_primary_10_1002_smll_201601930 crossref_primary_10_1016_j_apsusc_2020_147213 crossref_primary_10_1103_PhysRevB_110_104108 crossref_primary_10_1002_smll_201503348 crossref_primary_10_1038_s41928_022_00746_6 crossref_primary_10_1016_j_apsusc_2018_07_210 crossref_primary_10_1088_1361_6528_abb8a6 crossref_primary_10_1088_2053_1583_aab80e crossref_primary_10_1088_1674_1056_ad641f crossref_primary_10_1016_j_apmt_2020_100734 crossref_primary_10_1021_acsmaterialslett_3c00507 crossref_primary_10_1021_acsnano_1c10739 crossref_primary_10_1016_j_cplett_2019_136946 crossref_primary_10_1002_adma_202304808 crossref_primary_10_1016_j_mtcomm_2020_100939 crossref_primary_10_1109_LED_2017_2752424 crossref_primary_10_1002_cssc_201702262 crossref_primary_10_1021_acs_jpcc_0c00350 crossref_primary_10_1016_j_vacuum_2021_110585 crossref_primary_10_1088_1361_6463_ac6e11 crossref_primary_10_1021_acs_chemrev_0c00620 crossref_primary_10_1109_TED_2019_2934186 crossref_primary_10_1038_s41467_021_26340_6 crossref_primary_10_1103_PhysRevLett_123_217003 crossref_primary_10_1088_1361_6641_aba287 crossref_primary_10_1103_PhysRevB_97_125401 crossref_primary_10_1002_adfm_201604093 crossref_primary_10_1109_TED_2022_3208804 crossref_primary_10_1021_acs_jpclett_2c00367 crossref_primary_10_1016_j_jallcom_2022_164898 crossref_primary_10_1063_5_0248810 crossref_primary_10_1109_TNS_2023_3315936 crossref_primary_10_3390_nano14121009 crossref_primary_10_1016_j_micrna_2022_207205 crossref_primary_10_1038_s41699_019_0107_5 crossref_primary_10_1039_C8CS00664D crossref_primary_10_1039_C5CS00517E crossref_primary_10_1007_s11664_016_5060_x crossref_primary_10_1007_s12274_018_2089_6 crossref_primary_10_1038_s41467_022_31886_0 crossref_primary_10_1021_acsami_7b14189 crossref_primary_10_1021_acs_jpclett_0c03608 crossref_primary_10_1364_OME_435902 crossref_primary_10_1016_j_sna_2023_114817 crossref_primary_10_1038_s41467_024_46170_6 crossref_primary_10_1039_D2RA07363C crossref_primary_10_1039_C8CP03052A crossref_primary_10_1002_adma_202312429 crossref_primary_10_1002_admi_201700303 crossref_primary_10_1021_acsami_9b16552 crossref_primary_10_1109_TNS_2018_2886180 crossref_primary_10_1016_j_ijhydene_2021_03_202 crossref_primary_10_1039_D4RA08374A crossref_primary_10_1088_2053_1583_aba564 crossref_primary_10_1002_cssc_202200169 crossref_primary_10_1016_j_jhazmat_2022_128953 crossref_primary_10_1021_acs_inorgchem_8b02329 crossref_primary_10_1016_j_efmat_2024_04_001 crossref_primary_10_1038_s41467_024_53481_1 crossref_primary_10_1093_oxfmat_itab012 crossref_primary_10_1016_j_ijhydene_2023_07_220 crossref_primary_10_1063_5_0008850 crossref_primary_10_1103_PhysRevB_95_245435 crossref_primary_10_1016_j_apmt_2022_101379 crossref_primary_10_1016_j_mtnano_2024_100565 crossref_primary_10_1021_acsaem_1c00252 crossref_primary_10_1088_2632_959X_ac87c2 crossref_primary_10_1103_PhysRevB_97_075106 crossref_primary_10_1021_acs_jpclett_2c02768 crossref_primary_10_1021_acs_jpcc_0c04922 crossref_primary_10_1039_D0CP01193B crossref_primary_10_1002_smll_202400737 crossref_primary_10_1016_j_physe_2019_113783 crossref_primary_10_1002_adma_202205381 crossref_primary_10_1002_aelm_202101161 crossref_primary_10_1021_acsphotonics_2c00942 crossref_primary_10_1021_acsami_8b13620 crossref_primary_10_1038_s41467_020_14753_8 crossref_primary_10_1021_acsami_4c04495 crossref_primary_10_1103_PhysRevB_98_075417 crossref_primary_10_1007_s12541_019_00207_9 crossref_primary_10_1021_acsami_0c06489 crossref_primary_10_1063_1_4961441 crossref_primary_10_1021_acs_jpcc_9b01485 crossref_primary_10_1038_s41467_019_08468_8 crossref_primary_10_1016_j_mseb_2021_115047 crossref_primary_10_1021_acsmaterialsau_1c00006 crossref_primary_10_1002_adma_201606434 crossref_primary_10_1002_ange_201508828 crossref_primary_10_1002_celc_202001190 crossref_primary_10_1021_acs_chemrev_3c00147 crossref_primary_10_1016_j_apsusc_2020_145412 crossref_primary_10_1103_PhysRevB_97_155412 crossref_primary_10_1016_j_matchemphys_2020_123588 crossref_primary_10_1038_s41467_020_19247_1 crossref_primary_10_1016_j_apsusc_2021_151377 crossref_primary_10_1063_1_5034460 crossref_primary_10_1002_adfm_202410402 crossref_primary_10_1021_acsnano_9b07763 crossref_primary_10_1016_j_matchemphys_2024_129444 crossref_primary_10_1038_s41578_019_0136_x crossref_primary_10_1088_1361_6528_ad134b crossref_primary_10_1021_acs_jpcc_0c01477 crossref_primary_10_1103_PhysRevB_99_195415 crossref_primary_10_1039_C7NH00137A crossref_primary_10_1002_pssb_202100214 crossref_primary_10_1016_j_finel_2023_103919 crossref_primary_10_12677_JAPC_2023_123022 crossref_primary_10_1103_PhysRevB_103_014106 crossref_primary_10_1021_acs_chemmater_8b00173 crossref_primary_10_1002_cphc_201601143 crossref_primary_10_1021_acsnano_0c08668 crossref_primary_10_1007_s12274_022_4449_5 crossref_primary_10_3390_ma16237372 crossref_primary_10_1103_PhysRevB_106_L081401 crossref_primary_10_1088_1674_1056_26_3_036803 crossref_primary_10_1002_adma_201604230 crossref_primary_10_1088_2053_1583_ad3135 crossref_primary_10_1021_acs_nanolett_7b04426 crossref_primary_10_1088_2053_1583_aa91a7 crossref_primary_10_1016_j_jallcom_2016_12_238 crossref_primary_10_1021_acsomega_7b00734 crossref_primary_10_1088_2053_1591_ac021d crossref_primary_10_1016_j_apcatb_2023_123174 crossref_primary_10_1039_D1NR06285A crossref_primary_10_1088_1361_648X_ac4dbf crossref_primary_10_1016_j_scitotenv_2024_171937 crossref_primary_10_1007_s00339_025_08360_x crossref_primary_10_1021_acs_jpcc_1c03605 crossref_primary_10_1088_2053_1583_ac0297 crossref_primary_10_7567_JJAP_57_125202 crossref_primary_10_1021_acs_nanolett_6b02263 crossref_primary_10_1039_C9TC05337A crossref_primary_10_1021_acs_jpcc_1c01667 crossref_primary_10_1073_pnas_2007495117 crossref_primary_10_1038_s41467_019_11751_3 crossref_primary_10_1063_5_0189378 crossref_primary_10_1016_j_mtchem_2024_102077 crossref_primary_10_1088_1402_4896_acaa0e crossref_primary_10_1364_AO_58_008390 crossref_primary_10_1039_C8TA06783J crossref_primary_10_1016_j_mser_2025_100946 crossref_primary_10_1039_D0NR01339K crossref_primary_10_1039_D4RA03362K crossref_primary_10_1038_srep21601 crossref_primary_10_1186_s40580_017_0112_3 crossref_primary_10_1039_D0CP01239D crossref_primary_10_1002_aelm_202200480 crossref_primary_10_1021_acs_jpclett_2c02796 crossref_primary_10_1103_PhysRevResearch_2_012029 crossref_primary_10_1021_acsanm_4c01561 crossref_primary_10_1021_acs_cgd_1c00688 crossref_primary_10_1038_srep29726 crossref_primary_10_3390_nano13020229 crossref_primary_10_1088_1361_6528_ac4879 crossref_primary_10_1002_ntls_20220059 crossref_primary_10_1016_j_mtadv_2024_100488 crossref_primary_10_1103_PhysRevLett_119_077402 crossref_primary_10_1016_j_fuproc_2024_108130 crossref_primary_10_1016_j_apsusc_2019_05_311 crossref_primary_10_1016_j_comptc_2023_114102 crossref_primary_10_1021_acs_jpcc_9b04128 crossref_primary_10_1021_acsnano_3c07752 crossref_primary_10_1021_jacs_4c11075 crossref_primary_10_1088_1361_6528_aac27d crossref_primary_10_1088_1361_6528_ac1d79 crossref_primary_10_1515_nanoph_2018_0041 crossref_primary_10_1021_acs_jpcc_6b10812 crossref_primary_10_1021_acsami_9b14502 crossref_primary_10_3390_surfaces6040025 crossref_primary_10_1021_acs_jpcc_9b03277 crossref_primary_10_1021_acsnano_0c08835 crossref_primary_10_1021_acs_nanolett_9b05323 crossref_primary_10_1103_PhysRevB_107_075419 crossref_primary_10_1002_anie_202422953 crossref_primary_10_1007_s43207_020_00103_3 crossref_primary_10_1021_acsnano_8b07595 crossref_primary_10_1021_acsnano_0c07982 crossref_primary_10_1007_s11051_024_06144_7 crossref_primary_10_1021_acsomega_7b01619 crossref_primary_10_1021_acs_nanolett_3c01779 crossref_primary_10_1021_acs_jpcc_6b03284 crossref_primary_10_1021_acs_jpclett_4c01263 crossref_primary_10_1039_C8CS00159F crossref_primary_10_1016_j_pmatsci_2022_100921 crossref_primary_10_1021_acsnano_5b07388 crossref_primary_10_1039_C6RA26264C crossref_primary_10_1016_j_vacuum_2019_03_020 crossref_primary_10_1021_acsnano_5b00554 crossref_primary_10_1038_s41467_023_37500_1 crossref_primary_10_1002_adom_202101561 crossref_primary_10_1063_1_5045531 crossref_primary_10_1103_PhysRevB_107_075429 crossref_primary_10_1021_acs_nanolett_9b03596 crossref_primary_10_1103_PhysRevLett_121_167402 crossref_primary_10_7498_aps_66_217303 crossref_primary_10_1007_s12274_021_3710_7 crossref_primary_10_1016_j_mtphys_2020_100225 crossref_primary_10_1063_5_0157597 crossref_primary_10_1021_acsanm_3c00045 crossref_primary_10_1088_1361_6463_ad5f3e crossref_primary_10_1016_j_scib_2019_05_021 crossref_primary_10_1038_s41699_022_00306_8 crossref_primary_10_1021_acs_jpcc_2c05815 crossref_primary_10_1016_j_apsusc_2022_154783 crossref_primary_10_1016_j_fuel_2021_121547 crossref_primary_10_1039_D3NR01839C crossref_primary_10_1016_j_cej_2021_130433 crossref_primary_10_1021_acsami_7b01262 crossref_primary_10_1038_s41598_017_03594_z crossref_primary_10_1021_acs_jpclett_0c01056 crossref_primary_10_1063_1_5057723 crossref_primary_10_1364_OE_25_014565 crossref_primary_10_1039_C8CS00024G crossref_primary_10_1021_acsnano_6b07159 crossref_primary_10_1063_1_4964797 crossref_primary_10_1021_acsami_0c09358 crossref_primary_10_1039_C7NR07522G crossref_primary_10_1039_C7CP00544J crossref_primary_10_3390_ma14205979 crossref_primary_10_1103_PhysRevB_94_195425 crossref_primary_10_1021_acsami_9b19561 crossref_primary_10_1088_1402_4896_adb4ac crossref_primary_10_1002_smll_202102461 crossref_primary_10_1002_smll_202311635 crossref_primary_10_1002_admi_202400305 crossref_primary_10_1016_j_physb_2017_07_026 crossref_primary_10_1016_j_compstruct_2023_117451 crossref_primary_10_1088_1361_6528_aa52e4 crossref_primary_10_1016_j_apsusc_2019_06_049 crossref_primary_10_1039_C8NR02134A crossref_primary_10_1007_s00542_024_05683_2 crossref_primary_10_1088_1361_648X_ad7568 crossref_primary_10_1016_j_nantod_2017_07_001 crossref_primary_10_1063_1_4946840 crossref_primary_10_1016_j_mtcomm_2024_110491 crossref_primary_10_1021_acsanm_3c02076 crossref_primary_10_1149_2162_8777_ab8363 crossref_primary_10_1557_jmr_2019_404 crossref_primary_10_1021_acsaelm_0c00277 crossref_primary_10_1021_acsnano_3c10393 crossref_primary_10_5802_crphys_72 crossref_primary_10_1002_smll_201902612 crossref_primary_10_1021_acs_jpcc_0c02042 crossref_primary_10_1016_j_cej_2022_135757 crossref_primary_10_1016_j_coco_2025_102373 crossref_primary_10_1038_s41557_018_0136_2 crossref_primary_10_1021_acsnano_3c10389 crossref_primary_10_1039_D3TA03020B crossref_primary_10_1088_1361_6528_aa5aab crossref_primary_10_1021_acs_chemrev_2c00455 crossref_primary_10_1021_acs_jpcc_1c01612 crossref_primary_10_1021_acsami_6b03242 crossref_primary_10_1002_adma_202004129 crossref_primary_10_1016_j_eml_2020_100946 crossref_primary_10_1073_pnas_2004106117 crossref_primary_10_1021_acsami_9b17160 crossref_primary_10_1021_acsnano_4c17660 crossref_primary_10_1016_j_jpcs_2019_03_028 crossref_primary_10_1088_1361_6528_abeeb2 crossref_primary_10_1109_JSTQE_2017_2757145 crossref_primary_10_1038_s41699_022_00286_9 crossref_primary_10_1039_D1CP02976B crossref_primary_10_1021_acsnano_3c02758 crossref_primary_10_1007_s12274_016_1232_5 crossref_primary_10_1063_5_0048505 crossref_primary_10_1002_adma_201505597 crossref_primary_10_1021_acsami_6b15239 crossref_primary_10_1021_acs_nanolett_1c02458 crossref_primary_10_1021_acsnano_9b04312 crossref_primary_10_1088_1361_6528_acb947 crossref_primary_10_1103_PhysRevB_92_121401 crossref_primary_10_1016_j_apsusc_2017_03_281 crossref_primary_10_1016_j_cclet_2024_110379 crossref_primary_10_1021_acs_jpcc_1c08239 crossref_primary_10_1021_acs_iecr_1c01311 crossref_primary_10_1088_1361_6528_acf29b crossref_primary_10_1002_anie_201508828 crossref_primary_10_1021_acs_jpcc_0c04203 crossref_primary_10_1021_acs_jpcc_5b06811 crossref_primary_10_1063_5_0195116 crossref_primary_10_1039_D2QM01166B crossref_primary_10_1039_C5NR06293D crossref_primary_10_1002_adfm_201903929 crossref_primary_10_1039_D2NA00636G crossref_primary_10_1021_acsnano_7b08831 crossref_primary_10_1021_jacs_6b04926 crossref_primary_10_1021_acsami_8b14227 crossref_primary_10_1088_1361_6463_aa5c6a crossref_primary_10_1039_D3NA01148H crossref_primary_10_1002_adma_201804559 crossref_primary_10_1088_1361_6528_aab5fc crossref_primary_10_1021_acs_jpcc_2c03201 crossref_primary_10_3390_ma14247590 crossref_primary_10_1021_acsnano_0c06148 crossref_primary_10_1016_j_ceramint_2020_12_296 crossref_primary_10_1016_j_jmmm_2023_170683 crossref_primary_10_1002_advs_202409855 crossref_primary_10_1038_s41524_018_0145_0 crossref_primary_10_1063_5_0197944 crossref_primary_10_1103_PhysRevB_101_205302 crossref_primary_10_1126_sciadv_1602813 crossref_primary_10_1002_pssb_201600645 crossref_primary_10_1016_j_commatsci_2019_109201 crossref_primary_10_1016_j_matt_2022_06_014 crossref_primary_10_1021_acsnano_6b05958 crossref_primary_10_1039_C6NR01569G crossref_primary_10_1016_j_matpr_2021_01_016 crossref_primary_10_1021_acsnano_3c02103 crossref_primary_10_1002_adma_202206828 crossref_primary_10_1088_1361_6528_acd1f5 crossref_primary_10_1016_j_nanoen_2017_09_017 crossref_primary_10_1016_j_commatsci_2019_02_043 crossref_primary_10_1021_acsami_9b21436 crossref_primary_10_1515_nanoph_2020_0331 crossref_primary_10_1021_acsnano_0c10897 crossref_primary_10_1103_PhysRevMaterials_5_084001 crossref_primary_10_1088_1674_1056_ad498b crossref_primary_10_1021_acsnano_4c07212 crossref_primary_10_1103_PhysRevB_97_115307 crossref_primary_10_1016_j_mseb_2024_117673 crossref_primary_10_1016_j_carbon_2019_06_009 crossref_primary_10_1021_acsami_1c18797 crossref_primary_10_1021_acs_jpcc_4c05982 crossref_primary_10_1016_j_nanoen_2021_105898 crossref_primary_10_1016_j_renene_2024_121814 crossref_primary_10_1039_D0TC04715E crossref_primary_10_1021_acs_jpclett_1c00322 crossref_primary_10_1021_acsnano_8b01646 crossref_primary_10_1021_acsanm_1c04151 crossref_primary_10_1007_s40242_020_0185_0 crossref_primary_10_1088_1361_6633_abf1d4 crossref_primary_10_1103_PhysRevMaterials_4_014004 crossref_primary_10_1002_smll_202310562 crossref_primary_10_1038_s41565_024_01704_3 crossref_primary_10_1016_j_apsusc_2017_10_204 crossref_primary_10_1007_s10853_025_10679_y crossref_primary_10_1021_acsnano_8b08079 crossref_primary_10_1103_PhysRevMaterials_9_014001 crossref_primary_10_1016_j_jallcom_2022_168663 crossref_primary_10_1039_C7NR01712J crossref_primary_10_1007_s12274_017_1682_4 crossref_primary_10_1557_mrs_2018_7 crossref_primary_10_1002_adfm_202005045 crossref_primary_10_1021_acsnano_2c12900 crossref_primary_10_1088_1361_648X_abeff9 crossref_primary_10_1021_acsnano_5b05250 crossref_primary_10_1016_j_apsusc_2018_03_165 crossref_primary_10_1002_adma_202211157 crossref_primary_10_1021_acsnano_8b04945 crossref_primary_10_1021_acs_nanolett_3c03681 crossref_primary_10_1103_PhysRevB_100_235303 crossref_primary_10_1116_6_0003845 crossref_primary_10_1039_D0NA00147C crossref_primary_10_1039_D0TA08802A crossref_primary_10_1002_adma_202109894 crossref_primary_10_1103_PhysRevB_109_195430 crossref_primary_10_1016_j_mtphys_2020_100294 crossref_primary_10_3390_app14031205 crossref_primary_10_1038_s41578_023_00609_2 crossref_primary_10_1007_s11249_021_01453_7 crossref_primary_10_1021_acs_chemrev_3c00937 crossref_primary_10_1021_acs_jpclett_1c00112 crossref_primary_10_1002_admi_202100428 crossref_primary_10_3390_cryst14060551 crossref_primary_10_1038_s41598_019_39970_0 crossref_primary_10_1021_acsnano_7b03186 crossref_primary_10_1016_j_scib_2019_02_011 crossref_primary_10_3390_ma13061307 crossref_primary_10_1016_j_watres_2021_117708 crossref_primary_10_1021_acsaelm_4c00609 crossref_primary_10_1103_PhysRevB_93_195301 crossref_primary_10_1002_adfm_202213348 crossref_primary_10_1002_apxr_202300009 crossref_primary_10_3390_nano14242043 crossref_primary_10_1002_adfm_201704177 crossref_primary_10_1016_j_physe_2018_11_011 crossref_primary_10_1002_smll_201801771 crossref_primary_10_1063_5_0021093 crossref_primary_10_1039_C8RA00635K crossref_primary_10_1016_j_apcatb_2018_05_080 crossref_primary_10_1038_s41467_017_00427_5 crossref_primary_10_1016_j_physb_2018_11_005 crossref_primary_10_1007_s11082_023_04973_9 crossref_primary_10_1103_PhysRevB_95_165447 crossref_primary_10_1016_j_cap_2024_11_013 crossref_primary_10_1088_0953_8984_29_1_015003 crossref_primary_10_1016_j_ensm_2024_103442 crossref_primary_10_1088_2516_1075_ace86c crossref_primary_10_1002_adma_201904306 crossref_primary_10_1038_srep24920 crossref_primary_10_1038_s41467_019_09219_5 crossref_primary_10_1002_smll_202403225 crossref_primary_10_1039_D0TA03943H crossref_primary_10_1002_admi_201800641 crossref_primary_10_1021_acsami_1c18991 crossref_primary_10_1038_s41598_017_09739_4 crossref_primary_10_1002_aelm_202100644 crossref_primary_10_1039_D0CP06502A crossref_primary_10_1039_D2SD00208F crossref_primary_10_1126_sciadv_abo4021 crossref_primary_10_1002_adma_201907818 crossref_primary_10_1002_adfm_201900040 crossref_primary_10_1021_acs_jpcc_5b09034 crossref_primary_10_1021_acs_nanolett_4c01040 crossref_primary_10_1002_ange_202316306 crossref_primary_10_1088_0256_307X_40_5_058503 crossref_primary_10_1002_adma_202403583 crossref_primary_10_1039_C7NR05385A crossref_primary_10_1103_PhysRevB_97_201414 crossref_primary_10_1088_2053_1583_aca7d4 crossref_primary_10_1016_j_physe_2024_116148 crossref_primary_10_1002_adom_202302229 crossref_primary_10_1007_s12274_022_5203_8 crossref_primary_10_1186_s11671_017_2008_x crossref_primary_10_1002_admt_202201993 crossref_primary_10_1002_adfm_202108174 crossref_primary_10_1021_acsaem_2c02921 crossref_primary_10_1038_s41699_020_00196_8 crossref_primary_10_1039_C9TA10050D crossref_primary_10_1016_j_matchemphys_2022_126051 crossref_primary_10_1039_D0TA02549F crossref_primary_10_1038_s41545_023_00228_y crossref_primary_10_1021_acsphotonics_8b00645 crossref_primary_10_1002_adfm_201707433 crossref_primary_10_1002_cctc_201900341 crossref_primary_10_1016_j_desal_2018_08_024 crossref_primary_10_1002_pssr_201600210 crossref_primary_10_1021_acs_inorgchem_9b01930 crossref_primary_10_1038_s43246_024_00632_y crossref_primary_10_1126_sciadv_1701186 crossref_primary_10_1021_acsenergylett_8b01922 crossref_primary_10_1080_09500340_2020_1733691 crossref_primary_10_1016_j_apmate_2024_100180 crossref_primary_10_1109_JSEN_2024_3422972 crossref_primary_10_3390_molecules28031059 crossref_primary_10_1063_5_0061556 crossref_primary_10_1021_acsami_3c17934 crossref_primary_10_1021_acs_jpcc_9b05921 crossref_primary_10_1039_D1CP02313F crossref_primary_10_1016_j_jcis_2023_04_157 crossref_primary_10_1038_s41535_017_0018_7 crossref_primary_10_1103_PhysRevLett_123_076801 crossref_primary_10_1364_OE_23_027509 crossref_primary_10_1103_PhysRevMaterials_2_084002 crossref_primary_10_1109_TED_2020_3009083 crossref_primary_10_1021_acsami_3c14421 crossref_primary_10_1515_nanoph_2019_0574 crossref_primary_10_1002_pssb_201900541 crossref_primary_10_1039_D1CP01242H crossref_primary_10_1002_adfm_202110428 crossref_primary_10_3390_nano10071389 crossref_primary_10_1038_s41699_019_0093_7 crossref_primary_10_1360_TB_2024_0230 crossref_primary_10_1002_adfm_201904668 crossref_primary_10_1038_s41467_017_02297_3 crossref_primary_10_1007_s12274_023_6104_1 crossref_primary_10_1021_acsnano_1c08375 crossref_primary_10_1016_j_apsusc_2021_149545 crossref_primary_10_1007_s12274_020_3035_y crossref_primary_10_1002_adfm_201907945 crossref_primary_10_1007_s10853_020_04803_3 crossref_primary_10_3390_nano14050410 crossref_primary_10_1063_1_4993639 crossref_primary_10_1021_acsnano_9b03645 crossref_primary_10_1039_C9NR10144F crossref_primary_10_3390_nano9101363 crossref_primary_10_1016_j_electacta_2022_141130 crossref_primary_10_3103_S0027134924700668 crossref_primary_10_1002_jccs_201900001 crossref_primary_10_1039_C7CP06593K crossref_primary_10_1088_2053_1583_aa8d42 crossref_primary_10_1021_acsnano_0c03940 crossref_primary_10_1088_2053_1583_ab33ab crossref_primary_10_1063_5_0223490 crossref_primary_10_1021_acs_jpcc_3c08500 crossref_primary_10_1038_s41467_022_35278_2 crossref_primary_10_1021_acs_jpcc_0c00733 crossref_primary_10_1021_acsnano_2c06062 crossref_primary_10_1016_j_jmmm_2021_168863 crossref_primary_10_1002_aelm_202300635 crossref_primary_10_1039_C7CP03062B crossref_primary_10_1103_PhysRevB_95_214105 crossref_primary_10_1088_1674_1056_ac6738 crossref_primary_10_1103_PhysRevLett_119_046101 crossref_primary_10_1116_1_5043621 crossref_primary_10_1016_j_chemphys_2016_01_009 crossref_primary_10_1021_acsanm_3c06263 crossref_primary_10_1002_aelm_201800591 crossref_primary_10_1016_j_ijhydene_2022_05_050 crossref_primary_10_1016_j_heliyon_2025_e42443 crossref_primary_10_1016_j_jechem_2022_06_031 crossref_primary_10_1016_j_jhazmat_2023_133195 crossref_primary_10_1088_2053_1583_aaf1d4 crossref_primary_10_1021_acs_jpcc_8b02991 crossref_primary_10_3788_AOS240849 crossref_primary_10_1016_j_isci_2021_103456 crossref_primary_10_1021_acs_nanolett_1c04275 crossref_primary_10_1088_1674_4926_24090027 crossref_primary_10_1088_1674_1056_abfa05 crossref_primary_10_1016_j_commatsci_2016_04_036 crossref_primary_10_1016_j_mser_2021_100627 crossref_primary_10_1103_PhysRevB_101_224438 crossref_primary_10_1103_PhysRevMaterials_2_094003 crossref_primary_10_1017_S1431927621005912 crossref_primary_10_1021_acsnano_4c08366 crossref_primary_10_1021_acsnano_7b07933 crossref_primary_10_1073_pnas_2403497121 crossref_primary_10_1209_0295_5075_129_47003 crossref_primary_10_1038_s41598_025_88290_z crossref_primary_10_1039_D1CP00156F crossref_primary_10_1016_j_colsurfa_2017_12_060 crossref_primary_10_1088_2053_1583_aa9642 crossref_primary_10_1021_jacs_9b00047 crossref_primary_10_1088_1361_6528_aac853 crossref_primary_10_1002_adfm_201902483 crossref_primary_10_1021_acs_jpcc_6b11239 crossref_primary_10_1039_D1NR01483H crossref_primary_10_1021_acsnano_0c06745 crossref_primary_10_1002_cssc_202100457 crossref_primary_10_1016_j_matdes_2021_110006 crossref_primary_10_1002_adma_201900237 crossref_primary_10_1016_j_coelec_2022_101008 crossref_primary_10_1016_j_mtphys_2020_100324 crossref_primary_10_1103_PhysRevB_96_241411 crossref_primary_10_1021_acsnano_6b05240 crossref_primary_10_1039_D1CS01016F crossref_primary_10_1088_1674_1056_aba606 crossref_primary_10_1038_s43246_021_00185_4 crossref_primary_10_1088_0022_3727_48_37_375502 crossref_primary_10_1007_s11705_019_1805_4 crossref_primary_10_1088_2053_1583_aa9ea5 crossref_primary_10_1021_acsnano_9b09684 crossref_primary_10_3390_nano12193451 crossref_primary_10_1021_acs_jpcc_1c06632 crossref_primary_10_1002_advs_202000788 crossref_primary_10_1038_s41467_023_43689_y crossref_primary_10_1038_s41598_018_24913_y crossref_primary_10_1016_j_apsusc_2019_03_188 crossref_primary_10_3389_fchem_2019_00442 crossref_primary_10_1002_eem2_12171 crossref_primary_10_1038_s44160_024_00501_z crossref_primary_10_1002_adfm_202108440 crossref_primary_10_1557_mrs_2017_184 crossref_primary_10_1039_C9NR08390A crossref_primary_10_1021_acs_jpcc_9b03120 crossref_primary_10_1016_j_sna_2025_116236 crossref_primary_10_1021_acsami_4c14152 crossref_primary_10_1088_0957_4484_27_18_185701 crossref_primary_10_1016_j_isci_2023_107982 crossref_primary_10_1088_1674_4926_39_10_104002 crossref_primary_10_1016_j_apcata_2023_119304 crossref_primary_10_1021_acs_chemrev_6b00558 crossref_primary_10_1021_jacs_1c07795 crossref_primary_10_1038_s41598_018_34209_w crossref_primary_10_1088_1361_6463_ac6f98 crossref_primary_10_1063_1_4935028 crossref_primary_10_1039_D3NR01978K crossref_primary_10_1002_pssr_201700371 crossref_primary_10_1007_s11432_024_4033_8 crossref_primary_10_1021_acsaom_4c00276 crossref_primary_10_1007_s12274_017_1601_8 crossref_primary_10_1038_s41598_024_78229_1 crossref_primary_10_1021_acs_nanolett_4c02787 crossref_primary_10_1021_acsami_9b05507 crossref_primary_10_1021_jacs_5c00033 crossref_primary_10_1002_advs_201600033 crossref_primary_10_1039_C6RA01836J crossref_primary_10_1088_1361_6463_aa61d9 crossref_primary_10_1063_1_4962209 crossref_primary_10_1002_adfm_202414062 crossref_primary_10_1038_srep18712 crossref_primary_10_1038_s41699_022_00334_4 crossref_primary_10_1021_acs_jpcc_3c06820 crossref_primary_10_1038_s41563_018_0134_1 crossref_primary_10_1002_inf2_12002 crossref_primary_10_1088_1361_6641_ab9d34 crossref_primary_10_1149_2_0101611jss crossref_primary_10_1002_smtd_202500038 crossref_primary_10_1016_j_sna_2022_113573 crossref_primary_10_1021_acsnano_5b01301 crossref_primary_10_1007_s12274_021_3500_2 crossref_primary_10_1021_acsami_8b01506 crossref_primary_10_1088_2053_1583_ab7628 crossref_primary_10_1039_C9QM00060G crossref_primary_10_1021_acsanm_1c00122 crossref_primary_10_1021_acsnano_3c05056 crossref_primary_10_1021_acs_jpclett_3c02093 crossref_primary_10_1016_j_isci_2022_105098 crossref_primary_10_1063_5_0167225 crossref_primary_10_1021_acs_jpcc_6b07917 crossref_primary_10_1021_acsami_4c18552 crossref_primary_10_1021_acs_est_1c08534 crossref_primary_10_1021_acsphotonics_1c01584 crossref_primary_10_1088_2053_1583_ab6781 crossref_primary_10_1039_D2SC01398C crossref_primary_10_1002_adma_201606760 crossref_primary_10_1038_s41377_022_00814_8 crossref_primary_10_1039_C8RA07205A crossref_primary_10_1021_acsnano_0c03665 crossref_primary_10_1007_s10854_018_9551_9 crossref_primary_10_1007_s10948_016_3626_8 crossref_primary_10_1002_inf2_12026 crossref_primary_10_1103_PhysRevB_102_094206 crossref_primary_10_1039_D3NR00207A crossref_primary_10_1038_s41598_017_16970_6 crossref_primary_10_1002_smll_202300098 crossref_primary_10_1021_acs_nanolett_6b05045 crossref_primary_10_1016_j_comptc_2020_113089 crossref_primary_10_1016_j_physe_2020_114292 crossref_primary_10_1038_s41427_018_0078_6 crossref_primary_10_1021_acsanm_4c06999 crossref_primary_10_1088_0957_4484_27_10_105702 crossref_primary_10_1103_PhysRevB_101_085425 crossref_primary_10_3390_bios12111048 crossref_primary_10_1038_s41467_020_16111_0 crossref_primary_10_1039_C8TC00507A crossref_primary_10_3390_app13010304 crossref_primary_10_1002_smll_201604298 crossref_primary_10_1016_j_cclet_2022_05_003 crossref_primary_10_1126_sciadv_abd9061 crossref_primary_10_1038_ncomms10426 crossref_primary_10_1039_D2CS00205A crossref_primary_10_1016_j_scib_2023_08_014 crossref_primary_10_1021_acs_jpcc_0c08170 crossref_primary_10_1038_s41524_019_0161_8 crossref_primary_10_1002_jrs_5476 crossref_primary_10_1002_wcms_1361 crossref_primary_10_1002_admi_202200754 crossref_primary_10_1063_1_5094153 crossref_primary_10_1021_acsnano_4c14988 crossref_primary_10_1021_acsnano_4c12342 crossref_primary_10_1186_s11671_019_3110_z crossref_primary_10_1016_j_apsusc_2023_158244 crossref_primary_10_1088_1361_648X_aab113 crossref_primary_10_1016_j_apsusc_2024_159630 crossref_primary_10_1021_acsaelm_0c00533 crossref_primary_10_1016_j_apsusc_2018_08_166 crossref_primary_10_1063_5_0096441 crossref_primary_10_1088_1361_6463_aaccc8 crossref_primary_10_1039_C9MH01365B crossref_primary_10_1088_2053_1583_ada045 crossref_primary_10_1021_acs_jpcc_6b05998 crossref_primary_10_1021_acs_langmuir_4c02324 crossref_primary_10_1016_j_cej_2024_153463 crossref_primary_10_1038_s41467_022_28628_7 crossref_primary_10_1088_1361_6528_ad0126 crossref_primary_10_1063_1_5096584 crossref_primary_10_3938_jkps_76_93 crossref_primary_10_1021_acsnano_2c04503 crossref_primary_10_1021_acs_nanolett_2c04795 crossref_primary_10_1016_j_apmt_2020_100812 crossref_primary_10_1088_1555_6611_aab24f crossref_primary_10_1002_celc_202400328 crossref_primary_10_1021_acs_chemrev_8b00311 crossref_primary_10_1038_s41699_021_00263_8 crossref_primary_10_1016_j_apsusc_2024_161104 crossref_primary_10_1021_acsnano_3c11099 crossref_primary_10_1088_1361_648X_aa5212 crossref_primary_10_1021_acsnano_7b08566 crossref_primary_10_1016_j_mtnano_2023_100382 crossref_primary_10_1039_D1RA06010D crossref_primary_10_3390_cryst8020070 crossref_primary_10_1002_adfm_202307625 crossref_primary_10_1038_s41467_019_12200_x crossref_primary_10_1039_D0TA08679G crossref_primary_10_1016_j_jsg_2019_04_010 crossref_primary_10_1021_acsami_4c08549 crossref_primary_10_1038_s41699_017_0019_1 crossref_primary_10_1021_acs_chemrev_2c00048 crossref_primary_10_1021_acs_jpclett_3c00032 crossref_primary_10_1088_2053_1583_ab2d00 crossref_primary_10_1016_j_cej_2020_127028 crossref_primary_10_1002_adts_202100182 crossref_primary_10_1021_acs_jpclett_2c03796 crossref_primary_10_1063_1_4941551 crossref_primary_10_1016_j_pnsc_2024_02_016 crossref_primary_10_1021_acs_jpcc_7b03106 crossref_primary_10_1103_PhysRevB_108_075436 crossref_primary_10_1088_2053_1591_abdc3a crossref_primary_10_1016_j_apsusc_2024_161598 crossref_primary_10_1021_acs_jpcc_7b03585 crossref_primary_10_1016_j_molliq_2021_115733 crossref_primary_10_1021_acsnano_4c01033 crossref_primary_10_1103_PhysRevB_97_075414 crossref_primary_10_1002_smll_201602967 crossref_primary_10_1002_adma_202312348 crossref_primary_10_1039_C8CS00236C crossref_primary_10_1021_acs_jpclett_2c03306 crossref_primary_10_1016_j_jpcs_2023_111695 crossref_primary_10_1039_C8NR08821G crossref_primary_10_1016_j_pmatsci_2017_06_002 crossref_primary_10_1016_j_apsusc_2023_156713 crossref_primary_10_1002_adfm_202105339 crossref_primary_10_1021_acs_jpcc_1c01550 crossref_primary_10_1557_adv_2018_110 crossref_primary_10_1021_acsanm_4c06955 crossref_primary_10_1063_1_5022339 crossref_primary_10_1016_j_desal_2023_117270 crossref_primary_10_1021_acs_jpclett_3c03512 crossref_primary_10_1016_j_apsusc_2024_159287 crossref_primary_10_1103_PhysRevB_100_115409 crossref_primary_10_1103_PhysRevLett_128_176801 crossref_primary_10_1002_adma_201700396 crossref_primary_10_1016_j_apsusc_2021_150188 crossref_primary_10_1088_1361_6528_abb5d2 crossref_primary_10_1002_smll_202411307 crossref_primary_10_1149_2162_8777_ac2f61 crossref_primary_10_1021_acsnano_2c06317 crossref_primary_10_1103_PhysRevB_99_184428 crossref_primary_10_1063_1_4963133 crossref_primary_10_1021_acsanm_4c04769 crossref_primary_10_1021_acsanm_4c04529 crossref_primary_10_1063_5_0244991 crossref_primary_10_1021_acs_jpclett_4c01319 crossref_primary_10_25205_2541_9447_2023_18_4_94_103 crossref_primary_10_1016_j_cej_2016_12_025 crossref_primary_10_1088_0022_3727_49_24_245304 crossref_primary_10_1002_smsc_202100033 crossref_primary_10_1021_acs_nanolett_4c02702 crossref_primary_10_1038_s41565_020_00789_w crossref_primary_10_1016_j_jtice_2017_11_015 crossref_primary_10_1021_acsami_0c22476 crossref_primary_10_1126_science_abm5734 crossref_primary_10_1021_acs_jpcc_0c02657 crossref_primary_10_1021_acs_jpcc_6b04473 crossref_primary_10_1021_acsami_3c00824 crossref_primary_10_1039_D3NR03453D crossref_primary_10_1021_acsami_8b21391 crossref_primary_10_1021_jacsau_2c00536 crossref_primary_10_3390_app10175840 crossref_primary_10_1002_adma_201503342 crossref_primary_10_1021_acs_jpcc_2c02872 crossref_primary_10_1039_C6CP01362G crossref_primary_10_1016_j_apsusc_2017_04_249 crossref_primary_10_1063_5_0092955 crossref_primary_10_1103_PhysRevB_99_245419 crossref_primary_10_1021_acsnano_1c04331 crossref_primary_10_1016_j_fmre_2024_01_019 crossref_primary_10_1038_s41578_021_00408_7 crossref_primary_10_1021_acs_chemmater_6b01395 crossref_primary_10_1039_D1CP04069C crossref_primary_10_1093_jmicro_dfv134 crossref_primary_10_1016_j_apmt_2018_01_006 crossref_primary_10_1016_j_molliq_2021_115927 crossref_primary_10_1021_acs_jpclett_4c02221 crossref_primary_10_1016_j_nanoen_2021_105922 crossref_primary_10_1016_j_commatsci_2017_01_009 crossref_primary_10_1002_smll_201702256 crossref_primary_10_1007_s40820_017_0152_6 crossref_primary_10_3390_nano8100851 crossref_primary_10_1021_acsami_0c21597 crossref_primary_10_1109_JQE_2015_2470549 crossref_primary_10_1039_C6RA06486H crossref_primary_10_1016_j_cclet_2020_04_024 crossref_primary_10_1002_pssr_202000381 crossref_primary_10_1002_adfm_202206163 crossref_primary_10_1016_j_commatsci_2023_112740 crossref_primary_10_1002_admi_202300686 crossref_primary_10_1002_smll_202305143 crossref_primary_10_1038_s41467_022_28926_0 crossref_primary_10_1088_1361_6528_ad72fb crossref_primary_10_1088_1361_6528_aac397 crossref_primary_10_1038_s41467_021_27834_z crossref_primary_10_1088_2053_1583_ab4f1f crossref_primary_10_1016_j_apsusc_2024_159693 crossref_primary_10_1021_acsphotonics_3c00670 crossref_primary_10_1063_5_0189072 crossref_primary_10_1038_nmat4660 crossref_primary_10_1021_acssuschemeng_8b01412 crossref_primary_10_1016_j_fuel_2023_127779 crossref_primary_10_1007_s12274_016_1319_z crossref_primary_10_1103_PhysRevB_102_020402 crossref_primary_10_1016_j_carbon_2016_06_072 crossref_primary_10_1002_adfm_202304302 crossref_primary_10_1038_s41467_020_17241_1 crossref_primary_10_1016_j_mtcomm_2023_107710 crossref_primary_10_1039_C6TA07904K crossref_primary_10_1021_acs_jpcc_6b02073 crossref_primary_10_1021_acs_nanolett_1c04987 crossref_primary_10_1186_s11671_016_1377_x crossref_primary_10_1021_acsami_4c00836 crossref_primary_10_1038_s41524_024_01315_5 crossref_primary_10_1021_acsnano_2c05895 crossref_primary_10_1016_j_apsusc_2017_10_167 crossref_primary_10_1063_1_4999524 crossref_primary_10_1002_adma_202106674 crossref_primary_10_1038_s41566_024_01390_6 crossref_primary_10_1002_pssb_202400185 crossref_primary_10_1063_1_4971192 crossref_primary_10_1016_j_physe_2023_115846 crossref_primary_10_1039_D1NJ05368J crossref_primary_10_1088_2053_1583_3_3_031002 crossref_primary_10_1016_j_ijhydene_2024_10_287 crossref_primary_10_34133_adi_0022 crossref_primary_10_1021_acs_jpcc_1c04632 crossref_primary_10_1021_acs_nanolett_0c00138 crossref_primary_10_1039_C7CP00155J crossref_primary_10_1016_j_surfin_2024_104966 crossref_primary_10_1002_celc_202100790 crossref_primary_10_1007_s11433_019_9641_y crossref_primary_10_1021_acs_nanolett_0c01222 crossref_primary_10_1021_acs_nanolett_0c03884 crossref_primary_10_1021_acssuschemeng_0c00736 crossref_primary_10_1002_celc_202300614 crossref_primary_10_1021_acs_chemmater_2c01967 crossref_primary_10_1080_08927022_2016_1233549 crossref_primary_10_1021_acsnano_3c05667 crossref_primary_10_1088_1361_6528_aa87cd crossref_primary_10_1021_acsami_9b03531 crossref_primary_10_1038_srep40669 crossref_primary_10_1116_6_0000068 crossref_primary_10_1016_j_physe_2023_115860 crossref_primary_10_1016_j_jpowsour_2022_232208 crossref_primary_10_1039_C8CS00169C crossref_primary_10_1016_j_mtchem_2022_100850 crossref_primary_10_1116_1_4986195 crossref_primary_10_1149_1945_7111_adba15 crossref_primary_10_1021_acs_nanolett_2c02777 crossref_primary_10_1039_D2TC02672D |
Cites_doi | 10.1021/nl4046922 10.1021/nl4007479 10.1038/nnano.2013.31 10.1063/1.4789365 10.1021/nl204562j 10.1038/ncomms5475 10.1038/nature04233 10.1109/16.337449 10.1021/jp212558p 10.1002/pssb.200776208 10.1038/ncomms6290 10.1021/nl4010783 10.1038/nnano.2012.95 10.1038/nmat3687 10.1021/nl2043612 10.1038/ncomms1882 10.1021/nn4002038 10.1038/nnano.2013.30 10.1103/PhysRevB.85.115317 10.1103/PhysRevLett.105.136805 10.1103/PhysRevB.50.17953 10.1038/nnano.2012.96 10.1021/nl2021575 10.1103/PhysRevLett.109.035503 10.1021/nl400778q 10.1038/ncomms4087 10.1021/ja4013485 10.1038/nmat1849 10.1109/JPROC.2013.2259451 10.1103/PhysRevB.54.11169 10.1002/adma.201402008 10.1038/nmat3633 10.1021/nn401053g 10.1103/PhysRevLett.92.246401 10.1038/nmat3673 10.1021/nn202852j 10.1103/PhysRevB.82.081101 10.1002/adma.201306095 10.1002/jcc.20495 10.1038/ncomms2018 10.1126/science.1171245 10.1038/ncomms3642 10.1038/nature04235 10.1021/nl903868w 10.1038/nnano.2012.193 10.1002/adma.201104798 10.1103/PhysRevB.88.035301 10.1103/PhysRevB.83.195131 10.1038/nnano.2010.279 10.1103/PhysRevLett.77.3865 10.1021/nl401916s 10.1524/zkri.220.5.567.65075 10.1002/0470068329 10.1007/978-1-4419-7200-2 |
ContentType | Journal Article |
Copyright | The Author(s) 2015 Copyright Nature Publishing Group Feb 2015 Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2015 – notice: Copyright Nature Publishing Group Feb 2015 – notice: Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM |
DOI | 10.1038/ncomms7293 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
ExternalDocumentID | PMC4346634 3595655951 25695374 10_1038_ncomms7293 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 4.4 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABAWZ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EJD EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c508t-55d87d3ef301b9cdcd490a9f79c5173b7d33130437efcecb4eba7e6a08fca1d43 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Thu Aug 21 14:01:30 EDT 2025 Thu Jul 10 16:47:12 EDT 2025 Wed Aug 13 04:09:28 EDT 2025 Mon Jul 21 05:58:54 EDT 2025 Thu Apr 24 23:06:43 EDT 2025 Tue Jul 01 02:30:52 EDT 2025 Fri Feb 21 02:39:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-55d87d3ef301b9cdcd490a9f79c5173b7d33130437efcecb4eba7e6a08fca1d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://www.proquest.com/docview/1656056665?pq-origsite=%requestingapplication% |
PMID | 25695374 |
PQID | 1656056665 |
PQPubID | 546298 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4346634 proquest_miscellaneous_1657318087 proquest_journals_1656056665 pubmed_primary_25695374 crossref_citationtrail_10_1038_ncomms7293 crossref_primary_10_1038_ncomms7293 springer_journals_10_1038_ncomms7293 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150219 |
PublicationDateYYYYMMDD | 2015-02-19 |
PublicationDate_xml | – month: 2 year: 2015 text: 20150219 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Pub. Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Pub. Group |
References | Perdew, Burke, Ernzerhof (CR50) 1996; 77 Qiao (CR46) 2014; 5 Schmidt (CR17) 2014; 14 Lee (CR21) 2012; 24 Najmaei (CR32) 2013; 12 Mak, Lee, Hone, Shan, Heinz (CR8) 2010; 105 Li (CR34) 2013; 13 CR38 CR37 Bao, Cai, Kim, Sridhara, Fuhrer (CR44) 2013; 102 Klimes, Bowler, Michaelides (CR53) 2011; 83 Li (CR5) 2009; 324 Zhang, Tan, Stormer, Kim (CR3) 2005; 438 Wu (CR24) 2013; 7 Ghatak, Pal, Ghosh (CR33) 2011; 5 Zeng, Dai, Yao, Xiao, Cui (CR10) 2012; 7 Radisavljevic, Radenovic, Brivio, Giacometti, Kis (CR13) 2011; 6 Liu (CR29) 2013; 13 Wang, Feng, Wu, Jiao (CR20) 2013; 135 Qiu (CR30) 2013; 4 Liu (CR22) 2012; 12 CR49 Perera (CR15) 2013; 7 Takagi, Toriumi, Iwase, Tango (CR45) 1994; 41 Clark (CR41) 2005; 220 Feng (CR25) 2014; 26 Baugher, Churchill, Yang, Jarillo-Herrero (CR43) 2013; 13 Fuhrer, Hone (CR26) 2013; 8 van der Zande (CR36) 2013; 12 Grimme (CR51) 2006; 27 Zou (CR18) 2014; 26 Radisavljevic, Kis (CR19) 2013; 12 Zhang, Ye, Matsuhashi, Iwasa (CR16) 2012; 12 Zhu (CR40) 2014; 5 Dion, Rydberg, Schroder, Langreth, Lundqvist (CR54) 2004; 92 Mak, He, Shan, Heinz (CR11) 2012; 7 Lee, Murray, Kong, Lundqvist, Langreth (CR55) 2010; 82 Novoselov (CR4) 2007; 244 Shi (CR23) 2012; 12 Fiori, Iannaccone (CR47) 2013; 101 Kaasbjerg, Thygesen, Jacobsen (CR48) 2012; 85 Cao (CR12) 2012; 3 Wang, Kalantar-Zadeh, Kis, Coleman, Strano (CR6) 2012; 7 Kresse, Furthmuller (CR42) 1996; 54 Geim, Novoselov (CR2) 2007; 6 Splendiani (CR9) 2010; 10 Kim (CR14) 2012; 3 Zhou (CR35) 2013; 13 Radisavljevic, Kis (CR27) 2013; 8 Komsa, Kurasch, Lehtinen, Kaiser, Krasheninnikov (CR39) 2013; 88 Blochl (CR52) 1994; 50 Novoselov (CR1) 2005; 438 Ataca, Sahin, Ciraci (CR7) 2012; 116 Komsa (CR31) 2012; 109 Yu (CR28) 2014; 5 K-K Liu (BFncomms7293_CR22) 2012; 12 Y-H Lee (BFncomms7293_CR21) 2012; 24 Z Yu (BFncomms7293_CR28) 2014; 5 S Najmaei (BFncomms7293_CR32) 2013; 12 PE Blochl (BFncomms7293_CR52) 1994; 50 JS Qiao (BFncomms7293_CR46) 2014; 5 SJ Clark (BFncomms7293_CR41) 2005; 220 AM van der Zande (BFncomms7293_CR36) 2013; 12 A Splendiani (BFncomms7293_CR9) 2010; 10 J Klimes (BFncomms7293_CR53) 2011; 83 X Li (BFncomms7293_CR5) 2009; 324 MS Fuhrer (BFncomms7293_CR26) 2013; 8 H Zeng (BFncomms7293_CR10) 2012; 7 KS Novoselov (BFncomms7293_CR4) 2007; 244 KS Novoselov (BFncomms7293_CR1) 2005; 438 H Liu (BFncomms7293_CR29) 2013; 13 S Ghatak (BFncomms7293_CR33) 2011; 5 S-L Li (BFncomms7293_CR34) 2013; 13 HP Komsa (BFncomms7293_CR39) 2013; 88 XM Zou (BFncomms7293_CR18) 2014; 26 YJ Zhang (BFncomms7293_CR16) 2012; 12 MM Perera (BFncomms7293_CR15) 2013; 7 H Qiu (BFncomms7293_CR30) 2013; 4 H-P Komsa (BFncomms7293_CR31) 2012; 109 QH Wang (BFncomms7293_CR6) 2012; 7 WZ Bao (BFncomms7293_CR44) 2013; 102 JP Perdew (BFncomms7293_CR50) 1996; 77 Y Shi (BFncomms7293_CR23) 2012; 12 YB Zhang (BFncomms7293_CR3) 2005; 438 B Radisavljevic (BFncomms7293_CR13) 2011; 6 G Kresse (BFncomms7293_CR42) 1996; 54 B Radisavljevic (BFncomms7293_CR27) 2013; 8 W Zhu (BFncomms7293_CR40) 2014; 5 S-i Takagi (BFncomms7293_CR45) 1994; 41 C Ataca (BFncomms7293_CR7) 2012; 116 Q Feng (BFncomms7293_CR25) 2014; 26 BFncomms7293_CR38 KF Mak (BFncomms7293_CR8) 2010; 105 BFncomms7293_CR37 S Wu (BFncomms7293_CR24) 2013; 7 BWH Baugher (BFncomms7293_CR43) 2013; 13 G Fiori (BFncomms7293_CR47) 2013; 101 K Kaasbjerg (BFncomms7293_CR48) 2012; 85 M Dion (BFncomms7293_CR54) 2004; 92 T Cao (BFncomms7293_CR12) 2012; 3 KF Mak (BFncomms7293_CR11) 2012; 7 B Radisavljevic (BFncomms7293_CR19) 2013; 12 K Lee (BFncomms7293_CR55) 2010; 82 AK Geim (BFncomms7293_CR2) 2007; 6 W Zhou (BFncomms7293_CR35) 2013; 13 H Schmidt (BFncomms7293_CR17) 2014; 14 S Kim (BFncomms7293_CR14) 2012; 3 X Wang (BFncomms7293_CR20) 2013; 135 S Grimme (BFncomms7293_CR51) 2006; 27 BFncomms7293_CR49 22706698 - Nat Nanotechnol. 2012 Aug;7(8):494-8 22706701 - Nat Nanotechnol. 2012 Aug;7(8):490-3 24677312 - Adv Mater. 2014 May;26(17):2648-53, 2613 22673914 - Nat Commun. 2012;3:887 23679044 - Nano Lett. 2013 Jun 12;13(6):2640-6 21902203 - ACS Nano. 2011 Oct 25;5(10):7707-12 23793161 - Nat Mater. 2013 Sep;12(9):815-20 23132225 - Nat Nanotechnol. 2012 Nov;7(11):699-712 9976227 - Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979 24149969 - Nat Commun. 2013;4:2642 20229981 - Nano Lett. 2010 Apr 14;10(4):1271-5 23590723 - ACS Nano. 2013 May 28;7(5):4449-58 23427810 - ACS Nano. 2013 Mar 26;7(3):2768-72 22276648 - Nano Lett. 2012 Mar 14;12(3):1136-40 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 23659662 - Nano Lett. 2013 Jun 12;13(6):2615-22 23489053 - J Am Chem Soc. 2013 Apr 10;135(14):5304-7 22910357 - Nat Commun. 2012;3:1011 21278752 - Nat Nanotechnol. 2011 Mar;6(3):147-50 16281031 - Nature. 2005 Nov 10;438(7065):201-4 22861869 - Phys Rev Lett. 2012 Jul 20;109(3):035503 22642717 - Nano Lett. 2012 Jun 13;12(6):2784-91 22467187 - Adv Mater. 2012 May 2;24(17):2320-5 17330084 - Nat Mater. 2007 Mar;6(3):183-91 23862641 - Nano Lett. 2013 Aug 14;13(8):3546-52 25327957 - Nat Commun. 2014 Oct 20;5:5290 21230799 - Phys Rev Lett. 2010 Sep 24;105(13):136805 9984901 - Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 24640984 - Nano Lett. 2014;14(4):1909-13 23749265 - Nat Mater. 2013 Aug;12(8):754-9 22369470 - Nano Lett. 2012 Mar 14;12(3):1538-44 25070646 - Adv Mater. 2014 Sep;26(36):6255-61 16281030 - Nature. 2005 Nov 10;438(7065):197-200 19423775 - Science. 2009 Jun 5;324(5932):1312-4 23459545 - Nat Nanotechnol. 2013 Mar;8(3):146-7 23644523 - Nat Mater. 2013 Jun;12(6):554-61 15245113 - Phys Rev Lett. 2004 Jun 18;92(24):246401 16955487 - J Comput Chem. 2006 Nov 30;27(15):1787-99 25042376 - Nat Commun. 2014 Jul 21;5:4475 23459546 - Nat Nanotechnol. 2013 Mar;8(3):147-8 24435154 - Nat Commun. 2014;5:3087 23930826 - Nano Lett. 2013 Sep 11;13(9):4212-6 |
References_xml | – volume: 14 start-page: 1909 year: 2014 end-page: 1913 ident: CR17 article-title: Transport properties of monolayer MoS grown by chemical vapor deposition publication-title: Nano Lett. doi: 10.1021/nl4046922 – volume: 13 start-page: 2615 year: 2013 end-page: 2622 ident: CR35 article-title: Intrinsic structural defects in monolayer molybdenum disulfide publication-title: Nano Lett. doi: 10.1021/nl4007479 – ident: CR49 – volume: 8 start-page: 147 year: 2013 end-page: 148 ident: CR27 article-title: Measurement of mobility in dual-gated MoS transistors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.31 – volume: 102 start-page: 042104 year: 2013 ident: CR44 article-title: High mobility ambipolar MoS field-effect transistors: substrate and dielectric effects publication-title: Appl. Phys. Lett. doi: 10.1063/1.4789365 – volume: 12 start-page: 2784 year: 2012 end-page: 2791 ident: CR23 article-title: van der Waals epitaxy of MoS layers using graphene as growth templates publication-title: Nano Lett. doi: 10.1021/nl204562j – volume: 5 start-page: 4475 year: 2014 ident: CR46 article-title: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus publication-title: Nat. Commun. doi: 10.1038/ncomms5475 – volume: 438 start-page: 197 year: 2005 end-page: 200 ident: CR1 article-title: Two-dimensional gas of massless Dirac fermions in graphene publication-title: Nature doi: 10.1038/nature04233 – volume: 41 start-page: 2357 year: 1994 end-page: 2362 ident: CR45 article-title: On the universality of inversion layer mobility in Si MOSFET's: part I-effects of substrate impurity concentration publication-title: IEEE Trans. Electr. Dev. doi: 10.1109/16.337449 – volume: 116 start-page: 8983 year: 2012 end-page: 8999 ident: CR7 article-title: Stable single-layer MX transition-metal oxides and dichalcogenides in a honeycomb-like structure publication-title: J. Phys. Chem. C. doi: 10.1021/jp212558p – volume: 244 start-page: 4106 year: 2007 end-page: 4111 ident: CR4 article-title: Electronic properties of graphene publication-title: Phys. Stat. Sol. B doi: 10.1002/pssb.200776208 – volume: 5 start-page: 5290 year: 2014 ident: CR28 article-title: Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering publication-title: Nat. Commun. doi: 10.1038/ncomms6290 – volume: 13 start-page: 3546 year: 2013 end-page: 3552 ident: CR34 article-title: Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors publication-title: Nano Lett. doi: 10.1021/nl4010783 – volume: 7 start-page: 490 year: 2012 end-page: 493 ident: CR10 article-title: Valley polarization in MoS monolayers by optical pumping publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.95 – volume: 12 start-page: 815 year: 2013 end-page: 820 ident: CR19 article-title: Mobility engineering and a metal-insulator transition in monolayer MoS publication-title: Nat. Mater. doi: 10.1038/nmat3687 – volume: 12 start-page: 1538 year: 2012 end-page: 1544 ident: CR22 article-title: Growth of large-area and highly crystalline MoS thin layers on insulating substrates publication-title: Nano Lett. doi: 10.1021/nl2043612 – volume: 3 start-page: 887 year: 2012 ident: CR12 article-title: Valley-selective circular dichroism of monolayer molybdenum disulphide publication-title: Nat. Commun. doi: 10.1038/ncomms1882 – volume: 7 start-page: 2768 year: 2013 end-page: 2772 ident: CR24 article-title: Vapor-solid growth of high optical quality MoS monolayers with near-unity valley polarization publication-title: ACS Nano doi: 10.1021/nn4002038 – volume: 8 start-page: 146 year: 2013 end-page: 147 ident: CR26 article-title: Measurement of mobility in dual-gated MoS transistors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.30 – volume: 85 start-page: 115317 year: 2012 ident: CR48 article-title: Phonon-limited mobility in n-type single-layer MoS from first principles publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.115317 – volume: 105 start-page: 136805 year: 2010 ident: CR8 article-title: Atomically thin MoS : a new direct-gap semiconductor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR52 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 7 start-page: 494 year: 2012 end-page: 498 ident: CR11 article-title: Control of valley polarization in monolayer MoS by optical helicity publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.96 – volume: 12 start-page: 1136 year: 2012 end-page: 1140 ident: CR16 article-title: Ambipolar MoS thin flake transistors publication-title: Nano Lett. doi: 10.1021/nl2021575 – volume: 109 start-page: 035503 year: 2012 ident: CR31 article-title: Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.035503 – volume: 13 start-page: 2640 year: 2013 end-page: 2646 ident: CR29 article-title: Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films publication-title: Nano Lett. doi: 10.1021/nl400778q – volume: 5 start-page: 3087 year: 2014 ident: CR40 article-title: Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition publication-title: Nat. Commun. doi: 10.1038/ncomms4087 – volume: 135 start-page: 5304 year: 2013 end-page: 5307 ident: CR20 article-title: Controlled synthesis of highly crystalline MoS flakes by chemical vapor deposition publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4013485 – volume: 6 start-page: 183 year: 2007 end-page: 191 ident: CR2 article-title: The rise of graphene publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 101 start-page: 1653 year: 2013 end-page: 1669 ident: CR47 article-title: Multiscale modeling for graphene-based nanoscale transistors publication-title: Proc. IEEE doi: 10.1109/JPROC.2013.2259451 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR42 article-title: Efficient iterative schemes for total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 26 start-page: 6255 year: 2014 end-page: 6261 ident: CR18 article-title: Interface engineering for high-performance top-gated MoS field-effect transistors publication-title: Adv. Mater. doi: 10.1002/adma.201402008 – ident: CR37 – volume: 12 start-page: 554 year: 2013 end-page: 561 ident: CR36 article-title: Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide publication-title: Nat. Mater. doi: 10.1038/nmat3633 – volume: 7 start-page: 4449 year: 2013 end-page: 4458 ident: CR15 article-title: Improved carrier mobility in few-layer MoS field-effect transistors with ionic-liquid gating publication-title: ACS Nano doi: 10.1021/nn401053g – volume: 92 start-page: 246401 year: 2004 ident: CR54 article-title: Van der Waals density functional for general geometries publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.246401 – volume: 12 start-page: 754 year: 2013 end-page: 759 ident: CR32 article-title: Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers publication-title: Nat. Mater. doi: 10.1038/nmat3673 – volume: 5 start-page: 7707 year: 2011 end-page: 7712 ident: CR33 article-title: Nature of electronic states in atomically thin MoS field-effect transistors publication-title: ACS Nano doi: 10.1021/nn202852j – volume: 82 start-page: 081101 year: 2010 ident: CR55 article-title: Higher-accuracy van der waals density functional publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.081101 – volume: 26 start-page: 2648 year: 2014 end-page: 2653 ident: CR25 article-title: Growth of large-area 2D MoS Se semiconductor alloys publication-title: Adv. Mater. doi: 10.1002/adma.201306095 – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: CR51 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 220 start-page: 567 year: 2005 end-page: 570 ident: CR41 article-title: First principles methods using CASTEP publication-title: Z. Kristallogr. – volume: 3 start-page: 1011 year: 2012 ident: CR14 article-title: High-mobility and low-power thin-film transistors based on multilayer MoS crystals publication-title: Nat. Commun. doi: 10.1038/ncomms2018 – volume: 324 start-page: 1312 year: 2009 end-page: 1314 ident: CR5 article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils publication-title: Science doi: 10.1126/science.1171245 – ident: CR38 – volume: 4 start-page: 2642 year: 2013 ident: CR30 article-title: Hopping transport through defect-induced localized states in molybdenum disulphide publication-title: Nat. Commun. doi: 10.1038/ncomms3642 – volume: 438 start-page: 201 year: 2005 end-page: 204 ident: CR3 article-title: Experimental observation of the quantum Hall effect and Berry’s phase in graphene publication-title: Nature doi: 10.1038/nature04235 – volume: 10 start-page: 1271 year: 2010 end-page: 1275 ident: CR9 article-title: Emerging photoluminesence in monolayer MoS publication-title: Nano Lett. doi: 10.1021/nl903868w – volume: 7 start-page: 699 year: 2012 end-page: 712 ident: CR6 article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 24 start-page: 2320 year: 2012 end-page: 2325 ident: CR21 article-title: Synthesis of large-area MoS atomic layers with chemical vapor deposition publication-title: Adv. Mater. doi: 10.1002/adma.201104798 – volume: 88 start-page: 035301 year: 2013 ident: CR39 article-title: From point to extended defects in two-dimensional MoS : evolution of atomic structure under electron irradiation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.035301 – volume: 83 start-page: 195131 year: 2011 ident: CR53 article-title: Van der waals density functionals applied to solids publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195131 – volume: 6 start-page: 147 year: 2011 end-page: 150 ident: CR13 article-title: Single-layer MoS transistors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR50 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 13 start-page: 4212 year: 2013 end-page: 4216 ident: CR43 article-title: Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS publication-title: Nano Lett. doi: 10.1021/nl401916s – volume: 5 start-page: 4475 year: 2014 ident: BFncomms7293_CR46 publication-title: Nat. Commun. doi: 10.1038/ncomms5475 – volume: 244 start-page: 4106 year: 2007 ident: BFncomms7293_CR4 publication-title: Phys. Stat. Sol. B doi: 10.1002/pssb.200776208 – volume: 12 start-page: 754 year: 2013 ident: BFncomms7293_CR32 publication-title: Nat. Mater. doi: 10.1038/nmat3673 – volume: 6 start-page: 183 year: 2007 ident: BFncomms7293_CR2 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 82 start-page: 081101 year: 2010 ident: BFncomms7293_CR55 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.081101 – volume: 14 start-page: 1909 year: 2014 ident: BFncomms7293_CR17 publication-title: Nano Lett. doi: 10.1021/nl4046922 – volume: 5 start-page: 7707 year: 2011 ident: BFncomms7293_CR33 publication-title: ACS Nano doi: 10.1021/nn202852j – volume: 220 start-page: 567 year: 2005 ident: BFncomms7293_CR41 publication-title: Z. Kristallogr. doi: 10.1524/zkri.220.5.567.65075 – volume: 102 start-page: 042104 year: 2013 ident: BFncomms7293_CR44 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4789365 – volume: 10 start-page: 1271 year: 2010 ident: BFncomms7293_CR9 publication-title: Nano Lett. doi: 10.1021/nl903868w – volume: 88 start-page: 035301 year: 2013 ident: BFncomms7293_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.035301 – volume: 7 start-page: 699 year: 2012 ident: BFncomms7293_CR6 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 5 start-page: 5290 year: 2014 ident: BFncomms7293_CR28 publication-title: Nat. Commun. doi: 10.1038/ncomms6290 – volume: 116 start-page: 8983 year: 2012 ident: BFncomms7293_CR7 publication-title: J. Phys. Chem. C. doi: 10.1021/jp212558p – ident: BFncomms7293_CR49 – volume: 4 start-page: 2642 year: 2013 ident: BFncomms7293_CR30 publication-title: Nat. Commun. doi: 10.1038/ncomms3642 – volume: 105 start-page: 136805 year: 2010 ident: BFncomms7293_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 12 start-page: 2784 year: 2012 ident: BFncomms7293_CR23 publication-title: Nano Lett. doi: 10.1021/nl204562j – volume: 77 start-page: 3865 year: 1996 ident: BFncomms7293_CR50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 26 start-page: 6255 year: 2014 ident: BFncomms7293_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201402008 – volume: 6 start-page: 147 year: 2011 ident: BFncomms7293_CR13 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 – volume: 13 start-page: 4212 year: 2013 ident: BFncomms7293_CR43 publication-title: Nano Lett. doi: 10.1021/nl401916s – volume: 50 start-page: 17953 year: 1994 ident: BFncomms7293_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 3 start-page: 1011 year: 2012 ident: BFncomms7293_CR14 publication-title: Nat. Commun. doi: 10.1038/ncomms2018 – volume: 7 start-page: 2768 year: 2013 ident: BFncomms7293_CR24 publication-title: ACS Nano doi: 10.1021/nn4002038 – ident: BFncomms7293_CR38 doi: 10.1002/0470068329 – volume: 3 start-page: 887 year: 2012 ident: BFncomms7293_CR12 publication-title: Nat. Commun. doi: 10.1038/ncomms1882 – volume: 54 start-page: 11169 year: 1996 ident: BFncomms7293_CR42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 7 start-page: 490 year: 2012 ident: BFncomms7293_CR10 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.95 – volume: 12 start-page: 554 year: 2013 ident: BFncomms7293_CR36 publication-title: Nat. Mater. doi: 10.1038/nmat3633 – volume: 13 start-page: 3546 year: 2013 ident: BFncomms7293_CR34 publication-title: Nano Lett. doi: 10.1021/nl4010783 – volume: 41 start-page: 2357 year: 1994 ident: BFncomms7293_CR45 publication-title: IEEE Trans. Electr. Dev. doi: 10.1109/16.337449 – volume: 438 start-page: 197 year: 2005 ident: BFncomms7293_CR1 publication-title: Nature doi: 10.1038/nature04233 – volume: 8 start-page: 147 year: 2013 ident: BFncomms7293_CR27 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.31 – volume: 92 start-page: 246401 year: 2004 ident: BFncomms7293_CR54 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.246401 – volume: 12 start-page: 1136 year: 2012 ident: BFncomms7293_CR16 publication-title: Nano Lett. doi: 10.1021/nl2021575 – volume: 135 start-page: 5304 year: 2013 ident: BFncomms7293_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4013485 – volume: 7 start-page: 4449 year: 2013 ident: BFncomms7293_CR15 publication-title: ACS Nano doi: 10.1021/nn401053g – volume: 26 start-page: 2648 year: 2014 ident: BFncomms7293_CR25 publication-title: Adv. Mater. doi: 10.1002/adma.201306095 – volume: 109 start-page: 035503 year: 2012 ident: BFncomms7293_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.035503 – volume: 85 start-page: 115317 year: 2012 ident: BFncomms7293_CR48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.115317 – volume: 24 start-page: 2320 year: 2012 ident: BFncomms7293_CR21 publication-title: Adv. Mater. doi: 10.1002/adma.201104798 – volume: 101 start-page: 1653 year: 2013 ident: BFncomms7293_CR47 publication-title: Proc. IEEE doi: 10.1109/JPROC.2013.2259451 – volume: 438 start-page: 201 year: 2005 ident: BFncomms7293_CR3 publication-title: Nature doi: 10.1038/nature04235 – volume: 7 start-page: 494 year: 2012 ident: BFncomms7293_CR11 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.96 – volume: 8 start-page: 146 year: 2013 ident: BFncomms7293_CR26 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.30 – volume: 324 start-page: 1312 year: 2009 ident: BFncomms7293_CR5 publication-title: Science doi: 10.1126/science.1171245 – volume: 27 start-page: 1787 year: 2006 ident: BFncomms7293_CR51 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 12 start-page: 815 year: 2013 ident: BFncomms7293_CR19 publication-title: Nat. Mater. doi: 10.1038/nmat3687 – volume: 13 start-page: 2640 year: 2013 ident: BFncomms7293_CR29 publication-title: Nano Lett. doi: 10.1021/nl400778q – volume: 13 start-page: 2615 year: 2013 ident: BFncomms7293_CR35 publication-title: Nano Lett. doi: 10.1021/nl4007479 – volume: 5 start-page: 3087 year: 2014 ident: BFncomms7293_CR40 publication-title: Nat. Commun. doi: 10.1038/ncomms4087 – ident: BFncomms7293_CR37 doi: 10.1007/978-1-4419-7200-2 – volume: 83 start-page: 195131 year: 2011 ident: BFncomms7293_CR53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195131 – volume: 12 start-page: 1538 year: 2012 ident: BFncomms7293_CR22 publication-title: Nano Lett. doi: 10.1021/nl2043612 – reference: 25070646 - Adv Mater. 2014 Sep;26(36):6255-61 – reference: 23644523 - Nat Mater. 2013 Jun;12(6):554-61 – reference: 23930826 - Nano Lett. 2013 Sep 11;13(9):4212-6 – reference: 23489053 - J Am Chem Soc. 2013 Apr 10;135(14):5304-7 – reference: 23459546 - Nat Nanotechnol. 2013 Mar;8(3):147-8 – reference: 20229981 - Nano Lett. 2010 Apr 14;10(4):1271-5 – reference: 21230799 - Phys Rev Lett. 2010 Sep 24;105(13):136805 – reference: 16281030 - Nature. 2005 Nov 10;438(7065):197-200 – reference: 16955487 - J Comput Chem. 2006 Nov 30;27(15):1787-99 – reference: 22861869 - Phys Rev Lett. 2012 Jul 20;109(3):035503 – reference: 9984901 - Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 – reference: 17330084 - Nat Mater. 2007 Mar;6(3):183-91 – reference: 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 – reference: 22910357 - Nat Commun. 2012;3:1011 – reference: 25327957 - Nat Commun. 2014 Oct 20;5:5290 – reference: 15245113 - Phys Rev Lett. 2004 Jun 18;92(24):246401 – reference: 9976227 - Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979 – reference: 24640984 - Nano Lett. 2014;14(4):1909-13 – reference: 25042376 - Nat Commun. 2014 Jul 21;5:4475 – reference: 21278752 - Nat Nanotechnol. 2011 Mar;6(3):147-50 – reference: 22706701 - Nat Nanotechnol. 2012 Aug;7(8):490-3 – reference: 24435154 - Nat Commun. 2014;5:3087 – reference: 23659662 - Nano Lett. 2013 Jun 12;13(6):2615-22 – reference: 23862641 - Nano Lett. 2013 Aug 14;13(8):3546-52 – reference: 22642717 - Nano Lett. 2012 Jun 13;12(6):2784-91 – reference: 19423775 - Science. 2009 Jun 5;324(5932):1312-4 – reference: 22276648 - Nano Lett. 2012 Mar 14;12(3):1136-40 – reference: 16281031 - Nature. 2005 Nov 10;438(7065):201-4 – reference: 23793161 - Nat Mater. 2013 Sep;12(9):815-20 – reference: 22706698 - Nat Nanotechnol. 2012 Aug;7(8):494-8 – reference: 23749265 - Nat Mater. 2013 Aug;12(8):754-9 – reference: 22369470 - Nano Lett. 2012 Mar 14;12(3):1538-44 – reference: 22467187 - Adv Mater. 2012 May 2;24(17):2320-5 – reference: 23427810 - ACS Nano. 2013 Mar 26;7(3):2768-72 – reference: 23459545 - Nat Nanotechnol. 2013 Mar;8(3):146-7 – reference: 22673914 - Nat Commun. 2012;3:887 – reference: 24677312 - Adv Mater. 2014 May;26(17):2648-53, 2613 – reference: 21902203 - ACS Nano. 2011 Oct 25;5(10):7707-12 – reference: 23679044 - Nano Lett. 2013 Jun 12;13(6):2640-6 – reference: 23590723 - ACS Nano. 2013 May 28;7(5):4449-58 – reference: 24149969 - Nat Commun. 2013;4:2642 – reference: 23132225 - Nat Nanotechnol. 2012 Nov;7(11):699-712 |
SSID | ssj0000391844 |
Score | 2.6567023 |
Snippet | Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6293 |
SubjectTerms | 119/118 639/301/1005/1007 639/301/119/1000/1018 639/638/563/979 639/766/36 Humanities and Social Sciences Molybdenum multidisciplinary Optical properties Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60IngR30arROzFQ2jT3XQ3IIiIpQh6stBb2Fcx0CbVtof-e2e3SWqteM1OkmFnH9_sfDsD0FCx4Fx3wgA9Lx1QBMgBgnodMGkMl6FgbWXvDr--dXp9-jKIBsWB27SgVZZroluoda7sGXnTZYlB7NGJHiafga0aZaOrRQmNbdixqcsspYsNWHXGYrOfc0rLrKSENzP85HiKgJKs70Mb4HKTI_krUOr2n-4B7BfA0X9cWvoQtkx2BLvLUpKLY7ivyHQ-utHjVPnaOKaGn2b-OB8tpLakd1-njo-eaoNPM_RrLeQ-gX73-f2pFxSVEQKFgGoWRJHmTBMzxOkpY6WVpnFLxEMWqyhkRGIbwc2JEmaGyihJjRTMdESLD5UINSWnUMvyzJyD37YITJgYHVVNIyqFRh9HGPT7uLbUUw_uyn5KVJE23FavGCUufE14supTD24r2ckyWcafUvWyu5NiwkyTlXk9uKmacajb-IXITD53MgyXoBZnHpwtrVP9BpEbasuoB2zNbpWATaO93pKlHy6dNiU4RAm-2Sgt_EOtDe0v_tf-EvYQUrlL72Fch9rsa26uELbM5LUbm987QvGK priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_oRPAifludUnEXD8V1SZsUvMhwDEFPDnYr-SoWXCduO-y_9yX9cHMePLZ5oY_kJfm95pdfADoqEZzrOAww89IBRYAcIKjXAZPGcBkK1lP27PDLazwc0edxNK5kcmYVrbKUtHTTdM0Ouy_waTJDJEi2YcdKttto7sf95n-KVTrnlNYKpISvVFlfczaA5CYf8temqFtrBgewX4FE_7F06xC2THEEu-W1kctjeGiIcz6mzJNc-do4VoafF_5k-rGU2hLcfZ077nmuDb4tMIe18PoERoOnt_4wqG5BCBSCp3kQRZozTUyGQ1EmSitNk65IMpaoKGREYhnBhYgSZjJllKRGCmZi0eWZEqGm5BRaxbQw5-D3LNoSJsGkVNOISqExnxEGczyuLc3Ug7u6nVJVSYTbmyo-UrdVTXj606Ye3Da2n6Uwxp9W7bq502pwzFIn-IMwMo48uGmKMaztXoUozHThbBhON13OPDgre6f5DKI09JZRD9havzUGVjJ7vaTI3510NiUYjgRrduoeXnFrw_uL_5ldwh7CKHfQPUza0Jp_LcwVQpW5vHYx-g0SFO3M priority: 102 providerName: Springer Nature |
Title | Exploring atomic defects in molybdenum disulphide monolayers |
URI | https://link.springer.com/article/10.1038/ncomms7293 https://www.ncbi.nlm.nih.gov/pubmed/25695374 https://www.proquest.com/docview/1656056665 https://www.proquest.com/docview/1657318087 https://pubmed.ncbi.nlm.nih.gov/PMC4346634 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9BEdJeEBtsBLoqCF54CGtqJ3akTVNXUVAlEAIq9S3yV0WkNuWjSPS_39n5gK487CWR4rPi3Nm-3-XOdwDHKhGc6zgM0PLSAUWAHCCo1wGTxnAZCtZR9uzw5VV8MaSDUTRag6p-Z8nA5w9NO1tPavg0OX19XPzGBf-rODLOf-Qom-kzokSyDhuokZhdoJclzHc7MknQkLEO5k6bhgHqbFJlKl3qvqybVgDnatzkP85Tp5P627BVgkm_W0j_M6yZ_AtsFuUlFzvwsw6w89G0nmbK18ZFb_hZ7k9nk4XUNhDe15mLUc-0wac5MsTC8F0Y9s_uehdBWS0hUAiy5kEUac40MWNcsjJRWmmatEUyZomKQkYkthFUWJQwM1ZGSWqkYCYWbT5WItSUfIVGPsvNHvgdi8qESdB41TSiUmi0e4RBW5BrG47qwUnFp1SVqcRtRYtJ6lzahKdvPPXgqKZ9KBJofEjVrNidVnMgdYmBEG7GkQeHdTNOf-vTELmZvTgahttSmzMPvhXSqV-DaA5Hy6gHbEluNYFNrb3ckmf3LsU2JThtCfY8riT8blgro9__r288gE-Ittx5-DBpQmP-9GK-I6KZyxassxHDK--ft2Cj2x3cDvD-5-zq-gaf9uJey_0raLlp_Rfsof-R |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4CMEF8aY8i4ADh4p1SZdUAiHEQ-N5Amm3ktdEJdYBG0L7U_xGnHQtjCFuXBu3dRPb-Vw7NsCOigXnuhYG6HnpgCJADhDU64BJY7gMBasqe3b45rZWv6eXjagxAh_FWRibVlnYRGeodVvZf-T7rkoMYo9adPT8EtiuUTa6WrTQyMXiyvTe0WXrHF6c4vruVqvnZ3cn9aDfVSBQCEa6QRRpzjQxTRRtGSutNI0rIm6yWEUhIxLHCBp2SphpKqMkNVIwUxMV3lQi1JTgc0dhHDfeitUo1mDlPx1bbZ1TWlRBJXw_w09odRDAksF9bwjMDudk_gjMuv3ufAam-0DVP84laxZGTDYHE3nryt48HJTJez667a1U-dq4zBA_zfxW-6kntU2y93Xq8t9TbfBqhn60hfgLcP8vc7YIY1k7M8vgVy3iEyZGx1jTiEqh0acSBv1Mrm2qqwd7xTwlql-m3HbLeEpcuJzw5GtOPdguaZ_z4hy_Uq0V0530FbSTfImTB1vlMKqWjZeIzLTfHA1Dk1fhzIOlfHXK1yBSRG4Z9YANrFtJYMt2D45k6aMr300JqgTBO3eKFf7G1hD3K39zvwmT9bub6-T64vZqFaYQzrkD92G8BmPd1zezjpCpKzecnPrw8N-K8QkC6zAW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tQ0y8IBjbCBQWRPewh6hN7NSOBEKIUm0MKh42qW-ZvyIircmgnVD_Nf46zs5HKZ321tf4kjj23eV39s93AF2VCM71IAww8tIBRYAcIKjXAZPGcBkKFil7dvjbeHB6Sb9M4skW_GnOwlhaZeMTnaPWpbJr5D2XJQaxxyDuZTUt4vtw9OHmZ2ArSNmd1qacRqUi52bxG8O32fuzIc71cRSNPl98Og3qCgOBQmAyD-JYc6aJyVDNZaK00jTpiyRjiYpDRiS2EXTylDCTKaMkNVIwMxB9nikRakrwudvwgJE4tDbGJqxd37GZ1zmlTUZUwnsFfs50hmCWrP4D14DtOj_zv01a9-8bPYHHNWj1P1Za9hS2TLEHD6sylotn8K4l8vkYwk9z5WvjWCJ-XvjT8nohtSXc-zp3XPhcG7xaYExt4f4-XG5kzA5gpygL8xz8yKI_YRIMkjWNqRQa4ythMObk2tJePThpxilVdcpyWznjOnVb54SnyzH14G0re1Ml6rhTqtMMd1ob6yxdqpYHb9pmNDO7dyIKU946GYbur8-ZB4fV7LSvQdSIvWXUA7Yyb62ATeG92lLkP1wqb0rQPAje2W1m-J9urfX-xf29P4JdNIn069n4_CU8QmTnzt6HSQd25r9uzStET3P52qmpD1ebtou_rKI0TA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+atomic+defects+in+molybdenum+disulphide+monolayers&rft.jtitle=Nature+communications&rft.au=Hong%2C+Jinhua&rft.au=Hu%2C+Zhixin&rft.au=Probert%2C+Matt&rft.au=Li%2C+Kun&rft.date=2015-02-19&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1038%2Fncomms7293&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_ncomms7293 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |